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One possible description for the current accelerated expansion of the Universe is quintessence dynamics.
The basic idea of quintessence consists of analyzing cosmological scenarios driven by scalar fields. In this
work we present some interesting features on the cosmological scenario obtained from the solutions of an
effective two scalar field model in a flat space-time. This effective model was constructed by coupling two
single scalar field systems in a nontrivial way via an extension method. The solutions related to the fields
allowed us to compute analytical cosmological parameters. The behavior of these parameters are
highlighted, as well as the different epochs obtained from them.
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I. INTRODUCTION

It is well known that presently the Universe is undergoing
a phase of accelerated expansion. The observational evi-
dence for this phenomenon came from the study of super-
novae type Ia by the groups Supernova Cosmology Project
[1] and High Redshift Supernova Team [2]. In independent
work, both groups expected supernova brightness to be
greater than their redshifts would theoretically suggest
under the assumption of a nonaccelerated expansion.
However, they observed that the brightness was lower than
predicted, unveiling an accelerated expanding Universe.
Since then, many models have been proposed to explain

theoretically this accelerating Universe, whose cause is
named dark energy (DE). The most popular (and simplest)
posits that the acceleration is due to quantum vacuum
energy, described by the presence of a cosmological constant
Λ in the Einstein field equations. Although this model
succeeds in explaining supernova Ia luminosity distance
measures [1,2], the x-ray spectrum of clusters of galaxies [3],
baryon acoustic oscillations [4,5] and galaxy age data [6],
when we compare the value of the quantum vacuum energy
obtained from observational cosmology data [7] with the
value computed using particle physics [8], the discrepancy
between them obligates us to examine other DE models.
Someusefulsourcesintreatingcosmicinflation[9]andDE

are the cosmological models involving scalar fields, which
are the subject of this work. The theory of cosmological
evolution based on scalar fields has been investigated in
several areas covering the classical and the quantum level of
the expanding universe. Moreover it has been considered in
frameworks with inhomogeneous space-times, also known as
stochasticinflation[10].Thisstochasticapproachcharacterizes
the quantum field fluctuations’ generation and evolution,

which are supported by temperature fluctuations in the cosmic
microwavebackgroundradiation.Sofar,manymodelsdescrib-
ing the dynamics of the Universe driven by a scalar field have
been proposed [11–18] (and others), and in some cases, the
scalar field ϕðtÞ is named quintessence. The basic idea of
quintessence consists of analyzing cosmological scenarios by
adding a Lagrangian density of a scalar field (hereafter called
“Lagrangian”) to theEinstein-Hilbert action. Some reviewson
this subject can be found in [19–24] and references therein.
By including a scalar field in the action, one obtains

cosmological solutions based on the equations of motion,
related to the dynamics of the field, which are second-order
differential equations. Our proposal in this study is to work
with analytical fields. We follow the investigation introduced
in [25], where it was shown how to determine first-order
differential equations involving one scalar field, whose
solutions satisfy the equations of motion for cosmology.
The methodology was extended to two scalar field models
and to deformed theories, as in Refs. [25,26]. Another point
to be emphasized is that such a formalism is well established
in the standard Friedmann-Robertson-Walker (FRW) cos-
mology, and also in tachyonic scalar field dynamics, as
pointed out in [24,25,27,28]. Moreover, a recent study shows
some interesting aspects about twinlike behavior between
the standard and the tachyonic dynamics [29].
A great advantage of this method is that we can usually

obtain analytical physical parameters in flat or curved space-
time scenarios. However, when we deal with two real scalar
field systems, the first-order differential equations can be
coupled nontrivially and, in several situations, they do not
have analytical solutions. Because of this property the
analytical models are limited to a few solvable examples
when there are two real scalar fields. Thus, in order to study
more general scalar field models with analytical defects, we
are going to apply the extension procedure developed by
Bazeia et al. [30] in the standard FRW cosmology.
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This extension map is based on the determination of two
scalar field models from the coupling between two single
scalar field systems. As mentioned in Ref. [30], a relevant
featureof theextensionmethod is that theanalytical solutions
of the one scalar field models satisfy the resultant two scalar
field system. In principle, by applying the method, we can
infer the main behavior of the physical parameters since we
are coupling two standard one-field models. However, this
current procedure gives us unpredictable results for some
physical parameters, which we discuss carefully.

