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Abstract. The strong El Ni~no Southern Oscillation (ENSO) event that occurred in 2015–
2016 caused extreme drought in the northern Brazilian Amazon, especially in the state of
Roraima, increasing fire occurrence. Here we map the extent of precipitation and fire anoma-
lies and quantify the effects of climatic and anthropogenic drivers on fire occurrence during
the 2015–2016 dry season (from December 2015 to March 2016) in the state of Roraima. To
achieve these objectives we first estimated the spatial pattern of precipitation anomalies, based
on long-term data from the TRMM (Tropical Rainfall Measuring Mission), and the fire anom-
aly, based on MODIS (Moderate Resolution Imaging Spectroradiometer) active fire detections
during the referred period. Then, we integrated climatic and anthropogenic drivers in a Maxi-
mum Entropy (MaxEnt) model to quantify fire probability, assessing (1) the model accuracy
during the 2015–2016 and the 2016–2017 dry seasons; (2) the relative importance of each pre-
dictor variable on the model predictive performance; and (3) the response curves, showing how
each environmental variable affects the fire probability. Approximately 59% (132,900 km2) of
the study area was exposed to precipitation anomalies ≤�1 standard deviation (SD) in January
and ~48% (~106,800 km2) in March. About 38% (86,200 km2) of the study area experienced
fire anomalies ≥1 SD in at least one month between December 2015 and March 2016. The dis-
tance to roads and the direct ENSO effect on fire occurrence were the two most influential
variables on model predictive performance. Despite the improvement of governmental actions
of fire prevention and firefighting in Roraima since the last intense ENSO event (1997–1998),
we show that fire still gets out of control in the state during extreme drought events. Our results
indicate that if no prevention actions are undertaken, future road network expansion and a cli-
mate-induced increase in water stress will amplify fire occurrence in the northern Amazon,
even in its humid dense forests. As an additional outcome of our analysis, we conclude that the
model and the data we used may help to guide on-the-ground fire-prevention actions and fire-
fighting planning and therefore minimize fire-related ecosystems degradation, economic losses
and carbon emissions in Roraima.
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INTRODUCTION

Fire has long been used for land management and
other subsistence activities by indigenous populations,
influencing soil characteristics, vegetation composition,
and the dynamics of Amazonian forests since pre-Colum-
bian times (Bush et al. 2008, Schwartzman et al. 2013).
In the state of Roraima, located in the northernmost part
of the Brazilian Amazon (Fig. 1), integrated pollen and

sedimentological records suggest that, despite the moist
conditions in the last 1,050 yr (Meneses et al. 2013),
human-ignited fire has markedly influenced the bound-
aries between forest and savanna areas, killing pioneer
forest species invading savanna areas and hence hamper-
ing forest expansion (Meneses et al. 2015). Conversely, an
expansion of forests was reported in certain areas of the
state after 200 cal yr BP, allegedly because of the decline
and displacement of indigenous populations after the
arrival of European settlers and consequent reduction in
fire occurrence (Meneses et al. 2013, 2015). On the other
hand, the analysis of charcoal concentrations of surface
sediments in the forest–savanna transition of this region
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indicated that forest cover acted as an effective buffer dur-
ing the last millennium, blocking fire entrance into
forested ecosystems (Meneses et al. 2015). As in other
parts of Amazonia, forest fires were probably a rare event
in Roraima before the 20th century (Schroeder et al.
2013).
The synergy between intense drought events and

modern human activities may be causing new changes in
the landscape dynamics and in the carbon emissions from
this region (Barbosa and Fearnside 1999, Bush et al.
2008, Barni et al. 2015b). In the 1997–1998 El Ni~no
event, approximately 11,000 to 14,000 km2 of forests were
burned in the state of Roraima, an area equivalent to 7.4–
9.0% of its forest cover and over twice as large as the total
deforested area in the state up to 1997 (Barbosa and

Fearnside 1999). Elvidge et al. (2001) estimated a 20-fold
increase in the area of heavily burned forest in 1997–1998
(9,038 km2) compared to 1995, a typical year in terms of
precipitation, when only 425 km2 of forests were burned.
In 2003, a moderate El Ni~no event was also associated
with an increase of forest fires in the state. A rough esti-
mate from Barbosa et al. (2004) suggested that 85 km2 of
primary forests were affected per day by fire between
February and March 2003 in Roraima.
During the strong 2015–2016 El Ni~no Southern Oscil-

lation (ENSO) event, record-breaking warming and
extreme drought were observed in the northern Brazilian
Amazon, especially in the state of Roraima (Jim�enez-
Mu~noz et al. 2016). The Multivariate ENSO Index
(MEI) values during December 2015–January 2016 and
January–February 2016 were among the three highest
values since 1950, being only slightly lower than 1997–
1998 and 1982–1983 values (data available online).8 The
occurrence of fire in the state of Roraima reached a peak
in January 2016, when the number of active fires
detected by satellite sensors was over six times the mean
number for that month and the highest for any month
since September 1998, when this data became available
(INPE 2016). However, an in-depth analysis of the mag-
nitude and spatial pattern of precipitation and fire
anomalies in Roraima during the 2015–2016 event has
not been performed yet.
The positive feedbacks between intense drought events,

