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Random walk in degree space and the time-dependent Watts-Strogatz model
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In this work, we propose a scheme that provides an analytical estimate for the time-dependent degree
distribution of some networks. This scheme maps the problem into a random walk in degree space, and then we
choose the paths that are responsible for the dominant contributions. The method is illustrated on the dynamical
versions of the Erdős-Rényi and Watts-Strogatz graphs, which were introduced as static models in the original
formulation. We have succeeded in obtaining an analytical form for the dynamics Watts-Strogatz model, which
is asymptotically exact for some regimes.
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I. INTRODUCTION

The investigation of structure and dynamics of networks
has been a powerful strategy to analyze interacting many-
body problems present in many different areas: biological,
ecological, economical, and social systems, to name some of
them. The map of these systems into graphs is a fruitful old
idea, and the knowledge of the interconnection between its
vertices is a necessary condition that allows us to examine a
myriad of practical problems [1–6].

Nowadays, there are several research interests involving
complex networks. We can say, for instance, that there is
an effort to obtain a better understanding of networks from
some of their internal structures such as the formation of
communities [7,8], or a more complex interconnection of
graphs such as the multilayer networks [9,10]. The complexity
of the internal structure reflects on the entropy of the network
[11,12], which shows the possibility of classifying several
internal structures, and, as an application, it is possible to
assess information of the vertices of a network by an inference
approach through measuring its entropy [13]. At the same
time, we still have progress on important questions that use
complex networks as a framework to define other problems;
for instance, we can cite the active area of epidemiological
models [14], or statistical models on complex networks to
analyze critical phenomena [15].

At this point, it is worth mentioning that despite the progress
in several directions, it is natural that analytical results are
less frequent than numerical ones, which is understandable
due to the technical complexities presented by many relevant
questions. Furthermore, many existing analytical results come
from the stationary regime. In this scenario, we propose a
scheme that estimates the time-dependent degree distribution.
In order to illustrate our idea, we revisited the Watts-Strogatz
model [16]. Although not being a complex network in the sense
that it does not display a heterogeneous degree distribution
[17], it has small-world properties and has high clustering
[16,18], two properties shared with many real networks. The
model was originally defined as an intermediate configuration
between a regular lattice and a graph where all their nodes
are randomly linked, and we will present a slightly modified
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version from the original one in order to capture its dynamical
evolution analytically.

The layout of this paper is as follows. In purpose of
illustrating the main idea of the work, we start with a dynamical
version of the Erdős-Rényi model [19,20] in Sec. II and we
introduce the main model, the time-dependent Watts-Strogatz
graph, in Sec. III. Then, we present the main idea that allows
one to achieve an analytical form for the dynamic degree
distribution in Sec. IV. Some final comments are presented
in Sec. V.

II. TIME-DEPENDENT ERDŐS-RÉNYI MODEL

The initial condition of the model consists of N vertices
and no edges at time t = 0. At each time step, two vertices
are randomly chosen and linked; this includes the possibility
of having a loop (an edge that connects a vertex to itself). It is
clear that each end of an edge links to a vertex with probability
1/N . Therefore, defining p(k,s,t) as the probability that a
vertex s has degree k at time t , one can represent the dynamics
as

p(k,s,t + 1) = wER(k|k − 2)p(k − 2,s,t)

+wER(k|k − 1)p(k − 1,s,t)

+wER(k|k)p(k,s,t), (1)

with p(k,s,t = 0) = δk,0 as the initial condition, where δk,m

is the Kronecker symbol (δk,m = 1 when k = m, and δk,m = 0
otherwise). Furthermore, wER(k|m) is the time-independent
conditional probability of changing the degree of a vertex from
m to k; in the present case,

wER(k|k − 2) = 1

N2
,

wER(k|k − 1) = 2

N

(
1 − 1

N

)
, and

wER(k|k) =
(

1 − 1

N

)2

. (2)

By introducing the time-dependent degree distribution,

P (k,t) = 1

N

N∑
s=1

p(k,s,t), (3)
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the time evolution equation (1) can be written as

P (k,t + 1) = 1

N2
P (k − 2,t) + 2

N

(
1 − 1

N

)
P (k − 1,t)

+
(

1 − 1

N

)2

P (k,t). (4)

If now one introduces the generating function

�(K,t) =
∑
k�0

KkP (k,t), (5)

Eq. (4) can be cast as

�(K,t + 1)

=
[
K2

N2
+ 2K

N

(
1 − 1

N

)
+

(
1 − 1

N

)2]
�(K,t).