II. GENERALITIES

In this section, we briefly review the first-order formalism
considering one and two scalar fields coupled to gravity, as
presentedbyBazeiaetal. in [25].Letusworkwitha two-field
cosmological model described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
R
4
þLðϕi; ∂μϕiÞ

�
: (1)

In our notation, i ¼ 1; 2, ϕ1 ¼ ϕðtÞ, ϕ2 ¼ χðtÞ, 4πG ¼ 1,
c ¼ 1. Furthermore, here g represents the determinant of the
metric and R is the Ricci scalar. The minimization of the
action leads us to the equation of motion

Rμν −
1

2
gμνR ¼ 2Tμν; (2)

with the following energy-momentum tensor:

Tμν ¼ 2
∂L
∂gμν − gμνL; (3)

whose components are Tμν ¼ ðρ;−p;−p;−pÞ, where ρ and
p are the total energy density and pressure of the Universe,
respectively.
Once we are dealing with the standard FRW metric, the

differential metric length has the form

ds2 ¼ dt2 − a2ðtÞ
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
; (4)

where aðtÞ is the scale factor and k is the curvature
parameter. With k ¼ 0 we have a flat space-time, with
k ¼ 1 spherical curvature, and with k ¼ −1 hyperbolic
geometry. Moreover, the Friedmann equations are

H2 ¼ 2

3
ρ −

k
a2

; H ¼ _a
a
; (5)

and

ä
a
¼ −

1

3
ðρþ 3pÞ; q̄ ¼ äa

_a2
¼ 1þ

_H
H2

; (6)

where H and q̄ are the Hubble and the acceleration
parameters. Another relevant physical quantity is given by

ω ¼ p
ρ
; (7)

known as the equation of state (EoS) parameter.

A. First-order formalism for one scalar field
in a flat space-time

We develop the first-order formalism considering only a
single field, which means taking ϕ2 ¼ 0 in (1). Then the
standard scalar Lagrangian is simply

L ¼
_ϕ2

2
− VðϕÞ; (8)

leading to the equation of motion

ϕ̈þ 3H _ϕþ Vϕ ¼ 0; (9)

and in this description it is straightforward to check that

ρ ¼ _ϕ2 þ VðϕÞ; p ¼ _ϕ2 − VðϕÞ (10)

are the density and the pressure due to the scalar field.
Furthermore, the Friedmann equations have the form

H2 ¼ 2

3

�
_ϕ2

2
þ V

�
−

k
a2

; _H ¼ − _ϕ2 þ k
a2

: (11)

The next step is to define H ¼ WðϕÞ and here we are
interested in a flat space-time description, which means
k ¼ 0, so

_H ¼ Wϕ
_ϕ; (12)

which directly leads us to the first-order differential
equation for ϕðtÞ, given by

_ϕ ¼ −Wϕ: (13)

Moreover, the previous assumption for the Hubble param-
eter implies that the scalar potential has the form

V ¼ 3

2
W2 −

W2
ϕ

2
: (14)

This general first-order formulation is also known as the
Hamilton-Jacobi approach and more details can be found
in Salopek and Bond [10], Kinney [31], and also in
Refs. [32,33].
As we mentioned, it is not easy to solve the cosmological

equations of motion analytically, and sometimes it is
necessary to use approximation methods as the slow-roll
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regime [34–36]. The slow-roll approximation requires ϕ̈
and _ϕ2 to be small, in such a way that the one-field
dynamics are rewritten as

3H _ϕ≃ −Vϕ: (15)

Moreover, the assumption _ϕ2=2 ≈ V implies that

H2 ≃ 2

3
V; ρ ≈ V; ρ ≈ −p; (16)

meaning that ω ≈ −1. However, our approach is based on
analytically solvable models. Consequently, there is no
sense in neglecting either ϕ̈ or _ϕ2.
The same argument is valid for the effective two scalar

field model.

B. First-order formalism for two scalar fields
in a flat space-time

In the two scalar field approach, the Lagrangian density
is

L ¼
_ϕ2

2
þ _χ2

2
− Vðϕ; χÞ; (17)

which leads us to the equations of motion

ϕ̈þ 3H _ϕþ Vϕ ¼ 0; χ̈ þ 3H _χ þ Vχ ¼ 0: (18)

Consequently, the energy density and pressure are

ρ ¼
_ϕ2

2
þ _χ2

2
þ Vðϕ; χÞ; p ¼

_ϕ2

2
þ _χ2

2
− Vðϕ; χÞ;

(19)

and we also determine the following expressions for the
Hubble parameter in a flat space-time:

H2 ¼
_ϕ2

3
þ _χ2

3
þ 2

3
Vðϕ; χÞ; _H ¼ − _ϕ2 − _χ2: (20)

Then, by defining H ¼ Wðϕ; χÞ, we directly obtain the
first-order differential equations

_ϕ ¼ −Wϕðϕ; χÞ; _χ ¼ −Wχðϕ; χÞ; (21)

and the scalar potential

Vðϕ; χÞ ¼ 3

2
Wðϕ; χÞ2 −Wϕðϕ; χÞ2

2
−
Wχðϕ; χÞ2

2
: (22)

This two-field description is also named “hybrid infla-
tion” as pointed out by Kinney in [31], where an approach
based on the Hamilton-Jacobi formalism was applied.
Kinney considered the scalar field matter equation of state
as the fundamental quantity in the dynamical equations
instead of the expansion rate.
As mentioned, we search for analytic models, and a well-

known technique to solve the expressions presented in (21)
is the integrating factor method rewriting the first-order
differential equations as

ϕχ ¼
dϕ
dχ

¼ Wϕ

Wχ
: (23)

In general, this equation is nonlinear and its integration
yields to a relation between the fields ϕ and χ known as the
orbit equation.
These are the most important aspects of the first-order

formalism used in this study.

III. THE EXTENSION METHOD

Here we summarize the basic theory behind the exten-
sion procedure by following the concepts presented in [30].
Let us begin by writing our field ϕðtÞ as

ϕ ¼ fðχÞ; χ ¼ f−1ðϕÞ; (24)

where the function fðχÞ is invertible and called the
“deformation function” [37]. We are also assuming that
χðtÞ describes another one-field theory model. The pre-
vious definition leads us to

_ϕ ¼ fχ _χ; (25)

yielding the first-order differential equations

_ϕ ¼ −WϕðϕÞ ¼ −fχWχðχÞ; _χ ¼ −WχðχÞ: (26)

The last relations can be rearranged as

ϕχ ¼ fχ ¼
WϕðχÞ
WχðχÞ

; (27)

which has a structure similar to Eq. (23). The main idea of
the extension method is to use the deformation function and
its inverse to express (27) as

ϕχ ¼
Wϕ

Wχ
≡ a1WϕðχÞ þ a2Wϕðϕ; χÞ þ a3WϕðϕÞ þ c1gðχÞ þ c2gðϕ; χÞ þ c3gðϕÞ

b1WχðχÞ þ b2Wχðϕ; χÞ þ b3WχðϕÞ
; (28)
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with WϕðϕÞ ¼ WϕðχÞ ¼ Wϕðϕ; χÞ, WχðχÞ ¼ WχðϕÞ ¼
Wχðϕ; χÞ, and gðϕÞ ¼ gðχÞ ¼ gðϕ; χÞ. Furthermore, the
constraints a1 þ a2 þ a3 ¼ 1, b1 þ b2 þ b3 ¼ 1, and c1 þ
c2 þ c3 ¼ 0 must be satisfied.
Thus we recognize (28) as the first-order differential

equation related to the orbit between the fields ϕ and χ.
As is well known, the functions Wϕ and Wχ , in this

effective system, need to obey

Wϕχ ¼ Wχϕ; (29)

and from Eq. (28) we can redefine Wϕ as

Wϕ ¼ a1WϕðχÞ þ a2Wϕðϕ; χÞ
þ a3WϕðϕÞ þ c1gðχÞ þ c2gðϕ; χÞ þ c3gðϕÞ; (30)

and Wχ as

Wχ ¼ b1WχðχÞ þ b2Wχðϕ; χÞ þ b3WχðϕÞ: (31)

Therefore, by applying (29) we find the second con-
straint relation

b2Wχϕðϕ; χÞ þ b3WχϕðϕÞ ¼ a1WϕχðχÞ þ a2Wϕχðϕ; χÞ
þ c1gχðχÞ þ c2gχðϕ; χÞ;

(32)

which we use to determine the function g, completing the
necessary ingredients to calculate our effective superpo-
tential for the two-field model.