land use, and fire have been widely addressed in the litera-
ture (e.g., Nepstad et al. 2001, Davidson et al. 2012,
Anderson et al. 2015). In the state of Roraima, the con-
struction of two major roads (BR-174 and BR-210) at the
end of the 1970s fostered the region’s occupation,
enabling the establishment of rural settlements in previ-
ously isolated areas (Diniz and Santos 2005). Addition-
ally, governmental programs provided incentives for
population immigration, in an attempt to both occupy
the region and to reduce conflicts related to land tenure
in the Brazilian Northeast and Southeast regions (Bar-
bosa 1993). Due to fire being the main practice used in
the Brazilian Amazon to clear land during the deforesta-
tion process, to remove secondary vegetation and to
renew pastures, the expansion of occupation frontiers
widely increased ignition sources across the state. Fur-
thermore, secondary vegetation growing in previously
deforested areas is highly prone to accidental fires given
its short and opened canopy (Ray et al. 2005), mostly in
its early regeneration stages and in dry years (Guti�errez-
V�elez et al. 2014). Barni et al. (2015b) estimated that
3.06 9 103 km2 has been deforested and 3.02 9 103 km2

of forests have burned between 2000 and 2010 in
Roraima. These authors found that 98.5% of the forest
area affected by fire was burned in years with El Ni~no
events. The detrimental effects of fires on forest structure,
biomass, and floristic composition in Roraimawere docu-
mented by Martins et al. (2012) and Xaud et al. (2013).
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FIG. 1. Roraima state map showing the road network, rural
settlements, native vegetation cover, and deforestation/sec-
ondary vegetation (total area deforested until 2014 with or
without secondary vegetation growing over it; see the Study
area and Data sets sections for cartographic data sources).
Curved black lines indicate the K€oppen climate classification:
Af, equatorial climate; Am, monsoonal climate and Aw tropi-
cal savanna climate. Ombroph., Ombrophilous. [Color figure
can be viewed at wileyonlinelibrary.com]

8 http://www.esrl.noaa.gov/psd/enso/mei/table.html
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The current availability of remote sensing data offers
the opportunity to integrate updated information from
multiple sources to model fire occurrence over extensive
and remote areas of the Amazon. For the Brazilian Ama-
zon, spatially explicit annual deforestation and supra-
annual land-use data derived from remote sensing are
produced and publicly shared by governmental programs.
These data can be used together with maps of other
anthropogenic variables (such as roads and rural settle-
ments) and satellite-based precipitation data to investi-
gate the influence of such drivers on fire occurrence.
Satellite-derived data is also a valuable source of near-

real-time information on active fires, especially in the
remote and vast areas of the Amazon ecosystems. From
a fire modeling perspective, although satellite-based
active fire detections indicate the locations that are being
burned at the time of the detection, it is not possible to
determine whether other areas were also suitable to burn
at that time but did not due to the lack of an ignition
source. Furthermore, omission errors may occur when
using passive remote sensing due to thick cloud cover,
frequent in this region (Schroeder et al. 2008), when the
fire started and ended between the satellite passages or
when it was not hot enough to be detected by the ther-
mal sensors onboard the satellite. Therefore, as the
absence of fire suitability cannot be accurately mapped
using satellite-based fire detections, it is appropriate to
use an approach that rely only on presence data to model
fire suitability (Peters et al. 2013).
The Maximum Entropy method (MaxEnt) was intro-

duced in ecological studies based on presence-only data
by Phillips et al. (2004, 2006) and was successfully
applied to model fire occurrence in the Brazilian Ama-
zon (Fonseca et al. 2016) and elsewhere (Parisien and
Moritz 2009, Moritz et al. 2012, Parisien et al. 2012,
Renard et al. 2012, Bar Massada et al. 2013, Paritsis
et al. 2013, Peters et al. 2013, Arnold et al. 2014). This
model allows for an integration of climatic and anthro-
pogenic variables and may be useful for understanding
the relative importance of these variables and for sup-
porting planning and decision making in firefighting
and fire prevention (Fonseca et al. 2016).
Although MaxEnt’s accuracy and the relative contri-

bution of variables for fire prediction was already esti-
mated for the Brazilian Amazon by Fonseca et al.
(2016), a gap in the knowledge concerning fire modeling
in the state of Roraima still remains given that: (1) the
previous model was tested for the period between June
and November, when the dry season in most of the
Brazilian Amazon occurs. However, as most of Rorai-
ma’s territory is located in the Northern Hemisphere,
the peak of fire in the state occurs between December
and March, and was not covered, therefore, by the previ-
ous study; (2) the previous model was calibrated for
2010, when the drought was associated with the warming
of the tropical Atlantic Ocean, with effects mostly in the
western and southern regions of the Amazon (Fernandes
et al. 2011, Lewis et al. 2011) but not in the Northern

