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ABSTRACT

In this work we analyze a steady, planar diffusion flame established in an inert
porous matrix. The geometry under consideration is a stagnation-point flow against
a condensed (liquid) phase, with all the system (gas and liquid) immersed in an
inert porous matrix. In order to better understand the coupled physical processes
that occur in this confined problem, we divide the present work in three distinct,
but closely related, parts. In the first part we analyze the frozen impinging flow
against a hot, impermeable wall (the gas is confined in an inert porou matrix). This
configuration allow us to study the heat transfer problem occurring inside the porous
matrix. In the second part we replace the impermeable wall by a pool of liquid and
analyze the steady vaporization regime that is established when the impinging flow
is at a higher temperature than the liquid boiling temperature. In this case, the heat
and mass transfer confined problem is analyzed. Then, in the third part we consider
the impinging jet to be oxidant and the liquid to be fuel. By considering that the
conditions are such that a diffusion flame is established, we analyze the influence
of the porous matrix in the overall flame properties. Finally, in the Appendix we
perform an asymptotic analysis of the extinction of a diffusion flame established in
an inert porous chamber. This analysis is made in order to shed some light on how
the gas-solid heat exchange modifies the extinction limits of such confined flames.
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ANÁLISE TEÓRICA DE UMA CHAMA DIFUSIVA
ESTABELECIDAE EM UM MEIO POROSO INERTE

RESUMO

Nesse trabalho, nós analisamos uma chama difusiva estacionária e plana, estabe-
lecida dentro de uma matriz porosa inerte. A geometria considerada é a de um
escoamento de ponto de estagnação contra uma fase ĺıquida. Todo o sistema é consi-
derado imerso na matriz porosa. Para que os processos f́ısicos acoplados que ocorrem
dentro da matriz porosa possam ser melhor compreendidos, o presente problema é
dividido em três partes distintas, mas relacionadas. Na primeira parte, analisamos
o escoamento congelado que impinge contra uma parede quente impermeável. O es-
coamento ocorre dentro da matriz porosa. Essa configuração nos permite estudar o
problema de transferência de calor entre gás e sólido no do escoamento estabelecido
dentro da matriz porosa inerte. Na segunda parte, substitúımos a parede impermeá-
vel por uma piscina de ĺıquido e analisamos o regime estacionário de evaporação
que se estabelece quando o gás impingente está a uma temperatura maior do que a
temperatura de ebulição do ĺıquido. Nesse caso, os processos de transporte de massa
e calor do problema confinado são analisados. Na terceira parte, consideramos que
o jato impingente é oxidante e o ĺıquido é combust́ıvel. Então, considerando que as
condições são tais que uma chama difusiva é estabelecida, analisamos a influência da
matriz porosa nas propriedades gerais da chama. No Apêndice, apresentamos uma
análise assintótica da extinção de uma chama difusiva estabelecida dentro de uma
câmara porosa. Essa análise foi realizada para que se possa elucidar como a interação
térmica entre gás e sólido afeta os limites de extinção de tal chama confinada.
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1 INTRODUCTION

Since the work of Takeno and Sato (1979), in which they applied Weinberg’s pioneer-

ing idea of heat recirculation (WEINBERG, 1971), combustion in porous media has

attracted much attention from scientists and engineers. Applications ranging from

compact combustion chambers, food baking, drying of paper and wood (HOWELL

et al., 1996; MUJEEBU et al., 2010), heavy-oil thermal recovery (BRANCH, 1979; ALI,

2003; CASTANIER; BRIGHAM, 2003; AKKUTLU; YORTSOS, 2003; MAILYBAEV et al.,

2011), stability of solid propellants decomposition (TELENGATOR et al., 2000) and

attenuation of detonations (RADULESCU; MAXWELL, 2011) are some examples of

the wide range of possibilities for combustion in porous media. The heat recircu-

lation caused by the solid-phase conduction (BARRA; ELLZEY, 2004) enhances the

pre-heating of reactants, which may lead to an increase in the flame temperature

and the possibility of burning ultra-lean mixtures for premixed flames (WOOD; HAR-

RIS, 2008; PEREIRA et al., 2010). It has been shown also that when an impinging

premixed flame is established in an inert porous medium, stretch may extend the

low flammability limit even further (KOKUBUN et al., 2013), a result opposed to what

is observed for free flames. In Fig. 1.1 a schematic of the heat recirculation feature

present in premixed flames propagating in inert porous media is shown.