IV. THE EFFECTIVE MODEL—EXAMPLE

In this example, we use the extension procedure in order
to construct an effective model with

WðϕÞ ¼ Aϕ2 þ B; _ϕ ¼ −WϕðϕÞ ¼ −2Aϕ; (33)

with analytical solution

ϕðtÞ ¼ e−2At; (34)

and by

WðχÞ ¼ α coshðβχÞ; _χ ¼ −WχðχÞ ¼ −αβ sinhðβχÞ;
(35)

where the field χðtÞ is

χðtÞ ¼ 2

β
arccothðeαβ2tÞ: (36)

These two models were studied in more detail in Refs. [25]
and [26]. It is straightforward to check that the deformation
function which connects the two systems is

ϕ ¼ fðχÞ ¼
�
coth

�
βχ

2

��
− 2A
αβ2 : (37)

We can write WϕðϕÞ and WχðχÞ in an equivalent form,
using the deformation function. Such a procedure leads us
to the set of equations

WϕðϕÞ ¼ 2Aϕ;

WϕðχÞ ¼ 2A

�
coth

�
βχ

2

��
− 2A
αβ2 ;

WχðχÞ ¼ αβ sinhðβχÞ;

WχðϕÞ ¼ 2αβ
ϕ−αβ2

2A

ϕ−αβ2

A − 1
; (38)

and for simplicity, we do not consider the forms Wϕðϕ; χÞ
andWχðϕ; χÞ, which is the same as taking a2 ¼ b2 ¼ 0. We
also choose c1 ¼ 0, implying
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FIG. 1 (color online). Plots of parameters HðtÞ and aðtÞ, where
A ¼ 5, α ¼ −1, β ¼ 3=2, a0 ¼ 3=2, and B ¼ −3 for the black
(dot-dashed) curve, a0 ¼ 1=32 and B ¼ 0 for the red (thicker)
curve, a0 ¼ 1=64 and B ¼ 1 for the blue (thin) curve, and A ¼ 5,
α ¼ −2, β ¼ 1=2, a0 ¼ 1=16, B ¼ −2 for the green (dashed)
curve. The values of a0 were chosen in order to show the
parametric behavior for the different scenarios. Moreover, a ¼ 1
indicates the present value of the parameter.
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c2gðϕ; χÞ ¼ −2a1A
�
coth

�
βχ

2

��− 2A
αβ2

þ b3α2β3

A
ϕ

αβ2

2A−1ðϕαβ2

A þ 1Þ
ðϕαβ2

A − 1Þ2
χ; (39)

and by applying the deformation function, we find that

c2gðϕÞ ¼ −2a1Aϕþ 2b3α2β2

A
ϕ

αβ2

2A−1ðϕαβ2

A þ 1Þ
ðϕαβ2

A − 1Þ2

× arccoth

�
ϕ−αβ2

2A

�
: (40)

With these ingredients, we determine that the superpoten-
tial for our effective two scalar field model is given by

Wðϕ; χÞ ¼ Aϕ2 þ Bþ 2b3αβ
ϕ−αβ2

2A

ϕ−αβ2

A − 1
χ

−
2b3α

ϕ
αβ2

A − 1

�
1 − 2ϕ

αβ2

2A arccoth
�
ϕ−αβ2

2A

	�

þ b1α coshðβχÞ: (41)

Therefore, we can use the superpotential together with
our analytical solutions [Eqs. (34) and (36)] to compute the
Hubble parameter HðtÞ, the scale factor aðtÞ, the accel-
eration parameter q̄ðtÞ, the EoS parameter ωðtÞ, the density
ρðtÞ and the pressure pðtÞ.
Here we focus on the simplest coupling configuration

between the fields ϕ and χ, corresponding to b1 ¼ 1 and
b3 ¼ 0. The details concerning the behavior of the physical
parameters for such a choice are shown in Figs. 1, 2, and 3.
Furthermore, the explicit forms of HðtÞ, aðtÞ, and ωðtÞ are
presented below:

HðtÞ ¼ Bþ Ae−4At þ α cosh ½2arccothðeαβ2tÞ�; (42)

aðtÞ ¼ a0½2ð1 − e2αβ
2tÞ�β−2 exp

�
−
1

4
e−4At þ ðB − αÞt

�
;

(43)

ωðtÞ ¼ 8A2 coshð4AtÞ − 3½Bþ Ae−4At þ α coth ðαβ2tÞ�2 þ 2α2β2csch2ðαβ2tÞ − 8A2 sinhð4AtÞ
3½Bþ Ae−4At þ α coth ðαβ2tÞ�2 : (44)

We also obtain such analytical parameters in the case
b3 ≠ 0, which is shown in Fig. 4, where we plot the time
evolution of ω.
A remarkable feature of this effective hybrid model is

that we can explore the cosmological parameters by means
of the time evolution of the fields. Therefore, we do not
need to consider any kind of specific regime for ϕðtÞ or
χðtÞ, representing a more general description than those
reported on previous studies concerning the two-field
approach, as the one presented in [31].
The properties of the analytical parameters obtained

above, as well as their time evolution, are discussed in more
detail in the next sections.

