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Abstract: The celestial body 2001 SN263 is a near Earth asteroid (NEA) with semi-major axis 

1.985 A.U., eccentricity 0.48 and orbital inclination 6.7 degrees. Light-curves obtained in the 

Observatory of Haute-Provence, in January 2008, lead to the conclusion that this asteroid was a 

binary system. In February 2008 the system was observed along 16 days by the radio-astronomy 

station of Arecibo, in Porto Rico. These observations resulted in the discovery that 2001 SN263 is a 

triple system [1]. The components of the system have diameters of about 2.8 km, 1.2 km and 0.5 km. 

With respect to the major body, the second component has a semi-major axis of about 17 km (period 

of 147hrs) and the third component has a semi-major axis of about 4 km (period of 46hrs) [2]. This 

triple system is the target of the first brazilian mission to an asteroid. In order to design a mission 

to explore this interesting triple asteroid system, it was made a study of the stability regions around 

each one of the three components and around the whole system. This system has a quite complex 

dynamics. The perturbations among the three components are not negligible, since the bodies are of 

comparable sizes. In our numerical simulations we also took into account the perturbations of the 

Sun, Jupiter, Mars and Earth. In this work we present the location and size of the stable regions. 

We used a Gauss-Radau numerical integrator [3]. Part of these results can be seen in Figure 1, 

where it is shown how long the trajectory survived before being ejected or collide with one of 

bodies. It was considered a grade o semi-major axis versus eccentricity around the two larger 

bodies of the system, named Asteroid 1 and Asteroid 2. Then, we will show some possible 

approaches to insert and keep a spacecraft exploring this system. 

. 
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1 Introduction. 

 
 Asteroids are primordial celestial bodies that can help us to understand the process of 
formation of our solar system. The importance of knowing these objects justifies the increasing 
number of missions that have them as target. The NEAs (Near Earth Asteroids) are especially 
interesting for such missions since they are bodies that approach periodically the orbit of the Earth.  
Besides that, the NEAs composed by two or three bodies (multiple asteroid systems) increase the 
range of possible observations and scientific results obtained by the mission. 
 Due to these advantages a growing number of missions to NEAs have been completed or are 
being planned by the major aerospace agencies. In May 2003, the Japan Aerospace Agency 
launched the Hayabusa mission to the NEA (25413) Itokawa, which was reached the target in 
September 2005. The same agency plans a new mission called Hayabusa 2, targeting the NEA 1999 
JU3, which uses the same technology and concepts of the first mission [4].  The European Space 
Agency (ESA) has some studies about missions to NEAs. The program Don Quijote [5] planned to 
launch two spatial vehicles, one of them would collide with some NEA and the second one would 
catch information about the internal structure of the asteroid. The program ISHTAR [6] was planned 
to visit at least two NEAs and characterize all physical parameters of the asteroids such as its mass 
distribution, density and surface properties. The SIMONE mission [7] was planned to be composed 



of five micro-satellites which will study individually NEAs of different classifications. The Marco 
Polo mission is also part of the program of ESA missions, and its main objective is to return to 
Earth carrying a sample of a NEA [8]. The HERA mission is a project being developed by Arkansas 
Center for Planetary Science and the Jet Propulsion Laboratory. The goal is to send a probe to 
collect samples for 3 NEAs of these asteroids and then return to the Earth [9]. 
 Recently, the triple system of asteroid 2001 SN263 was chosen as the target of the ASTER 
MISSION- First Brazilian Deep Space Mission, planned to be launched in 2014 [10].  . In order to 
design a mission to explore this interesting triple asteroid system it was made a study of the stability 
regions around each one of the three components and around the whole system, which we present in 
this paper. 
 The structure of this paper is such that, in section 2 we present the triple asteroid system 
2001 SN263. In section 3 we discuss the methodology adopted. In section 4 we present and discuss 
the results. In section 5 we present the final comments with an overview of the results presented in 
the previous sections. 
 

