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Abstract. Bayesian Networks are powerful probabilistic method to make 

inferences based on evidences. However, this technique has been rarely 

applied to processing Remote Sensing data. The Bayesian Network for Raster 

Data – BayNeRD, implemented in the R software, was developed to be used 

for raster data analysis. This paper describes an enhanced version of the 

BayNeRD algorithm, stating what has been changed in terms of data pre-

processing, user interaction, and outputs. 

1. Introduction 

A system that can work with information absence (uncertainty) should be able to assign 

reliability levels to the variables in its knowledge base and set relations among them. 

Bayesian Networks (BNs) are probabilistic methods that use graph theory to set 

relations between variables and probability theory to assign belief levels [Marques and 

Dutra 2008; Qin et al. 2006].  

 According to Pearl and Russel (2000), the ability for bidirectional inference, 

combined with a rigorous probabilistic base, led to the emergence of BNs as a method 

for reasoning in artificial intelligence and expert system. Indeed, BNs have been used 

with focus on several applications, such as: medical diagnosis [Kahn et al. 1997; Oniśko 

and Druzdzel 2013]; speech and gesture recognition [Daoudi et al. 2003; Suk et al. 

2010]; and Environmental Science [Castelletti and Soncini-Sessa 2007; Dlamini 2010; 

Gambelli and Bruschi 2010]. However, even though BN applications have been 

increasing over the last two decades, Aguilera et al., (2011) and Qin et al. (2006) 

pointed out that BNs has been rarely used in Earth Observation Science and to process 

Remote Sensing data.  

 In this context, Mello et al. (2013) developed a computer-aided Bayesian 

Network method able to incorporate expert knowledge for the benefit of remote sensing 

applications and other raster data analysis: Bayesian Network for Raster Data 

(BayNeRD). It was implemented in R software [R Core Team 2014] and a case study of 

soybean mapping in Mato Grosso State, Brazil, was used to evaluate its capability to 

model complex phenomena through plausible reasoning based on data observation. 

Although the main concepts of BNs for remote sensing applications were implemented 

by Mello et al. (2013), there are many improvements that can be implemented in order 



to create an enhanced version of the BayNeRD algorithm. Thus, this paper describes the 

main enhancements implemented in the BayNeRD algorithm to improve it as well as 

the changes in terms of data pre-processing, user interaction, and program outputs. 

2. Bayesian Networks and Inference Background 

BNs, sometimes called Bayesian Belief Networks [Uusitalo 2007], are mathematical 

models based on two components: (i) a Directed Acyclic Graph (DAG), and (ii) 

conditional probability tables (CPTs) [Landuyt et al. 2013]. 

 In a DAG, each node represents a variable in the model, while an arrow linking 

two variables indicates dependence between them. An arrow starts in a parent variable 

and ends in a descendent one. As the graph is acyclic, there is no feedback arrows from 

a descendent to a parent [Landuyt et al. 2013]. One advantage of BNs over other types 

of predictive models, such as decision trees and neural networks, is that unlike those 

“black box” approaches, the DAG’s arrows represent real connections, not flow of 

information [Pearl & Russell 2000; Qin et al. 2006]. Figure 1 shows an example of a 

BN, in which the variable 𝑋1 influences 𝑋2 and 𝑋3. Furthermore, 𝑋3 is influenced by 

𝑋2. 

 

Figure 1. Example of Bayesian Network graphical model. 

 Once the graphical model is defined, it is necessary to know the probability 

relations. If a node has no parent, a prior probability function is assigned to it: 𝑃(𝑋𝑖 =
𝑥𝑖), in which 𝑥1, … , 𝑥𝑛 are all possible values (i.e., instantiations) of variable 𝑋𝑖. On the 

other hand, if a node has parent(s), a conditional probability function is assigned to it. 

For each variable, the function expresses the probability of that variable being in a 

particular state (instantiated), given the states of its parents. If 𝑥𝑖 denotes the values of 

the variable 𝑋𝑖 and 𝑝𝑎𝑖 denotes the set of values for 𝑋𝑖’s parents, then 𝑃(𝑥𝑖|𝑝𝑎𝑖) 

denotes the conditional probability. For example (see Figure 1), 𝑃(𝑋3 = 𝑥3|𝑋1 =
𝑥1, 𝑋2 = 𝑥2).  

 The fundamental rule of conditional probability is  

𝑃(𝑎|𝑏) = 𝑃(𝑎, 𝑏) 𝑃(𝑏)⁄                                                   (1) 

or  

𝑃(𝑎|𝑏) ∗ 𝑃(𝑏) = 𝑃(𝑎, 𝑏)                                                 (2) 

in which 𝑃(𝑎, 𝑏) is the joint probability of event 𝑎 ∧ 𝑏.  

