
24th ABCM International Congress of Mechanical Engineering
December 3-8, 2017, Curitiba, PR, Brazil

COBEM-2017-1369
A STUDY OF THE ERRORS IN SWING-BY DESIGN BY THE

"PATCHED-CONICS" APPROACH APPLIED TO THE GALILEAN
MOONS

Rodolfo Batista Negri
Instituto Nacional de Pesquisas Espaciais
rodolfo.negri@inpe.br
Antonio Fernando Bertachini de Almeida Prado
Instituto Nacional de Pesquisas Espaciais
antonio.prado@inpe.br

Abstract. The simplest method to design a swing-by is the well known "patched-conics" approach. However this approach
assumes some simplifications as: i) there is no perturbation on the trajectory during the maneuver; ii) the maneuver is
instantaneous. For most of the cases these assumptions are appropriate and bring only small errors. However, there are
some cases where the errors are considerably large. Some situations where a better understanding of the associated errors
are desirable. Therefore, this work intend to attend this demand by mapping the errors in ∆V s given by the "patched-
conics" approach. In order to do so, the values obtained by a three dimensional "patched-conics" approach is compared
with values obtained from a circular restricted three-body problem simulation, considered as the real ones, for the same
initial conditions. In view of a relatively great number of missions in the next years aiming to explore the Galilean moons
of Jupiter - e.g., Europa Clipper, Juice and so on - this work will focus its analysis on them.
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1. INTRODUCTION

The main aspects of a swing-by maneuver can be described using the "patched-conics" model, which splits the problem
in a sequence of "two-body problems", as studied by Broucke (1988), for the planar motion, and Prado (2000), for the
three dimensional maneuver. A first attempt to measure the differences between the two models, in terms of the variation
of energy, is made by Prado (2007), which compared both approaches when applied to a planar maneuver. Negri et al.
(2017) expanded this work to the three dimensional maneuver. There are also some studies of this problem related to
astronomy, as the work of Greenberg et al. (1988). The goals are different, but the physical explanations are the same.

So, the present paper focus in appliying the work done by Negri et al. (2017) to the Galilean moons of Jupiter. A
spacecraft is assumed to make a close approach with one of the moons, but its motion is not restricted to the orbital plane
of the primaries. Hence, the location of the periapsis needs an extra angle to indicate the out-of-plane component of its
position in space. The velocity at periapsis also needs a new variable, which can be an angle that defines its direction in
space. So, the new number of parameters is increased to five, by adding those two new ones to the well known periapsis
distance rp, magnitude of the velocity at periapsis vp and angle of approach α (Broucke, 1988).

Therefore, the strategy used in the present paper is to define a swing-by trajectory in the three-dimensional space by
specifying those five parameters. But as it is done by Negri et al. (2017) for some selected systems of the solar system,
it is calculated the ∆V instead of energy, using the "patched-conics" approach and the "restricted three-body problem".
It is assumed that the results coming from the restricted problem represent the "real values" and the results coming from
the "patched-conics" are the "estimated values". So, by varying the five parameters, it is possible to measure the effects
of each parameter in the errors of the "estimated maneuver". The goal is to give estimates of the errors for the Galilean
moons of Jupiter, since they will be very important in the next decades of space exploration (Grasset et al., 2013; Phillips
and Pappalardo, 2014; Bolton, 2010), so it is possible to know in advance if it is possible to use the "patched-conics"
model, considering the system under study and the accuracy required by the maneuver. In order to do so, it is measured
the errors as a function of all the parameters that define the maneuver. Minimum and maximum errors are shown as a
function of each parameter and plotted.

2. MATHEMATICAL MODELS AND METHODS

In this section are presented the mathematical models and the methods used in this work.
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2.1 Stating the problem

The system is composed by three point masses, where two of them are called M1 and M2. The first body, M1, has
the largest mass, while M2 is the second largest body in mass. Both are from now on called primaries, and each of
them perform a circular orbit around their center of mass. The third body is the spacecraft, which has negligible mass if
compared to the other two.

For a better understanding of the problem is convenient to define three reference frames. They are shown in Fig. 1
and called: synodic reference frame, or xyz; inertial reference frame, or XY Z; and the pseudo-inertial reference frame,
or X ′Y ′Z ′.

The synodic reference frame xyz, showed in Fig. 1(a), is the reference frame usually used in the circular restricted
three-body problem. As the name points out, it is a rotating system, and has a constant angular speed represented by n.
Its origin is in the center of mass of the system. Its x axis matches exactly with the line connecting the primaries, while its
y axis lies on the orbital plane of the primaries, perpendicular to the x axis. Lastly, the z axis completes the right-handed
coordinate system.

