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The unstable periodic orbits (UPOs) embedded in a chaotic attractor after an attractor merging

crisis (MC) are classified into three subsets, and employed to reconstruct chaotic saddles in the

Kuramoto-Sivashinsky equation. It is shown that in the post-MC regime, the two chaotic saddles

evolved from the two coexisting chaotic attractors before crisis can be reconstructed from the

UPOs embedded in the pre-MC chaotic attractors. The reconstruction also involves the detection of

the mediating UPO responsible for the crisis, and the UPOs created after crisis that fill the gap

regions of the chaotic saddles. We show that the gap UPOs originate from saddle-node, period-dou-

bling, and pitchfork bifurcations inside the periodic windows in the post-MC chaotic region of the

bifurcation diagram. The chaotic attractor in the post-MC regime is found to be the closure of

gap UPOs. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4933267]

Unstable periodic orbits (UPOs) are important fundamen-

tal invariant sets which can characterize chaotic invariant

sets (chaotic attractor, chaotic saddle). If chaotic saddles

are embedded in a chaotic attractor, it is difficult to char-

acterize them, especially in a high dimensional system. In

this paper, we study the Kuramoto-Sivashinsky equation,

which is a partial differential equation exhibiting chaotic

behavior, focusing in the regime after the onset of attrac-

tor merging crisis (MC). We detect a large number of

UPOs and classify them into three subsets. It is shown that

the chaotic saddles in the post-MC regime can be recon-

structed by a subset of UPOs (attractor UPOs) originating

from the attractor in the pre-MC regime. It is also shown

that the post-MC chaotic attractor is characterized by a

subset of newly created UPOs (gap UPOs), which fill the

gaps between chaotic saddles and reflect the global behav-

ior of the chaotic system generated by the attractor merg-

ing crisis.

I. INTRODUCTION

Chaotic saddles are nonattracting chaotic sets responsi-

ble for nonlinear phenomena such as chaotic transients, cha-

otic scattering, and fractal basin boundaries.1–8 A chaotic

saddle is characterized by its associated stable and unstable

manifolds. The stable manifold is the set of points which

converge to the chaotic saddle in forward time dynamics; the

unstable manifold is the set of points which converge to the

chaotic saddle in the backward time dynamics. The chaotic

saddle lies on the intersection of its stable and unstable mani-

folds, which are fractal sets. Thus, their intersection contains

gaps along the stable and unstable foliations. Numerically,

chaotic saddles can be detected by using several methods

such as the sprinkler,8,9 the [PIM (Proper Interior Maximum)

triple],10 and the stagger-and-step algorithms.11

Large-scale invariant sets such as chaotic attractors can

undergo bifurcations as a control parameter is varied. These

bifurcations include the sudden disappearance or sudden

changes in the size and/or type of the set.12–16 An attractor MC

is an example of global bifurcation in which two or more cha-

otic attractors merge to form one single chaotic attractor.17 At

MC, chaotic attractors simultaneously touch the boundary sep-

arating their basins of attraction and collide with one or more

UPOs on the basin boundary. Although most previous works

on MC were restricted to low-dimensional dynamical systems,

there are some works on MC of high-dimensional systems.

Platt et al.18 investigated a two-dimensional Kolmogorov flow

governed by the incompressible Navier-Stokes equations with

a steady, spatially periodic forcing and found the occurrence of

a MC. Kobayashi and Mizuguchi19 studied a MC in a one-

dimensional parametrically forced complex Ginzburg-Landau

equation. Rempel and Chian20 presented a characterization of

a MC in the Kuramoto-Sivashinsky equation by demonstrating

the collision of two chaotic attractors with a mediating UPO

on the boundary of their basins of attraction. In addition, theya)yoshi.saiki@r.hit-u.ac.jp
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showed the existence of chaotic saddles in the post-MC re-

gime. Szab�o et al.21,22 argued with some examples of map sys-

tems that the gaps of chaotic saddles become densely filled in

an interior crisis due to the appearance of gap UPOs with

extremely long periods.