Figure 1.1 - Heat recirculation in a premixed flame established in an inert porous medium.

SOURCE: Vafai (2005)

The increase on the flame temperature due to pre-heating of reactants leads to an in-

crease on the flame speed, because of the exponential dependence of the flame speed
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with the flame temperature, as flame structure analyses show (YARIN; SUKHOV, 1992;

KAKUTKINA, 2006; LAEVSKII; BABKIN, 2008; PEREIRA et al., 2009). If the constant

flame speed is different from the constant flow speed, there is a speed associated with

the heating of the solid, i.e., thermal speed. When the flame speed and the thermal

speed have the same constant value, the superadiabatic effect (flame temperature

above the adiabatic value) is maximum because these processes sustain each other.

If the problem is stationary or if the characteristic time of the thermal speed is very

short, the solid is considered to be instantaneously heated in the flame propagation

time scale. A schematic of the propagating processes is shown in Fig. 1.2 for an

idealized planar, adiabatic premixed flame propagating in an infinitely long porous

tube 1.

Figure 1.2 - Chemical and thermal speed (SF and ST , respectively) in a porous tube.

An interesting effect is observed if the flame speed is small, or if the thermal speed is

faster than the flame speed: in those cases, the flame temperature may be lower than

the adiabatic value, i.e., subadiabatic combustion occurs (ZHDANOK et al., 1995). In

a more general way, subadiabatic flame temperatures may be achieved when the

balance between heat release, recirculation and loss does not favor heat recirculation

(here, heat loss means any heat not recovered by the reactants). Burning in low

flame temperatures may be desirable because of the possibility of lowering emissions

of pollutants and nocive compounds (one must carefully weight this feature with

the possibility of unburned fuel passing through the flame, which may form soot).

Extinction is shown to occur if the velocity is small enough, because in this case the

flame heat-losses are high (ROY et al., 2014).

1Flames propagating in tubes are not planar, as they suffer the effects of viscosity near the wall.
Even though the porous tube homogenizes the flow up to some extent, the flame is still curved.
The curvature of the flame front induces a myriad of physical effects, such as an increase on the
burning rate and usually there is the development of instabilities.
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When it comes to nonpremixed combustion in porous media, the literature is not

vast as for premixed flames. The first attempts on modelling liquid fuel burning in

porous media focused on droplet injection inside the solid matrix (TSENG; HOWELL,

1996). For burning of liquid fuels, the intense radiation field generated by the heated

solid enhances the evaporation of fuel droplets in the confined medium. For situations

such that the droplets vaporize and mix with oxidant prior to the combustion zone

(MARTYNENKO et al., 1998; KAYAL; CHAKRAVARTY, 2005), essentially a premixed

flame is established. Liquid-fuel-fired porous burners (non-spraying) were proposed

as a way of burning liquid fuels without resorting to injection nozzles (which are

energy-consuming) (JUJGAI et al., 2002; JUJGAI; POLMART, 2003; JUGJAI; PONGSAI,

2007). Such burners have the advantage of compactness and efficiency when com-

pared to the usual spray configuration. Low emissions of pollutants are also described

for such burners.

One of the reasons of the low pollutant emission is the possibility of burning contents

at low temperatures, when compared to free flames. In non-premixed (diffusion)

flames, this happens because the porous matrix redistributes the heat from the

flame to the surroundings, as shown in Fig. 1.3, where a schematic of the transport

processes that occur in a diffusion flame established in an inert porous medium

is presented. In a premixed flame the heat removed from the reaction region is

recirculated to the fresh gases (unburned) region, which increases the temperature

of the incoming reactants. This increase on the reactants temperature increases

the flame temperature, which consequently increase its speed. Then, if one wishes to

keep the flame at a stationary position, one must increase the mass flux of reactants.

