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ABSTRACT
We revisit the ‘two-component virial theorem’ (2VT) in the light of recent theoretical and
observational results related to the ‘dark matter problem’. This modification of the virial
theorem offers a physically meaningful framework to investigate possible dynamical couplings
between the baryonic and dark matter components of extragalactic systems. In particular, we
examine the predictions of the 2VT with respect to the ‘acceleration–discrepancy relation’
(ADR). Considering the combined data (composed of systems supported by rotation and by
velocity dispersion), we find the following: (i) The overall behaviour of the 2VT is consistent
with the ADR. (ii) The 2VT predicts a nearly constant behaviour in the lower acceleration
regime, as suggested in recent data on dwarf spheroidals. We also briefly comment on possible
differentiations between the 2VT and some modified gravity theories.
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matter.

1 IN T RO D U C T I O N

A fundamental question currently spanning astrophysics, cosmol-
ogy and particle physics is the ‘dark matter problem’. It arose
in the 1930s as a curious disagreement in the mass estimates of
astronomical bodies, and persists today as one of the greatest un-
solved problems in physics (Bertone & Hooper 2016; Gaskins 2016;
Freese 2017). Dynamical mass estimates of galactic systems exceed
those obtained from their luminous contributions. Such a discrep-
ancy would, in principle, be solved by conjecturing the existence
of some additional mass (undetectable in terms of electromagnetic
emission): its contribution would then account for the gravitational
binding of galaxies and clusters of galaxies.

This initial puzzle deepened in the past decades, with the im-
provement of observational techniques, bringing forth higher qual-
ity surveys and the gravitational lensing methods (Treu 2010),
expanding our studies of extragalactic systems and large-scale struc-
tures. At the same time, the accuracy of cosmological parameters
improved (Planck Collaboration XIII 2016a), requiring not only a
‘non-baryonic dark matter’ (non-baryonic DM), but also a dom-
inant ‘dark energy’ (DE) component, in order to account for an
apparent accelerated cosmic expansion of the Universe. These in-
vestigations established a ‘standard model’ of big bang cosmol-
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ogy: the ‘Lambda cold dark matter’ (�CDM) model, providing a
relatively consistent picture to describe various independent proper-
ties of the Universe (for implications of recent Planck data regarding
a few tensions with independent results, see Planck Collaboration
XIII 2016a; and with respect to alternative scenarios, see Planck
Collaboration XIV 2016b).

The virial theorem (VT; cf. Binney & Tremaine 1987) is one of
the main methods to estimate the total mass of a galactic system.
In Zwicky’s pioneering paper (Zwicky 1937), the VT was used
to estimate the total mass of the Coma cluster, under the assump-
tion that this system is in stationary equilibrium, at least in a first
approximation (as inferred from its regular, spherically symmetric
distribution). This work not only marks the beginning of the ‘miss-
ing mass problem’, but also highlights the importance of the VT
as a fundamental tool in extragalactic astrophysics, particularly in
the context of this problem (for an historical account on virial mass
estimates of galaxy clusters, see e.g. Biviano 2000). The applica-
tion of the VT is not straightforward, as it requires an underlying
hypothesis of stability of the system and well-understood observa-
tional selection effects (a pioneer study in this regard is given in
Aarseth & Saslaw 1972). More recently, gravitational lensing mass
estimates have shown compatibility with the idea that the overes-
timation of total virial masses can be attributed by the presence a
dominant DM component (Treu 2010).

The VT refers to a global condition on the kinetic and poten-
tial energies of the system as a whole. But it is also a matter of
great interest to gain further information on the detailed equilibrium
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requirements of a cluster composed of other subsystems, such as a
less massive luminous component embedded in a dominant halo. In
1959, Limber (1959) first derived a more general, two-component
VT form, in order to model a cluster embedded in an extended
(nonviscous) gaseous background, interacting only through gravity.
Clearly, Limber’s ‘two-component virial theorem’ (2VT) can also
be applied to DM haloes, by re-interpreting the ‘extended gaseous
background’ as a DM halo. In this regard, Smith (1980) designated
the ‘Limber effect’ the overestimation of the total mass, obtained
from the application of the (usual) VT, for systems with an extended,
unseen background.