In this paper, we focus on the detection and classification

of UPOs embedded in a chaotic attractor in the post-MC re-

gime, and the reconstruction of chaotic saddles using a subset

of these UPOs in the Kuramoto-Sivashinsky equation (KSE).

UPOs in the KSE have been studied in a series of works.20,23–32

For example, Christiansen et al.23 reported that the cycle

expansion theory can be applied to compute global averages of

attracting and nonattracting chaotic sets of the KSE with peri-

odic boundary conditions; Zoldi and Greenside24 investigated

the statistical error associated with estimations of the fractal

dimension of a spatiotemporally chaotic attractor as a function

of the number of known UPOs of the KSE with rigid boundary

conditions. Lan and Cvitanović27 studied UPOs in the KSE

with periodic boundary conditions in the same setting as

Christiansen et al.,23 but in a turbulent regime. They showed

that the UPOs can be organized into trinary symbolic dynamics

in this regime. They also studied the relative periodic orbits

appearing in the turbulent regime, which we will call gap

unstable periodic orbits. The present work focuses on the bifur-

cations of the UPOs near the MC occurring at the parameters

between two regimes studied by Christiansen et al.23 and Lan

and Cvitanović.27 We confirm agreements between the chaotic

saddles identified by the PIM triple method and those identified

by a set of UPOs classified by the bifurcation analysis, and clar-

ify the roles of three types of UPOs in the post-MC regime.

This paper is organized as follows. In Section II, we discuss the

numerical setting to study the KSE and obtained the bifurcation

diagram for attractors and chaotic saddles. In Section III, we

detect a large number of UPOs and classify them into three

subsets based on their origins. In Section IV, chaotic saddles

are reconstructed by using a subset of UPOs, and it is shown

that gaps in chaotic saddles are filled with another set of UPOs.

We conclude our remarks in Section V.

II. BIFURCATION DIAGRAM FOR ATTRACTORS AND
CHAOTIC SADDLES

The Kuramoto-Sivashinsky equation can be written as

ut ¼ �uxx � �uxxxx � ðu2Þx; (1)

where � is a “viscosity” control parameter. We assume peri-

odic boundary conditions u(x, t)¼ u(xþ 2p, t), following

Refs. 23 and 20. By employing the Galerkin method, we apply

a Fourier decomposition to the function uðx; tÞ ¼
P1

k¼�1
bkðtÞeikx and obtain

_bk ¼ ðk2 � �k4Þbk � ik
X1

m¼�1
bmbk�m; k ¼ �1;…;þ1;

(2)

where the coefficients bk are complex variables. We simplify

the system by assuming that bk are purely imaginary,

bk¼�iak/2, where ak are real, and obtain

_ak ¼ k2 � �k4ð Þak �
k

2

X1
m¼�1

amak�m; k ¼ �1;…;þ1:

(3)

This simplification corresponds to choosing reflection-

invariant modes of the system, which represent the subspace

of odd functions, u(x, t)¼�u(�x, t), and the solutions stay

in this invariant subspace for all time. This breaks the contin-

uous shift symmetry of the system, and only discrete shifts

by p are allowed. See Ref. 28 for the detailed discussions of

the symmetries of the system. This equation contains

unnecessary components. Since u(x, t) is real, �iak¼ ia�k,

and it is not necessary to compute the modes with negative k.

Moreover, ak¼ 0 for jkj > N, and some operations in the

nonlinear term can be dropped. Thus, the simplified equa-

tions can be written in the truncated form

_ak ¼ k2 � �k4ð Þak

þ k

2

X�1

m¼k�N

a�mak�m�
Xk�1

m¼1

amak�m þ
XN

m¼kþ1

amam�k

 !
;

k ¼ 1;…;N: (4)

We solve Eq. (4) with N¼ 16.

