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Abstract

We analysed the flora of 46 forest inventory plots (25 m x 100 m) in old growth forests from

the Amazonian region to identify the role of environmental (topographic) and spatial vari-

ables (obtained using PCNM, Principal Coordinates of Neighbourhood Matrix analysis) for

common and rare species. For the analyses, we used multiple partial regression to partition

the specific effects of the topographic and spatial variables on the univariate data (standard-

ised richness, total abundance and total biomass) and partial RDA (Redundancy Analysis)

to partition these effects on composition (multivariate data) based on incidence, abundance

and biomass. The different attributes (richness, abundance, biomass and composition

based on incidence, abundance and biomass) used to study this metacommunity

responded differently to environmental and spatial processes. Considering standardised

richness, total abundance (univariate) and composition based on biomass, the results for

common species differed from those obtained for all species. On the other hand, for total

biomass (univariate) and for compositions based on incidence and abundance, there was a

correspondence between the data obtained for the total community and for common spe-

cies. Our data also show that in general, environmental and/or spatial components are

important to explain the variability in tree communities for total and common species. How-

ever, with the exception of the total abundance, the environmental and spatial variables

measured were insufficient to explain the attributes of the communities of rare species.

These results indicate that predicting the attributes of rare tree species communities based

on environmental and spatial variables is a substantial challenge. As the spatial component

was relevant for several community attributes, our results demonstrate the importance of
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using a metacommunities approach when attempting to understand the main ecological pro-

cesses underlying the diversity of tropical forest communities.

Introduction

Throughout the history of studying ecology, researchers have sought to understand the effects

of environmental and spatial processes on biodiversity. This quest has led to the collection of a

large number of datasets and the formulation of competing theories, such as niche and neutral

theories. The niche theory was developed during the 20th century and has been one of the

most important theoretical approaches in ecology. This theory assumes that the species in a

community are different and that the combination of available resources and environmental

conditions determines the local diversity [1]. The coexistence of species within a community,

therefore, can be mainly explained by the way in which species with different resource needs

and environmental requirements partition existing niches. In this context, it is expected that

communities structured by niche-related processes have similar values for local attributes (e.g.,

species richness, species abundance, biomass and composition) in similar habitat patches. In

contrast with the niche theory, the neutral theory is based on the functional equivalence

among species and considers dispersion and demographic stochasticity as central phenomena

[2,3]. The neutral theory considers that the diversity of a community is a result of the dynamic

balance between immigration and extinction [4,5]. According to this theory, it is expected that

similar values for local attributes of a community in a particular patch can be determined by

the influence of communities of nearby patches, stressing the importance of spatial processes.

In the past few decades, the neutral theory has brought new force to discussions about the

processes that determine diversity in communities. In this debate, the proponents of the niche

theory have reacted strongly against the assumption that species are equivalent, which is advo-

cated by the neutral theory. For their part, supporters of the neutral theory argue that, in fact,

they do not believe that species are equivalent but that this assumption (in addition to the use

of stochastic elements) allows the building of simple models with good predictive ability [6].

The supporters of the two theories are usually on opposite sides [5–9]; however, there are

researchers who have tried to reconcile them [10]. Although the neutral theory is controversial

because it radicalises the assumptions [5], it brings important elements such as the limitation of

dispersion and ecological drift, which, along with the niche theory, can help us understand the

processes involved in the diversity of species in communities. Perhaps the best way to consider

these two theories is as representative of two extremes along a continuum [10], among which

communities are structured by the relative balance between the mechanisms emphasised by the

niche (e.g. environmental filters) and neutral (e.g. dispersion and ecological drift) theories.

Megadiverse tropical forests can be important model ecosystems for understanding the rel-

ative roles of environmental and spatial variables on communities. Efforts to understand these

roles may help clarify the importance of different processes in maintaining the species diversity

of these forests. In terms of the niche theory, variables representative of topography are likely

to play an important role in local environmental conditions, which may determine the species

diversity, functional and structural attributes and composition of tree communities [11–14].