In certain VT applications, constraints on the DM halo can be
obtained. For example, when the stellar contribution to the gravita-
tional field can be considered sufficiently small in comparison to the
DM component, so that the former is primarily moving in the gravity
field of the DM halo. Thus, for such a tracer stellar populations, the
tensor VT (Binney & Tremaine 1987) could be used to constrain the
DM halo in our Galaxy (Agnello & Evans 2012a) and in the dwarf
spheroidal galaxy Sculptor (Agnello & Evans 2012b). By extend-
ing the tensor VT to subsystems, more information can be obtained
about individual components, than that acquired by the application
of the usual VT to the system as a whole (Brosche, Caimmi & Secco
1983; Caimmi, Secco & Brosche 1984; Caimmi & Secco 1992). For
instance, the structural configuration of a component in equilibrium
may be distorted by the tidal force induced by the other, introducing
a length dependence on the baryonic subsystem induced by the DM
halo (Marmo & Secco 2003). These, and possibly other dynamical
effects, could provide, at least partially, a regulatory mechanism for
explaining tight observational constraints, such as the ‘Fundamen-
tal Plane’ of elliptical galaxies (Djorgovski & Davis 1987; Dressler
et al. 1987; Capelato, de Carvalho & Carlberg 1995; Dantas et al.
2000, 2003; D’Onofrio et al. 2016), including a general, combined
observational effect comprising a large range in scales and different
types of systems, the so-called ‘Cosmic Metaplane’ (Burstein et al.
1997; Dantas et al. 2000; Secco 2000).

A recent observational result of particular interest is the exis-
tence of a tight correlation between the radial acceleration derived
from rotation curves of galaxies and the observed distribution of
baryons [hereafter the ‘acceleration–discrepancy relation’ (ADR);
McGaugh, Lelli & Schombert 2016; Lelli et al. 2017]. This empir-
ical relation suggests a strong coupling between dark and baryonic
components, possibly related to galaxy formation mechanisms. The
2VT provides a physically meaningful framework to investigate dy-
namical couplings between these components, based on their mu-
tual equilibrium conditions. Note that the usual (one-component)
VT does not address any systematic couplings between ‘hidden’
and baryonic masses, it just implies that a ‘remainder’ mass must
be added, by contingency, to the dynamical equilibrium budget of
the system. But the 2VT formulation indicates a correction that de-
pends systematically on the dark component in which the baryonic
mass is embedded.

In this paper, we revisit the 2VT to address these recent theo-
retical and observational results. Our paper is outlined as follows.
In Section 2, we present the 2VT, in terms of a suitable expression
to fit the data in the ADR space. In Section 3, we compare the
2VT predictions with data for late-type galaxies (LTGs) and dwarf
spheroidals (dSphs) and discuss the ‘flattening’ behaviour of dSphs,
as indicated in recent data. Finally, we briefly comment on possi-
ble differentiations between the 2VT and some modified gravity
theories. In Section 4, we present our conclusions.

The usual, one-component, VT will be denoted here as ‘1VT’
(cf. equation A1 in Appendix A). Our notation uses the index B to

refer to the baryonic matter, D to refer to the DM component and
ρ to refer to the respective average matter density within a given
radius r.

2 T H E T WO - C O M P O N E N T V I R I A L T H E O R E M

In this section, we present the 2VT (Limber 1959; Dantas et al. 2000;
Secco 2000) in a suitable form to be compared with the ADR
(McGaugh et al. 2016; Lelli et al. 2017). In Appendix A, we review
the 2VT as originally derived in Dantas et al. (2000) and present
details on its derivation.