(a) Synodic reference system, xyz. (b) Inertial reference system, XY Z.

(c) Representation of the parameters that define the swing-by in the
pseudo-inertial reference system X′Y ′Z′.

Figure 1. The used reference systems.

We can move now to the inertial coordinate system XY Z, presented in Fig. 1(b). This is a fixed reference frame with
origin in the center of mass of the system, it is defined in such a way that its axis are coincident with the synodic system
axis at the initial time (t=0).

The third reference system to be presented is the pseudo-inertial X ′Y ′Z ′, as shown by Fig. 1(c). Its axis points to
the same direction of the XY Z system axis, however the system is displaced and moves coupled to M2, that is why it is
called pseudo-inertial. The swing-by is performed on the second primary (M2), thus the X ′Y ′Z ′ system is convenient to
define the five parameters which univocally define the swing-by.

These parameters define the position and velocity of the spacecraft at the periapsis of the spacecraft approach with
M2, and they are also presented in Fig. 1(c), where: rp is the distance between the periapsis and the center of the second
primary; α and β are the angles defining the postion ~rp in the three dimensional space; vp is the speed of the spacecraft
at the periapsis with respect to M2; and γ is the angle between the velocity ~vp and the intersection between a plane that
contains the periapsis and is parallel to the X ′Y ′ plane and a plane perpendicular to rp that contains vp. Therefore, the
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components of position and velocity in the X ′Y ′Z ′ reference system can be written as (Prado and de Felipe, 2007):

X ′ = rp cosβ cosα, (1)
Y ′ = rp cosβ sinα, (2)
Z ′ = rp sinβ, (3)

Ẋ ′ = −vp sin γ sinβ cosα− vp cos γ sinα, (4)

Ẏ ′ = −vp sin γ sinβ sinα+ vp cos γ cosα, (5)

Ż ′ = vp cosβ sin γ. (6)

2.2 The restricted problem

Firstly, it is necessary to write the Eq. 1 to Eq. 6 in the xyz reference system, they are:

x = 1 − µ+ rp cosβ cosα, (7)
y = rp cosβ sinα, (8)
z = rp sinβ, (9)
ẋ = −vp sin γ sinβ cosα− vp cos γ sinα+ rp cosβ sinα, (10)
ẏ = −vp sin γ sinβ sinα+ vp cos γ cosα− rp cosβ cosα, (11)
ż = vp cosβ sin γ. (12)

Now is presented the numerical steps utilized to solve the circular restricted three-body equations of motion1. The
equations of motion are (Szebehely, 1967):

ẍ− 2ẏ = x− (1 − µ)
x+ µ

r31
− µ

x− 1 + µ

r32
, (13)

ÿ + 2ẋ = y − (1 − µ)
y

r31
− µ

y

r32
, (14)

z̈ = −(1 − µ)
z

r31
− µ

z

r32
; (15)

where r1 and r2 are, respectively, the distance between the spacecraft and the first and second primary, as shown in
Fig. 1(a).

In order to find the variation of velocity given by the restricted problem (∆VRP ), the following algorithm is used:

• By using Eq. 7 to Eq. 12, with initial values for α, β, rp, γ and vp, the initial conditions are calculated;

• The equations of motion are integrated forward in time until the spacecraft reaches a distance r2 equal to the sphere
of influence (SOI) of M2 (rSOI ), which the radius is given by (Araujo et al., 2008):

rSOI =

(
µ

1 − µ

)2/5

. (16)

• Once the integration is performed, the speed after the maneuver V +
RP is calculated by saving the velocity in the

xyz reference system, transforming it to the XY Z reference system (Murray and Dermott, 1999) and obtaining its
modulus;

• The spacecraft is then positioned again at its initial conditions, and the equations of motion are integrated backward
in time, until r2reaches the sphere of influence of M2 one more time;

• The speed V −RP before the swing-by is then calculated;

• Finally, the ∆V for the restricted problem is calculated as:

∆VRP = V +
RP − V −RP . (17)

1A forth-order Runge-Kutta method with local truncation error to fifth-order was used to assure the precision and to adjust the step size.
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2.3 The patched-conics approach

For the patched-conics approach, the pseudo-inertial X ′Y ′Z ′ reference system is more convenient to describe the
trajectory of the spacecraft as it performs the maneuver. Here, this system is assumed to be inertial, which means that no
M2 movement is taken into account. As a direct consequence, it is supposed that the maneuver is taken instantaneously.