Amazon, where Roraima is located; (3) the previous
model did not include non-forest vegetation areas, which
represent a significant proportion of the Roraima state;
and (4) the relative importance of predictor variables
may vary among spatial scales (e.g., Parisien and Moritz
2009, Renard et al. 2012). Understanding this variation
may provide important insights into fire occurrence.
Here we map the extent of precipitation and fire

anomalies during the extreme 2015–2016 ENSO and
quantify the effects of climatic and anthropogenic drivers
on fire occurrence in the state of Roraima. We also test
the accuracy of the fire-probability model during the
2015–2016 and 2016–2017 fire seasons (from December
to March) aiming to support future planning and deci-
sion-making in firefighting and fire prevention in Ror-
aima. In order to achieve these objectives, we first
estimate and compare the spatial pattern of the anomaly
of precipitation based on data from the Tropical Rainfall
Measuring Mission (TRMM), and the anomaly of fire
occurrence, based on the active fires detection (hereafter
hot pixels) data of the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor aboard the AQUA
satellite in the 2015–2016 fire season. Then, we integrate
climatic and anthropogenic drivers in a model of fire
probability in Roraima using the MaxEnt to quantify (1)
the model accuracy, (2) the relative importance of each
predictor variable on the overall model predictive perfor-
mance, and (3) the response curves, showing how each
environmental variable affects the model prediction. The
present model was built in a finer spatial scale (0.1°) com-
pared to the Fonseca et al. (2016) study (0.25°), which
improves its ability to support planning and decision-
making in firefighting and fire prevention in Roraima.

METHODS

Study area

The state of Roraima is located in the northern Brazil-
ian Amazon, sharing borders with Venezuela in the
northwest, Guyana in the northeast, and the Brazilian
states of Par�a and Amazonas in the south (Fig. 1).
Roraima’s territory extends over ~ 224,300 km2, an
area approximately the size of the United Kingdom
(~242,000 km2). Annual precipitation increases from the
northeast (1,100–1,400 mm/yr), where a large mosaic of
savanna ecosystems occur, to the lowland dense
forests in the southernmost part of the state (2,000–
2,300 mm/yr; Barbosa 1997). In the south, there is small
month-to-month precipitation variation and the climate
is classified as equatorial (Af) following the K€oppen sys-
tem. The northeast, under a tropical savanna climate
(Aw), experiences a well-defined dry season, with
approximately 10% of the annual rainfall and high inci-
dence of solar radiation (between 160 and 200 h of inso-
lation/month) between December and March (Barbosa
1997). In the transition zone, with a monsoonal climate
(Am), a dry season occurs in the same months, although
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less extreme than in the region under the Aw climate.
Besides the dense ombrophilous forests (i.e., forest
occurring under high precipitation and between 0 and
60 d without rainfall), there are patches of open ombro-
philous and seasonal forests, and in the central-southern
portion of the state, sandy soils give rise to the Camp-
inarana vegetation, which encompass a distinct mosaic
of vegetation physiognomies ranging from grasslands to
forests (IBGE 2012). Fire occurrence shows a marked
seasonality in the state. From 1999 to 2015, the period
between December and March experienced between
52% and 91% of the total annual hot pixels, except for
2009, when ~40% of the annual hot pixels were detected
during this period (data available online).9

Data sets

To estimate the anomaly of fire occurrence in the 2015–
2016 fire season we used the afternoon detections of hot
pixel data detected from the MODIS sensor onboard the
AQUA satellite, published online by the Fire Monitoring
Project from the Centre for Weather Forecast and Cli-
mate Studies (CPTEC) of Brazil’s National Institute for
Space Research (INPE) (see footnote 9). Hot pixels con-
sist of the signal detection of the radiance of fire flames,
whose emission peak is situated in the middle infrared
region. MODIS spatial resolution is 1 km, daily temporal
resolution. A flaming fire front of at least 30 m 9 1 m of
extension or larger are detected by MODIS sensor10.
Smaller or short-lived fires (occurring between satellite
passages) or the ones occurring under dense vegetation
cover, on cloudy days, or on the mountain face opposite
to the satellite position may not be detected. No informa-
tion on the burned area is provided with the hot pixels’
data.
As the number of satellites and the quality of some of

their data vary along time, for temporal analysis such as
fire anomalies, it is important to use hot pixels from only
one satellite that present consistent data collection dur-
ing the analyzed period. However, for the fire modeling
calibration, which requires only one month of data, we
used hot pixels detected by all satellites available at the
INPE Fire Monitoring Project’s website (see footnote 9)
in order to avoid underestimation of fire occurrence,
namely the National Oceanic and Atmospheric Admin-
istration (NOAA) family of satellites, the satellites 8, 10,
12, and 13 of the Geostationary Operational Environ-
mental Satellite Program (GOES), AQUA, TERRA,
Meteosat-2, Suomi National Polar-orbiting Partnership
satellite (NPP), and the Along Track Scanning
Radiometer (ATSR).
MEI values, which combine six observed variables

over the tropical Pacific (sea-level pressure, zonal
and meridional components of the surface wind, sea sur-
face temperature, surface air temperature, and total

cloudiness fraction of the sky) were obtained and used
to estimate the effect of ENSO on fire occurrence (data
available online).
In order to estimate long-term precipitation anoma-

lies, we used the TRMM 3B43 7A product, which has
0.25° of spatial resolution, from January 1998 until
March 2016 (available online).11 Although the precipita-
tion radar of the TRMM satellite stopped collecting
data on October 2014, the continuity of the 3B43
product was accomplished by an adaptation of the cli-
matological calibrations/adjustments scheme of the
real-time version of TMPA (TRMM Multi satellite pre-
cipitation analysis), with minimal impact on the esti-
mates over land due to the continued inclusion of gauge
analysis (Bolvin and Huffman 2015).
Since 2015, the Global Precipitation Measurement