V. DIMENSIONAL ANALYSIS

Here we want to motivate the cosmological interpreta-
tions reported later in Sec. VI.

Firstly, we see from Eq. (43) that the nondimensional
property of the scale factor is respected, since it is given by
the product of an exponential with an arbitrary nondimen-
sional constant. Recall that the scale factor, which is equal
to 1 at present and is independent of location or direction in
FRW cosmology, tells us how the expansion of the
Universe depends on time.
The dimension of the Hubble parameter HðtÞ in Eq. (42)

is directly connected to the dimension of the constants A, B,
and α. From (42) we see that it would be interesting if those
constants had the dimension inverse time, which is in fact
the Hubble parameter dimension, since from Hubble’s law,
v ¼ HðtÞr, with v being the recession (or approximation, in
the case of the local group) velocity of the Galaxy and r the
distance to it. Equation (43) only strengthens this
assumption. One can see that for the argument of the first
exponential to be dimensionless, ½α� ¼ ½β� ¼ ½t�−1, as also
required in the second exponential.
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FIG. 2 (color online). Here we show the different forms of the
acceleration parameter q̄ðtÞ, where we considered A ¼ 5,
α ¼ −1, β ¼ 3=2 with B ¼ −3 for the black (dot-dashed) curve,
B ¼ 0 for the red (thicker) curve, B ¼ 1 for the blue (thin) curve,
and A ¼ 5, α ¼ −2, β ¼ 1=2, B ¼ −2 for the green (dashed)
curve.
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To solve the Friedmann equations for the energy density
ρ and pressure p, an EoS, i.e., a mathematical relation
between p and ρ, might be useful. For cosmological
purposes, the EoS can be written in a linear form as
Eq. (7), with ω being a dimensionless number if we take
c ¼ 1, since ½p�=½ρ� ¼ ½c�2. One can check that ω is,
indeed, dimensionless in Eq. (44).

VI. COSMOLOGICAL INTERPRETATIONS

In this section we show that our model presents physical
and cosmological consistence for some given values of A,
B, α, and β. The goal is to analyze Figs. 1–4 from the
perspective of the cosmological parameters’ behavior
predicted by the ΛCDM cosmological scenario.
Since H ∼ t−1, with t being the Hubble time, HðtÞ must

decrease with time [38], as observed in Fig. 1. Also, we
discard the black (dot-dashed) curve once it allows negative
values of HðtÞ, which is a physical inconsistency in an
expanding Universe, since from Eq. (5), HðtÞ ¼ _a=a,
where a as a function of the redshift z is given by
a ¼ 1=ð1þ zÞ, in such a manner that it must increase as
time passes by (redshift decreases).
An interesting feature about the black (dot-dashed) curve

for aðtÞ in Fig. 1 is the bump for small values of t. In the
inflationary phase, when the energy density of the Universe
is dominated by a (cosmological) constant, the Friedmann
equation solution is a scale factor that grows exponentially
with time as aðtÞ ∝ eHιt, with Hι being the value of the
Hubble parameter during inflation [38]. This bump might
thus represent the inflationary phase. Nevertheless, in the
present case, the black (dot-dashed) curve for HðtÞ has
been discarded, so for cosmological purposes, all the curves
with A ¼ 5, α ¼ −1, β ¼ 1.5, a0 ¼ 3=2, and B ¼ −3 must
also be discarded.
However, in Fig. 1, one can see that the green (dashed)

curve for aðtÞ represents _a → 0 for large values of t, which
implies a null Hubble parameter. This observation com-
bined with the anomalous behavior of the acceleration
parameter of the green (dashed) curve (see Fig. 2) con-
figures an unpleasant cosmological scenario. Therefore, we
focus our attention on the blue and red curves.
In Figs. 3–4, we plot the EoS parameter ω. We zoom in

on the blue (thin) curve in Fig. 3, and in order to clarify its
features, let us briefly review some aspects concerning the
density of the Universe and the EoS parameter.
The conservation of the energy-momentum tensor