The 2VT provides a correction term to the 1VT, which accounts
for the influence of a second component (the putative DM halo).
In terms of acceleration variables, the observed acceleration, as
predicted by the 2VT, is given by (cf. Appendix A)

gobs,2VT = gB + RgD. (1)

where gB is the radial acceleration of the baryonic component,
gD is the radial acceleration associated with the dark component
(cf. equation A5) and R is a parameter depending only on the prop-
erties of the baryonic matter distribution, relating the projected (2D)
to the ‘physical’ (3D) radii of the observed baryonic component.
The 1VT is simply

g1VT = gB. (2)

The 2VT gives a simple linear correction to the 1VT, and the
behaviour of the 2VT as seen in a log –log plot appears as curved
line. In Appendix C, we present a brief illustration of the 2VT as
seen in that plot, showing how variations in the parameters (gD, R)
affect it. Here, we highlight two relevant facts:

(i) The 2VT curve with a fixed (gD, R) represents a parametrized
family of baryonic–DM systems within an arbitrary baryonic mass
range.

(ii) The 2VT predicts some discriminating characteristics in the
log –log plane: (i) a bending departing from the 1VT and (ii) a
nearly constant behaviour in the lower acceleration regime. The
parameters (gD, R) cannot modify these features, only allowing for
an adjustment of the height of the asymptotic behaviour in the lower
acceleration regime, or, alternatively, the point at which the 1VT is
retrieved.

In other words, even with two free parameters, the 2VT presents
a relatively ‘rigid’ form, implying that this model cannot be arbi-
trarily contrived to fit the data. This level of predictive power is an
important feature of the 2VT.

3 O B S E RVAT I O NA L C O M PA R I S O N S

In this section, we analyse the 2VT in terms of current observational
data leading to the so-called ADR (McGaugh et al. 2016; Lelli
et al. 2017).

3.1 The acceleration–discrepancy empirical relation

The ADR is an empirical best-fitting relation for the centripetal
acceleration estimated from the rotation curves of rotationally sup-
ported galaxies, and it was first described by McGaugh et al. (2016):

F (gB ) = gB

1 − e−√
gB/aM

. (3)

Note that the above relation tends to a linear slope at high acceler-
ations and gobs ∝ √

gB at low accelerations.
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Figure 1. (Colour online). The acceleration obtained from the baryonic
matter (gB) versus the observed acceleration (gobs). The 2VT predicts that
gobs obeys equation (1). We show a series of 2VT curves (thin dashed lines)
covering most of the data, using different R values, in equal (dex) steps, from
R = 1.905 (upper) to R = 0.007 (lower curve), with gD fixed to the Milgrom
aM scale (see the main text). An ‘eyeball’ best 2VT curve for the data as a
whole is also indicated (thick continuous line), with R = 0.125. Empirical
relations expressed by equation (3) [labelled ‘F(gB)’; thin dotted line] and
equation (4) [labelled ‘Fm(gB)’; thick dotted line], with the respective best-
fitting parameters obtained in Lelli et al. (2017), are shown for comparison.
Data is taken from Lelli et al. (2017) and corresponding binned data are
shown in larger symbols, as indicated in the legend.HQ data for dSphs
(M31 and Milky Way) are highlighted with different symbols. Small dots
in the background represent the full data set for both LTGs and dSphs. The
line of unit (gobs = gB) expresses the 1VT expectation for baryons only.

The inclusion of dSphs data (Lelli et al. 2017), however, seem
to imply a flattening of the above relation, specially for the ultra-
faint dSphs. The present data are not conclusive, but this flattening
behaviour seems to be favoured at this time, and suggested a modi-
fication of the relation above to (Lelli et al. 2017)

Fm(gB ) = gB

1 − e−√
gB/aM

+ ĝe−
√

gBaM/ĝ2
, (4)

as a better fit to the data, for the tendency of dSphs to deviate from
the original ADR (equation 3).

