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ABSTRACT: Forest degradation is the long-term and gradual reduction of
canopy cover due to forest fire and unsustainable logging. A critical consequence
of this process is increased atmospheric carbon emissions. Although this issue is
gaining attention, forest degradation in the Brazilian Amazon has not yet been
properly addressed. The claim here is that this process is not constant throughout
Amazonia and varies according to colonization frontiers. Moreover, the accurate
characterization of degradation requires lengthy observation periods to track
gradual forest changes. The forest degradation process, the associated time-
frame, spatial patterns, trajectories, and extent were characterized in the context
of the Amazon frontiers of the 1990s using 28 years (1984–2011) of annual
Landsat images. Given the large database and the characteristic of logging and
burning, this study used data mining techniques and cell approach classification
to analyze the spatial patterns and to construct associated trajectories. Multi-
temporal analysis indicated that forest degradation in the last two decades has
caused as many interannual landscape changes as have clear-cuts. In addition,
selective logging, as a major aspect of forest degradation, affected a larger
amount of forest land than did forest fire. Although a large proportion of logged
forest was deforested in the following years, selective logging did not always
precede complete deforestation. Instead, the results indicate that logged forests
were abandoned for approximately 4 years before clearance. Throughout the
forest degradation process, there were no recurrent forest fires, and loggers did
not revisit the forest. Forest degradation mostly occurred as a result of a single
selective logging event and was associated with low-intensity forest damage.

KEYWORDS: Geographic location/entity; Amazon region; Observational
techniques and algorithms; Data mining; Remote sensing; Applications;
Deforestation

1. Introduction
The literature offers several definitions of forest degradation (Lund 2009).

However, defining forest degradation can be a challenge because the definition
depends on the biophysical conditions, causes, and spatial and temporal scales
considered (Sasaki and Putz 2009; Thompson et al. 2013). In addition, the defi-
nition should be based on an operational formulation that allows systematic
measurements of forest degradation (Simula 2009). In this research, we adopted an
operational definition of forest degradation developed by the National Institute for
Space Research (INPE; INPE 2008). According to INPE, forest degradation is the
gradual and long-term process of canopy-cover reduction because of forest fire or
unsustainable logging (INPE 2008).

The contribution of forest degradation to climate change has led to the es-
tablishment of an international program that compensates tropical forest coun-
tries for reducing their carbon emissions; this program is referred to as Reducing
Emissions from Deforestation and Forest Degradation (REDD). Despite the re-
lationship between forest degradation and carbon losses, the substantial amount
of greenhouse gases released into the atmosphere as a result of forest degradation
has not been appropriately addressed by REDD (Mertz et al. 2012). Furthermore,
the dynamics of forest fire and selective logging (SL) activities have not been
properly addressed, which has resulted in significant uncertainties regarding
carbon emissions (Pan et al. 2011) and has limited the benefits of mitigation
actions (Mertz et al. 2012).
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These inadequacies have resulted largely from a lack of information regarding
forest degradation, which is partly because of the inherent complexity of this
process. While rapid deforestation (defined here as forest conversion within 1 year
or less) swiftly removes almost all of the forest carbon stock, the carbon losses
caused by forest degradation depend on the intensity and persistence of human-
induced disturbances (Herold and Skutsch 2011). Forest degradation is therefore
difficult to characterize because accurate estimates require lengthy observation
periods to track the gradual forest changes caused by fire and/or unsustainable
logging (Lambin 1999).

Remote sensing offers many opportunities for monitoring forest degradation,
including the extensive coverage of inaccessible areas, such as the Amazon region,
and information about historical trajectories in land-cover changes (Herold and
Skutsch 2011). Several studies have suggested approaches for detecting selective
logging and forest fire using Landsat-type imagery (Asner et al. 2006; Matricardi
et al. 2010, 2007; Souza et al. 2005).

Although there are several studies on the use of remote sensing to analyze forest
degradation (Matricardi et al. 2010, 2005; Monteiro et al. 2003; Souza et al. 2013,
2003; Wang et al. 2005), this process remains poorly characterized. Specifically,
these studies (i) did not focus on the trajectories associated with forest degrada-
tion, which are needed to predict areas with high probability of change in land
cover (Mertens and Lambin 2000) and to include the historical land-cover changes
while estimating carbon fluxes (Ramankutty et al. 2007); (ii) examined only forest
degradation that occurred in the Amazon frontiers that opened up in the 1970s,
such that their results may not be generalized to the entire Amazon; or (iii) ana-
lyzed a set of different regions together, which may hinder understanding of the
forest degradation process.

We hypothesize that the socioeconomic, political, and biophysical diversity of
the Amazon (Becker 2005) shapes the trajectories, intensity, extent, and time-
frames associated with forest degradation. Thus, this process is not likely to be
homogeneous throughout the Amazon region, and studies should consider intra-
regional heterogeneity to adequately examine forest degradation. Taking this
heterogeneity into account is important for correctly representing forest degra-
dation in carbon emissions models (Aguiar et al. 2012) or the relative contribution
of each emission source (i.e., forest degradation or clear-cut deforestation;
Pearson et al. 2014).

Considering the existing knowledge gaps, the focus of the present study is to
characterize the forest degradation process (i.e., extent, intensity, trajectories, and
timeframe) in the context of the recently opened up deforestation frontier in the
Brazilian Amazon. We selected the Novo Progresso County, southwestern Pará,
Brazil, as a case study of the frontiers of expansion due to the combination of the
high wood stocks, the considerable rate of land-cover dynamics, and the limited
information on the forest degradation process in this region.

To perform this analysis, we developed a novel methodology using a long time
series of annual Landsat images covering a 28-yr period, landscape metrics, and a
data mining technique to define spatial patterns of forest damage intensity. Based
on these patterns, we analyzed the main forest degradation trajectories.

In this context, we describe the forest degradation process by addressing the
following research questions: (i) What is the extent of forest degradation in the
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study area? (ii) What is the intensity of forest degradation during the forest deg-
radation process? (iii) What are the main trajectories of forest degradation?
(iv) When do the forest degradation trajectories that do not converge to clear-cut
begin? (v) Finally, what is the duration of the degradation trajectories in the logging
frontiers’ expansion?