(6)

Introducing, now, the operator

LER := K2

N2
+ 2K

N

(
1 − 1

N

)
+

(
1 − 1

N

)2

, (7)

it possible to see that

�(K,t) = LER�(K,t − 1) = (
LER

)2
�(K,t − 2) = · · ·

= (LER)t�(K,0), (8)

where the initial condition is �(K,0) = 1. Therefore, since
LER = (K

N
+ 1 − 1

N
)
2
, one has

�(K,t) =
(

K

N
+ 1 − 1

N

)2t

=
2t∑

m=0

(
2t

m

)(
1 − 1

N

)2t−m(
K

N

)m

. (9)

One sees that the right-hand side of (9) is a polynomial in
K , and the time-dependent degree distribution P (k,t) is the
coefficient of the term of order Kk (which we will refer as
Kk term) in the right-hand side of (9). Hence, by a direct
inspection, the time-dependent degree distribution is

P (k,t) =
(

2t

k

)(
1 − 1

N

)2t−k 1

Nk
, (10)

which is a binomial distribution with parameters 2t (number of
trials) and 1/N (success probability in each trial). This result
will be revisited in Sec. IV, where we will treat the problem
of finding the time-dependent degree distribution as a random
walk in degree space.

When t = N (N − 1)/2, which is the time equivalent to
the number of possible distinct edges, one recovers the usual
Poisson distribution from the binomial distribution (10) for
N � 1,

P (k,t) � 1

k!

(
2t

N

)k

e− 2t
N and 〈k〉 = 2t

N
. (11)

FIG. 1. Entropy of time-dependent Erdős-Rényi model (N = 100
and p = 0.01).

The exact form of the time-dependent degree distribution
can be used to investigate the Shannon entropy,

S(t) = −
∑

k

P (k,t) ln P (k,t)

= −
2t∑

k=0

(
2t

k

)(
1 − 1

N

)2t−k 1

Nk
ln

(
2t

k

)

+ 2t

[
1

N
ln (N − 1) − ln

(
1 − 1

N

)]
, (12)

where the last term is the part of ln P that could be averaged
over the degree distribution trivially.

The profile of the entropy can be investigated numerically
and is presented in Fig. 1. It starts from a low value and achieves
the maximum for t ≈ N2/2, which is when the original
(static) Erdős-Rényi model is realized, and the inclusion of
more connections decreases the entropy, as one can see from
(11). This phenomenon can be heuristically understood by
realizing that the inclusion of edges randomly (with uniform
probability to each possible pair of nodes) leads the distribution
to converge to a Kronecker δ, i.e., the vertices tend to have all
the same degree (that increases with time) from the statistical
standpoint.

III. TIME-DEPENDENT WATTS-STROGATZ MODEL

The Watts-Strogatz model [16] is a small-world network
that, unlike the Erdős-Rényi graph, keeps high clustering.
The analytical approach treats it as a static model, despite
the fact that it is obtained as an intermediate configuration in
the rewiring process between a regular lattice and a random
graph. We will define a dynamical model that generates a
small-world network similar to the one introduced by Watts
and Strogatz. Although being slightly different from the
original Watts-Strogatz model, it is statistically equivalent and
suitable for analytical investigations.