(GPM) Mission has been publicly providing near-real-
time estimates of precipitation through the Integrated
Multi-satellite Retrievals for GPM (IMERG) data pro-
duct12. Therefore, for the fire modeling, we used the late-
run near-real-time IMERG product, since this data is
produced with approximately 16 h of latency and there-
fore is most suitable for future short-term fire modeling
purposes than either the post-real-time research IMERG
(which is made available approximately three months
after the observation month) or 3B43 products. IMERG
precipitation data with a spatial resolution of 0.1° were
obtained from NASA (data available online).13 As
images of precipitation accumulation up to 7 d are avail-
able in this data version, we added the accumulated
images in each month in order to estimate monthly pre-
cipitation. Estimates of IMERG accuracy are still scarce
and concerns mostly the post-real-time research product
(Huffman et al. 2015, Chen and Li 2016, Liu 2016, Pra-
kash et al. 2016, Sharifi et al. 2016). We therefore car-
ried out a preliminary assessment of the late-run near-
real-time IMERG product accuracy over the state of
Roraima using monthly rain gauge data from April 2015
until March 2016 from the only two weather stations
with updated data at the time of the analysis publicly
available for Roraima state, named Boa Vista (02°49012″
N 60°39036″ W) and Caracara�ı (01°49048″ N 61°07012″
W) (obtained from the Brazilian National Institute of
Meteorology; available online).14 The coefficients of
determination (r2) of the linear regressions between
monthly near-real-time late-run IMERG and rain gauge
data were 0.799 and 0.959 for the Boa Vista and
Caracara�ı stations, respectively, which suggests that the
IMERG data is suitable for our purposes.
The land-use related variables included in the

fire modeling were (1) recent deforestation, recorded
between August 2013 and July 2014 by the INPE’s

9 http://www.inpe.br/queimadas
10 http://www.inpe.br/queimadas/faq.php

11 http://mirador.gsfc.nasa.gov
12 http://pmm.nasa.gov/resources/documents/gpm-integrated-

multi-satellite-retrievals-gpm-imerg-algorithm-theoretical-basis-
13 https://pmm.nasa.gov/data-access/downloads/gpm
14 http://www.inmet.gov.br/projetos/rede/pesquisa/
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PRODES project (Amazon Deforestation Monitoring
Project, this data refers to clearing of old-growth forest
vegetation only; available online);15 (2) secondary vegeta-
tion map (vegetation growing in previously deforested
areas mapped by PRODES) produced by INPE’s TER-
RACLASS Program (Mapping land use and land cover
in the Brazilian Amazon Program, available online);16

(3) distance to the roads network (road network vector
file available online);17 and (4) rural settlements (INCRA
2015; file available online).18 Additionally, we used the
map of the area originally covered by non-forest vegeta-
tion, i.e., open vegetation types represented by savannas,
floodplain vegetation, and most of the Campinarana
cover, in the state from the TERRACLASS Program.
Unfortunately no data on the clearing of such vegetation
types is available.

Precipitation and fire anomalies

The pixel-by-pixel mean and standard deviation of
monthly precipitation were calculated for Roraima using
TRMM 3B43 data from 1998 until 2014, but excluding
the precipitation in 2005 and 2010, two years of intense
drought events in the Brazilian Amazon (Lewis et al.
2011, Marengo et al. 2011). The 2005 drought event was
considered one of the most severe in the previous 100 yr
(Marengo et al. 2008) and in 2010 another drought even
more spatially extensive struck the region (Lewis et al.
2011, Marengo et al. 2011). Therefore, the exclusion of
these two years from the 17-yr time series analyzed aims
to avoid the underestimation of the historical average
precipitation. The monthly precipitation anomalies from
December 2015 to March 2016 were then calculated as
the departure from the considered time-series mean,
normalized by the standard deviation. Additionally, the
precipitation anomalies from January to March 1998
were calculated for comparison with the last strong El
Ni~no event.
The monthly number of MODIS hot pixels for each

grid cell with 0.25° 9 0.25° of spatial resolution was
derived by aggregating the daily observations and the
pixel-based fire anomalies were calculated using the
same method to derive the rainfall anomaly, but using a
time-series starting in 2003, when the first whole-year
data was available.