2. Study area
This study was carried out in Novo Progresso County, southwestern state of

Pará, in the Brazilian Amazon (Landsat scene; path 227 and row 65; Figure 1).
Novo Progresso County, similar to northwest Mato Grosso State and southeast
Amazonas State, is classified as a logging and deforestation frontier with less than
20 years of logging history (Pereira et al. 2010). The natural vegetation consists
almost entirely of dense evergreen upland forests; the tallest trees reach 50m, and
the average biomass is 281Mgha21 (EMBRAPA 2008; Vieira et al. 2004). Improved
transportation infrastructure, such as the paving of the BR-163 highway between
Cuiabá and Santarém, allows access to previously inaccessible primary forests.
Combined with poor law enforcement, this development has stimulated illegal
logging (Fearnside 2005). Official statistics indicate that Novo Progresso is a
hotspot of deforestation in the Amazon region, with the fourth highest defores-
tation rate according to the last estimate (INPE 2013). Approximately 14.25%
(5441 km2) of the forests in this county have been converted to other land-cover
types (INPE 2013), primarily cattle production (IBGE 2015; INPE 2010).

Figure 1. Study site location (Landsat path 227 and row 65) within the Amazon state
of Pará (PA), Brazil.
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3. Methodology

3.1. Landsat imagery

We used Landsat Thematic Mapper (TM) images (path 227, row 65) from 1984
to 2011 to quantify the extent of forest degradation (Table 1). Radiometrically and
terrain-corrected Landsat TM images (level 1T) were acquired from the U.S.
Geological Survey (USGS) (http://glovis.usgs.gov/). Images from June to Sep-
tember were selected because of the higher likelihood of acquiring images with
low cloud cover during this period (dry season; Câmara et al. 2013).

3.2. Deforestation dataset

We used the existing 30-m resolution deforestation maps from the Amazon
Deforestation Monitoring Project (PRODES) for the 2000 to 2013 period (http://
www.obt.inpe.br/prodes/) to mask out previously deforested land (exceeding the
PRODES minimum mapping unit of 6.25 ha), nonforested land (savannas and
grassland), and water surfaces. We created annual deforestation maps for the

Table 1. Landsat imagery (path 227 and row 65) used in this study to map annual
forest degradation (1984–2011).

Scene code Date Cloud cover (%)

LT52270651984189CUB00 7 Jul 1984 0.01
LT52270651985223CUB00 11 Aug 1985 0
LT52270651986178CUB02 27 Jun 1986 0.01
LT52270651987133CUB00 13 May 1987 0.4
LT52270651988184CUB00 2 Jul 1988 0.05
LT52270651989170CUB00 19 Jun 1989 0.01
LT52270651990221CUB00 9 Aug 1990 6.5
LT52270651991224CUB00 12 Aug 1991 3.5
LT52270651992211CUB02 29 Jul 1992 0.04
LT52270651993213CUB00 1 Aug 1993 0.01
LT52270651994216CUB00 8 Apr 1994 0
LT52270651995187CUB00 7 Jun 1995 0.03
LT52270651996222CUB00 9 Aug 1996 15
LT52270651997176CUB02 25 Jun 1997 0.08

Scene code Date Cloud cover (%)

LT52270651998211CUB00 30 Jul 1998 4.51
LT52270651999246CUB01 3 Sep 1999 20
LT52270652000217CUB00 4 Aug 2000 22
LT52270652001283CUB00 10 Oct 2001 2
LE72270652002182PFS00 1 Jul 2002 0
LT52270652003193CUB00 12 Jul 2003 2.1
LT52270652004180CUB00 28 Jun 2004 0.2
LT52270652005198CUB00 17 Jul 2005 0.36
LT52270652006217CUB00 5 Aug 2006 0
LT52270652007172CUB00 21 Jun 2007 0
LT52270652008207CUB00 25 Jul 2008 0
LT52270652009193CUB00 12 Jul 2009 0
LT52270652010212CUB01 31 Jul 2010 0
LT52270652011215CUB00 3 Aug 2011 0
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period in which PRODES data were not available (1984–99) using the same
methodology used in PRODES (Câmara et al. 2013). We used the PRODES forest
mask of 2000 to produce deforestation maps from 1984 to 1999 to maintain
consistency between the two datasets. Thus, all forest degradation mapping pro-
duced in this study was restricted to the PRODES-based forest mask area.

3.3. Mapping annual forest degradation

Landsat TM images (1984–2011) were decomposed into fractions of the three
basic components (water/shade, vegetation, and soil) through spectral mixture
analysis (SMA), which is available in the Spring 5.1.8 software (Câmara et al.
1996). Three TM bands, that is, the visible red (band 3; 0.63–0.69mm), the near
infrared (band 4; 0.76–0.90mm), and the shortwave infrared (band 5; 1.55–
1.75mm), were used in this analysis. SMA is widely used to identify fire scars in
burned forest (Vasconcelos et al. 2013) as well as log decks, skid trails, and tree-fall
gaps, which are key features of selective logging (Monteiro and Souza 2012;
Monteiro et al. 2003; Souza et al. 2013, 2005). SMA estimates the abundance of
water/shade, bare soil, and photosynthetically active vegetation within each pixel
using the spectral signatures of prototypic training areas called endmembers
(Shimabukuro and Smith 1991). The endmembers were collected directly from the
images using representative pixels of bare soil, green vegetation, and water/shade
extracted from unpaved roads, photosynthetically active pastures at peak phenol-
ogy, and dark water, respectively (Anderson et al. 2005; Souza et al. 2005). The
spectral signatures of the endmembers were compared to the typical spectral re-
flectance curves of these three basic components. This process was repeated for
each image.