The initial condition of our model consists of a ring with N

vertices, and each vertex has degree k0 by having a single link
to its k0/2 next neighbors as in the Watts-Strogatz model. The
model has, therefore, k0N/2 edges with total degree M = k0N .
The dynamics obeys the following scheme.
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(i) An edge end is chosen with uniform probability 1
M

.
(ii) This extremity is reconnected with probability p (and

kept without reconnection with probability 1 − p).
(iii) Back to (i) (repetition for a fixed number of iterations).
Therefore, the probability p(k,s,t) of a vertex s having

degree k at time t obeys the discrete time recurrent equation

p(k,s,t + 1) = w(k|k − 1)p(k − 1,s,t)

+ w(k|k + 1)p(k + 1,s,t)

+ w(k|k)p(k,s,t), (13)

where w(k|m) stands for the discrete-time transition rate
(conditional probability) from the state of degree m to degree
k, as in the previous section. Furthermore, the initial condition
is p(k,s,t = 0) = δk,k0

Consider now a vertex s at time t ; it can have degree k at
time t + 1 in the following scenarios.

(i) The vertex s has degree k − 1 at time t and degree k at
time t + 1: an edge end, which is not connected to s, is chosen
with probability 1 − k−1

M
. Then, it rewires with probability p,

and links to s with probability 1
N

; therefore, one has

w(k|k − 1) = p

N

(
1 − k − 1

M

)
. (14)

(ii) The vertex s has degree k + 1 at time t and degree
k at time t + 1: an edge end connected to s is chosen with
probability k+1

M
. Then, it rewires with probability p, and

links to another vertex, say s ′( �= s), with probability 1 − 1
N

;
therefore, one has

w(k|k + 1) = k + 1

M
p

(
1 − 1

N

)
. (15)

(iii) The vertex s has degree k at time t and remains with
degree k at time t + 1: this scenario is divided in four cases,
as follows.

(iii a) An edge end connected to s is chosen with probability
k
M

, rewires with probability p, and links again to s with
probability 1

N
.

(iii b) An edge end connected to s is chosen with probability
k
M

, but does not rewire (this happens with probability 1 − p).
(iii c) An edge end not connected to s is chosen with

probability 1 − k
M

, rewires with probability p, and links to
a vertex that is not s with probability 1 − 1

N
.

(iii d) An edge end not connected to s is chosen with
probability 1 − k

M
, but does not rewire (this happens with

probability 1 − p).
The conditional probability associated to the union of

disjoint events (iii a)–(iii d) is

w(k|k) = kp

MN
+ k

M
(1 − p)

+p

(
1 − k

M

)(
1 − 1

N

)
+

(
1 − k

M

)
(1 − p)

= 1 − p

N

(
1 + kN

M
− 2k

M

)
. (16)

The dynamics defined above can generate a graph similar
to the Watts-Strogatz model. For t = M , one has a interval

FIG. 2. Clustering C(p) and shortest path length �(p) [normal-
ized by C(0) and �(0), respectively] of the graph generated by the
dynamics of Sec. III. The parameters are N = 1000, k0 = 10, and
t = M = k0N with 100 realizations of the simulations; the error bars
are smaller than the size of the points.

of p where the system displays high clustering and low mean
shortest path length, as shown in Fig. 2.

The time-dependent degree distribution can be eval-
uated iteratively from the recurrent equation (13) and
(3), and this allows one to compute the entropy S(t) =
−∑

k P (k,t) ln P (k,t) of the model, which is shown in Fig. 3.
The entropy starts from a low value, as expected since the

initial condition of Watts-Strogatz model is a regular lattice
with P (k,0) = δk0 . The entropy, then, grows with time, but
reaches a constant value: differently from the Erdős-Rényi
model, the Watts-Strogatz graph has no new connection
being added, and the system converges to a stationary degree
distribution different from a Kronecker-δ-like as in the Erdős-
Rényi case.

Introducing, again, the generating function (5) to the
recurrent equation of the time-dependent degree distribution

FIG. 3. Entropy of the time-dependent Watts-Strogatz model for
N = 100, k0 = 6, and p = 0.01.
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obtained by combining (13) and (3), one has

�(K,t) = L�(K,t − 1) = Lt�(K,0), (17)

where the initial condition �(K,0) = Kk0 stands for each
vertex having exactly k0 connections. The explicit form of the
operator L, which acts on this polynomial, will be presented
in the next section. For now, it is sufficient to state that the
analytical form of the time-dependent degree distribution is
not well explored in the literature.