Modeling fire drivers

For the fire modeling using MaxEnt, the study area
was divided into a 0.1° resolution grid, since this is the
spatial resolution of the near-real-time precipitation data
we used (see Data sets). As climatic variables, besides the

monthly precipitation obtained from IMERG data, we
produced monthly spatially explicit information on the
sensitivity of grid cells to changes in MEI in terms of fire
occurrence. For that purpose, the monthly pixel-based
fire anomalies were calculated in 0.1° grid cells from
2003 to 2015 using the same procedure described above.
For each individual 0.1° grid cell, we then calculated the
slope and intercept coefficients of a linear model of fire
anomaly as a function of MEI during the referred per-
iod. To be able to represent over the space the impact of
SST changes on fire patterns for each month analyzed,
for each of these grid cells we then applied the pixel-
based linear model

EEIði;jÞ ¼ aði;jÞ þ bði;jÞðMEIÞ (1)

where EEI(i,j) is the ENSO effect index, i.e., a monthly
proxy of the Pacific SST anomaly effect on fire occur-
rence within each grid cell with i latitude and j longitude,
MEI is the bimonthly value of the Multivariate ENSO
Index, a is the intercept, and b is the slope obtained from
the fit of the linear regression. The parameters a and b
are spatially variable but temporally static.
We tested the effect of including vapor pressure deficit

(VPD) data as a predictor variable, given that it has pre-
viously been shown to influence Amazonian fire condi-
tions (e.g., Silvestrini et al. 2011). We calculated the
average monthly VPD from the daily air temperature
and dew point data (Murray 1967) obtained from the
Modern-Era Retrospective Analysis for Research and
Applications Version 2 (MERRA-2; Zomer et al. 2008).
However, the projected surfaces of suitability for fire
occurrence, which varies from zero to one, were similar
using the models with and without VPD (92.8%, 96.9%,
94.8%, and 92.9% of the grid cells differed from �0.05
to 0.05 between the two models for December 2015, Jan-
uary, February, and March 2016, respectively). As we
aim to use the model operationally, the final model does
not include the VPD since including it would increase
the data processing time, without contributing signifi-
cantly to the detection of areas of high fire incidence
probability.
For all land-use land-cover variables except distance to

roads (recent deforestation, secondary vegetation, settle-
ment areas, and original non-forest vegetation), the
aggregation process into 0.1° grid cells consisted in calcu-
lating the fractional area covered by each category in each
grid cell. Pasture was initially considered as a variable to
be included in the model, but it showed high correlation
with secondary vegetation (rpearson = 0.83) and, based on
preliminary jackknife tests to estimate model perfor-
mance using each variable individually, it was excluded.
Pearson’s correlation coefficient between all other vari-
ables mentioned above were below 0.6 and they were kept
in the model (Parisien and Moritz 2009).
January 2016 was chosen for model calibration because

it was the peak of 2015–2016 fire season in the state of
Roraima, providing a wide range of environmental

15 http://www.obt.inpe.br/prodes/index.php
16 http://www.inpe.br/cra/projetos_pesquisas/dados_terraclass.

php
17 http://mapas.mma.gov.br/i3geo/datadownload.htm
18 http://acervofundiario.incra.gov.br/i3geo/datadownload.htm
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conditions driving fire occurrence. Therefore, for model
calibration, we used hot pixels from January 2016, cli-
matic data from December 2015, recent annual deforesta-
tion between 2013 and 2014, and secondary vegetation
map from 2012. Each grid cell with three or more hot
pixels in January 2016 was used only once in model cali-
bration, avoiding pixel oversampling (Phillips and Dudik
2008, Couturier et al. 2014, Giovannini et al. 2014). The
chosen threshold for a fire event to be included in model
calibration (three or more hot pixels) correspond to the
third quartile of the distribution of the number of hot pix-
els per grid cell in that month in Roraima, in an attempt
to model the occurrence of the most significant fire events
(longer lasting or over larger areas; Fonseca et al. 2016).
The analysis was carried out using the MaxEnt soft-

ware version 3.3.3 (Phillips et al. 2004, 2006). The soft-
ware logistic output was used, which can be interpreted
as a normalized suitability surface with values ranging
from zero to one, equivalent to a relative (rather than
absolute) probability of fire occurrence. MaxEnt uses the
values of the predictor variables at the occurrence
records and a random sample of their values across the
landscape (typically called a background sample) to esti-
mate the target probability distribution of maximum
entropy (i.e., that is most spread out or closest to uni-
form) subject to a set of constraints (Phillips et al.
2006). The predictor variables and mathematical trans-
formations thereof are called “features,” and the con-
straints are that the expected value of the features
should be close to its empirical average at the sample
points (here, hot pixel occurrence). The transformations
can be linear, quadratic, product (equivalent to interac-
tion terms in regression), threshold or hinge (similar to
threshold, except that a linear function is used). A user-
defined constant called regularization multiplier reduces
overfitting by ensuring that the empirical constraints are
not fit too precisely and removing features from the
model. We first compared the model predictive perfor-
mance using the metric test area under the curve (AUC)
while setting the regularization multiplier from 1 to 4.
As the difference found in the test AUC was in the third
decimal place, we set this value to one, which is the
default value of the software. We used bootstrap resam-
pling technique with 50 runs to estimate the outputs
mean and standard deviation (Verbyla and Litvaitis
1989), setting aside 30% of sample points for model test-
ing. We then used the calibrated model to simulate the
probability of fire occurrence and test its accuracy for
the 2015–2016 (from December 2015 until March 2016)
and 2016–2017 (from December 2016 until March 2017)
fire seasons in the state by substituting EEI and precipi-
tation data by data from one month prior to the simu-
lated month. Considering that in the 2016–2107 fire
season the temperature of the Pacific ocean had already
cooled down and the active fire detection was lower than
in the previous season (see Results), analyzing the model
accuracy during both periods provides a test of its
performance under different conditions.

