OTIMIZAÇÃO DOS PARÂMETROS DE DEPOSIÇÃO DE FILMES DE DLC (DIAMOND LIKE CARBON) FUNÇÃO DA POLARIZAÇÃO E LARGURA DO PULSO EM SUPERFICÍE Ti₆Al₄V

Bruna Henrique da Silva¹ (ETEP Faculdades, Bolsista PIBIC/CNPq). Vladimir Jesus Trava-Airoldi² (LAS/CTE/INPE, Orientador).

RESUMO

O estudo de filmes de carbono tipo-diamante (DLC – Diamond-like Carbon) é recentemente de grande interesse para grupos tecnológicos e científicos, isso se deve às propriedades deste que são atraentes do ponto de vista tecnológico, tais como elevada dureza, baixo coeficiente de atrito, inércia química, isolantes elétricos, bio - compatíveis, possibilidade de deposição em substratos metálicos de diferentes formas, entre outras características. Este trabalho consiste na obtenção de uma relação clara dos parâmetros de descarga e geração do plasma em função da alta tensão de polarização na deposição do filme de DLC em substratos de liga de Titânio (Ti₆AI₄V) muito empregada em aplicações espaciais e industriais. A deposição do filme foi realizada a partir da técnica de deposição química na fase vapor assistida por plasma (Plasma Enhanced Chemical Vapor Deposition - PECVD), esse método trata-se de uma descarga em plasma de baixa pressão utilizando uma fonte chaveada pulsada para a geração do plasma e deposição dos filmes de DLC nos substratos. Uma mistura de hidrocarbonetos, como por exemplo, o metano (CH₄), tolueno (C₇H₈) ou acetileno (C₂H₂) foram utilizados como precursores para a deposição de DLC com alta aderência sobre o substrato de Ti₆Al₄V. Foram efetuadas algumas técnicas de caracterização, como espectroscopia de espalhamento Raman, perfilometria e ensaios tribológicos que avaliaram a qualidade dos filmes e adesão com o substrato utilizado.

¹Aluna do curso de Engenharia Elétrica – E-mail: bruna 12 78@hotmail.com

²Pesquisador do Laboratório Associado de Sensores e Materiais - E-mail: vladimir@las.inpe.br