To enhance the forest degradation signal caused by selective logging and forest
fire, we computed a spectral index of forest degradation, referred to as DEGRADI,
using the fraction images obtained with SMA [Equation (1)]. This index has been
used to improve the detection of forest degradation in the monitoring systems of
Amazonia (INPE 2008) and is based on the assumption that the high spectral
contrast between soil and vegetation fractions highlights key characteristics of
selective logging and forest fires. DEGRADI is defined as follows:

DEGRADI5G3
Soil

GV
1Off, (1)

where DEGRADI is the forest degradation spectral index, G is the gain, Soil is the
soil fraction image, GV is the green vegetation fraction image, and Off is the offset.
The gain and offset values were interactively applied to maximize the visibility of
features in the image.

Based on the images resulting from the DEGRADI spectral index, a semi-
automated technique was applied to map forest degradation on an annual basis. We
used features such as skid trails, log decks, and tree-fall gaps as indicators of
logged forest and fire scars as indicators of burned forest. The threshold boundaries
were adjusted empirically for each date based on the reference values collected
from these indicators. Consequently, thematic maps (in the form of polygons) that
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represented forest fire and selective logging were obtained. Final visual interpre-
tation was required to distinguish between logged and burned forests because these
classes of interest did not form spectrally separable classes in the image. We used
the bright strips (usually in conical format) as spectral and spatial indicators of fire
scars (Graça 2006; Vasconcelos et al. 2013).

3.4. Field study and accuracy assessment

The forest degradation mapping generated with the semiautomatic technique de-
scribed above was assessed using ground truth data. We conducted field verification of
degraded forests by car and overflight from 1 to 8 August 2014. A 2014 forest deg-
radation map was generated using the same spatial and spectral indicators used to
detect forest degradation from 1984 to 2011 (see section 3.3). The 2014 forest deg-
radation map was reserved only for field verification purposes and was not used in the
time series analysis. Additionally, we used spatially explicit timber harvesting au-
thorization data [Autorização para Exploração Florestal (AUTEF)] for sustainable
forest management projects, provided by the State Environmental Agency
(SEMA). The AUTEF information was used for orientation in the field and to
collect GPS coordinates of the log landings (clearings in the forest where timber is
temporarily stored), log roads, and tree-fall gaps.

The omission and commission errors of the semiautomated technique for
mapping forest degradation were estimated through a comparison with the ground
truth data (71 samples). The accuracy of forest degradation mapping and the as-
sociated kappa statistics were used to describe the mapping results.

3.5. From pattern to process

The aim of this article was to assess forest degradation patterns and their as-
sociated processes. Given the large geographic database, we used Geographic Data
Mining Analyst (GeoDMA) data mining software, which is able to perform
searches of pattern similarity in spatiotemporal data (Korting et al. 2008). The
processing steps for pattern classification are described below.

3.5.1. Defining a typology of forest degradation

The first phase of this method is the definition of the spatial pattern typology for
the study area. We proposed a typology related to the intensity of forest degradation
(Figure 2). Instead of using the polygons themselves, the patterns were represented
by regions, that is, a grid of cells that encompass a set of polygons. The gridcell
approach allows a description of the landscape structure through landscape met-
rics. This spatial context is important for characterizing forest degradation because
the degradation causes widespread and collateral damage to the surrounding
landscape, resulting in distinct spatial mixtures of land-cover classes.

The cell grid is defined by a spatial resolution. To define an appropriate cell
resolution, it is necessary to consider the scale of the observed pattern (Saito 2011).
We considered the average area of the log decks (380m2, min: 120m2, max:
750m2) and the average distance between them (460m, min: 230m, max: 989m;
Pantoja et al. 2011); the typical size of the forest management units (the area of
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Figure 2. Typology of forest degradation intensity in Novo Progresso, Amazon state
of Pará (green color indicates forest and red color indicates forest deg-
radation features, that is, tree-fall gaps, log decks, and skid trails. The HFD2
pattern was very rare in the dataset and represents a fuzzy transition be-
tween degraded forest and clear-cut. For this pattern, we arbitrarily at-
tributed a value of 0.99).
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allowable harvest per year), which is 1 km2 (Sabogal et al. 2000); and a cell size of
1 km2, implemented in previous study to characterize a logged forest (Sato et al.
2011). These previous estimates and findings justify our proposal, that is, the use of
a 1-km2 cell resolution to characterize selective logging areas because the di-
mensions of all features that characterize this activity are included.

Defining the intensity of forest degradation. Each pattern defined above was
associated with a particular intensity of forest degradation. We developed a com-
posite index for the intensity of forest degradation based on the landscape ecology
metrics. We used the following metrics: patch area (defined as the internal area of
the patches contained within a cell), edge density (the sum of the lengths of all edge
segments of a patch type contained within a cell divided by the total area of the
patch type), and mean patch size (the sum of the area of a patch type inside a cell
divided by the total number of patch types). The landscape ecology metrics were
calculated using GeoDMA (see section 3.5.2).

We used the analytic hierarchy process (AHP), a decision support tool available in
Spring software (Câmara et al. 1996), to calculate the relative importance of each
metric (Saaty 1980). In the AHP test, weights are derived using a set of pairwise
comparisons. The user can rate the comparison as equal, marginally strong, strong,
very strong, or extremely strong. The final result is assessed through the consistency
index (CI values � 0.1 are considered optimal; Saaty 1980). We considered the loss
of forest (indicated in the present study by the patch area metric) to be a very strong
factor of forest degradation because it can drive populations to direct extinction
because of reduced habitat (Uhl et al. 1989). In addition, this factor is correlated with
forest fragmentation (indicated in the present study by both the edge density and
mean patch size metrics; Tabarelli et al. 2004). We assigned the same importance to
the edge density and mean patch size metrics. Although fragment size and forest
edge density play important roles in determining the severity of forest fragmentation
(Laurance 2004), we considered the forest to degraded forest transition to be less
abrupt than the transition between forest and pasture/agricultural areas; as a result,
the effects of the forest edge and fragment size on the overall forest structure are
expected to be lower. The CI for the pairwise comparisons was estimated as 0.03.

The parameters for the forest degradation intensity are shown in Table 2. The
corresponding mean values of landscape ecology metrics were calculated for each
pattern. We normalized the mean values by scaling them between 0 and 1. The
index for the intensity of forest degradation was calculated as

FDI5 (PAnorm3WPA)1 (EDnorm 3WED)1 (MPSnorm3WMPS), (2)

where PAnorm is the normalized value for the patch area metric,WPA is the weight for
the patch area metric, EDnorm is the normalized value for the edge density metric,
WED is the weight for the edge density metric, MPSnorm is the normalized value for
the mean patch size metric, and WMPS is the weight for the mean patch size metric.