IV. RANDOM WALK IN DEGREE SPACE

This section is devoted to develop the arguments that
will establish analytic results concerning the time-dependent
degree distribution of the two models above. The Erdős-Rényi
case will support and illustrate our arguments, since its a
simpler laboratory and the exact form (10) is already known.

A. Time-dependent Erdős-Rényi model

As seen in Sec. II, the time-dependent degree distribution
P (k,t) is the coefficient of the Kk term in �(K,t), as one can
see from (5). Moreover, from (8) and �(K,0) = K0 = 1, we
have �(K,t) = (LER)

t
K0. This means that one should search

for the Kk term of a polynomial resulted from the application
of LER for t times on K0. The operator LER, however, can
be divided into a sum of three operators, LER

0 ,LER
1 , and LER

2 .
This separation is convenient, since when these operators are
applied on a monomial Km (m ∈ Z), one has the following
behavior:

LER
0 Km = αKm, α :=

(
1 − 1

N

)2

,

LER
1 Km = βKm+1, β := 2

N

(
1 − 1

N

)
,

LER
2 Km = γKm+2, γ := 1

N2
. (18)

Hence, starting from degree 0, one can see the procedure
of applying t times the operator LER = LER

0 + LER
1 + LER

2 as
follows. Since

�(K,t) =
t factors︷ ︸︸ ︷(

LER
0 + LER

1 + LER
2

) · · · (LER
0 + LER

1 + LER
2

)
K0,

(19)

the Kk term is a sum of many terms, each of them a product of
LER

0 ,LER
1 , and LER

2 . Let us consider k = t = 2 as an example;
in this case, the K2 term of �(K,2) is

LER
2 LER

0 K0 + LER
1 LER

1 K0 + LER
0 LER

2 K0, (20)

and this is P (k = 2,t = 2)K2. In the first term, the system
remains with degree zero at time t = 1 and increases two
unities at t = 2; similar interpretation can be made for the
second and third terms. The time-dependent degree distribu-
tion is, therefore, a sum of all trajectories, which are random
walks in degree space (see Fig. 4), that leads from degree
zero at time zero to degree k at time t . At each time step,
the degree can increase one unity, or two unities, or stay
constant with probabilities β, γ , and α, respectively (note that

FIG. 4. Three examples of possible evolution of the degree (these
examples do not apply for the Erdős-Rényi model, where the degree
never decreases). The initial and final degrees should be k0 and k,
respectively.

α + β + γ = 1 and α,β,γ > 0). Hence, denoting by ym the
degree at time m, it is straightforward that

P (k,t) =
∑
{ym}

δy0,0δyt ,k

t∏
m=1

(
αδym−ym−1,0

+ βδym−ym−1,1 + γ δym−ym−1,2
)
, (21)

where ym � 0 for 0 � m � t and the first two Kronecker δs
refer to the initial and final conditions; each term inside the
parentheses indicates if the degree at time m remains constant
or increases (with one or two unities) when compared to the
degree at the previous instant, ym−1.

The continuous version of (21) is a path-integral formu-
lation of the problem. Nevertheless, it does not lead to an
expression that can be trivially tackled by the usual methods.

The time-dependent degree distribution can be evaluated
explicitly by exploring the property that LER

0 ,LER
1 , and LER

2
are c numbers. During the time interval t , there should be
n1, n2, and n3 terms of α, β, and γ , respectively, such that
n1 + n2 + n3 = t and n2 + 2n3 = k. Therefore,

P (k,t) =
∑

n1,n2,n3

t!

n1!n2!n3!
αn1βn2γ n3δn1+n2+n3,t δn2+2n3,k

=

 k

2 �∑
n=0

(
t

k − n

)(
k − n

n

)
γ nβk−2nαt−k+n, (22)

which yields the same result of (10), as expected. In (22), 
x�
is the largest integer equal or less than x, and the last equality
can be shown after a lengthy induction argument.

Finally, one can also restate the recurrent equation
�(K,t) = (LER)

t
�(K,0) as �(K,t) = (�ER

1 + �ER
0 )

2t
�(K,0),

where now we have two types of operators,

�ER
1 Km = 1

N
Km+1 and �ER

0 Km =
(

1 − 1

N

)
Km,

(23)

that act for an interval of time equal to 2t on the initial
condition.