One advantage of using topography in vegetation studies is that it can be assessed at large

scales by remote sensing. Moreover, topography is considered a good surrogate for several

important variables of vegetation structure that would be difficult to measure on a larger scale,

including nutrient availability, soil moisture and texture, and insolation [13].
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The spatial processes, despite their known importance, were long ignored in ecological

studies, and until the 1990s, the main focus of ecology was the study of niche-related processes

[15]. Since then, spatial processes have been strongly embedded in ecology [16] and new meth-

ods and analytical strategies have been proposed, generating a new body of knowledge about

the structuring factors of communities [17–19]. This knowledge, along with other information

(functional, phylogenetic, etc.), has provided a much more detailed understanding of the pro-

cesses involved in community structure [20–22], supporting the search for better conservation

and biodiversity monitoring strategies [23]. Understanding the role of spatial component in

the community structure at different landscape scales is essential, especially given the current

scenario of rapid biodiversity loss due to habitat degradation and fragmentation [24].

Metacommunity can be defined by groups of communities that are connected to each other

by the movements of individuals of different species [25,26]. This approach recognises that

communities are not isolated entities. The metacommunity theory has benefited from discus-

sions regarding niche and neutral theories, and both have helped to understand the effects of

environmental and spatial variables on the diversity of species in communities [25,26].

According to the theory, the group of species occurring in a community is determined both by

a combination of local factors (interactions among species and interactions of species with

local environmental factors) and by the ability of the species to reach that community (by dis-

persion) [25,27]. In metacommunities structured by the principles of niche theory, it is

expected that the environmental component plays a more important role. In contrast, in meta-

communities subject to the principles of neutral theory, it is expected that the spatial compo-

nent plays a more important role. The metacommunity theory encompasses four main models

(species sorting, mass effect, patch dynamics and neutral models), which represent points

along a continuum formed by different combinations of environmental and dispersal processes

in different ecological scenarios [25,26,28,29].

A remarkable feature of most communities is the presence of a few common species and

many rare species [30,31]. Rare and common species can respond differently to ecological pro-

cesses [32], depending on the features of the organisms (e.g., competition and dispersion

capacities) and the spatial temporal dynamics. For example, based on the niche theory, Toke-

shi [15] proposed the composite niche model, arguing that more than one process may be act-

ing on the community. According to this model, common species should fit any model of

niche apportionment, while rare species should fit a random assortment model. On the other

hand, Siqueira et al. [31] studied metacommunities of aquatic macroinvertebrates and showed

that common and rare species responded similarly and that both were mainly structured by

niche processes.

The analysis of common and rare species allows the testing of some hypotheses about the

processes involved in the structuring of metacommunities [31,33]. Empirical studies have

shown that most metacommunities are structured principally by niche processes [28,31]. Our

first hypothesis is that niche processes are more important for structuring the metacommunity

studied [31], at least for the common species, which we expect to be most affected by competi-

tion [34]. In the case of rare species, we expect spatial variables to be more relevant, as these

species can be more affected by ecological drift [34]. On the other hand, taking into account

that habitat generalist and habitat specialist species differ in terms of population dynamics, we

also propose an alternative hypothesis [31,35]. While generalist species occupy habitats with

broad environmental variation, specialist species preferentially occupy habitats with specific

environmental characteristics, which are generally rare in the landscape [35,36]. In this con-

text, assuming that common species are habitat generalists and rare species are habitat special-

ists, our alternative hypothesis is that spatial component is more important for common

species, while environmental component is crucial for rare species [35].

Drivers of metacommunity structure
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To test these hypotheses and to identify the role of environmental (topographic) and spatial

variables for common and rare species, we analysed the flora of 46 forest inventory plots in the

old growth forests of the eastern Amazon region. These analyses were based on vegetation data

collected in the field and topographic variables obtained by remote sensing data.