Forest degradation intensity values closer to 0 indicate low levels of forest
degradation, whereas those closer to 1 indicate high levels of forest degradation
(0 is considered forest; Figure 2). We further clustered these levels into major
categorical classes, defined arbitrarily as low (.0 to �0.4), moderate (.0.4 to
�0.7), and high (.0.7 to ,1), for the forest degradation trajectory analysis.
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3.5.2. Classification of the patterns of forest degradation

To classify the forest degradation patterns, we calculated the landscape ecology
metrics for each grid cell. We then constructed a training set for the forest deg-
radation patterns by selecting representative cells for each previous user-defined
typology. In the classification step, this training set was used to run a decision tree
classifier based on the C4.5 algorithm (Quinlan 1993).

We used 113 samples of forest degradation patterns to train the decision tree
classifier [FOREST 5 32; selective logging, high forest degradation (HFD1) 5
7; conventional logging, high forest degradation (HFD2) 5 13; selective log-
ging, low forest degradation (LFD1) 5 21; conventional logging, low forest
degradation (LFD2) 5 13; selective logging, moderate forest degradation
(MFD1) 5 12; conventional logging, modest forest degradation (MFD2) 5 8,
and poor logging practices (PLP) 5 7]. The samples were acquired from dif-
ferent years. The C4.5 algorithm automatically generated a decision tree with
three metrics and four levels (Figure 3). The decision tree used the patch area
metric (defined by the internal area of the landscape objects contained within a
cell) to distinguish smaller objects from larger ones, the mean patch size metric
(defined by the sum of the area of the objects inside a cell divided by the total
number of objects) to distinguish cells with a distinct number of patches, and the
edge density metric to distinguish cells with different degrees of edges of the
patches contained within them.

The accuracy of the forest degradation pattern classification was evaluated by a
second expert interpreter. We randomly selected from the automatic classification
approximately 50 cell samples of each pattern (the number of cells varies with the
representation of each pattern in the dataset), which were interpreted by the second

Table 2. Parameters of the forest degradation intensity index (see Figure 2 for
interpreting the acronyms).

Indicator of
forest degradation

Landscape
metric Weight

Spatial
pattern

Mean
value

Normalized
value

Forest loss Patch area 0.714 IFD1 2.2 0.40
IFD2 3.2 0.36
MDF1 7.7 0.44
MDF2 13.9 0.72
PLP 6.8 0.64
HDF1 29.4 0.90

Forest edge Edge density 0.143 IFD1 22.9 0.39
IFD2 15.5 0.60
MDF1 68.0 0.49
MDF2 95.2 0.80
PLP 47.2 0.64
HDF1 179.1 0.89

Forest size Mean patch size 0.143 IFD1 0.14 0.46
IFD2 1.16 0.26
MDF1 0.23 0.74
MDF2 0.45 0.41
PLP 0.41 0.57
HDF1 0.68 0.58
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interpreter according to the typology presented in Figure 2. We then compared both
classifications, computed the confusion matrix, and derived the overall accuracy,
the omission and commission errors, and the kappa statistics (Table 3; Congalton
and Green 1999; Hudson and Ramm 1987). Confusion matrices, which are often
used to describe the performance of a classification, express the number of samples
assigned to a particular category in one classification relative to the number of
samples assigned to a particular category in another classification (Congalton and
Green 1999). The confusion matrix shows the results of interpreter one in columns
and the results of interpreter two in rows (Table 3). The overall accuracy between
the two classifications, that is, the correctly classified samples indicated by the
major diagonal and divided by the total number of samples in the entire confusion
matrix, was estimated at 82%. Most of the error, revealed in the confusion matrix,
is associated with the misclassification of PLP as MFD1, MFD2, LFD1, or LFD2.
These misclassifications are likely because (i) PLP is associated with the logging
infrastructures, which can cause extensive degradation similar to the spatial pattern
found in LFD2 and MFD2; and (ii) PLP also includes the spatial characteristics
observed in IFD1 and MDF1, such as logging roads created to access the tree
species in the forest.

The accuracy of the confusion matrix was expressed by the kappa coefficient and
was estimated as 79%. The kappa coefficient is a measure of how well two clas-
sifications agree with each other; values greater than 0.61 are considered sub-
stantial (Landis and Koch 1977).

Figure 3. Decision tree for the forest degradation spatial patterns. The landscape
metrics are area (CA), edge density (ED), and mean patch size (MPS; for
other acronyms; see Figure 2).
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3.6. Analysis of the land-cover change trajectories

We used cells to group the successive transitions between land-cover patterns
(i.e., forest, distinct patterns of forest degradation, and clear-cutting intensity) into
different land-cover trajectories for the period from 1984 to 2011. All possible
trajectories were reduced to the four major trajectories shown in Table 4. Expressions
such as ‘‘forest degradation persistence,’’ ‘‘forest persistence,’’ or ‘‘not converted’’
only have meaning relative to the temporal sample of observation. We calculated the
timeframe of forest degradation by calculating the time between the detection of the
initial human disturbance and the forest clear-cut. During this process, site aban-
donment was defined as logged and burned forests that recovered sufficiently such
that they were undetectable for one or more years prior to the following human-
induced disturbance. The abandonment time was calculated as the time between the
forest recovery and the second harvest cycle or fire event. Full forest recovery was
assumed if the degradation levels returned to a stable forest status.