Another assumption of this approach is that the restricted three-body problem may be reduced to a sequence of three
two-body problems (spacecraft-M1, spacecraft-M2 and spacecraft-M1 once again) that are patched together at its extrem-
ities (Minovitch, 2010). This means that the perturbation effects of M2 in the orbit of the spacecraft around M1 and the
perturbation effects of M1 in the orbit of the spacecraft around M2 are not considered in this model. Therefore, there are
three conic orbits. The points where the orbits are patched are determined by the SOI (Araujo et al., 2008) of M2, which
is given by Eq. 16.

By using this approach, Prado (2000) shows that the velocity after the maneuver (~Vi) and before it (~Vo), with respect
to the XY Z reference frame, are calculated as:

~Vi = v∞ sin δ

cosβ cosα
cosβ sinα

sinβ

+ v∞ cos δ

− sin γ sinβ cosα− cos γ sinα
− sin γ sinβ sinα+ cos γ cosα

cosβ sin γ

+

 0
V2
0

 , (18)

~Vo = −v∞ sin δ

cosβ cosα
cosβ sinα

sinβ

+ v∞ cos δ

− sin γ sinβ cosα− cos γ sinα
− sin γ sinβ sinα+ cos γ cosα

cosβ sin γ

+

 0
V2
0

 . (19)

With some algebra is possible to show that the modulus of the vectors ~Vi and ~Vo are:

Vi = [v2∞ + V 2
2 + 2v∞V2(cosα cos δ cos γ + cosβ sinα sin δ − cos δ sinα sinβ sin γ)]1/2, (20)

Vo = [v2∞ + V 2
2 + 2v∞V2(cosα cos δ cos γ − cosβ sinα sin δ − cos δ sinα sinβ sin γ)]1/2. (21)

where V2 is the speed of M2; the angles β and α are in accordance with Fig. 1(c); δ is half of the turn angle of the
trajectory of the spacecraft due to the passage by M2, which can be expressed using two-body dynamics as (Broucke,
1988):

sin δ =
1

1 + rpv2∞/µ
, (22)

where v∞ is the speed of the spacecraft at the infinity with respect to M2 (i.e., the X ′Y ′Z ′ reference system). From the
two-body mechanics, v∞ is given by:

v∞ =

(
v2p −

2µ

rp

) 1
2

. (23)

Now, by using Eq. 20 and Eq. 21, it is possible to calculate the speed variation obtained by the swing-by, for the
patched-conics approach, as:

∆VPC = Vo − Vi. (24)

3. RESULTS

As made by Negri et al. (2017) for some systems of the solar system, this analysis is made using ∆V s, in km/s,
measured in the inertial reference frame XY Z.

The error in ∆V is defined as:

∆Verror = ∆VRP − ∆VPC , (25)

From Fig. 2 to Fig. 8 is shown the maximum and minimum ∆V s applied to the Galilean moons to the whole set of
parameters. They are standardized as follows: the (a) subfigures represent ∆VRP , the (b) represent ∆VPC and the (c)
represent ∆Verror.

Starting by the analysis of the ∆V s under the influence of rp, as shown in Fig. 2. As observed by Negri et al. (2017)
larger ∆V s, Fig. 2(a) and Fig. 2(b), occurs for low rp. The errors follow this same behaviour, as shown in Fig. 2(c).

Now, studying vp through N , as shown in Fig. 3. Analysing the ∆V s obtained by the restricted problem and by the
patched-conics approach, Fig. 3(a) and Fig. 3(b), is noticeable a peak region for ∆V . For instance, in the Fig. 3(b), this
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peak occurs between N = 1.2 and N = 1.25. This behaviour was expected, because Eq. 23, Eq. 20 and Eq. 21 show
that the Eq. 24 has quadratic terms of vp, which makes the relation between ∆V and vp a little more complex. The errors,
Fig. 3(c), follows the same behaviour noted by Negri et al. (2017).

Moving now to the γ angle, Fig. 4, and starting by the patched-conics approach, Fig. 4(b) shows that the maximum
and minimum ∆VPCs are constant, which might bring to the conclusion that ∆VPC does not depend on γ. This was
not expected, since Eq. 20 and Eq. 21 show the opposite, a clear dependence on γ. However, because our analysis is
based on maximums and minimums, this figure might be misleading. The Fig. 4(d) disprove this conclusion by fixing
all the parameters and varying only α and γ applied to Ganymede-Jupiter and showing that ∆VPC is not constant with
the variation of the angle γ. The constant appearance in Fig. 4(b) is explained by the superposition of various different
curves, for different sets of parameters, with equal peaks for different γ.