In modeling using MaxEnt, a final map of fire pre-
dicted occurrence can be produced based on a threshold
suitability value, above which fire is predicted to occur.
The classifier sensitivity for a particular threshold is the
fraction of all occurrence records that are correctly pre-
dicted as occurrence instances by the classifier and is
also called the true positive rate, representing absence of
omission error. Specificity is the fraction of all absence
instances that are correctly predicted as such by the clas-
sifier and the quantity 1 � specificity, also known as the
false positive rate, represents commission error (Fielding
and Bell 1997, Phillips et al. 2006). As a threshold-inde-
pendent measure of model performance, the Receiver
Operating Characteristic (ROC) curve is obtained by
plotting sensitivity on the y-axis and 1 � specificity on
the x-axis for all possible thresholds and the AUC value
quantifies the probability that the model correctly ranks
a random presence locality higher than a random back-
ground site (Phillips et al. 2006). If the AUC value is 0.5,
the model is no better than random, while an area with a
value close to 1 indicates an accurate model (Fielding
and Bell 1997). Models with AUC values above 0.75 are
considered potentially useful (Elith 2002). We present
the calibration and test AUC values averaged over the 50
replicate runs and its standard deviation and model sen-
sitivity and false positive rates, calculated based on the
actual hot pixel occurrence in the simulated month, for
thresholds from 0.2 up to 0.7, in intervals of 0.1. As we
have only pseudo-absence data, the false positive rate
may be overestimated. In order to estimate which vari-
ables are most important for model predictive perfor-
mance, we used the jackknife test and assessed test AUC
values for models created using each variable individu-
ally (Elith et al. 2011). We also assessed how each
variable affects the MaxEnt prediction using response
curves (Elith et al. 2011). The curves show how the suit-
ability (as measured by the software logistic output)
changes as each environmental variable is varied, keep-
ing all other environmental variables at their average
sample value.

RESULTS

Precipitation and fire anomalies

Based on TRMM estimates, mean precipitation values
in the state of Roraima were 16.8, 3.2, 33.8, and
69.4 mm in December 2015, January, February, and
March 2016, respectively. January and March 2016 were
the months with the larger extent of (negative) precipita-
tion and (positive) fire anomalies (Fig. 2). However,
precipitation anomaly was more spatially extensive
than fire anomaly, reaching ~132,900 km2 (~59% of the
state area) with anomaly ≤�1 SD in January and
~106,800 km2 (~48% of the state area) in March.
Approximately 81% of the state area experienced rain
anomaly ≤�1 SD in at least one month between Decem-
ber 2015 and March 2016.
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The 3B43 data is available since January 1998 and,
using this data, we estimate that mean precipitation in the
state of Roraima was higher in January and February
1998 (19.8 and 50.4 mm, respectively), and lower in
March 1998 (48.2 mm) than in same months of 2016.
Accordingly, the proportion of the state under precipita-
tion anomaly ≤�1 SD followed the same pattern (26, 11
and 70% in January, February, and March 1998
compared to 59%, 31%, and 48% in the same months of
2016).
AQUA MODIS fire detection reached 1,754 hot pixels

in January and 1,081 in March 2016 in Roraima. Approx-
imately 67,900 km2 (~30% of the state area) showed posi-
tive fire anomaly ≥1 SD in January 2016, mostly
concentrated in the oriental part of the state (Fig. 2).
In March 2016, fire anomaly ≥1 SD was observed in
~37,400 km2 (~17%) and it was mostly concentrated in
the central area of the state. About 38% (86,200 km2) of
the state area experienced fire anomaly ≥1 SD in at least
one month between December 2015 and March 2016.