B. Time-dependent Watts-Strogatz model

Similarly as in the previous case, the time-dependent
Watts-Strogatz degree distribution is the Kk term of
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�(K,t) = Lt�(K,0), where now the initial condition is
�(K,0) = Kk0 and

L := L1 + L0 + L−1, (24)

with

L1 := p

N
K − p

MN
K2 ∂

∂K
,

L0 := 1 − p

N
− p

M
K

∂

∂K
+ 2p

MN
K

∂

∂K
, (25)

L−1 := p

M

(
1 − 1

N

)
∂

∂K
.

The form of these operators, which are not c numbers anymore,
can be deduced by (14), (15), (16), and the generating function
of (13). When these operators are applied on a polynomial of
degree m, one has

L1K
m = bmKm+1,

L0K
m = amKm, and (26)

L−1K
m = dmKm−1,

with

bm := p

MN
(M − ym),

am := 1 − p

N
− p

MN
(N − 2)ym, and (27)

dm := p

MN
(N − 1)ym.

Note that now the coefficients am, bm and dm are not constants
and the operatorsL1,L0, andL−1 do not commute as in Erdős-
Rényi case. Following the same argument that has led to (21),
we have

P (k,t) =
∑
{ym}

δy0,k0δyt ,k

t∏
m=1

(am−1δym−ym−1,0

+ bm−1δym−ym−1,1 + dm−1δym−ym−1,−1) (28)

for the Watts-Strogatz model. The degree starts with y0 = k0

at time t = 0 and ends with yt = k at time t . Between these
boundaries, the variable ym performs a random walk. This
expression is not analytically treatable, and we will invoke
some simplifications, which consist of choosing the dominant
contributions (paths) to P (k,t).

C. Monotonic paths

In this section, we will concentrate on the dominant
contributions to the degree distribution P (k,t). This follows
by choosing a class of paths that starts at y0 = k0 and ends at
yt = k. By noticing that am = O(1) � bm,dm, the dominant
contributions come from terms that maximize the number of
am factors. This implies minimizing the number of bm factors
or dm factors such that they should appear only to change the
degree from k0 to k. In other terms, we have k − k0 terms of bm

(dm) type if k � k0 (k < k0), and the remaining t − (k − k0)
terms are of am type. Note that these are monotonic paths in the
sense that the degree only increases (if k � k0) or decreases
(if k < k0).

FIG. 5. Increasing monotonic paths. All the monotonic paths,
when k � k0, are located inside the envelope defined by the dashed
lines. The top dashed line corresponds to the path bk0 · · · bk−1a

t−	
k ,

and the bottom dashed line is the monotonic path at−	
k0

bk0 · · · bk−1.

Let us consider initially, the case 	 := k − k0 � 0. Writing
the sum of all monotonic paths as being equal to the time-
dependent degree distribution leads to

P (k,t) ≈ bk0bk0+1 · · · bk−1

t−	∑
n0=0

· · ·
t−	∑
n	=0

n0+···n	=t−	

a
n0
k0

· · · an	

k . (29)

The bm terms are functions of the degree ym [see Eq. (27)], and
not on the instant they appear. In the monotonic crescent path,
therefore, each term, bk0 , . . . ,bk−1 should appear one and only
one time in this order. The remaining t − 	 segments of the
path are filled by am terms, and there should be n0 of them that
are ak0 , n1 of them that are ak0+1, and so on (see Fig. 5). First,
it is immediate from (27) that

bk0 · · · bk−1 =
( p

MN

)	 (M − k0)!