Material and methods

Study area

This study was conducted in the Tapajós National Forest (TNF). The TNF is a large protected

area of approximately 545,000 ha, located in Amazon biome, western part of Pará State, Brazil

(Fig 1). This area has an average annual temperature of 25.5˚C and average annual rainfall of

1,820 mm. The local topography ranges from flat to strongly undulating terrain. Predominant

soil types in the area are dystrophic oxisol (US classification) or dystrophic yellow latosol (Bra-

zil classification) and red-yellow podzol. Vegetation is mainly ombrophilous dense forest and

ombrophilous open forest [37].

We sampled 46 forest inventory plots (Fig 1) of 25 x 100 m in the TNF. Our plots repre-

sented a sampling area of 11.5 ha. We installed the plots in different vegetal typologies and

topographies [12] using the phyto-ecologic classes from the RADAM-BRASIL project [38].

Our plots encompassed different floristic and geomorphological characteristics [38]. We sam-

pled and identified all individual trees with diameter at breast height (DBH)� 10 cm. The

abundance can be represented by the number of individuals and by biomass. To differentiate

these two attributes throughout the text, hereafter, we use “abundance” to refer to the number

of individuals and “biomass” to refer to above ground biomass. The biomass was calculated by

the allometric equation [39], using the measurements of DBH and TH (total height).

Biomass ¼ 0:044 � ððDBH2Þ � THÞ0:9719

Topographic data derived from SRTM

We used geomorphometric attributes (elevation, slope, profile curvature and plane curvature)

from the Brazilian Geomorphometrics Database (TOPODATA) [40]. TOPODATA is based

on the SRTM (Shuttle Radar Topography Mission-version 1, NASA, 2006) and has different

neighbourhood operations to calculate geomorphometric variables [40]. TOPODATA is free,

and the layers are easily accessible (http://www.dsr.inpe.br/topodata/acesso.php). We also

used the vertical distance to the nearest drainage or HAND (height above the nearest drain-

age). HAND was derived from the SRTM and describes the vertical distance of each point

regarding the nearest drainage channel detected by remote sensing [41]. All data used in this

study have a spatial resolution of 30 m (Table 1).

Topographic variables obtained on the basis of the SRTM have been used to explain or pre-

dict the properties of vegetation [42,43]. These studies have helped in the understanding of the

effects of topography on the distribution of different types of vegetation [44–48], floristic com-

position [12,49] and forest structure [14,50], particularly in tropical areas.

Data analysis

We defined common and rare species using the criterion of the inflection point of the curve of

species abundance (or species biomass) [31]. We defined the inflection point visually; species

left of this point were considered as common and species to the right as rare [31]. As matrices

with different amounts of information can affect the results, we made comparisons

Drivers of metacommunity structure
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considering the same information content. First, the information content of the matrices of

common and rare species was calculated based on the binomial variance of the incidence

matrix, ∑pi(1-pi), where pi is the proportion of plots occupied by ith species [31,51]. As the

matrix of rare species had a higher information content, we removed rare species, following

species rank, until this matrix had the same information content as that of common species.

After defining common and rare species with the same information content, we performed

data analyses considering univariate and multivariate community attributes. The univariate

attributes were standardised richness (residuals of regression between abundance and rich-

ness), total abundance (sum of the abundance of the species per plot) and total biomass (total

biomass of the species per plot). The multivariate attributes (species x plots) were represented

by three different matrices of composition (1. composition based on incidence or presence-

absence; 2. composition based on abundance; and 3. composition based on biomass).

The richness of species is usually positively correlated with abundance. As abundance can

explain part of the variation in richness, without due caution, we can erroneously conclude

Fig 1. Study area in the Tapajós National Forest (TNF), Pará State, Brazil, with details of the five geomorphometric variables (elevation,

slope, HAND, profile curvature and plan curvature) of the four areas where the 46 plots were distributed.

https://doi.org/10.1371/journal.pone.0188300.g001
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that similar factors are important in explaining both community attributes. Disentangling

richness from abundance is necessary to understand the real effect of topography on richness

(free of abundance). For this reason, we used the residuals of the regression between abun-

dance and richness as a standardised measure of richness (standardised richness). In this case,

the residuals indicate the part of the variation in richness that cannot be explained by abun-

dance, in other words, richness free of abundance.