 It is known that 𝑃(𝑎, 𝑏) = 𝑃(𝑏, 𝑎). Thus, from Eq. 2 we have 

𝑃(𝑎|𝑏) ∗ 𝑃(𝑏) = 𝑃(𝑏|𝑎) ∗ 𝑃(𝑎)                                            (3) 

that will result in 



𝑃(𝑎|𝑏) =  𝑃(𝑏|𝑎) ∗ 𝑃(𝑎) 𝑃(𝑏)⁄ .                                            (4) 

 Eq. 4 is the Bayes’ theorem [Neapolitan 2003], which is the core of a BN, 

allowing probabilities to be updated under the light of a new evidence. Indeed, the 

Bayes’ theorem updates the knowledge (priori probability) of an event considering 

new/additional evidence (conditional probability), allowing one to have a plausible 

reasoning based on a degree of belief (posteriori probability). This ability to compute 

posteriori probabilities given some evidence is called inference. 

 The effectiveness of a BN lies in the possibility to compute through Bayes’ 

theorem not only the probability distributions for descendent variables given the values 

of their parents, but also the distributions of the parents given the values of their 

descendants. That is, the BN allows to know the effects given the causes and the causes 

given the effects [Uusitalo 2007; Aguilera et al. 2011]. 

 The joint distribution is computed by the product of prior and conditional 

probabilities for each variable given its parents, as 

𝑃(𝑥1, … , 𝑥𝑛) = ∏ 𝑃(𝑥𝑖|𝑝𝑎𝑖)

𝑛

𝑖=1

 

in which 𝑥𝑖 is the value observed for the variable 𝑋𝑖 and 𝑝𝑎𝑖 is the set of 

values for 𝑋𝑖’s parents. 

3. The original BayNeRD algorithm 

The first version of the BayNeRD algorithm implemented by Mello et al. (2013) is 

available on Internet. Figure 2 shows the procedures used to apply the BayNeRD 

system in a study case to identify soybean plantations in Mato Grosso State, Brazil. 

 The BayNeRD algorithm has been implemented in R software [R Core Team 

2014]. The algorithm handles raster data in GeoTiff format, where each GeoTiff 

corresponds to a variable (node) of the network. The variable that represents the 

phenomenon under study is named target variable and the remaining variables are 

named context variables.  

 There are packages already implemented in R software to handle spatial data. 

GeoTiff files were originally loaded by rgdal package [Bivand et al. 2014], which 

makes bindings to Geospatial Data Abstraction Library (GDAL). 

(5) 



 

Figure 2. Procedures for using BayNeRD in remote sensing applications [Mello 
et al. 2013]. 

3.1. Target and Context Variables 

The GeoTiff that represents the target variable must be provided as reference data for 

training. Its pixels can be categorized in four labels: (i) target presence; (ii) target 

absence; (iii) missing data (no observation); and (iv) pixels outside the study area. 

Although the target variable GeoTiff may contain more than four labels, it must have at 

least two: (i) and (ii) [Mello et al. 2013]. 

 The context variables can be either numerical (e.g., pixels with digital numbers) 

or categorical (e.g., thematic map); and they can contain also missing data. The context 

variables can have dependence relationship with target variable and/or among 

themselves. Furthermore, in the original version of BayNeRD, all GeoTiffs (for the 

target variable as well as for all context ones) must be compatible in relation to pixel 

size and coordinate system and all variables (target and context) must represent the 

same geographic area. 

3.2. Bayesian Network Graphical model 

After reading the target and the context variables into BayNeRD, the algorithm interacts 

with the user to design a BN graphical model. In the original version, the user is asked 

about the dependence relations among all variables. As dependencies are represented by 

arrows in a DAG, BayNeRD asked if there was an arc from a variable to all the others 

(pairwise). 



 Among the packages already implemented in R software to compute Bayesian 

analysis, the catnet package [Balov and Salzman 2013] has been developed to handle 

discrete BNs.   

3.3. Discretization and Probability Functions 

One of the main difficulties of applying BNs for real problems is to define the 

probability functions. According to Mello et al. (2013), BayNeRD was developed to 

interact with the user to define the probability functions through discretization processes 

of the context variables based on his/her knowledge. In the discretization, observed 

values of a variable are represented by discrete quantities (similar to process of drawing 

a histogram). In other words, the range of observed values is divided into intervals 

defined by the user. 