(M − k)!
. (30)

On the other hand, by using am � e− p

N
− p

M
ym one has

t−	∑
n0=0

· · ·
t−	∑
n	=0

n0+···n	=t−	

a
n0
k0

· · · an	

k

= e− p

N
(t−	)

t−	∑
n0=0

· · ·
t−	∑
n	=0

n0+···n	=t−	

e− p

M
(n0k0+···n	k)

= e− 2p

N
(t−	)

t−	∑
n0=0

e− p

M
(t−	−n0)

t−	−n0∑
n1=0

e− p

M
(t−	−n0−n1) · · ·

×
t−	−n0−···−n	−2∑

n	−1=0

e− p

M
(t−	−n0−···−n	−1)

= e− 2p

N
(t−	)

t−	∑
u0=0

e− p

M
u0

u0∑
u1=0

e− p

M
u1 · · ·

u	−2∑
u	−1=0

e− p

M
u	−1,

(31)

where we have performed the change of variables
u0 = t − 	 − n0, u1 = u0 − n1, u2 = u1 − n2, up to
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u	−1 = u	−2 − n	−1 in the last passage. Therefore, one has

t−	∑
n0=0

· · ·
t−	∑
n	=0

n0+···n	=t−	

a
n0
k0

· · · an	

k � e− 2p

N
(t−	) 1

	!

(∫ t−	

0
du e− p

M
u

)	

,

(32)

and by (30) and (32) one finally finds

P (k,t) � (M − k0)!

(M − k)!

e− 2p

N
(t−	)

	!

[
1 − e− p

M
(t−	)

N

]	

× (k � k0,k ∈ Z). (33)

The monotonic paths when k < k0 is such that

P (k,t) ≈ dk0dk0−1 · · · dk+1

t−|	|∑
n0=0

· · ·
t−|	|∑
n	=0

n0+···n	=t−|	|

a
n0
k0

· · · an	

k , (34)

since now the dm terms are needed to decrease the degree.
Since

dk0 · · · dk+1 =
(

p

MN

)|	|
(N − 1)|	| k0!

k!
, (35)

by following a similar procedure as before, one has

P (k,t) � N |	|k0!

k!

e− 2p

N
(t−|	|)

|	|!

[
1 − e− p

M
(t−|	|)

N

]|	|

(k < k0,k ∈ Z). (36)

for 	 := k − k0 < 0.
The comparison between the (exact) numerical time-

dependent degree distribution obtained from the recurrent
equation and the estimations (33) and (36) are shown in Fig. 6.

The formulas (33) and (36) should be asymptotically
exact for t � M and t � M . The reason for this statement
comes from a simple analysis of the order of magnitude of
the paths. Remembering that am = O(1), bm = O(pN−1) and
dm = O(pN−1), a monotonic path is O(p|	|N−|	|), while
there are t!

(t−|	|)! = O(t |	|) of them. The first correction is
due to terms that have a bm and dm terms more than the
monotonic paths terms (and two am terms less). Each one
of its first correction terms are O(p|	|+2N−|	|+2), and there
are O(t |	|+2) of them. The contribution of the first correction is
roughly O(t2p2N−2) times the contribution of the monotonic
paths. This argument can be extended to corrections of all
orders. Therefore, for p � 1, one expects that the formulas
from the monotonic paths only are asymptotically exact for
t � M and t � M . Naturally, the same argument concludes
that our estimations fail in the case t � M . The numerical
solution in Fig. 6 shows that our estimations apply in the case
t � M , while the same comment can not be made for t � M ,
as expected.

FIG. 6. Time-dependent degree distribution. The points are as-
sociated to numerically exact results, and were obtained from the
recurrent equation (13). The points generated from equations (33)
and (36) were interpolated with lines for better visualization. Inset:
a detailed visualization of the time-dependent degree distribution
(logarithmic scale for the vertical axis) for t = 100 and t = 1000.

V. CONCLUSION

In this work, we have formulated the Erdős-Rényi and
Watts-Strogatz graphs as a dynamic model and characterized
their behavior from the standpoint of their entropies. We have
also examined their time-dependent degree distribution analyt-
ically. The Erdős-Rényi model is analytically accessible, while
the same does not extend to the Watts-Strogatz model. We
have, nevertheless, obtained a formula that is asymptotically
exact for 1 � t � M and confirmed this validity numerically.
The main idea to achieve this result was to consider the
evolution of the degree distribution as a random walk in degree
space and select the paths that have dominant contribution.
This strategy was especially suitable for networks that have a
dynamics that can be written as a recurrent relation such as
(8) or (17). We have also presented the argument that support
the range of validity of our formula, which is based on the
estimation of the order of magnitude of contribution of relevant
terms.
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APPENDIX