3.2 The 2VT and the ADR

In Fig. 1, we reproduce the suggested ADR best-fitting forms, equa-
tions (3) and (4), together with a series of 2VT curves, equation (1),
for illustrative purposes. We provisionally fix gD to Milgrom’s ac-
celeration scale (Milgrom 1983a),

aM ≡ 1.2 × 10−10[ms−2], (5)

and use different values of R, covering most of the data (repre-
sented by small dots in the figure; binned data is indicated by larger
symbols). Detailed fits are presented below (see also Appendix C).

The data was taken from (Lelli et al. 2017), which includes ro-
tationally supported systems (LTGs from SPARC data) and dSphs,
which are supported by velocity dispersion. We indicate the subset
of the ‘high quality’ (HQ) data which, among other cases regard-
ing both the quality of the velocity dispersion determination as the

Figure 2. (Colour online). Same as Fig. 1, using binned LTG data and HQ
dSphs data, with a 2VT best-fitting curve obtained from a linear regression
method, including the 95 per cent confidence band around the regression
fit (grey band), as explained in the main text. Fixing gD to Milgrom’s
acceleration scale (equation 5) gives R = 0.152.

sphericity of the dSphs, excludes all those strongly affected by the
tidal forces produced by their host galaxies (see Lelli et al. 2017
for details). It is interesting to compare our figure with fig. 3 of
McGaugh et al. (2016) and figs 10–12 of Lelli et al. (2017).

LTGs are preferentially located nearby the transition scale aM

between the Newtonian and MONDian (‘MOdified Newtonian
Dynamics’; Milgrom 1983a,b,c) regimes, whereas dSphs are mainly
located at lower acceleration regimes (see also Sec. 3.5 below). The
ultrafaint dSphs particularly contributes to the data in the lower ac-
celeration region. As Fig. 1 shows, a band of 2VT curves cover in
the right sense the ADR of rotationally-supported galaxies, includ-
ing the low-acceleration flattening region, indicated by ultrafaint
dSphs.

We also provide a quantitative fit to the 2VT (Fig. 2), using the
binned data for LTGs and the HQ subset dSphs data, obtained with
linear regression, a procedure that allows us to find the value for
the parameter G ≡ RgD (cf. equation 1), with respective standard
errors, minimizing the sum of the squares of the data points dis-
tances to the curve given by the 2VT. We ran the code LM under
the stats package in R (R Core Team 2014). The code should be
able to determine the best-fitting parameter, regardless of the ini-
tial guess. However, to avoid convergence problems, we created
a broad grid that encloses reasonable values for the parameter G
(following approximately the ranges obtained in Fig. 1). We also
computed the residual standard deviation at each point on the grid
to find the best parameters choice. The best-fitting value found was
G = 1.83 × 10−11 (p-value: p = 3 × 10−4); fixing gD to Milgrom’s
acceleration scale (equation 5) gives R = 0.152.

We also present a brief analysis based on the full data for (un-
binned) LTGs and dSphs (Fig. 3), based on the corresponding den-
sity distributions in their data. A possible bimodality in the dSphs
data is indicated (the separation of modes is represented by a hori-
zontal line in the figure). A best-fitting curve was obtained separately
for each individual mode (above and below this line), giving two
different sets for the best-fitting parameter G ≡ RgD , as indicated
in the legend of Fig. 3. The 95 per cent confidence upper limits are
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Figure 3. (Colour online). Left-hand panel: same as Fig. 2, using the full
(unbinned) LTG (small dots) and dSphs (circles) data, with detailed 2VT best
fits using a linear regression method, including the 95 per cent confidence
band around the regression fit (dashed curves), as explained in the main
text. Right-hand panel: density distributions in the data, shown separately
for LTGs and dSphs, with a possible bimodality detected in the dSphs data
(indicated by an horizontal dashed line). best-fitting values are shown in the
legend.

the upper envelope for the regression fit obtained in the upper mode,
and the lower envelope in the lower mode. The p-value of the F test
for mode 1 is p < 10−4, whereas the fitting for mode 2 does not
converge easily, giving a high p-value, p = 0.1873. In other words,
the 2VT fits mode 1 very well, but not mode 2. In this latter case, the
2VT curve in the high acceleration range misses the large volume
of LTGs data in order to contemplate the lower acceleration data
for dSphs.