In general, the community matrix (species x plots) based on abundance has many zeros,

which is a problem for multivariate analysis based on Euclidian distances, such as Principal

Component Analysis (PCA) and Redundancy Analysis (RDA). A strategy to minimise this

problem is using the Hellinger transformation [52]. In the case of composition based on abun-

dance, prior to the analyses, we transformed the data matrix using the Hellinger method [53].

For the analyses, we used a multiple partial regression to partition the specific effects of the

topographic and spatial variables on the univariate response variables (standardised richness,

abundance and total biomass), and we used partial RDA to partition these effects on the multi-

variate response matrices represented by incidence, abundance and biomass [17,54,55]. The

RDA is a direct gradient analysis based on multiple regression that addresses the variation in a

multivariate response matrix (in our case, composition based on incidence, abundance and

biomass) and one or more matrices of explanatory variables (in our case, topographic and spa-

tial variables) [55].

Spatial variables were obtained using the PCNM (Principal Coordinates of Neighbourhood

Matrix) method [55]. The PCNM is based on Principal Coordinate Analysis obtained from a

geographic distance matrix. The eigenvectors (axes) obtained from this analysis are called

PCNMs, are uncorrelated and represent different spatial patterns, from coarse (axes with

higher eigenvalues) to more refined (axes with smaller eigenvalues) [55,56]. In this paper, we

extracted the spatial variables (PCNMs) from a Euclidean distance matrix between plots,

which were represented by eigenvectors with positive eigenvalues and with spatial autocorrela-

tion according to Moran’s I index [57]. For the analyses, we selected variables using the for-

ward selection method to evaluate only the environmental and spatial variables that were more

related to the studied metacommunity.

Table 1. Definitions of the topographic variables used in this study.

Topographic variables Description

Elevation (h) Terrain altitude. This is related to the altitude distribution of soil and

climate, determining different landscape vegetation patterns.

Slope (G) Inclination angle of the local surface. This has a direct effect on the

balance between soil water infiltration and surface runoff and controls the

intensity of flows of matter and insolation. This set of factors results in

environments with different physical and biological characteristics,

allowing the establishment of different types of vegetation.

Profile curvature (kv) Concave/convex character of the terrain. This characterizes the land

surface, which is directly associated with hydrological and transport

properties and may directly influence the distribution and development of

vegetation.

Plan curvature (kh) Divergent/convergent character of flows of matter on the ground when

analysed on a horizontal projection. As with the profile curvature, the plan

curvature characterises the land surface, which is directly associated

with hydrological and transport properties and may indirectly influence

vegetation.

Height above the nearest

drainage (HAND)

Describes the vertical distance of each point regarding the nearest

drainage channel. It can reveal the local water table conditions (the lower

the HAND value, the closer the water table is of the surface).

https://doi.org/10.1371/journal.pone.0188300.t001
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We assessed the following fractions: the environmental (topography) component indepen-

dent of the space (a), environmental component inseparable of the spatial component (b), spa-

tial component independent of the environment (c) and component not explained (d). As the

coefficient of determination (R2) is influenced by the sample size and number of predictor var-

iables, we used the adjusted R2 to determine the importance of each assessed fraction [58]. We

performed the analyses in the computing environment R version 2.13 [59], associated with the

PCNM package [60] for obtaining the spatial variables, Packfor [61] for variable selection and

Vegan [62] for multiple regression and RDA.

Results

The results revealed that when considering the inflection points of the abundance curves, 22

species were considered common, and 208 species were considered rare (Fig 2a). The 93 rarest

species had the same information content as the 22 most common species. When the inflection

of the curves of species biomass was considered, 35 species were considered common, and 195

were considered rare (Fig 2b). In this case, the 94 rarest species had the same information con-

tent as the 35 most common species.

Standardised richness, abundance and total biomass

Total standardised richness (without the abundance effect) and standardised richness of rare

species could not be explained by any of the measured variables (topographic or spatial vari-

ables) (Table 2). Nevertheless, the standardised richness of common species was explained sig-

nificantly by topography (Table 2). The total abundance was explained significantly by spatial

variables (Table 2). Moreover, the abundance of common species was explained by both topo-

graphic and spatial variables, whereas rare species were explained just by the spatial variables

(Table 2). The topography explains significantly the total tree biomass for all and for common

species (Table 2). The total biomass of rare species could not be explained by any of the mea-

sured variables (Table 2).