This Appendix is devoted to the proof that Eq. (22) leads to
(10) through the second principle of mathematical induction.
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Since

P (k,t) =

 k

2 �∑
n=0

(
t

k − n

)(
k − n

n

)[
1

N2

]n[ 2

N

(
1 − 1

N

)]k−2n
[(

1 − 1

N

)2
]t−k+n

=
(

1 − 1

N

)2t−k 1

Nk


 k
2 �∑

n=0

(
t

k − n

)(
k − n

n

)
2k−2n, (A1)

it remains to show that


 k
2 �∑

n=0

(
t

k − n

)(
k − n

n

)
2k−2n =

(
2t

k

)
(A2)

to complete the proof. As the induction hypothesis, it will be assumed that


 κ
2 �∑

n=0

(
τ

κ − n

)(
κ − n

n

)
2κ−2n =

(
2τ

κ

)
(A3)

is valid for 0 � κ � k and 0 � τ � t . Although the base case is not, in principle, required for the second principle of mathematical
induction, we see that both k = 0 and k = 1 are satisfied by (A2) for any non-negative t (in particular, t = 0).

The analysis will be separated into two cases: case (i), induction on t (k fixed); and case (ii), induction on k (t fixed).
Furthermore, the well-known formula (

α

β

)
=

(
α − 1

β

)
+

(
α − 1

β − 1

)
, α,β ∈ N (A4)

will be extensively invoked and we take, as usual,(
α

−1

)
=

(
α

α + 1

)
= 0, α ∈ N ∪ {0}. (A5)

Case (i): Induction on t (k fixed). In this case, the left-hand side of (A2), for t → t + 1 and k fixed, is


 k
2 �∑

n=0

(
t + 1

k − n

)(
k − n

n

)
2k−2n =


 k
2 �∑

n=0

(
t

k − n

)(
k − n

n

)
2k−2n +


 k
2 �∑

n=0

(
t

k − 1 − n

)(
k − n

n

)
2k−2n

=

 k

2 �∑
n=0

(
t

k − n

)(
k − n

n

)
2k−2n +


 k
2 �∑

n=0

(
t

k − 1 − n

)(
k − 1 − n

n

)
2k−2n

+

 k

2 �∑
n=0

(
t

k − 1 − n

)(
k − 1 − n

n − 1

)
2k−2n, (A6)

where (A4) was invoked in the first and second passages. By the induction hypothesis (A3), the first term in the last line of (A6)
is


 k
2 �∑

n=0

(
t

k − n

)(
k − n

n

)
2k−2n =

(
2t

k

)
. (A7)

On the other hand, since 
 k
2� = 
 k−1

2 � for k odd, and 
 k
2� = 
 k−1

2 � + 1 for k even, one has


 k
2 �∑

n=0

(
t

k − 1 − n

)(
k − 1 − n

n

)
2k−2n =


 k−1
2 �∑

n=0

(
t

k − 1 − n

)(
k − 1 − n

n

)
2k−1−2n × 2 = 2

(
2t

k − 1

)
(A8)

by (A3). The first equality for k even is because the term n = 
 k−1
2 � + 1 in the sum vanishes due to (A5). Finally, by a change

of variable, the last term of (A6) can be written as


 k
2 �∑

n=0

(
t

k − 1 − n

)(
k − 1 − n

n − 1

)
2k−2n =


 k−2
2 �∑

m=0

(
t

k − 2 − m

)(
k − 2 − m

m

)
2k−2−2m =

(
2t

k − 2

)
(A9)
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by (A3) and using (A5). Replacing (A7), (A8), and (A9) in (A6), one has


 k
2 �∑

n=0

(
t + 1

k − n

)(
k − n

n

)
2k−2n =

(
2t

k

)
+ 2

(
2t

k − 1

)
+

(
2t

k − 2

)
=

(
2(t + 1)

k

)
, (A10)

which is the desired result.
Case (ii): Induction on k (t fixed). Let us first restate (A2) as