It is interesting to note that mode 2 is mainly composed of M31
dwarf spheroidal data. Indeed, Walker et al. (Walker et al. 2010, and
references therein) finds a systematic difference between M31 and
MW dSphs velocity dispersions at a given half-light radius, with
the former having lower velocity dispersions than the latter. It is
not clear whether this effect is the result of some systematic bias
or an intrinsic signature of different formation processes in these
systems. A more detailed analysis of this possible bimodality in the
context of the 2VT is left for a future work.

3.3 The ‘flattening’ behaviour of Sphs

In section 8.3.2 in Lelli et al. (2017) (‘New physics in the dark
sector?’), some considerations were given in order to account for
the ‘flattening’ ADR behaviour in dSphs. In particular, the internal
gravitational field of some of these systems could be ‘contaminated’
with that of their host galaxy, even though the ‘quality cut’ men-
tioned previously was adopted in the data. An attempt to bring the
dSphs to the extrapolated behaviour of the LTGs (their fig. 14) is
not in accordance with the standard MOND modifications for exter-
nal field effects and seem to be not well understood in the MOND
framework (Lelli et al. 2017; see also the next section).

The 2VT offers a natural explanation for this ‘flattening’, since
the correction term to the observed acceleration does not depend
on gB, but on the product RgD (equation 1), which is fixed for a
given family of baryonic–DM systems. That is, the 2VT cannot
be much contrived, as illustrated in Appendix C. Therefore, the
somewhat ‘mysterious’ dwarf spheroidal ‘flattening’ behaviour, if
observationally confirmed, is a prediction of the 2VT, and such a
prediction cannot be fine-tuned.

One possibility is that this flattening is due to tidal effects from
the host (Caimmi & Secco 1992). In this case, the VT should be
formulated with the presence of a ‘third component’ (host) in sup-
posed equilibrium with the coupled baryonic–DM system. How-
ever, the resulting corrections would increase in complexity and
become cumbersome, except if assuming some special cases and/or
symmetries (Caimmi & Secco 1992). Evidently, it would have to
be assumed that the dSph system is indeed in virial equilibrium
with the host. Given the good agreement of the 2VT with the data,
we consider that any contribution of a host within the gravitational
radius of the baryonic system is negligible, or otherwise may con-
tribute only to disperse of the data around the flattening region
(low acceleration limit). Disentangling such possible contributions
from others, such as dissipative effects (Ribeiro & Dantas 2010),
is difficult to address at this point. LTGs, being located at higher
acceleration regimes, are not affected by such considerations.

3.4 Systems with variable (gD, R)

The structural parameter R depends on the type of galaxy, given their
different structural equilibrium configurations, reflected on their dif-
ferent shapes. The value of gD may also vary depending on the DM
halo contribution within the baryonic gravitational radius, which
may have different scalings for different systems. In the 2VT pre-
diction (equation 1), these variations should be independent, but in
a more general formulation (see Appendix B; Limber 1959), the
equivalent to our R parameter would depend on the DM halo dis-
tribution as well. These variations would produce a spread around
a given unique 2VT curve (i.e. around a family baryonic–DM sys-
tems), which would tend to be more obvious in the very low ac-
celeration regime, where the 2VT curve admits a dominance of the
DM halo (evidently, depending on the combined product, RgD).