This process enhances the input power to the reaction region, which then increases

the flame temperature (PEREIRA et al., 2009; PEREIRA et al., 2010; PEREIRA et al.,

2011), except when the flame speed is very low or when the thermal speed is fast

when compared to the flame speed (in that case, subadiabatic temperatures may be

achieved). In a non-premixed flame, mass diffusion of reactants towards the flame

sheet is the rate-controlling physical process (in contrast to the reactants mass flux

in premixed flames) and no thermal speed exist because there is no flame-front

propagation. Then, even though the incoming reactants are heated (increase of the

mass flux towards the sheet), the heat distributed by the porous matrix may cool

the flame, lowering its temperature. If the heat exchange between gas and solid is

high enough, this heat distribution may extinguish the flame. When a one-equation

formulation is considered (local thermal equilibrium between gas and solid phases),

such lowering in the flame temperature is attributed to a high value of the effective

Lewis number (CHAO et al., 1994), which makes heat extraction from the flame more
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intense than mass reactants transport to the flame sheet. The effective Lewis number

is considered as the ratio between the effective thermal diffusivity and the mass

diffusivity. Since the effective thermal diffusivity is the sum of the gas and solid

thermal diffusivities, the effective Lewis number is usually high.

Figure 1.3 - Transport processes for diffusion flames established in porous media.

The difficulty in having optical access inside porous material makes it a challenge

to obtain experimental measurements. One can insert a thermocouple inside the

matrix if the porous material is carefully constructed, however, it is impossible to

distinguish between gas and solid temperature profiles because the thermocouple

will measure an average temperature. Some works have used laser measurements,

also depending on a carefully constructed porous matrix, but in these works only the

gas temperature could be measured (STELZNER et al., 2014). Indirect measurements

as combustion products emission and overall temperature profiles are usually made

(MITAL et al., 1997; JUJGAI et al., 2002; JUJGAI; POLMART, 2003; KAMAL; MOHAMAD,

2006; JUGJAI; PONGSAI, 2007) in experimental works. In this scenario, theoretical

works are important in order to better understand the confined physical processes, to

shed some light on the results that are obtained experimentally and to even provide

guidance to future experiments.

Raju and T’ien (2007) studied a one-dimensional stagnation-point diffusion flame

established next to a porous wick filled with liquid fuel, as depicted in Fig. 1.4.

They analyzed the heat and mass transport processes inside the wetted wick. The
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diffusion flame imposes a heat flux towards the porous wick, which then is used

on the liquid-fuel phase change. Conceptually, two regimes may exist in the porous

wick: funicular, in which a two-phase vapor-liquid region exist above a purely liq-

uid region, and evaporative, in which a single phase vapor region exist, followed by

the two-phase region above the purely liquid fuel region. Intuitively, the evaporative

regime must occur for high heat fluxes. It has been shown that this regime is un-

stable (ZHAO; LIAO, 2000). Also, in their work, Raju and T’ien (2007) showed that

some fraction of liquid vapor that does not goes to combustion condensates inside

the porous wick, creating a liquid-vapor counterflow right below the wick surface.

This happens because they considered liquid ethanol. Since their focus was on the

transport processes in the two-phase region, a confined flame was not considered.

Figure 1.4 - Problem analyzed by Raju and Tien.

SOURCE: Raju and T’ien (2007)

Chao et al. (1994) analyzed the problem of a free-convective flame sheet established

in a porous medium, as shown in Fig. 1.5. The condensed phase was not confined, but

the gas phase was inside an inert porous matrix. In this case, the flow in the gas-solid

region was governed by the Darcy equation with a buoyancy term. Local thermal
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equilibrium was considered, such that a one-equation model was used. They showed,

by using an infinitely thin flame sheet approximation, that the flame temperature

is reduced due to the high value of the effective Lewis number, which takes into

account the thermal conductivity of the solid as well as the gas thermal conductivity.

An interesting result obtained by the authors was that when the gas density and

viscosity were allowed to vary in such a way that ρ̄µ̄ = constant, the velocity presents

a minimum at the flame-sheet, rather than a maximum, as in non-confined problems.

They argued that this was a result of the competition between the Darcy term (which

is a resistance force to the flow) and the buoyancy term (which increases velocity due

to thermal expansion). When density and viscosity were considered as constants, no

such effect was observed.

Figure 1.5 - Problem analyzed by Chao et al.

SOURCE: Chao et al. (1994)

More than just the distinct geometries in Raju and Tien and Chao et al works,

an important difference was that the former considered the condensed phase to be

confined (inside the porous matrix) and the flame not, while the latter considered the
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opposite, i.e., a confined flame and a non-confined condensed phase. In the present

work, we consider both gas and liquid to be immersed in an inert porous matrix.