2. The triple system of asteroid 2001 SN263. 

 

 The asteroid 2001 SN263 was discovered in 2001 by the program LINEAR (Lincoln Near-
Earth Asteroid Research) - a program developed jointly by the U.S. Air Force, NASA and the 
Lincoln Laboratory. Light-curves obtained in the Observatory of Haute-Provence, in January 2008, 
lead to the conclusion that this asteroid was a binary system. In February 2008 the system was 
observed along 16 days by the radio-astronomy station of Arecibo, in Porto Rico. These 
observations resulted in the discovery that 2001 SN263 is a triple system [1].  This system is the 
first triple asteroid system known that approaches the orbit of the Earth and that crosses the orbit of 
Mars (Amor type asteroid). 
 In January 2009, Becker et al. [2] presented preliminary data on the physical aspects of the 
asteroids. This study estimated that the asteroid primary (largest) is approximately a spheroid with 
principal axes of approximately 2.8 ± 0.1 km, 2.7 ± 0.1 km, 2.5 ± 0.2 km, with an estimated density 
of 1.3 ± 0.6 g/cm3.  Tab. 1 shows the physical and orbital data of the bodies. Here we call the bodies 
of the system as: the central body (most massive body) is called A1, the second most massive body is 
called A2 (outer) and the least massive body is called A3 (inner). Fig.1 is a representation of the 
system. 
 
 

 
 

 
 
 

 
 

Figure 1 - Representation of the triple system of asteroid 2001 SN263. 
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                                      Table 1- Physical and Orbital datas. 
 

Asteroid  Orbits a
1
 e

1
 I

1
 Period

1
 Radius

1
 Mass

2
 

A1 Sun 1.99 AU 0.478 6.69º 2.8 years≈  1.4 km 13
1M 1.15x10  kg=  

A2 A1 17 km * * 147 hours≈  0.5 km 2
2 1M 7.9x10 M−

≈  

A3 A1 4 km * * 46 hours≈  0.2 km 3
3 1M 5.7x10 M−

≈  

* Not determined yet.   
 1 (Nolan et.al, 2008).      
2 Calculated for density equal  to 1.0  g/cm3. Estimated to be between 1.3±0.6  g/cm3  

(Becker, 2008).  
 

 

3. Methodology. 

 

 The goal is to determine regions of stability around each of the three bodies of the triple 
asteroid system 2001 SN263 in terms of orbital elements and within a given time span. The initial 
conditions and the methodology adopted are described in the next subsections. 
 

3.1 Initial Conditions. 

 
 We consider a system composed by seven massive bodies: the three asteroids, the Sun and 
the planets Earth, Mars and Jupiter. We introduced in this system thousands of particles randomly 
distributed around the three asteroids as follow: 
 
i) Spatial distribution:  the region around the three bodies was divided into four regions. 

Considering the three asteroids, we calculated the Hill’s radius for the problems composed by 
A1-A2 and A1-A3. This is an approximation since the presence of the third body will change the 
Hill’s radius found; however, the Hill’s radius computed in this way is a good parameter to 
spatially delimit the regions where each of these bodies is gravitationally dominant. The values 
found were RHill 5,0≈ km for the primary bodies A1-A2 and RHill 0,5≈ km for the primary 
bodies A1-A3. Fig. 2 is a representation of the asteroid system and of the Hill’s radius found for 
each body. The particles are spatially distributed into those regions. 
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Figure 2 – Representation of the system 2001 SN263 and of the Hill’s radii of the asteroids  (blue 
and red circles). 

 



ii) We considered particles starting with circular orbits ( e 0= ) until eccentricities equal to 0.5, and 
planar cases ( I 0= ). 

iii) The particles were distributed with random values of true anomaly (f), argument of pericentre 
(ω)   and longitude of the ascending node (Ω) . 

 
3.2 The Method. 

 

 The method adopted is the numerical integration (using the Gauss-Radau numerical 
integrator [3]) of the problem composed by seven bodies (Sun, Mars, Earth, Jupiter and three 
asteroids) and by n-particles (the number of particles will change for each region), for a time span of 
200 years. Throughout the integration period we monitored the particles that survive for 200 years, 
those that collide with any of the asteroids, and the particles ejected from the system.  This 
information is used to define the regions of stability and instability of the system. The region of 
stability is defined as the region where all particles survive for 200 years while the instability region 
is the where no particles survive for the same time span. 
 
4. Results. 

 

 Here we present the results for each of the regions described in subsection 3.1, except for 
region 4, which is very small and would became even smaller considering the gravitational 
influence due to the third body (A2), besides that, the particles would orbit very close to A3 
increasing the collisions probability. For those reasons the region 4 was not considered on the 
integrations. 
 

i) Stability in the region 1. 
 