3.5 A note on the 2VT and modified gravity theories

A broad alternative scenario to the DM paradigm considers that at
large scales gravity should be modified (Calmet & Kuntz 2017).
A proposal in this direction, initially applied to galaxies and clus-
ters of galaxies, was provided by Milgrom in the 80’s, as a mod-
ification of Newton’s law in the extremely weak field regime
(Milgrom 1983a,b,c; cf. reviews in Famaey & McGaugh 2012; Mil-
grom 2015). There are currently several implementations of MOND,
but the basic mechanism is a departure from Newtonian dynamics
below the critical acceleration, aM, equation (5). A connection of
MOND with cosmology was also considered by Milgrom (1999),
where this acceleration scale could arise from a vacuum effect.

Another testable proposal has been recently given by Ver-
linde, who states that gravity itself might arise as an entropic
force, so that space–time emerges from a microscopic substratum
(Verlinde 2011, 2016). Verlinde’s proposal has a close connection
with previous works, aiming to derive general relativity from ther-
modynamics (Jacobson 1995; Padmanabhan 2010). A question was
then brought forth concerning a possible retrieval of MOND-like
behaviour from entropic arguments (see Milgrom & Sanders 2016,
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and references therein), so that these ideas have been taken, sep-
arately or combined, as possible alternative candidates to the DM
paradigm.

MOND has been subjected to a large number of observational
tests throughout many years (see reviews above), and a few tests
for Verlinde’s theory have been made (e.g. Pardo 2017, Hossen-
felder 2017, and references therein), but results seem premature at
this point, specially due to simplifications adopted in the theory. A
covariant proposal for Verlinde’s theory, along with some clarifica-
tions, has recently been made, which may advance the theory and
favour cleaner observational testing (Hossenfelder 2017).

The ADR is a particularly interesting test for these alternative
theories, especially on the possibility of differentiating DM- from
non-DM-based models. Qualitatively, it is possible that MOND re-
produces the ADR (see e.g. discussion in Lelli et al. 2017), although
it is unclear at this point whether the behaviour of dSphs at the lower
acceleration region can be accounted for. Therefore, at this point,
a detailed prediction of MOND for that specific lower acceleration
region (gB < −12 dex) is necessary for a clear comparison with the
2VT prediction; however, to the knowledge of the authors, such a
prediction is not yet available.

As for Verlinde’s theory, the main phenomenological result
has been derived from spherical symmetry (equation 7.47 in
Verlinde 2016):

ρ2
D(r) = [

4 − β̄B (r)
] a0

8πG

ρB (r)

r
, (6)

where a0 = 6aM, and β̄B (r) is the slope parameter, β̄B (r) =
−d log ρB (r)/d log r , and subscript D refers to the resulting ‘appar-
ent’ DM effect. By the use of equations (A5), (A6) of Appendix A
into equation (6), the latter can be written in terms of acceleration
variables as

g(D,VEGT) = [
4 − β̄B (r)

]1/2 √
aMgB. (7)

Hence, on general grounds and using simplifying assumptions, Ver-
linde’s theory predicts a correction g(D, VEGT) for the observed ac-
celeration gobs that depends on

√
aMgB , similarly to MOND (e.g.

Lelli et al. 2017), with prefactors that may differ. On the other hand,
the 2VT predicts that this correction depends on the product RgD

(cf. equation 1), that is, it is not a function of gB, as in the for-
mer theories, but a function of the baryonic matter distribution (R)
and the acceleration scale (gD within rB) associated with the DM
component of the system.

This difference in the functional dependence of the correction
term for the observed acceleration imposes a qualitative distinc-
tion on the form of the predicted ADR. In Verlinde’s theory and
in MOND, obtaining a nearly constant behaviour in the lower ac-
celeration regime requires a functional tuning (in terms of gB) in
their respective correction terms. On the other hand, the 2VT al-
ready predicts an asymptotically constant behaviour in that regime,
independent of gB, and this asymptotic form cannot be arbitrarily
contrived (cf. Appendix C). Therefore, it is important that modified
gravity theories present clear and specific predictions for the lower
acceleration regime in order to be possible to differentiate them for
DM-based models, such as the 2VT.