The configuration is that of Raju and Tien’s work: a stagnation-point flow against a

condensed phase, but with a confined flame as well. In Fig. 1.6 we present a schematic

of the configuration to be studied. The coupling between the physical processes that

occur in the confined medium render new features to the problem, when compared

to the non-confined case (no porous matrix). With the use of a non-Darcean model

for the flow and a local thermal non-equilibrium model for the energy equations, we

analyze how the fluid-solid interaction modifies the physical features of such flames.

Figure 1.6 - Geometry of the present problem.

We divide the present problem in three parts in order to obtain a more clear physical

understanding. In the first part we consider a stagnation-point, non-reactive, flow

established in a porous medium against an impermeable hot wall. Under such con-

ditions, we are interested in observe the heat transfer process in a confined medium.

In the second part we replace the impermeable wall by a liquid pool immersed in a

porous matrix, with the injected gas being at a high temperature. This configuration

allows to analyze the heat and mass transfer (phase change) problem and it may be

viewed as a frozen flow case. Then, in the third part we consider the liquid to be

fuel and the incoming jet to be oxidant such that a diffusion flame is established. In
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this third configuration we are able to study heat and mass transfer in reacting flows

inside an inert porous medium. Therefore, the division of the problem in three parts

allows for a deeper level of physical insight into the coupled processes that occur

in the presence of the inert porous matrix. In each Chapter we present a specific

introduction and physical discussion.

In the context of an incompressible flow (constant-density) and in the limit of

an asymptotically large solid-to-gas thermal conductivities ratio (defined as Γ ≡
λ̄s/λ̄g >> 1), these three problems were analyzed previously (KOKUBUN; FACHINI,

2011; KOKUBUN; FACHINI, 2012; KOKUBUN; FACHINI, 2013). In those cases, a Darcy

flow was considered to be the leading-order flow equation and thermal equilibrium

between phases was admitted for the leading-order temperature equations. The con-

sideration of an asymptotically large Γ leads to well separated length-scales due to

the very large difference between the phases thermal conductivities. Then, in those

cases, analytical profiles were obtained in each length-scale and matched in order to

build the complete solution for each problem. Despite some minor changes in the

assumptions made, the present work can be viewed as a natural extension of these

previous works. The consideration of variables fluid properties is more realistic and

allow us to obtain a clearer picture of the physical processes that occur in these

confined problems, while the consideration of general values of Γ allow us to as-

sess more precisely the influence of the solid-to-gas thermal conductivities ratio on

the overall aspects of each problem. For instance, for the case where we consider a

stagnation-point against an impermeable wall, thermal expansion greatly modifies

wall properties, which are of interest of Engineering, such as wall shear and wall

heat flux. Consideration of thermal expansion (coupling between flow and energy

equations) and general values of Γ demands a numerical solution for the present

problem.

Since the three problems to be considered are closely related, their mathematical

formulations are similar. In the next Chapter we develop the complete mathematical

formulation (dimensional and non-dimensional) to be used in this work. Then, in

the subsequent Chapters the appropriate formulation for each problem is given and

their solutions are obtained and discussed.

In Appendix A we present an asymptotic analysis of the extinction limits of a diffu-

sion flame in a porous chamber. The geometry studied is shown in Fig. 1.7. The gen-

eral asymptotic formulation derived by Cheatham and Matalon (2000) for diffusion

flames applicable to this case is used. This analysis is made in order to clarify how
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the heat exchange between gas and solid lowers the flame temperature in the non-

premixed configuration, a characteristic that eventually leads to flame extinction.

Particularly, the asymptotic analysis identifies two distinct extinction points for the

injection velocity, one associated with kinetic extinction, and the other associated

with a high heat removal through the solid-phase (high gas-solid heat exchange).

This dual-point extinction behavior was recognized previously in the literature and

it was associated with heat losses (MATALON et al., 1979; MATALON; LUDFORD, 1979;

CHAO; LAW, 1993; WANG et al., 2007).

Figure 1.7 - Diffusion flame established in a porous chamber.

9





2 MATHEMATICAL FORMULATION

In this Chapter we present the mathematical formulation to be used in this work.