4. Results and discussion

4.1. Accuracy of forest degradation detection

We mapped 10 800 km2 of logged forest, and 8 km2 of forest degraded because
of forest fire during the 28-yr observation period. The results clearly show that
selective logging is the most important factor contributing to forest degradation in
the study area. This finding is in agreement with previous studies that demonstrate
that selective logging has affected a larger amount of forest than has forest fire
(Matricardi et al. 2010). As fire scars may became undetectable within 1 year
(Matricardi et al. 2010), the annual observation method applied here could result in
underestimates of the extent of forest fire in the study area. Furthermore, Landsat
satellite images have technical limitations in detecting scars of low-intensity forest
fire (Vasconcelos et al. 2013); therefore, it is likely that the degraded forest derived
from those areas was not fully captured in this study. However, field observations

Table 3. Confusion matrix of the classification of forest degradation patterns (see
Figure 2 for interpreting the acronyms). The main diagonal, presented as boldface
in the matrix, shows the cases correctly allocated.

CLASS

Interpreter 1 (reference)

Total
Commission
error (%)PLP MFD2 MFD1 LFD2 LFD1 HFD2 HFD1 FOREST

Interpreter
2

PLP 34 4 4 6 2 0 0 0 50 32
MFD2 6 34 0 0 0 3 1 0 44 22.7
MFD1 1 9 41 0 0 2 0 0 53 22.6
LFD2 8 1 2 40 1 0 0 0 52 23.1
LFD1 1 0 2 3 47 0 0 0 53 11.3
HFD2 0 0 0 0 0 38 10 0 48 20.8
HFD1 0 2 0 0 0 4 35 0 41 9.8
Forest 0 0 0 0 0 0 0 50 50 0
Total 50 50 49 49 50 47 46 50 391
Omission
error
(%)

32 32 16.3 18.4 6.0 19.1 23.9 0

Overall accuracy 5 82% Kappa coefficient 5 79%
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support our findings that fire in the study area is typically associated with the
conversion of forest/logged forest into clear-cut. This is a plausible view consid-
ering that fire is commonly used in forest conversion throughout the Amazon
region (Morton et al. 2008) and that heavily burned forest drastically changes the
forest structure (Barlow and Peres 2008; Cochrane and Schulze 1999), which can
easily lead to forest conversion (Cochrane 2003). Once an area is converted into a
clear-cut by fire, it is detected and included in the deforestation map of PRODES.
As a result, such areas were no longer subject to analysis in this study. Conse-
quently, PRODES may have mapped the largest amount of area resulting from
heavily burned forest in the study area. However, the extent of low-intensity fire
needs to be better understood in the new logging frontiers.

The accuracy assessment was performed by comparing binary mapping, forest
and logged forest, derived from Landsat images (in rows) and 71 ground truth
points (reference data in columns; Table 5). The omission error was dominated by
the misclassification of selective logging as forest (omission error 5 11%). This
error occurred inside the sustainable forest management areas and was associated
with collateral damage caused to trees during logging operations, for example, tree
felling and the construction of log landings and logging roads. It is estimated that
for every tree that is logged, 20 others are damaged, even in planned logging
operations (Johns et al. 1996). However, trees usually experience low levels of
damage (Johns et al. 1996), which can be observed in the field but are not visible in
Landsat images. Similar observations have been reported in previous studies
(Matricardi et al. 2007). The log landings, log skidding paths, and large tree-fall
gaps effectively facilitated the detection of selective logging, as shown in previous
studies (Matricardi et al. 2005; Monteiro et al. 2003). Using these logging features
during the visual interpretation processes of our detection approach (see section
3.3), the detection of logged forest was very precise, with no commission errors.

4.2. Analysis of the patterns of forest degradation

We chose three time periods to characterize the temporal distribution of the
forest degradation patterns (Figure 4). These three periods represent key moments

Table 4. Interpretation of four, main, land-cover trajectories analyzed for the period
from 1984 to 2011 (1 is forest persistence, 2 is forest degradation persistence, 3 is
forest degradation cleared, 4 is cleared, and t is time).

Land-cover sequences

t1 t2 t3 Description

1 Forest Forest Forest Pristine forest that remain unchanged since 1984.
2 Forest Forest

degradation
Forest
degradation

Forest is not converted into a clear-cut after
selective logging/forest fire; indicates forest
degradation is ongoing.

3 Forest Forest
degradation

Clear-cut Single or repeated events of selective logging/forest
fire, culminating in forest conversion into a
clear-cut.

4 Forest Clear-cut Clear-cut Forest conversion into a clear-cut in a timeframe of
one year or less. No selective logging/forest fire
events are detected.
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in land-cover changes, reflecting different migration periods (1984–97) and major
changes in the political and socioeconomic framework (2005–11). The largest
changes in forest land occurred in the 1998/97 period, mainly because of forest
degradation (Figure 4). Part of the degraded forest recovered in the following
period (2005–11), and 70% of the original forest land in 1984 was observed in
2011.

In each of our analysis periods, forest degradation was dominated by highly
selective logging that is associated with the harvesting of as few as one or two
species (LFD1; Figure 5). Although the region has become an important logging
center, the high transportation costs have limited the number of tree species har-
vested, and only the more economically valuable tree species are profitable. This
pattern has been observed in other little developed logging regions (Veríssimo et al.
2008). Consequently, we observed that the patterns associated with the moderate to
extensive style logging (MFD1) and the extensive style logging (HFD1) remain
poorly expressed in the study area. However, the paving of the BR-163 highway
between Cuiabá and Santarém will decrease transportation costs and might increase
the economic viability of harvesting a greater number of tree species.

Table 5. Accuracy assessment of forest degradation mapping.

Classified data

Reference data Overall kappa
statistics

Overall mapping
accuracyLogged forest Forest Total

Logged forest 41 0 41 0, 8 0, 9
Forest 5 11 16
Total 46 11 57
Omission error 0 31
Commission error 10, 8 0
Kappa statistics 1 0, 61

Figure 4. Proportion of degraded forest and clear-cut relative to intact forest in the
context of each time period.
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In the earlier part of the observation period (1984–97), the LFD1 pattern was
observed as a result of the migration of settlers and gold miners to the region and
their use of wood to develop local infrastructure (Oravec 1998). Then, from the late
1990s, a second migration cycle occurred that was influenced by the paving project
of the BR-163 highway; the subsequent demand for wood increased the occurrence
of the LFD1 pattern. It was expected that the same trends would be observed for the
PLP pattern that was associated with logging infrastructure to access the trees.
However, we observed that the occurrence of this pattern decreased along the time
series. It appears that the logging practices associated with the planned operations
increased in Novo Progresso (SEMA 2015), whereas the region faced increasingly
restrictive regulations after 2004 and, consequently, the occurrence of poor logging
practices decreased from the first to the last period of observation. However, se-
lective logging activity remains largely illegal in Novo Progresso.