4 C O N C L U S I O N

In this paper, we have revisited the 2VT with the aim of identifying
discerning features and predictions for the behaviour of gravita-
tional systems in relation to the recent ADR findings. Our main
conclusions are as follows:

(1) The 2VT follows approximately the ADR, considering LTG
and dSphs data. The inferred coupling between dark and baryonic
components from this relation seems to arise from their mutual
equilibrium conditions. The detailed behaviour of this coupling de-
pends on the structural distribution of these components. Our work
did not offer predictions on the detailed forms of such final equilib-
rium states, which may include a variation of the parameters (gD,
R), and also dissipative mechanisms leading to different structural
configurations. Indeed, the coupling between DM and baryons is a
complex issue, and our previous study of this matter in the context
of the 2VT indicates complementary contributions of dissipation
and DM to the origin of scaling relations in astrophysical systems
(Ribeiro & Dantas 2010). However, the overall behaviour of the
2VT curve is remarkably consistent with the ADR.

(2) The 2VT predicts some of the main features of the ADR, such
as a bending and a nearly constant behaviour in the lower acceler-
ation regime. The parameters (gD, R) cannot disrupt these features,
allowing only for an adjustment of the ‘height’ of the asymptotic
behaviour in the lower acceleration region, or alternatively the point
at which the 2VT departures from the 1VT.

(3) The somewhat ‘mysterious’ dwarf spheroidal ‘flattening’ be-
haviour, if confirmed, would indicate that the 2VT provides a con-
sistent physical description of this phenomenon via the dynamical
equilibrium of such systems, highly dominated by a DM compo-
nent.

Finally, we point out that the ‘rigidity’ of the 2VT curve is an
important discriminating factor, implying that this model cannot be
arbitrarily contrived to fit the data. This level of predictive power
is an important feature of the 2VT, which could, for instance, serve
as a means to distinguish DM theories from non-DM (e.g. emergent
gravity) theories of equilibrium systems.
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A P P E N D I X A : R E W R I T I N G T H E 2 V T

The (usual) virial theorem (hereafter 1VT) states that, for the whole
system, the mean square velocity of the baryonic component is
given by Binney & Tremaine (1987)

〈v2〉B = GMv

rB

, (A1)

where Mv is the estimated virial mass of the system, and rB is the
gravitational radius of the baryonic component.. It is clear that, if
the virial mass is larger than the observed mass, Mobs (inferred from
the observed stellar and gaseous surface mass distributions), then
there is a ‘hidden mass’ (or DM mass) given by the difference

M(D,1VT) = Mv − Mobs. (A2)

The 2VT gives a correction to the 1VT, and was first derived by
Limber (1959) (cf. Appendix B). A simplified form of the 2VT has
previously been shown to reproduce in a broad sense the scaling
relations of systems at various scales (Dantas et al. 2000):

〈v2〉B = GMB

rB

+ 4π

3
GρD〈r2〉B, (A3)

where the baryonic average square radius is defined by

〈r2〉B ≡
∫

r2ρB (r)dV∫
ρB (r)dV

. (A4)

In the equations above, ρB(r) is the mass density of the baryonic
component, whereas ρD is the mean density of the DM halo within
the region containing the baryonic component, MB is the total bary-
onic mass within the gravitational radius.

Note that the 1VT does not address any systematic couplings
between ‘hidden’ and baryonic masses, it just implies that a ‘re-
mainder’ mass must be added, by contingency, to the dynamical
equilibrium budget of the system. But in the 2VT formulation, the
mean square velocity of the baryonic component must be corrected
in a way that it depends systematically on the dark component in
which the former is embedded. This description of the coupling of
the baryonic and DM halo is a fundamental advantage of the 2VT
formulation.

For spherically symmetric systems, the gravitational acceleration
scales for the baryonic matter and DM are, respectively,

gx = GMx(< rB )

r2
B

, (A5)

with x either referring to B or D; rB is the gravitational radius of
the baryonic component. In the case of axisymmetric systems, like
LTGs, flattened gravitational potentials associated with finite mass
systems present a Keplerian circular speed at large galactocentric
distances. In this limit, we assume that equation (A5) is approxi-
mately satisfied.