Figure 3(a) shows that the restricted problem does not follow the same behaviour. There is a clear advantage by using
γ = ±180◦. This is a consequence that, differently of what occurs with the patched-conics approach, which assumes that
the X ′Y ′Z ′ reference system is inertial, the restricted problem does not follows the same mistake. While the spacecraft
performs its swing-by, M2 keeps in its orbit around the center of mass of the system, making the velocity vector of M2,
~V2, to be different at the inbound or outbound of the SOI. Figure 5 exemplifies it.

When the γ angle assumes the value of ±180◦, it always acts in favour of increasing the effects of the maneuver over
∆V , whether in the gain (when 180◦ < α < 360◦) or the loss (when 0◦ < α < 180◦) of energy. But when γ assumes the
value of 0◦, this does not happen.

Figure 6 shows this behaviour. It represents a generic M2 swing-by for the gain of energy as seem from the pseudo-
inertial reference frame X ′Y ′Z ′. But now, differently of what occurs in the patched-conics approach, this reference
system is known as non-inertial and this is taken into account by changing ~V2 direction. One should notice that ~v∞ acts in
favour of ~V2 when γ = 180◦, and the opposite when γ = 0◦. The same effect is expected in the region of loss of energy,
and now γ = ±180◦ should make ~v∞ acts against ~V2, increasing the loss of speed.

Lastly, still in γ, Fig. 4(c) is coherent with Fig. 4(a) and Fig. 4(b).
The α angle, Fig. 7, has the same behaviour noticed by Negri et al. (2017). Figure 7(a) and Fig. 7(b) show that the

maximum and minimum values occur at the expected αs. The maximum in α = 270◦ and minimum in α = 180◦. The
errors follows this line as shown in Fig. 7(c).

The last parameter, β, is presented in Fig. 8. As expected, the Fig. 8(a) and Fig. 8(b) show larger ∆V s for β = 0◦.
The errors, Fig. 8(c), follows this behaviour as already noted by Negri et al. (2017).

Lastly, it must be highlighted the magnitude of the ∆Verror found and confirmed by all Figs. 2(c) to 8(c). They show
errors of about 0.9 km/s for the Io-Jupiter system, this is around 50% of the maximum value estimated by the patched-
conics approach. For the Ganymede-Jupiter and Europa-Jupiter cases the error is approximately 0.6 km/s, reaching 40%
of the estimated by the patched-conics approach for Ganymede and 60% for Europa. Moreover, for Callisto, the maximum
error is a bit greater than 0.4 km/s, which corresponds to around 40% of the estimated by the patched-conics.
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(a) ∆VRP (b) ∆VPC

(c) ∆Verror

Figure 2. Maximum and minimum ∆V s as function of rp applied to the Galilean moons.

(a) ∆VRP (b) ∆VPC

(c) ∆Verror

Figure 3. Maximum and minimum ∆V s as function of N applied to the Galilean moons.
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(a) ∆VRP (b) ∆VPC

(c) ∆Verror (d) ∆VPC for β = 80◦, N = 1.2, rp = 0.004 and µ =
7.8 × 10−5 (Ganymede-Jupiter) as function of α and γ.

Figure 4. Maximum and minimum ∆V s as function of γ applied to the Galilean moons.

Figure 5. M2 swing-by as seems from the inertial reference system XY Z.
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Figure 6. M2 swing-by as seem from the pseudo-inertial reference frame X ′Y ′Z ′, and recognizing it as a non-inertial
reference frame.

(a) ∆VRP (b) ∆VPC

(c) ∆Verror

Figure 7. Maximum and minimum ∆V s as function of α applied to the Galilean moons.
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(a) ∆VRP (b) ∆VPC

(c) ∆Verror

Figure 8. Maximum and minimum ∆V s as function of β applied to the Galilean moons.

4. CONCLUSIONS

This paper highlights the importance of taking a more realistic approach to design swing-bys applied to the Galilean
moons, by showing that errors in ∆V s might arise up to 60% of the value estimated by the patched-conics approach.

Also, through the analysis of the γ angle, the importance of the non-instantaneity of the maneuver, which is a conse-
quence of considering the pseudo-inertial reference system as inertial, is highlighted.

The other results are in accordance with previous studies, as the ones made by Negri et al. (2017), Prado (2007) and
Broucke (1988).
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