Similar to the earlier period (1984–97), vegetation in the period 1998–2004 was
mainly characterized by a low intensity of forest degradation (LFD1 and LFD2),
but moderate (MFD2 and MFD1) and high (HFD1 and HFD2) intensities of forest
degradation showed unprecedented increases in the region.

4.3. Analysis of the land-cover change trajectories

We observed that 43% of the forest land in the study area changed throughout the
28-yr observation period (1984–2011). Approximately 47% of these land-cover
changes were due to rapid deforestation, that is, the replacement of forest by clear-
cuts in the timeframe of 1 year or less, referred to here as the cleared trajectory, and
50% of these changes were due to the forest degradation process (degradation/
persistence and degradation/cleared trajectories; there was 3% deforestation prior
to 1984). Of these degraded areas, 19% were cleared (degradation/cleared trajec-
tory) and 31% remain as degraded (degradation/persistence trajectory).

The 28-yr time series analysis showed that the land-cover dynamic was not
uniform over time; instead, the preferential trajectory for which land cover changed

Figure 5. Proportion of area represented by the forest degradation patterns in each
period: LFD1, LFD2, MFD1, MFD2, PLP, HDF1, and HDF2.
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differed between the periods (Figure 6). Prior to the late 1990s (1984–97), the
extent of the overall changes was low (14% of observed land-cover changes), but
approximately 80% of the changes were attributed to rapid deforestation (cleared
trajectory; Figure 7a). At that time, the timber industry was not yet established, and
timber was primarily used locally (Oravec 1998). Deforestation was mainly caused
by artisanal gold mining (garimpo) and government-sponsored colonization pro-
jects (Castro et al. 2004). Although the extent of the overall changes was low, the
forest areas had a high probability of being cleared. We observed that approxi-
mately 90% of the degraded forests in the period 1984–97 were converted into
clear-cut deforestation within 1 year (Figure 7a).

Our results showed that the extent of the land-cover changes increased from the
late 1990s when a new migration cycle occurred in anticipation of the BR-163
highway paving project (Ros-Tonen 2011; see Figure 4). Since the 2000s, the
timber sector has experienced a sixfold increase in the number of sawmills oper-
ating in this region (Carvalho et al. 2002). As a consequence, forest degradation
became increasingly more important in contributing to forest changes, and since
1998, according to Figure 6, the forest degradation is the main trajectory for which
land cover has changed. Notable increases in the overall extent of degraded forest
were observed, increasing progressively from less than 4 km2 in 1990 to 552 km2 in
1999 and reaching 1838 km2 in 2001.

From the late 1990s to the mid-2000s (1998–2004), a 53% change in land cover
was observed in the study area. Approximately 40% of these changes occurred as a
result of rapid deforestation (cleared trajectory), and 60% were due to forest
degradation, indicating a different temporal dynamic compared with the earlier
period (Figure 7b). Although 40% of the forests degraded in the period 1998–2004
were converted in 1 year, there was a high percentage of degraded forest (ap-
proximately 40%) that was not converted into clear-cut (see Figure 7b, indicated by
the value . 28). This result indicates that although the extent of clear-cut defor-
estation increased relative to the earlier period (1984–97), there was a trend toward
the abandonment of degraded forest.

During the period 2005–11, forest degradation and clear-cutting rates began to
decline, although not to the level observed prior to 2001, showing 33% of the overall
land-cover changes detected in the study area (see Figure 6). The overall reduction in

Figure 6. Land-cover change trajectories: evolution from 1984 to 2011.
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the extent of the land-cover changes was partly associated with the increasingly re-
strictive regulations in the Amazon region, including the launch of the Plan for the
Protection and Control of Deforestation in the Amazon (PPCDAM; Valeriano et al.
2012), the implementation of a traceability system for timber [Document of Forestry
Source (DOF)], and the Environmental Crimes Law, which specifies jail sentences
for illegal burning and unsustainable logging (Nepstad et al. 2002).

During the period 2005–11, our results indicated similar proportion between
rapid deforestation and deforestation resulting from forest degradation, that is, 55%

Figure 7. The fate of the degraded forest in each period (x axis: the value 0 repre-
sents the cleared trajectory, the value 1 to 28 represents the forest
degradation-cleared trajectory, different years mean the number of years
until deforestation after detection of initial degradation, and the value > 28
represents the forest degradation persistence trajectory).
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of the changes occurred through rapid deforestation (cleared trajectory), and 45%
were due to forest degradation. However, we continued to observe a trend toward
site abandonment after selective logging. Approximately 40% of the degraded
forests in the period 2005–11 were not converted into clear-cut until 2011 (Figure
7c). This might be partly due to the effect of the end of the observation period.
However, considering that approximately 50% of the degradation-cleared trajec-
tory was converted in 3 years (see next section), we would expect to observe a low
proportion of degraded forest from 2005 to 2011 that was subsequently abandoned
after initial degradation. We therefore attributed the high proportion of the aban-
donment of degraded forest to the advancement of forest management plans and
surveillance operations.

The analysis of the percentage of the total area affected by each land-cover
change trajectory revealed that 87% of the unchanged forest (i.e., forest persis-
tence) in the study area is inside of protected areas and sustainable human set-
tlements (Figure 8). However, we detected a considerable number of cleared and
degradation/cleared trajectory cells within the Jamanxim National Forest, even
after its creation in 2006. In contrast, the Bau Indigenous Land contains a large
percentage of unchanged forest (97% of its area), partly due to the downsizing of its
territory by 317 000 ha in 2003 (Federal Law No. 1.487/2003) after conflicts with
farmers and loggers who invaded this indigenous land (see the resized portion in
Figure 8).