(∇μTμν ¼ 0) in standard Einstein’s field equations results in

ρ ¼ ρ0a−3ð1þωÞ (45)

for the density of the Universe if we consider ρ0 a constant
and a0 ¼ 1 the present value of the scale factor.
In the cosmology derived from general relativity, there are

three regimes in which the Universe’s dynamics is domi-
nated, respectively, by radiation, matter, and cosmological
constant [39]: the relativistic matter scenario, related to ω ¼
1=3 (which implies ρr ∝ a−4); the nonrelativistic matter
scenario, related to ω ¼ 0 (ρm ∝ a−3); and the quantum
vacuum scenario, corresponding to ω ¼ −1 (ρΛ ¼ ρ0).
From the blue (thin) curve in Fig. 3, note that for early

times, ω assumes the value 1=3 and values near to it, which
shall represent the radiation dominated era. As the Universe
expands and cools down, the matter-radiation decoupling
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FIG. 4 (color online). This figure shows the EoS parameter with
b3 ¼ b1 ¼ 1=2, A ¼ 5, α ¼ 1, β ¼ 3=2 and B ¼ −3 for the black
(dot-dashed) curve, B ¼ 0 for the red (thicker) curve and B ¼
1=2 for the blue (thin) curve. We also present A ¼ 5, α ¼ −2,
β ¼ 1=2 and B ¼ −2 in the green (dashed) curve. Note the
similarity between these results and those illustrated in the lower
panel of Fig. 3.
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FIG. 3 (color online). Plots of ωðtÞ, with A ¼ 5, α ¼ −1,
β ¼ 3=2, B ¼ −3 in the black (dot-dashed) curve, B ¼ 0 in
the red (thicker) curve, B ¼ 1 in the blue (thin) curve, and A ¼ 5,
α ¼ −2, β ¼ 1=2, B ¼ −2 in the green (dashed) curve. The figure
in the lower panel shows in more detail the plateaulike behavior
of ωðtÞ, which occurs in the blue (thin) curve.
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makes the Universe propitious to form the stars and larger
structures, as galaxies and clusters of galaxies. This era is
dominated, then, by matter, with p ¼ 0 (ω ¼ 0), which in
Fig. 3 is presented as a plateaulike behavior of the blue
(thin) curve for a non-negligible period of time. Note also
that for high values of time, ω → −1, in agreement with
recent observations of the Planck satellite [7], which, by
using baryon acoustic oscillations and cosmic microwave
background data, have constrained the EoS parameter
to ω ¼ −1.073þ0.090

−0.089 .

VII. FINAL REMARKS

Nowadays the first-order formalism based on one scalar
field models is commonly used to describe quintessence
scenarios for the accelerated expansion of the Universe.
Reference [26], for instance, showed how to apply the
deformation procedure in order to determine new analytical
solutions for the one-field systems. In the two scalar fields’
description, there are several difficulties in integrating the
dynamical equations. Furthermore, the standard approach
of the deformation method is nontrivial to be implemented
in this context. To search for new solvable models
involving two scalar fields, we worked with the extension
method, by coupling two single-field models already
studied in the literature.
The extension method applied to the two scalar field

formalism led us to plot Figs. 1–4. Some of the curves are
excluded since they present a behavior that diverges from
what is predicted by the ΛCDM model. However, some of
the plotted results, as the blue (thin) curves, have showed
very interesting features which we revisit in the following.
In Fig. 3 there is a plateaulike behavior around ω ¼ 0

(consequently p ¼ 0) which could represent the matter-
dominating era of the Universe. The derivatives of ω with
respect to time are near zero in the interval
t ∈ ½0.04 − 0.10�. Also, for t < 0.04, one can see an abrupt
variation of ω in a small interval of time. Note that this
variation is continuous and constrained to values around
1=3, which is the value of ω for a radiationlike EoS.
Furthermore, the model predicts the late acceleration of the
Universe’s expansion since ω → −1 for high values
of time.
We were also able to reproduce all the features related to

the physical parameters expected by the one-field analysis,
as we observed in Ref. [26]. In conclusion, the previous
results support the two coupled scalar models’ description
since new nontrivial behavior from the coupling between
the fields was unveiled. Moreover, this extension method
appears to be a nice mathematical tool, which can be
helpful when dealing with more complex quintessence
models and even with a three-field coupling. Furthermore,
it is also possible to implement this methodology in
tachyonic dynamics and in scenarios with dust. Some of
these applications are under investigation and we hope to
report on them in the near future.
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