Modeling fire drivers

The average training AUC for the replicate runs and
its standard deviation was 0.837 � 0.008 while average
test AUC value was 0.807 � 0.012, indicating satisfac-
tory model performance. The monthly number of grid
cells with three or more hot pixels varied between 202
and 525 during the 2015–2016 fire season and between
127 and 254 during the 2016–2017 fire season. The suit-
ability surfaces predicted by the model and the maps of
grid cells with three or more hot pixels in the two fire
seasons are presented in Fig. 3. The distribution of suit-
ability values was significantly higher in grid cells where
three or more hot pixels were subsequently detected
compared to grid cells with two or fewer hot pixels for
both fire seasons (Fig. 4).
Lower threshold values have higher sensitivity (true pos-

itive rate) but also a higher false positive rate, as expected
(Fig. 5). The sensitivities of model projections were higher
than 0.78 for all months analyzed except February 2016
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using the 0.3 threshold. The false positive rates varied
between 0.15 and 0.28 using the 0.3 threshold (Fig. 5).
The ENSO effect on fire occurrence and the distance

to roads were the two most effective variables for pre-
dicting the distribution of the occurrence data that was
set aside for testing, when predictive performance is
measured using AUC (Fig. 6). Precipitation and defor-
estation were the less useful variables to obtain a good
fit to the testing data. The response curves (Fig. 7) also
show that varying these two variables, as well as rural
settlements (the third lowest in the Fig. 6 ranking), while
keeping all other variables at their average sample value,
causes relatively low changes in the suitability value. The
EEI, secondary vegetation and non-forest cover all show
positive association with the suitability value, while an
abrupt decrease in fire suitability is seen up to approxi-
mately 0.4° (~45 km) of distance to roads.

DISCUSSION

Precipitation and fire anomalies

Negative precipitation anomalies were more extensive
in January and February 2016 in Roraima than in the

same months of 1998, when the last strong El Ni~no
event occurred. According to Jim�enez-Mu~noz et al.
(2016), the record-breaking warming observed during
the 2015–2016 ENSO further increased drought severity
through an increase in evapotranspiration. These
authors found a larger area under extreme drought in
the Amazon during the 2015–2016 ENSO compared to
the 1997–1998 event based on a drought index.
Although precipitation anomaly was quite extensive in
January and March 2016 in Roraima, fire anomalies
were observed mostly in the regions of the state where
there is either high density of roads, rural settlements,
secondary vegetation cover or recent deforestation. This
pattern is expected since fire in the Amazon is almost
entirely human-ignited (Barbosa and Fearnside 2005)
and the correlation between fire occurrence in the Ama-
zon and the variables mentioned above was previously
acknowledged in the literature (e.g., Nepstad et al. 2001,
Alencar et al. 2004, 2015, Arag~ao et al. 2008, Silvestrini
et al. 2011, Barni et al. 2015b).
Nevertheless, some scattered grid cells with fire anom-

aly ≥1 SD are found in regions covered by dense tropical
forest where there are no roads, human occupation is
composed of sparse riverine populations, and that do
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not usually burn in Roraima (Barni et al. 2015b). Fire
occurrence in these regions shows that even a humid
dense forest may become flammable and subjected to
fires in years of intense drought. We hypothesize that

these fires were ignited by traditional subsistence prac-
tices that do not represent any forest fire risk in years of
normal precipitation.
Precipitation anomaly causes tree-level physiological

responses that significantly alter carbon balance in the
Amazon, reversing the carbon sink (Arag~ao et al. 2014,
Gatti et al. 2014, Feldpausch et al. 2016). Furthermore,
vegetation fires are an important source of carbon to the
atmosphere in extreme drought events. Fearnside et al.
(2013) estimated that 31.48 9 106 Mg C were emitted from
forest fires in the 1997–1998 event in Roraima. According
to Arag~ao et al. (2014), the climatic impacts on forest
dynamics and fires together may account for approxi-
mately 48.3% of the carbon emissions during extreme
drought years in the Brazilian Amazon. Given (1) the cur-
rent lack of estimates of area burned in different vegetation
covers in Roraima during the 2015–2016 drought and (2)
the current lack of estimates of the effect of drought on
vegetation dynamics and carbon emission/uptake for the
savannas, seasonal forests and Campinaranas of Roraima,
it is difficult to estimate the effect of the 2015–2016
drought on carbon balance in the state. Further studies are
necessary to investigate the potentially large effect of the
drought and fire anomalies we registered on carbon emis-
sions in Roraima during the 2015–2016 drought.

Modeling fire drivers

Both threshold-dependent and threshold-independent
model evaluations indicated satisfactory model perfor-
mance. Our results concerning model validation during
the two analyzed fire seasons are in accordance with the
ones found by Fonseca et al. (2016) for the whole Brazil-
ian Amazon in drought and non-drought years, indicat-
ing that the model is likely to show good performance in
other ENSO and non-ENSO years for Roraima. As
pointed out by Fonseca et al. (2016) some commission
errors are expected in this modeling approach given that
areas suitable for fire occurrence may not burn due to
the lack of an ignition source. Additionally, some errors
may be related to the fact that we used the precipitation
data from the previous month to project fire occurrence.
Future studies could test for the accuracy of fire proba-
bility prediction with MaxEnt using precipitation-pro-
jection data from meteorological models.
Distance to roads and the EEI were the variables that