 In BayNeRD, the number of intervals can be computed following three criteria: 

(i) equidistant, in which intervals with the same width, (ii) quantile, in which intervals 

tends to have the same number of elements (pixels), and (iii) manually, in which the 

user defines the limits of each interval. The discretization will impact the probability 

functions, which are computed through pixel counting to both the dependence relations 

defined in the graphical model and the intervals defined in the discretization process. 

The user should be skilled to define the suitable intervals for each context variable so 

that all scenarios (i.e., combination of variable’s and its parent’s intervals) have 

representative data to compute the probability functions [Mello et al. 2010]. Besides, 

defined probability functions shall be representative of the real probability functions. 

3.4.Probability Image 

When the probability of target occurrence is computed for each pixel inside the study 

area, given a specific scenario, a Probability Image (PI) is formed. The PI consists of a 

raster data and it is the main result of BayNeRD. 

 Suppose that in the example of Figure 1 the variable 𝑋3 is the target variable. 

The probability image will be formed by computing 

𝑃(𝑋3 = 1|𝑋1 = 𝑥1, 𝑋2 = 𝑥2)                                        (7) 

for each pixel in the study area; where 1 is used to represent target presence. 

4. BayNeRD enhanced version 

To enhance the BayNeRD algorithm and to keep it updated with new R packages, 

several improvements have been added to it. Following, we will describe the changes 

implemented in BayNeRD through a comparative process between the original and the 

enhanced version.  

 As mentioned before, there are some packages that handle raster data in the R 

software [R Core Team 2014] (such as rgdal package, used in the BayNeRD original 

version). The ‘raster’ package [Hijmans et al. 2014] provides several high-level raster 

data manipulation functions and showed to be more suitable for BayNeRD. A 

noteworthy feature of this package is that it allows working better with large raster 

datasets stored on disk, which makes the processing faster, since the package does not 

read all the values of cell’s raster into memory. The package creates objects from large 



files that only contain information about the data (e.g., filename, pixel size, extent) and, 

in computations with the pixels, the data are processed in chunks [Hijmans 2014]. 

 Considering the advantages of ‘raster’ package over the rgdal package, we 

added it into BayNeRD in order to optimize the raster data (GeoTiff) processing for 

both target and context variables. 

4.1. Target variable 

In the original BayNeRD version, the target variable is instantiated in two values: 1 and 

0, representing presence and absence, respectively. In the enhanced BayNeRD version, 

the target variable may have more than two instantiations. For instance, the target 

variable raster may have label 1 for the thematic class A, label 2 for the thematic class B 

and 0 for the target absence. This change will affect the definition of probability 

functions and BayNeRD’s outputs. In addition, the raster data may still contain labels 

representing missing data and also labels representing pixels outside the study area as 

before, which will be used only to mask out pixels outside the study area in the context 

variables. 

4.2. Context variables 

One of the main benefits of enhancing BayNeRD with the ‘raster’ package is to reduce 

the preprocessing data step. In the enhanced BayNeRD version, raster data may have 

different structures unlike the original version, in which all raster data must have 

compatible pixel size, extent (number of rows and columns) and coordinate reference 

system. 

 Each input context variable in the BayNeRD system is transformed to be 

compatible with target variable. That is, through ‘raster’ package functions the 

algorithm is able to transform the coordinate reference system, to resample the spatial 

resolution, and to intersect the raster data according to the bounding box of target 

variable as shown in Figure 3. In this case, a new raster data is created following the 

target variable’s bounding box. The pixels are interpolated from the context variable 

using the nearest neighbor method to minimize distortions. If a region has no 

intersection between the context and the target variables, their pixels are filled with NA 

values (Not Available), indicating missing value. 

 

Figure 3. Different possibilities for intersection between context variable and 
target variable. 

4.3. Bayesian Network Graphical model 

The interactive process to state dependence relationships among the variables was 

substantially enhanced in BayNeRD. Before improvements, R interacted with the user 

by command line asking whether an arc exist for each pairwise variable. That is, for 



each context variable the algorithm ask (𝑛 − 1) questions, in which 𝑛 is the number of 

variables. Therefore, the user must answer 𝑛 ∗ (𝑛 − 1) questions, that is, the growth of 

configuration questions is exponential. 

 In the enhanced BayNeRD, we implemented a more efficient way to define 

dependence relationships among the variables. The R software has also packages to 

handle with DAGs, and to perform Bayesian analysis. We created a new BN graphical 

model interface through the integration of both packages ‘deal’ [Bottcher and 

Dethlefsen 2013] and ‘bnlearn’ [Scutari 2009]. The first one allows the user to specify a 

BN through a point and click interface and the second one is used for Bayesian analysis 

and inference. Figure 5 shows the new interface implemented in the enhanced 

BayNeRD version. 