Composition (incidence, abundance and biomass)

Our data reveal that topographic and spatial variables explained significant proportions of the

variability when the analysis was based on an incidence matrix and on an abundance matrix,

both for total and common species (Table 2). In these cases, the fraction explained by spatial

variables was larger than the fraction explained by environmental variables (Table 2). Topo-

graphic and spatial variables did not explain the variation of rare species. When the analysis

was based on biomass, the variability was explained significantly by topographic (larger frac-

tion) and spatial variables (smaller fraction) for total species, but by only topography for com-

mon species and by no factor for rare species (Table 2).

Discussion

Our results show that different attributes (richness, abundance, biomass and composition

based on incidence, abundance and biomass) used to study this metacommunity respond dif-

ferently to environmental and spatial processes. Common and rare species differ in terms of

biological traits [63–65] and how they relate to environmental and spatial components

[35,36,66]. Thus, our expectation was that the role of environmental and spatial variables dif-

fered between common and rare species. This expectation is confirmed by our study, suggest-

ing that common and rare species are subject to different processes.

Drivers of metacommunity structure
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Fig 2. Rank of abundance (a) and rank of biomass (b) of Amazonian tree species of a metacommunity

in the Tapajós National Forest, Pará State, Brazil. * indicates the rare species with the same information

content as common species.

https://doi.org/10.1371/journal.pone.0188300.g002
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The communities are composed of few common species and many rare species. Due to the

greater number of individuals, common species interact strongly with the various components

of the system. Therefore, a common question is whether the common species are sufficient to

describe the attributes (e.g., richness, abundance and composition) of the whole community

[51,66,67]. If this is the case, studies on communities could focus on common species, which

are more easily sampled. Several studies have shown that the conclusions found for all species

are equivalent to those found using only common species [66–68]. Our study only partially

confirms this expectation and it adds complexity to the picture by showing that this depends

on the analysed attribute. For example, for standardised richness, total abundance (univariate)

and composition based on biomass, the results for common species differ from those obtained

Table 2. Results of the partial multiple regression and partial RDA with the coefficient of determination (R2) for whole community (total), common

and rare species. Topography refers to the effects of geomorphometric variables without spatial component, shared refers to the effects of common variation

between topographic and spatial components, and space refers to the spatial effects without topography. Common and rare species have the same informa-

tion content and were delimited based on the inflection point of the species x abundance curve (in the case of abundance) or species x biomass curve (in the

case of biomass).

Topography (%) Shared (%) Space (%) Not explained (%)

Std. Richness

Total - - - 100.00

Common (1–22) 10.4* - - 89.6

Rare (137–230) - - - 100.00

Abundance

Total - - 25.9** 74.1

Common (1–22) 11.4** - 10.3** 78.3

Rare (137–230) - - 26.3** 73.7

Biomass

Total 27.4*** 15.1 - 57.5

Common (1–35) 14.2** 12.5 - 73.3

Rare (136–230) - - - 100.00

C. Incidence

Total 2.8*** 1.8 6.6*** 88.8

Common (1–22) 2.7** 2.7 5.4*** 89.2

Rare (137–230) - 0.9 0.3ns 98.8

C. Abundance

Total 6.2*** 0.4 10.4*** 83.0

Common (1–22) 5.1** 2.7 10.6*** 81.6

Rare (137–230) 0.1ns 0.8 0.4ns 98.7

C. Biomass

Total 3.1** 3.2 1.6* 92.1

Common (1–35) 4.0** 4.2 1.9ns 89.9

Rare (136–230) - - - 100.00

Numbers in parentheses refer to the rank position of the species. Univariate attributes: 1) std. richness (standardised richness, residuals of regression

between abundance and richness); 2) abundance (sum of the abundance of the species per plot); and biomass (sum of biomass of the species per plot).