The fundamental equations in the pore-scale (with the usual simplifications) are

first presented and the difficulties that arise in solving the complete problem are

exhibited. Then, the local-average procedure is briefly explained, and in the light

of such, the semi-heuristic formulation is shown. At last, the further simplifications

made in order to study the present problem are stated and the general formulation

is given.

The notation used is defined right after its first appearance. Throughout this

manuscript some symbols are repeated, but they should be clear from the context,

such that no confusion is expected.

2.1 General conservation equations and the local-average method

The conservation equations that govern the behavior of reactive flows are well-

established (WILLIAMS, 1985). In the presence of a porous matrix, these governing

equations are still valid at the pore-scale, but the energy equation in the solid phase

must be taken into account. At the interface between fluid and solid a diversity of

effects occurs, such as heat exchange, elimination of radicals, viscous attachment,

etc.

Consider the local (pore-level) problem as shown in Fig. 2.1.

In Fig. 2.1 Ags is the surface area between fluid and solid and ẇr,i is a source/sink

of chemical species. Also, the solid phase is chemically inert and impermeable to the

fluid phase.

The simplifications to be made are the following: low-Mach number (deflagration

limit), neglection of Soret and Dufour effects (mass diffusion due to temperature

gradient and energy flux due to mass gradient, respectively), a dilute mixture (with

an inert gas as the abundant specie), Fourier law for the gas-phase heat-flux, negli-

gible radiation from the gas-phase, Fick’s law for mass diffusion, neglection of body

forces and constant solid-phase properties. Then, the conservation equations gov-

erning this local stationary problem are given by

∇ · (ρ̄gū) = 0, (2.1)

ρ̄gū · ∇ū = −∇p̄+∇ · σ, (2.2)
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Figure 2.1 - Local (pore-level) problem.

SOURCE: Pereira (2009)

ρ̄gū · ∇Yi = ∇ ·
(
ρ̄gD̄i∇Yi

)
+ ẇr,i, (2.3)

(ρ̄cp)gū · ∇T̄g = ∇ ·
(
λ̄g∇T̄g

)
−

Ns∑
i=1

hiẇr,i, (2.4)

0 = λ̄s∇2T̄s, (2.5)

where ρ̄g is the fluid density, ū is the fluid velocity, p̄ is the fluid pressure, σ is the

stress tensor, Yi is the i-specie mass fraction, D̄i is the i-specie mass diffusion coef-

ficient, cp is the fluid specific heat at constant pressure, T̄g is the fluid temperature,

λ̄g is the fluid thermal conductivity, hi is i-specie enthalpy of formation, λ̄s is the

solid thermal conductivity and T̄s is the solid temperature.

If we consider a perfect gas, the state equation is given by

p̄ =
R

M
ρ̄gT̄g, (2.6)

where R is the universal gas constant and M is the molecular weight (assumed

constant).

Boundary conditions to be applied at the fluid-solid interface Ags are: (1) imperme-

able solid with no surface reactions (neglection of radical elimination at the wall 1)

1For combustion problems, elimination of radicals at the wall is important, even when an inert
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and no-slip conditions

− ρ̄gD̄i∇Yi = 0 and ū = 0, (2.7)

and (2) continuity of temperature and heat flux

T̄g = T̄s, and λ̄g∇T̄g · n̂gs = (−λ̄s∇T̄s − q̇r,s) · n̂gs, (2.8)

where n̂gs is the unitary normal vector on Ags pointing to the solid-phase and q̇r,s

is the radiant heat flux at the solid surface, that is due to the radiation exchange

between solid surfaces. The equality of fluid-solid temperatures at the surface is

justified by the zero-velocity boundary condition at the pore walls.

A priori, one can solve the above set of equations and account for the solid-fluid

interaction at the pore walls. However, with the exception of the consideration of

simple geometries, this task demands an enormous computational effort. In this case,

a Direct Numerical Simulation (DNS) must be performed.

The DNS approach becomes unpractical for most cases because of the small-scale

processes imposed by the pores. Then, the method more frequently utilized is the

application of the volume averaging, in which we obtain a set of conservation equa-

tions averaged over certain representative volume containing both fluid and solid

phases. In this method, the conservation equations are averaged over some represen-

tative elementary volume (REV), or, the smallest volume that represents the local

average properties, such that addition of more pores in this volume does not change

the system properties.

Consider Fig. 2.2.