The land-cover trajectory within the sustainable human settlements that were
created in the 2000s by National Institute for Colonization and Agrarian Reform
(INCRA) is typically characterized by the forest/persistence (43%) and degradation/
persistence (23%) trajectories (Table 6). In contrast, the human settlements that
were created in the 1990s are typically characterized by the cleared (34%) and
degradation/cleared trajectories (39%; Table 6). Unlike the human settlements,
the sustainable human settlements are associated with economic activity based on
the sustainable use of forest resources.

In summary, the results show two distinctive processes that lead to the clearing
of a forest. First, the extraction of high-value species that causes gradual changes in
canopy cover but does not necessarily lead to clearing of the forest, especially if the
sustainable use of forest resources is implemented. Second, land conversion as-
sociated with clear-cutting for human settlements, land speculation, and agricul-
ture, which occurs immediately after logging. In general, there is an expansion of
this second process moving outward from towns and roads.

4.4. The process of deforestation in an Amazon frontier of logging
expansion

Forest degradation that led to the clearing of the forest (referred to here as the
degradation/cleared trajectory) was mostly characterized by a single selective logging
event associated with low to moderate forest degradation. As discussed above, periodic
forest fire events were not detected. The main land-cover changes throughout this
process are shown in Figure 9. Although multiple selective logging events were de-
tected throughout the forest degradation process, in most cases, previously logged
forests were not revisited by loggers for a new harvest cycle. Instead, temporary or
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permanent site abandonment is the dominant process after selective logging events
accounting for 80% of all logging trajectories in this study area.

The forest degradation process in the study area usually began with patterns
associated with low and moderate forest degradation intensity (Figure 9).

Figure 8. The land-cover cell trajectories surrounding the town of Novo Progresso,
an Amazon frontier of logging expansion, illustrating the deforestation
process along the BR-163 highway and according to land designation
(protected areas and settlements).
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Approximately 80% of the initial degradation was associated with the IFD1 pat-
tern, which is associated with the harvesting of a small timber volume from the
forest, particularly profitable species (Veríssimo et al. 2008). Extensive style log-
ging (MFD1) and PLP patterns were also detected in the first year, and each
accounted for 10% of the logging activity. The few sequences with more than one
SL event also indicated a predominance of low forest degradation intensity. Site
abandonment contributed to these trends (i.e., toward the predominance of low-
intensity patterns) by permitting the recovery of forest biomass. These forest
canopies impacted by SL activities are able to recover rapidly after abandonment
and can regenerate within 1 to 3 years (Matricardi et al. 2005).

We found that 50% of the logged forest was subsequently deforested within 3
years, 70% was deforested within 4 years, and 90% was deforested within 8 years
(Figure 10). A very low proportion of logged forest was deforested after 8 years.
Previous assessments have noted distinct trends with respect to the number of years
between logging and forest conversion. For example, Asner et al. (2006) found that
36% of a logged forest in Pará State was deforested after 4 years. This result might
partly reflect the particular history of the study site because the study conducted by
Asner et al. (2006) encompassed regions that varied in agrarian structure, popu-
lation density, urbanization level, protection status, percentage of original forest,
and timber stocks.

Table 6. Percentage of the total area of settlements and protected areas affected by
each land-cover change trajectory (values in parentheses represent the area in km2).

Trajectory

Sustainable
human

settlements
Human

settlements

Jamanxim
National
Forest

Bau
Indigenous

Land

Iriri
State
Forest

Rio Novo
National
Park

Coverage % — (km2)
Cleared 22 (581) 34 (167) 13 (1154) 0 0 7
Degradation/cleared 12 (318) 39 (189) 4 (323) 0 0 0
Degradation/persistence 23 (606) 15 (72) 16 (1441) 3 (153) 0 (1)
Forest/persistence 43 (1143) 12 (59) 67 (5933) 97 (5906) 100 (492) 93 (395)
Deforestation until 1984 0 0 0 0 0 0
Total area (km2) 2661 487 8852 6098 492 427

Figure 9. Main trajectories associated to the forest degradation process (SL:
selective logging).
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5. Conclusions and final remarks
Although studies have shown that degradation in tropical forests occurs over

large areas, there is limited knowledge of this process with respect to selective
logging, forest fire, and abandonment dynamics. In this study, we characterized the
forest degradation process of a frontier expansion based on a long time series of
Landsat imagery. However, transferability of our findings on the degradation
process to other regions needs to acknowledge the specific geographic settings, for
example, the colonization history, protection status, and timber stocks.

During the research period, we found that selective logging was the most im-
portant agent of forest degradation. Timber harvesting progressively increased in
the study area and was responsible for damaging a larger area of the forests than
was clear-cutting after the year 2000. We mapped 10 800 km2 of logged forest and
8880 km2 of clear-cut deforestation during the 28-yr observation period. These
findings agree with previous studies that demonstrated that the forest has been
increasingly affected by selective logging activities (Matricardi et al. 2010, 2013,
2005).

During the forest degradation process, selective logging was mostly associated
with patterns of low-intensity forest damage. The role of fire in promoting land-
scape changes was mostly related to the conversion of forest into clear-cuts, and a
regime of recurrent forest fires was not detected in the region.

However, in contrast to previous results (Asner et al. 2006; Matricardi et al.
2013), the forests were not revisited several times by loggers to harvest additional
tree species. Instead, we detected only one harvest cycle followed by abandonment.
We found that degradation trajectories that converge to clear-cut typically take
approximately 4 years (70% of the degradation/cleared trajectory) in the new
occupation frontier areas in Amazonia. These results must be considered conser-
vative because the nonvisible forest degradation usually associated with low levels
of selective logging and low-intensity forest fire cannot be properly detected on
Landsat satellite images (Matricardi et al. 2013; Souza et al. 2003; Stone and
Lefebvre 1998). Furthermore, Matricardi et al. (2005) observed that evidence of

Figure 10. Numbers of years between detection of initial degradation and forest
conversion into clear-cut.
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logging activities can disappear within 1 year. Thus, yearly observations can un-
derestimate the onset of degradation.

During the observed period (1984–2011), the forest degradation trajectories
did not generally result in clear-cuts. Rather, we observed that selective logging
activity is often abandoned, allowing forest recovery. This type of degradation
trajectory, which does not converge to clear-cut, typically began in the early
2000s, specifically after 1998, when the timber sector increasingly grew in the
region.