Multivariate attributes (species x plots): 1) C. Incidence (composition based on incidence); C. Abundance (composition based on abundance); and C.

Biomass (composition based on biomass).

*p < 0.05.

**p < 0.01.

***p < 0.001.

ns non-significant.

https://doi.org/10.1371/journal.pone.0188300.t002
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for all species. For total biomass (univariate) and compositions based on incidence and abun-

dance, there is a correspondence between the results obtained for the total community and

common species. Our data suggest that for these last attributes, it is possible to draw appropri-

ate conclusions for an entire community based on only common species.

The results to standardised richness are in disagreement with other studies which have

shown that the richness patterns (total community) can be predicted by the richness of com-

mon species [12,69]. In our study, topography only explained the variability of the richness of

common species, and neither topographic nor spatial variables explained the variability of the

richness of the total community or of rare species. According to Lennon et al. [66], the richness

of common species can be more easily explained by simple environmental gradients when

compared to the richness of rare species. As the richness of rare species can be associated with

rare environments [36,66], it is harder to predict it. Thus, the absence of the effect of the envi-

ronment on the richness of rare species may be due to no inclusion of important but difficult

to measure environmental variables, which must be associated with uncommon niches [36].

In this context, part of the variation of the standardised richness of common species can be

predicted by the environmental gradient (in our case, topography), which does not occur with

rare species.

Total abundance (univariate) and biomass (univariate) were explained by different pro-

cesses when the total community, common species and rare species were considered. For total

abundance, in all combinations (total community, common and rare species), spatial variables

explained part of the variability. These results show that spatial processes determine a part of

the total abundance variation, suggesting that the effects of mass are relevant when abundance

is considered. For common species, in addition to spatial processes, the environmental vari-

ables were also important. In the case of the total biomass of the entire community and of the

common species, only environmental variables were relevant. The topography influences

other extremely important variables, such as soil texture and the availability of nutrients and

water [11,70,71], and this may explain the results found for biomass. Our observations may

have practical consequences. For example, we have sought ways to predict and monitor bio-

mass at larger scales, and the relationship with topography can help since it influences other

extremely important variables to the vegetation structure. Therefore, topography can be a sur-

rogate of several variables that are difficult to measure in building predictive models that facili-

tate the monitoring of biomass and carbon stocks in tropical forests.

The data presented here show that the ecological processes underlying composition differ

between common and rare species, in agreement with the results of Tsang and Bonebrake

[68], who studied the composition of butterflies. On the other hand, this result disagrees with

other data for different organisms (e.g., aquatic macroinvertebrates [31,67] and macrophytes

[33]), which show that common and rare species are governed by the same processes, in these

cases, by processes related to the niche. Specifically for vegetation, Wang et al. [72], who stud-

ied the effects of topography on the species composition of a subtropical forest, also verified

that environmental variables are important determinants of the variation of the composition

of common and rare species. However, this relation was much weaker for rare species. Our ini-

tial hypothesis was that the composition of rare species could be explained by the environmen-

tal and/or by spatial variables. Our results refuted this hypothesis since none of the

components (environmental or spatial) explained the variation of the composition of rare spe-

cies. This result may be a reflection of stochastic factors and of the non-inclusion of specific

variables important for rare species.

Our initial expectations to the composition (based on incidence, abundance and biomass)

were that the niche-related processes were the most relevant to explain data variability and

that the studied metacommunity would follow the species sorting (SS) model [28]. The results
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showed that both environmental and spatial variables were relevant to explain variability for

both total and common species (except for biomass of common species, which was explained

by only environmental processes). These results suggest that on the scale studied, the data fit

the species sorting (SS) + mass effect (ME) models. The SS and SS + ME models have been the

most frequently adjusted models for empirical data. For example, Cottenie [28] studied 158

metacommunities and found that 44% of them fit the SS model and that 29% the SS + ME

model. These patterns (SS or SS + ME) have been confirmed by most studies since Cottenie

[28]. It is important to note in our study that in the case of composition based on incidence

and abundance, the spatial component was more important than environmental component.