 

Figure 4. Interface to design the Bayesian Network graphical model. 

 In this interface, the user can insert or remove arcs between pairwise variables 

using either ‘Add’ or ‘Remove’ buttons and clicking on the variables. To insert/remove 

an arrow from node 𝑋1 to node 𝑋2, first click on “Add”/“Remove” button, then click on 

node 𝑋1 and then click on node 𝑋2. The interface also helps the user to avoid mistakes. 

For example, if the user enters an arrow to create a cycle it will not be drawn since the 

BN graphical model shall represent a DAG (acyclic). Therefore, the task of BN 

graphical model building becomes now easier and quicker compared to the previous 

BayNeRD version. 

4.4. Discretization and Probability Functions 

During the discretization process, the intervals can be defined by the user or following 

the criteria mentioned earlier – equidistance and quantile. These criteria were kept in the 

enhanced BayNeRD version and additional criterion was added. Now, the user may 

choose clustering criteria to convert continuous variables into categorical variables. This 

criteria is an unsupervised method through 𝑘-means clustering to partition the observed 

values of each context variables into 𝑘 clusters defined by user, in which each value 

belongs to the cluster with the nearest mean [Hahsler et al. 2014]. 

 The range of observed values for a context variable are divided into intervals, 

defined by lower and upper limits, and each interval is encoded as one category. Thus, a 

context variable will have 𝑛 categories if it is discretized into 𝑛 intervals. The 



probability functions are computed by counting categorical pixels for each context 

variable and taking into account their (in)dependence relationships. However, the user 

must also perform the discretization process for the target variable once the target 

variable may contain more than two labels in the enhanced BayNeRD version. 

4.5. Probability Image 

The number of instantiated values for the target variable defines also the number of 

output layers in the Probability Image (PI). Let’s suppose that the variable 𝑋3 (in 

Figure 1) is the target variable and the phenomenon occurrence is represented by three 

thematic classes: 𝑋3 = 1, 𝑋3 = 2 or 𝑋3 = 3. In this case, we have one output layer with 

probability values for each class (presence). Each output layer is now called Probability 

Band (PB), and the stacking of PBs creates the Probability Image (PI) in the enhanced 

BayNeRD version. 

 Through the bnlearn package, queries are performed into CPTs and the system 

returns the probability of an event, given all observed evidences. A combination of 

evidences stated by the instantiation of all observed context variable is called scenario. 

Given the example in Figure 1, the PBs are computed, respectively, as 

𝑃(𝑋3 = 1|𝑋1 = 𝑥1, 𝑋2 = 𝑥2)                                             (8) 

𝑃(𝑋3 = 2|𝑋1 = 𝑥1, 𝑋2 = 𝑥2)                                             (9) 

𝑃(𝑋3 = 3|𝑋1 = 𝑥1, 𝑋2 = 𝑥2).                                          (10) 

 For a given scenario, there are three events to compute associated probabilities. 

Consequently, the PBs are computed simultaneously to optimize the algorithm. If any 

context variable has missing data for any specific pixel, the probability for this pixel is 

computed anyway. It is even possible to compute 𝑃(𝑋3 = 𝑥3) for pixels without any 

observation through the priori probability, as in the original version. 

5. Conclusion 

The Bayesian Network for Raster Data – BayNeRD proposed by [Mello et al., 2013] 

represents a new probabilistic approach for raster data applications. This paper 

described the improvements made upon the original BayNerD algorithm that provided 

an enhanced BayNeRD version. Although this version has not been extensively tested, 

we do believe that it is more efficient and more user-friendly.  

 BayNeRD was enhanced to best handle raster data, also minimizing 

preprocessing of raster images. Indeed, the enhanced BayNeRD version handles raster 

datasets with different coordinate systems, spatial resolution and extent. A new BN 

graphical model interface is the most noticeable improvement in BayNeRD. It was also 

added the ability to model more than two possible instantiations for the target variable. 

The algorithm computes the probability for each possible target value given the 

observations made upon the context variables and then creates several Probability 

Bands (PB) that, when stacked, produce a Probability Image (PI) as outcome. 

 As future research, we plan to include spatial features (neighborhood 

information, for example) in the probability computation, and also to improve the 

algorithm efficiency by using parallel processing techniques. Also, we plan to 

exhaustively test the enhanced version comparing to the original one. The enhanced 



BayNeRD version is still under construction and it will be available on Internet as soon 

as it is ready. 
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