In terms of acceleration scales and mean densities, within rB,

ρx = 3gx

4πGrB

. (A6)

The following assumptions and definitions were used (further
simplifications are described in Appendix B):

(i) We define a structure parameter,1 R, depending only on the
properties of the baryonic matter distribution, such that 〈r2〉 = Rr2

B .
(ii) For rotationally supported galaxies, we make the correspon-

dence 〈v2
circ〉B → 〈v2〉B , where vcirc is the circular velocity at radius

rB.

Given item (i) above, we rewrite equation (A3) as

〈v2〉B = GMB

rB

+ 4π

3
GρDRr2

B. (A7)

On the other hand, the observed baryonic centripetal acceleration
is

gobs = 〈v2〉B/rB. (A8)

Hence, expressing equation (A7) in terms of accelerations (using
equations A5, A6 and A8), we write the 2VT prediction as:

gobs,2VT = gB + RgD. (A9)

APPENDI X B: R ELATI ON TO LI MBER’S 2VT
E QUAT I O N

The original modification of the VT proposed by Limber (equation.
21 in Limber 1959) for a model of a cluster of galaxies (here labelled
by ‘B’) with an extended, non-dissipative gaseous background (here
labelled by ‘D’), is given by

〈v2〉B = GMB

rB

[
1 + (CBD + DBD)

MD

MB

]
, (B1)

Our formulation of the 2VT (equation A7) is a particular case of
Limber’s 2VT above. We assumed that inside the baryonic region
defined by rB the DM halo was sufficiently extended, so that the

1 This definition is slightly different than the one adopted in Dantas et al.
(2000).
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average DM density inside that region did not depend on the galac-
tocentric distance (equation 2 of Dantas et al. 2000). A similar
approximation can be done in equation (25) of Limber’s paper Lim-
ber (1959) for the coefficient CBD. A second assumption is that the
spatial distribution of both components is similar, which implies
that Limber’s coefficient DBD is approximately zero (equation 26
of Limber 1959). With these approximations, our parameter R de-
pends only on the properties of the baryonic matter distribution (cf.
Appendix A), whereas in a more general formulation it would have
to be re-written in terms of CBD + DBD.

A P P E N D I X C : C H A R AC T E R I S T I C S O F T H E
2 V T C U RV E I N T H E LO G – L O G P L A N E

The 2VT (equation 1), parametrized by a fixed value of (gD, R), rep-
resents a family of baryonic–DM systems in an arbitrary baryonic
mass range. The correction for the observed acceleration, predicted
by the 2VT, is given by the combined product RgD, and it is not
possible to obtain separated estimates for R and gD. Here, we illus-
trate how the 2VT curve is affected by these quantities, by fixing
one and varying the other, and vice-versa.

In Fig. c1, left-hand panel, we fix gD to Milgrom’s acceleration
scale (equation 5) and vary the parameter R, whereas in the right-
hand panel, we fix R = 0.125 and vary gD. As expected, both
parameters produce similar effects on the 2VT. Clearly, the height
of the asymptotic part of the 2VT in the lower acceleration region
is solely regulated by the departure from the 1VT. It is important

Figure C1. The acceleration associated with the baryonic matter (gB) ver-
sus the observed acceleration predicted by the 2V (equation 1). Left panel
shows 2VT curves with gD fixed and varying R values, whereas the right
panel shows the other way around (their corresponding values are indi-
cated in the legends). These panels illustrate how these parameters affect
the departure from the 1VT (the line of identity) in a similar fashion.

to notice that the parameters (gD, R) cannot disrupt this rigid form
of the 2VT, allowing only for an adjustment of the height of the
asymptotic behaviour of the curve or, alternatively, the point at
which the 2VT departures from the 1VT.
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