In this context, several studies have shown that spatial variables explain a relevant part of the

variability in both tropical and temperate forests [73,74]. However, the inclusion of other

important environmental variables could increase the percentage explained by the environ-

ment and reduce the importance of spatial variables, whose effects may be a reflection of mass

effects and dispersion difficulties, as well as responses to spatially structured but not measured

environmental variables [25].

The result that the compositions based on incidence and abundance were explained more

by spatial variables than by environmental variables is in agreement with a study carried out in

the Bolivian Amazon Forest [75]. Myers et al. [75], who studied two forests in different lati-

tudes, found that beta diversity in a tropical forest was explained predominantly by spatial var-

iables, while beta diversity in a temperate forest was mostly explained by environmental

variables. These authors suggest that in megadiverse systems with many rare species, such as

tropical forests, intraspecific aggregation is more related to the limitation of the dispersion;

while in temperate forests with fewer species, intraspecific aggregation is more related to envi-

ronmental filters. Therefore, intraspecific aggregation, which generates beta diversity, is influ-

enced by different processes in rich and poor metacommunities [75]. We also suggest other

explanation, as forests in different latitudes may differ in complexity, a possible result is that

the same set of environmental variables explain a smaller fraction of beta diversity in tropical

forests (more complex system) than in temperate forests (less complex system). Therefore, a

greater proportion of important unmeasured environmental variables in more complex forests

could also increase the fraction explained by spatial variables in tropical forests. In this context,

we suggest that in tropical forests, the spatial component tends to be larger than the environ-

mental component, at least when compositions are based on incidence and abundance. In the

case of composition based on biomass, the fraction explained by the environment is greater

than the fraction explained by spatial variables.

In this study, we found that much of the variability was not explained by the environmental

(represented by the topography) or by spatial variables. This is a relatively common result in

studies of metacommunities [17,19]. Two main factors can help explain this result: 1) there are

many environmental variables in tropical forests that affect the biota, and often only one por-

tion of them (in our case, topographic variables) is measured; 2) tropical forests have a large

number of biotic interactions, which despite having the potential to affect the community, are

impossible to measure to capture their complexity. De Caceres at al. [73], who studied tropical,

subtropical and temperate forests, found that the unexplained fraction was negatively corre-

lated with latitude. The proportion of unexplained variability is probably due to stochastic and

unmeasured variables. Baldeck et al. [18] showed that in addition to topography, the inclusion

of variables such as nutrients can improve a model’s explanatory power. Although the topogra-

phy is a good substitute for other variables that are difficult to measure, the inclusion of addi-

tional relevant variables should decrease the proportion of unexplained variability in the

model.
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This study revealed that for total biomass (univariate) and for compositions based on inci-

dence and abundance, there was a correspondence between the results obtained for the total

community and for common species. The possibility of monitoring the variability of the tropi-

cal forests based on only common species is highly relevant, especially given the current high

deforestation rates. The variation of the measured community attributes of common species

was explained by topographic and/or spatial variables. None of the components explained the

measured community attributes (except for the total abundance) of rare species. These results

indicate that predicting the attributes of rare species tree communities from environmental

and spatial variables is a considerable challenge. In summary, our data show that in general,

depending on the attribute, environmental and/or spatial variables are important to explain

the variability in tree metacommunities. However, there are still doubts regarding whether the

spatial component and large fractions of unexplained variability in forest metacommunities

are due to insufficient data or are a feature of these systems [18,74]. In this study, the spatial

component was important for several community attributes demonstrating the importance of

a metacommunity approach when attempting to understand the main ecological processes

underlying the diversity of tropical forest communities.

Authorization for the field work

The study was carried out in the Tapajós National Forest (TNF) and dendrometric measure-

ments (diameter at breast height and height) as well as botanical identification of the trees

were done, just inside of this area. The authorization to carry out the field work at TNF was

provided by the Instituto Chico Mendes de Conservação da Biodiversidade-ICMBio/MMA

(SISBIO n. 20591–1). This study did not involve endangered or protected species and no bio-

logical samples were taken.
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