Fig. 1(a) displays a superposition of bifurcation dia-

grams at the Poincar�e section defined by a1¼ 0 and _a1 > 0,

FIG. 1. (a) Superposition of bifurcation diagrams for attractors A1 and A2

(black), showing the merging of the two attractors into a single attractor at

MC. The dashed line represents the p-1 m-UPO. (b) Conversion of attractors

A1 and A2 into two chaotic saddles CS1 and CS2 (gray) after MC, respec-

tively. The two chaotic saddles, computed by the PIM-triple method, are

separated by the m-UPO.
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for two attractors (A1 and A2), showing their merging into a

single attractor at MC, where �MC� 0.02990. The dashed

line represents an UPO created at the pitchfork bifurcation

indicated by PF. This UPO is named a mediating UPO (m-

UPO) because it mediates the MC. The symmetry between

A1 and A2 reflects an invariance of Eq. (4) under the shift

u(x, t)! u(xþ p, t), which is a particular case of the transla-

tion invariance property of the system. After colliding with

the m-UPO, the two pre-crisis chaotic attractors lose their

stability and are converted into two chaotic saddles (CS1 and

CS2) immersed in the merged chaotic attractor.20 In

Fig. 1(b), we plot the same bifurcation diagram of Fig. 1(a)

(black) up to MC (� > �MC), and after MC (� < �MC), we

plot the Poincar�e points of the two chaotic saddles (gray).

The white spaces within the gray areas are gaps that reflect

the discontinuous and fractal structure of the chaotic saddles.

The two chaotic saddles CS1 and CS2 are separated by the

period-1 (p-1) m-UPO (dashed line) in Fig. 1(b). Here, pe-

riod n (p-n) denotes the period of a given UPO in the

Poincar�e map. In the full 15-D Poincar�e map, the stable

manifold of the m-UPO separates the post-crisis chaotic sad-

dles. The same manifold forms the basin boundary of the

two pre-MC chaotic attractors.

III. CLASSIFICATION OF UNSTABLE PERIODIC
ORBITS

We focus our attention first in the regions nearby

�¼ �MC by detecting 537 UPOs of periods up to 11 numeri-

cally at �¼ 0.02987 (<�MC) using the Newton-Raphson-

Mees method.34 Next, we increase the control parameter

value to �¼ 0.02991 (>�MC) and follow the evolution of

these UPOs across the MC point. The post-MC UPOs can be

classified into three subsets: (1) a-UPO (attractor UPO)

which exists in both pre-MC (>�MC) and post-MC (<�MC)

regimes, (2) g-UPO (gap UPO) which exists only in the post-

MC (<�MC) regime, and (3) the m-UPO (mediating UPO)

which is located on the boundary of the basins of attraction

of the two coexisting chaotic attractors in the pre-MC re-

gime. Note that our notation “a-UPO” may sound awkward

when expanded as “attractor-unstable periodic orbit.”

Nevertheless, we chose this term for simplicity, and it refers

to the UPOs embedded in chaotic attractors that exist prior to

the attractor merging crisis.

Fig. 2 shows three subsets of examples of UPOs found

at �¼ 0.02987 (� < �MC), and traced until �¼ 0.02991

(� > �MC). For simplicity, we plot only one branch of each

UPO. This figure shows that p-7, p-8, and p-9 g-UPOs

(green) exist only in the post-MC regime, whereas p-2, p-3,

and p-4 a-UPOs (red) and p-1 m-UPO (black) exist in both

post- and pre-MC regimes.

We exemplify the appearance of some g-UPOs by fo-

cusing on a periodic window in the post-MC regime. Fig.

3(a) shows a detailed view of the bifurcation diagram after

the attractor merging crisis. Fig. 3(b) shows an enlargement

of one branch of the p-7 periodic window indicated by an

arrow in Fig. 3(a), superposed by three examples of gap

UPOs created within this periodic window. The green line

represents, respectively: (1) a p-7 g-UPOSN originating from

a saddle-node bifurcation (SN) which marks the beginning

of this periodic window; (2) a p-7 g-UPOPF evolved from a

PF which mediates a MC within this periodic window; (3) a

p-7 g-UPOPD produced by the first period-doubling bifurca-

tion (PD).