Implications for carbon emissions from forest degradation

The magnitude of each land-cover trajectory described here has distinct impli-
cations for carbon emissions. We showed that before the year of 1998, the tra-
jectories of forest degradation were rare, and the cleared trajectory was the main
pathway for which land cover is changed. This finding suggests setting the baseline
for carbon emissions due to forest degradation in the region at the end of 1990s
(i.e., 1998), when the forest degradation progressively increased in Novo Pro-
gresso. However, the baseline for the Amazon frontiers that opened up in the 1970s
still requires analysis, since their long-lasting land-use history as well as socio-
economic, political, and physical differences might result in a different land-cover
dynamic.

Knowledge of the relative contribution of each carbon emission source is im-
portant for designing appropriate surveillance actions and to correctly represent
carbon emissions in models. The contribution of forest degradation to overall
carbon emissions depend on the timeframe of the process, the intensity of degra-
dation, the fate of the timber, whether the process results in clearing, and the extent
of forest degradation. Because these aspects can change over time, the forest
degradation process in the distinct Amazon frontiers should be characterized and
differentiated, providing a better understanding of the role of forest degradation
trajectories in carbon emissions.

Acknowledgments. The author acknowledges the helpful discussions with Camilo
Rennó (INPE) and with the members of Geomatics Lab of the Geography Department at
Humboldt-Universität zu Berlin. Research was supported by CNPq and Science Without
Borders Program.

References

Aguiar, A. P. D., and Coauthors, 2012: Modeling the spatial and temporal heterogeneity of
deforestation-driven carbon emissions: The INPE-EM framework applied to the Brazilian
Amazon. Global Change Biol., 18, 3346–3366, doi:10.1111/j.1365-2486.2012.02782.x.

Anderson, L. O., L. Eduardo, C. De Aragão, and A. De Lima, 2005: Burn scar detection based on
linear mixture model and vegetation indices using multitemporal data from MODIS/TERRA
sensor in Mato Grosso State, Brazilian Amazon. Acta Amazonica, 35, 445–456, doi:10.1590/
S0044-59672005000400009.

Asner, G. P., E. N. Broadbent, P. J. C. Oliveira, M. Keller, D. E. Knapp, and J. N. M. Silva, 2006:
Condition and fate of logged forests in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA,
103, 12 947–12 950, doi:10.1073/pnas.0604093103.

Earth Interactions d Volume 20 (2016) d Paper No. 17 d Page 22

http://dx.doi.org/10.1111/j.1365-2486.2012.02782.x
http://dx.doi.org/10.1590/S0044-59672005000400009
http://dx.doi.org/10.1590/S0044-59672005000400009
http://dx.doi.org/10.1073/pnas.0604093103


Barlow, J., and C. A. Peres, 2008: Fire-mediated dieback and compositional cascade in an Amazonian
forest. Philos. Trans. Roy. Soc. London, B363, 1787–1794, doi:10.1098/rstb.2007.0013.
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desmatamento na Amazônia Brasileira. População E Sustentabilidade Na Era Das Mudanças
Ambientais Globais: Contribuições Para Uma Agenda Brasileira, G. Martine, Ed., ABEP,
223–238.

Earth Interactions d Volume 20 (2016) d Paper No. 17 d Page 25

http://dx.doi.org/10.1111/j.1365-2486.2006.01272.x
http://dx.doi.org/10.1007/978-90-481-3739-8_10
http://dx.doi.org/10.1111/j.1755-263X.2009.00067.x
http://dx.doi.org/10.1111/j.1755-263X.2009.00067.x
http://dx.doi.org/10.1109/36.103288
http://dx.doi.org/10.1016/j.rse.2002.08.002
http://dx.doi.org/10.1016/j.rse.2005.07.013
http://dx.doi.org/10.3390/rs5115493
http://dx.doi.org/10.1080/014311698214604
http://dx.doi.org/10.1023/B:BIOC.0000019398.36045.1b
http://dx.doi.org/10.1023/B:BIOC.0000019398.36045.1b
http://dx.doi.org/10.2307/2388700


Vasconcelos, S., P. M. Fearnside, P. M. L. de A. Graça, E. M. Nogueira, L. C. de Oliveira, and
E. O. Figueiredo, 2013: Forest fires in southwestern Brazilian Amazonia: Estimates of
area and potential carbon emissions. For. Ecol. Manage., 291, 199–208, doi:10.1016/
j.foreco.2012.11.044.

Veríssimo, A., C. Souza Jr., S. Stone, and C. Uhl, 2008: Zoning of timber extraction in the Brazilian
Amazon. Conserv. Biol., 12, 128–136, doi:10.1111/j.1523-1739.1998.96234.x.

Vieira, S., and Coauthors, 2004: Forest structure and carbon dynamics in Amazonian tropical rain
forests. Oecologia, 140, 468–479, doi:10.1007/s00442-004-1598-z.

Wang, C., J. Qi, and M. Cochrane, 2005: Assessment of tropical forest degradation with canopy
fractional cover from Landsat ETM1 and IKONOS imagery. Earth Interact., 9, doi:10.1175/
EI133.1.

Earth Interactions is published jointly by the American Meteorological Society, the American Geophysical

Union, and the Association of American Geographers. Permission to use figures, tables, and brief excerpts

from this journal in scientific and educational works is hereby granted provided that the source is

acknowledged. Any use of material in this journal that is determined to be ‘‘fair use’’ under Section 107 or that

satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.IL. 94-

553) does not require the publishers’ permission. For permission for any other from of copying, contact one of

the copublishing societies.

Earth Interactions d Volume 20 (2016) d Paper No. 17 d Page 26

http://dx.doi.org/10.1016/j.foreco.2012.11.044
http://dx.doi.org/10.1016/j.foreco.2012.11.044
http://dx.doi.org/10.1111/j.1523-1739.1998.96234.x
http://dx.doi.org/10.1007/s00442-004-1598-z
http://dx.doi.org/10.1175/EI133.1
http://dx.doi.org/10.1175/EI133.1