 k
2 �∑

n=0

(
t

k − n

)(
k − n

n

)
2k−2n =


 k
2 �∑

n=0

(
t

n

)(
t − n

t − k + n

)
2k−2n =

(
2t

k

)
, (A11)

and the last equality will be proved here. Now, the induction hypothesis is


 κ
2 �∑

n=0

(
τ

n

)(
τ − n

τ − κ + n

)
2κ−2n =

(
2τ

κ

)
(A12)

being valid for 0 � κ � k and 0 � τ � t . In the case (ii), the left-hand side of the last line of (A11), for k → k + 1 and t fixed, is


 k+1
2 �∑

n=0

(
t

n

)(
t − n

t − k − 1 + n

)
2k+1−2n =


 k+1
2 �∑

n=0

(
t − 1

n

)(
t − n

t − k − 1 + n

)
2k+1−2n +


 k+1
2 �∑

n=0

(
t − 1

n − 1

)(
t − n

t − k − 1 + n

)
2k+1−2n

=

 k+1

2 �∑
n=0

(
t − 1

n

)(
t − 1 − n

t − k − 1 + n

)
2k+1−2n +


 k+1
2 �∑

n=0

(
t − 1

n

)(
t − 1 − n

t − k − 2 + n

)
2k+1−2n

+

 k+1

2 �∑
n=0

(
t − 1

n − 1

)(
t − n

t − k − 1 + n

)
2k+1−2n, (A13)

where (A4) was invoked in the first and second passages. Note that


 k+1
2 �∑

n=0

(
t − 1

n

)(
t − 1 − n

t − k − 1 + n

)
2k+1−2n =


 k
2 �∑

n=0

(
t − 1

n

)(
t − 1 − n

t − 1 − k + n

)
2k−2n × 2 = 2

(
2t − 2

k

)
. (A14)

In the first passage of (A14), one has 
 k+1
2 � = 
 k

2� if k is even. If k is odd, the summation ends at 
 k+1
2 � = 
 k

2� + 1; however,
the term n = 
 k

2� + 1 has no contribution to the sum due to (A5).
The last term of (A13) can be cast as


 k+1
2 �∑

n=0

(
t − 1

n − 1

)(
t − n

t − k − 1 + n

)
2k+1−2n =


 k−1
2 �∑

m=0

(
t − 1

m

)(
t − 1 − m

(t − 1) − (k − 1) + m

)
2k−1−2m =

(
2t − 2

k − 1

)
(A15)

by (A12). Replacing (A14) and (A15) into (A13), and using (A4), one has


 k+1
2 �∑

n=0

(
t

n

)(
t − n

t − k − 1 + n

)
2k+1−2n = 2

(
2t − 2

k

)
+

(
2t − 2

k − 1

)
+


 k+1
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n=0

(
t − 1

n

)(
(t − 1) − n

(t − 1) − k − 1 + n

)
2k+1−2n

=
(

2t − 1

k

)
+

(
2t − 2

k

)
+
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n=0

(
t − 1

n

)(
(t − 1) − n

(t − 1) − k − 1 + n

)
2k+1−2n, (A16)

which is a recursive relation in t . Therefore, one can write (A16) as


 k+1
2 �∑

n=0

(
t

n

)(
t − n

t − k − 1 + n

)
2k+1−2n =

(
2t − 1

k

)
+

(
2t − 2

k

)
+ · · · +

(
2k + 3

k

)
+

(
2k + 2

k

)

+

 k+1
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n=0

(
k + 1

n

)(
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n

)
2k+1−2n, (A17)
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where the last term is


 k+1
2 �∑

n=0

(
k + 1

n

)(
k + 1 − n

k + 1 − 2n

)
2k+1−2n =

(
2k + 2

k + 1

)
, (A18)

as stated in Ref. [21]. Hence,


 k+1
2 �∑

n=0

(
t

n

)(
t − n

t − k − 1 + n

)
2k+1−2n =

(
2t − 1

k

)
+ · · · +

(
2k + 3

k

)
+

(
2k + 2

k

)
+

(
2k + 2

k + 1

)
=

(
2t

k + 1

)
, (A19)

by using (A4) successively. This concludes the proof.
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