FIG. 2. Branches of three subsets of examples of UPOs of period n (p � n)

by changing � near MC indicated by arrow. The first subset are g-UPOs

(green dashed line) of p-7, p-8, p-9, and p-10. The second are a-UPOs (red

line) of p-2, p-3, and p-4. The third is m-UPO (black dotted line) of p-1. The

g-UPOs detected at �¼ 0.02987 exist only in the post-MC regime, whereas

the a-UPOs and the m-UPO exist in both pre- and post-MC regimes.

FIG. 3. (a) Detailed view of the bifurcation diagram in the post-MC regime,

showing a p-7 periodic window indicated by an arrow. (b) Enlargement of

one branch of the p-7 periodic window and its symmetric attractor super-

posed by p-7 g-UPOSN, p-7 g-UPOPF, and p-7 g-UPOPD. The UPOs are

marked green. At the PF point two symmetric periodic attractors are created

(upper and lower branches separated by the green dotted line in the bifurca-

tion diagram).
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Fig. 4 shows the projections of the phase-space trajecto-

ries of UPOs of each subset projected on the (a1, a2) plane

detected at �¼ 0.02987; (a) p-1 m-UPO, (b) p-4 a-UPO, (c)

p-7 g-UPOSN, (d) p-7 g-UPOPF, (e) p-7 g-UPOPD, and (f) p-

8 g-UPO. This figure shows that in these projections, the m-

UPO (Fig. 4(a)) and the g-UPOs (Figs. 4(c)–4(f)) display

“symmetric” shapes, whereas the a-UPO (Fig. 4(b)) displays

an “asymmetric” shape. Note that g-UPOs look “symmetric,”

but most are not self-dual exactly under half domain shift

symmetry of the orbits. In fact, it is easily seen that g-UPO

in Figs. 4(e) and 4(f) are not self-dual, although g-UPOs in

Figs. 4(c) and 4(d) are self-dual.

Fig. 5 shows the Poincar�e plots of the two chaotic sad-

dles CS1 and CS2 (gray) embedded in the post-MC chaotic

attractor, superposed by the p-7 g-UPOSN (Fig. 5(a)), the p-

7 g-UPOPF (Fig. 5(b)), and the p-7 g-UPOPD (Fig. 5(c)). This

figure clearly shows that the g-UPOs are located within the

gaps of the two chaotic saddles.

IV. RECONSTRUCTION OF CHAOTIC SADDLES

Since the chaotic saddles embedded in the post-MC cha-

otic attractor exhibit fractal structure along the unstable foli-

ation, with zero Lebesgue measure, they have been called by

Szab�o and T�el,33 the “geometrical backbone” of the chaotic

attractor. The g-UPOs, on the other hand, fill in the gaps

along the unstable foliation of the chaotic saddles, being

called the “bulk” of the chaotic attractor.22,33 Since the g-

UPOs are densely embedded within the chaotic attractor, and

the a-UPOs are densely embedded within the chaotic saddle,

we naturally expect that the g-UPOs should resemble the

chaotic attractor, and the a-UPOs should resemble the fractal

structure of the two chaotic saddles. In order to reconstruct

the chaotic saddles embedded in the post-MC chaotic attrac-

tor, evolved from the pre-MC chaotic attractors, we first

detect UPOs for a fixed post-crisis value of � and then clas-

sify them following the aforementioned procedure. Fig. 6

shows the Poincar�e plots of the detected p-8 g-UPOs (Fig.

6(a)), p-9 g-UPOs (Fig. 6(b)) and p-10 g-UPOs (Fig. 6(c)) at

�¼ 0.02987. It can be seen that the sets of g-UPOs with

higher periods tend to fill smaller gaps. This is consistent

with the fact that, in the post-MC regime close to the transi-

tion point, gaps are very small and are filled with g-UPOs

with extremely long periods. The lowest periods of the

Poincar�e map of detected g-UPOs are 6, 7, and 9 for

�¼ 0.02986, 0.02987, and 0.02989, respectively, which

means that the lowest periods of the created g-UPOs are rela-

tively long in the post-MC regime, close to �MC (�0.02990),

but become shorter as � moves away from �MC. We can con-

firm this result from Table I, which shows the number of

detected UPOs of each subset at �¼ 0.02987 away from �MC

FIG. 4. Projection onto the (a1, a2)