 In this region the particles are orbiting the asteroid A1 with the orbital elements: 
1.5 a  3.5 km,  taken every 0.25 km, 0 e 0.5, I=0º, and random values for ω,  f, and Ω,≤ ≤ ≤ ≤ as 
described in subsection 3.1. Such combination of values resulted in a total of 9900 particles located 
in region 1.  
 The diagram of Fig. 3 shows the result found. It was considered a grade of semi-major axis 
versus eccentricity, and each of the small "boxes” hold the information of 100 particles distributed 
angularly.  On such diagram is shown how long the trajectory survived before being ejected or 
collides with one of the bodies. The coded color indicates the length of time in years. The color red 
indicates the initial conditions for what all particles survive for 200 years (stability). The color 
yellow indicates the particles that do not survive the same period (instability). 
 
 



 
 
 

 

 

 

 We see that in this region the region of stability is the region closer to A1 for lower values of 
eccentricity. As the value of semi-major axis increases, the collisions with A3 become more 
frequent, given origin to a region of instability.  The escapes of particle are not significant. Due to 
their proximity with both massive asteroids (A1 and A3) the collisions are more frequent, as can be 
seen in Tab.2. 
 
 
 

Ejections 0.5% 

Collisions 75.6 % 

Survivors 23.9% 

 
 

ii) Stability in the region 2. 
 

 In this region the particles are orbiting the asteroid A1 with semi-major axis 
4.5 a  11.5 km,  taken every 0.7 km.≤ ≤  The other orbital elements were chosen in the same way as 
before. Such combination of values resulted in a total of 12100 particles located in region 2. As the 
previous diagram of Fig.3, the diagram of Fig. 4 shows the region of stability found for region 2.  
 

 

Figure 3 - Regions of stability and instability around A1 in the region 1 for a time span of 200 
years.  The scale goes from 0.0% of the particles that survive in that region (red) to 
100% of survivors (yellow). 

Table 2 - Percentage of ejections, collisions and survivors in region 1. 



 
 
 

 

 

 We see that almost no particle survives 200 years in the region between the asteroids A3 and 
A2 (here called region 2), being a highly instable region. The collisions still prevail on the ejections 
(see Tab. 3). 
 

 
 

Ejections 10.7 % 

Collisions 89.0 % 

Survivors 0.3% 

 

 

 

iii)  Stability in the region 3. 
 

 In this region the particles are orbiting the asteroid A2 with semi-major axis 
0.7 a 5.5 km,  taken every 0.6 km.≤ ≤  The other orbital elements were chosen in the same way as 
before. Such combination of values resulted in a total of 9900 particles located in region 3. The 
diagram of Fig. 5 shows the result found.  
 

Figure 4 - Regions of stability and instability around A1 in the region 2 for a time span of 200 
years.   

Table 3 - Percentage of ejections, collisions and survivors in region 2. 
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 Similar to what happens in region 1, the region of stability is that closer to the asteroid that it 
orbits, in this case, the asteroid A2. Comparing the data from Tab.4 with Tab. 2 and Tab.3, it is clear 
that stability region is slightly smaller, since fewer particles survive. Furthermore, we see that in this 
region increases the number of ejections, which makes sense since the asteroid 2 is farthest from the 
central-body. 
 

 

 

Ejections 27.0% 

Collisions 57.3% 

Survivors 15.7% 

 

 

 

5.  Final comments. 

 

 The stability regions within the system triple asteroid 2001 SN263 were determined. It was 
shown that the stable regions are very close to A1 and A2 and that out of those regions the system is 
instable. The regions of stability and instability that were found within the system can be visualized 
in a diagram like Fig.5. The diagram was made considering only particles with circular orbit. It 
clearly shows that the particles that survive are those that are closest to the two most massive 
asteroids out there and that no particles survive for 200 years. 
 
 

Table 4 - Percentage of ejections, collisions and survivors in region 3. 

Figure 5 - Regions of stability and instability around A2 in the region 3 for a time span of 200   
years.   
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 The regions in yellow are the most probable place to find some debris or any ring of dust in 
the system. This must be considered when planning the mission that will explore the system.  
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