contributed the most to model predictive performance, as
measured by the test AUC. The test AUC value of models
with only EEI in the present study was similar to the one
(0.76) found by Fonseca et al. (2016) for models includ-
ing only an analogous metric of the effect of the North
Atlantic Ocean warming on fire occurrence for the whole
Brazilian Amazon. The influence of the sea surface tem-
perature of the Atlantic and Pacific oceans on fire occur-
rence in the Amazon was previously reported (Chen et al.
2011, Fernandes et al. 2011). It is important to note that
the sensitivity of grid cells to changes in MEI, as
expressed by the EEI, depends partially on the presence
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FIG. 6. Results of the jackknife test for evaluating the iso-
lated effect of each variable on the model performance based on
the area under the curve (AUC) metric. EEI, ENSO effect index;
RodDis, distance to roads; SecVeg, secondary vegetation;
NFor, non-forest cover; Settl, rural settlements; Precip, monthly
precipitation; Defor, deforestation between August 2013 and
July 2014.
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of ignition sources, given that only grid cells with fire
occurrence could present significant correlation with the
MEI. This is likely to explain the higher importance of
EEI compared to the precipitation itself.
The negative relationship between distance to roads

and fire probability is well documented in the literature
(e.g., Alencar et al. 2004, Silvestrini et al. 2011) and the
drop in fire probability around 45 km is in accordance
with the 95th percentile of the distance of MODIS
TERRA and AQUA active fire detections to official
roads in the Brazilian Amazon documented by Kumar
et al. (2014), which varied from 38 km to 51 km between
2003 and 2010.
The positive relationship between fire and both sec-

ondary vegetation and non-forest cover in the Amazon,
as shown by the response curves, is expected, but less
documented at the landscape scale in the literature com-
pared to the other predictive variables mentioned above
(Silvestrini et al. 2011, Guti�errez-V�elez et al. 2014,
Fonseca et al. 2016). However, the contribution of
secondary vegetation to the model predictive perfor-
mance was lower than the one (0.81) found by Fonseca
et al. (2016). It is important to notice that the secondary
vegetation data we used concerns only vegetation regen-
erating in areas originally covered by forests, and not in
areas of native non-forest physiognomies. As the propor-
tion of non-forest vegetation and of seasonal and open
ombrophilous forests (which are more fire prone than
the dense ombrophilous forest) is higher in Roraima

than in the Brazilian Amazon as a whole, it is expected
that secondary forest vegetation would show a lower
contribution to the model predictive performance when
the state is analyzed separately, given that a lower pro-
portion of the training points would be associated with
secondary-vegetation areas. Indeed, approximately 25%
of the hot pixels detected in January 2016 were in non-
forest areas and these areas were not included in the
analysis of Fonseca et al. (2016).
It is somewhat surprising that the recent deforestation

showed such a low contribution to model performance,
contrary to the findings of Fonseca et al. (2016). This
can be due to the fact that PRODES monitor the
removal of forest vegetation only and no data on clear-
ing of non-forest vegetation is available for Roraima. On
the other hand, the distance to the road network is likely
to be a proxy of clearing of vegetation, including in the
area originally covered by non-forest vegetation, which
contributes to its comparative higher importance.
These results highlight the key importance of consid-

ering the influence that the planed reconstruction of the
BR-319 highway may have on fire occurrence and asso-
ciated carbon emissions in Roraima. This road connects
Porto Velho, the capital of Rondônia state, located in
the so-called “arc of deforestation,” to Manaus, the capi-
tal of Amazonas state, which is already connected to
Roraima by the BR-174 road. Its paving, therefore, is
likely to foster immigration and deforestation in
Roraima, as modeled by Barni et al. (2015a). We add to

FIG. 7. Response curves showing how each environmental variable affects the suitability for fire occurrence predicted by the
MaxEnt model (mean response of 50 MaxEnt runs � SD). (a) ENSO effect index (EEI); (b) distance to roads (RodDis); (c) non-
forest cover (NFor); (d) secondary vegetation (SecVeg); (e) rural settlements (Settl.); (f) monthly precipitation (Precip); (g) defor-
estation between August 2013 and July 2014 (Defor); fract area is the proportion of each 0.1° grid cell occupied by the land-use or
land-cover class.
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the Barni et al. (2015a) recommendations that, besides
the creation of conservation areas, prevention programs
should be implemented to avoid the likely increase in
forest fires in Roraima in case BR-319 is paved.
The quantification of the precipitation and fire anoma-

lies during the extreme 2015–2016 ENSO provided new
information on the dimension of the effect of this event in
Roraima and on the effectiveness of current fire control/
prevention mechanisms in this important region. Since
the 1997–1998 fire event, fire prevention and firefighting
actions at all governmental levels (municipal, state, and
federal) have improved and have been better integrated,
allowing for a scenario of higher institutional governance.
This was achieved mainly by the constitution of local
multi-institutional committees that undertake daily deci-
sions and firefighting actions during the dry season
(Brasil 2016). However, under extreme drought events the
spread of fire in Roraima still gets out of control. Our
analysis indicates that approximately 38% of the Rorai-
ma’s area showed positive fire anomaly during the 2015–
2016 drought. There is, therefore, still a great need to
improve the prevention and combat of forest fires in Ror-
aima. We conclude that MaxEnt and all the publicly
available data we used here in model building, including
the recently released near-real-time IMERG precipitation
data, may help to achieve this objective and therefore
minimize fire-related ecosystems degradation, economic
losses, and carbon emissions in the state of Roraima.
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