plane of: (a) p-1 m-UPO, (b) p-4

a-UPO, (c) p-7 g-UPOSN, (d) p-

7 g-UPOPF, (e) p-7 g-UPOPD, and (f)

p-8 g-UPO for �¼ 0.02987, which is

the starting point of Fig. 3(a). (c)–(e)

correspond to the three branches in

Fig. 3(b).
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and 0.02989 closer to �MC. Our result is consistent with the

finding of Szab�o et al.21,22 for an interior crisis of map sys-

tems, and can explain the widening of gaps within chaotic

saddles with decreasing � observed in Fig. 1(b). Since near

the merging crisis the gap sizes tend to zero, the period of

the existing g-UPOs tend to infinity, which is consistent

with the values in Table I, where the lowest period g-UPOs

have longer periods as the parameter approaches the MC

point.

Now, we direct our attention to the reconstruction of the

two chaotic saddles evolved from the two pre-MC chaotic

attractors using the classified UPOs. Figures 7(a) and 7(b)

show the Poincar�e plots of the post-MC chaotic attractor and

the two embedded chaotic saddles (CS1 and CS2), respec-

tively, at �¼ 0.02987. The two chaotic saddles CS1 and CS2

were computed using the PIM triple method.10,20 Figs. 7(c)

and 7(d) show the Poincar�e plots of a set of g-UPOs and a set

of a-UPOs, respectively. From this figure, it can be confirmed

that the bulk of the chaotic attractor (Fig. 7(a)) is formed by

the g-UPOs (Fig. 7(c)), whereas the chaotic saddles CS1 and

CS2 (Fig. 7(b)) are reconstructed from the a-UPOs (Fig. 7(d)).

Figures 7(b) and 7(c) also show that the gaps within chaotic

saddles are filled with g-UPOs. Note that each a-UPO is

located in either one of the two regions separated by the

m-UPO, whereas each g-UPO has Poincar�e points located in

both regions. It should be remarked that in the post-MC re-

gime the chaotic attractor (Fig. 7(a)) is considered to be the

closure of the set of all gap UPOs (cf. Fig. 7(c)).

FIG. 5. Poincar�e plots on the (a2, a3) plane at �¼ 0.02987 of chaotic saddles

(gray) CS1 and CS2 computed by the PIM-triple method, superposed by a re-

spective gap UPO (green crosses) (a) p-7 g-UPOSN, (b) p-7 g-UPOPF, and (c)

p-7 g-UPOPD. The p-1 m-UPO is denoted by a black cross. CS1 is the gray

dots to the left of the black cross, and CS2 is the gray dots to the right of the

black cross, as indicated by the arrows.

FIG. 6. Poincar�e plots on the (a2, a3) plane at �¼ 0.02987 of chaotic saddles

(gray) CS1 and CS2 computed by the PIM-triple method superposed by a

subset of g-UPOs (green points): (a) p-8 g-UPOs, (b) p-9 g-UPOs, and (c) p-

10 g-UPOs; the p-1 m-UPO is denoted by a black cross.
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V. CONCLUSION

We identified a large number of UPOs numerically

obtained from the Kuramoto-Sivashinsky equation in the

post-MC regime after an attractor MC occurs. The UPOs

are traced by changing a control parameter and classified

into three subsets: (1) attractor UPO, which exists in the

chaotic attractor(s) in both pre-MC and post-MC regimes,

(2) gap UPO, which exists only in post-MC, and (3) media-

ting UPO, which is located on the boundary of the basins of

attraction of the two pre-MC chaotic attractors. We showed

that gap UPOs are created via saddle-node, period-dou-

bling, and pitchfork bifurcations associated with the post-

MC periodic windows. We demonstrated that the two cha-

otic saddles evolved from the MC can be reconstructed

from the attractor UPOs embedded in two coexisting attrac-

tors prior to the attractor MC, and that their gaps are filled

with gap UPOs which connect two chaotic saddles sepa-

rated by the mediating UPO and its stable manifold. The

chaotic attractor in the post-MC regime can be character-

ized by a set of gap UPOs.
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