The idea of the method is to average the property of interest in the REV, using the

local coordinate system −→y (microscopic coordinate), and to relate the result to the

general coordinate system −→x (macroscopic coordinate).

The volume average of a property φ is defined as (KAVIANY, 1995)

< φ >=
1

V

∫
V

φdV, (2.9)

medium is considered, as they may lower the reaction rate and have a direct influence on the overall
flame properties. Since in the present problem we consider a single-step mechanism, radicals play
no role, such that this effect may be ignored.
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Figure 2.2 - Schematic of the REV approach

SOURCE: Pereira (2009)

where V is the volume of the REV. Then, the average of a gas-phase property φg

over the gas-phase volume (gas-phase intrinsic volume average) is

< φg >
g=

1

Vg

∫
Vg

φgdV =< φg > /ϕ. (2.10)

Where ϕ ≡ Vg/(Vg + Vs) is the porosity, or the void volume, ranging from 0 to 1.

The theorem of the intrinsic volume-averaging of the gradient of a function φg is

(KAVIANY, 1995)

< ∇φg >g= ∇ < φg >
g +

1

Vg

∫
Ags

φgdA. (2.11)

Analogously, the theorem of the intrinsic volume-averaging of the divergent of a

vector bg is

< ∇ · bg >g= ∇· < bg >
g +

1

Vg

∫
Ags

bg · n̂gsdA. (2.12)

One important key-point to the volume-averaging treatment is the requirement of

scales separation, which can be stated as

lp � lREV � L, (2.13)

in which lp is the pore characteristic length scale, lREV is the REV characteristic

14



length scale and L is the largest characteristic scale of the problem. Also, phe-

nomenological scales have to be separated as well. For example, for conductive heat

transfer, it is required that

∆Tlp � ∆TlREV
� ∆TL, (2.14)

where ∆T represents the maximum temperature difference across the respective

length-scale. This condition represents a severe limitation to the volume-averaging

modelling of combustion in porous media. It is usually not possible to define a REV

that fulfills the separation of scales requirement since flames are characterized by a

narrow region where the fuel is consumed and the chemical energy is released (the

flame thickness) that is often of the order of a fraction of the length-scale of a single

pore.

However, despite of this limitation, with these theorems one can proceed to evaluate

the averaged conservation equations. This lengthy process is not to be reproduced

here, as it is not our focus. Relevant works are given by Kaviany (1995), Vafai (2005),

Duval et al. (2004) and Whitaker (1996).

From the theorems, it is easy to see that several terms will appear from the area

integrals. These terms can be grouped into coefficients that are to be obtained from

DNS calculations or experimental correlations. For instance, the volume-averaged

gas-phase energy equation is given by

vgg · ∇ < T̄g >
g +vgs · ∇ < T̄s >

s= ∇ ·Dgg · ∇ < T̄g >
g +

∇.Dgs · ∇ < T̄s >
s +

Ags
Vg

hc
(ρ̄cp)g

(
< T̄s >

s − < T̄g >
g
)

+ < ṡr >
g, (2.15)

where the convective velocity vectors vgg and vgs are the coefficients of the terms

containing the first-order derivatives, the total thermal diffusivity tensors Dgg and

Dgs are the coefficients of the terms containing second-order derivatives, hc is the

interfacial conduction heat transfer coefficient, that is independent from the fluid

velocity, and < ṡr >
g is an energy source term.

The derivation of the volume-averaged momentum conservation equation in a form

equivalent to the Navier-Stokes equation is still an open problem. Some simplified

forms are proposed in the literature (KAVIANY, 1995).

Since the conservation equations obtained from the volume-averaging procedure still

depends on DNS calculations or experimental correlations and are quite compli-
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cated, it is common to resort to a semi-heuristic approach. In this approach, the

conservation equations take into account the fluid-solid interaction through phys-

ical arguments, but can not be obtained from the first principles. Although less

complete, this semi-heuristic approach is useful in capturing the relevant physical

aspects of the fluid-solid interaction. For instance, the superadiabatic temperatures

achieved in combustion in porous media have been reproduced with the aid of such

semi-heuristic formulation (PEREIRA et al., 2009; PEREIRA et al., 2010; PEREIRA et al.,

2011; KOKUBUN et al., 2013). Such superadiabatic temperatures enhance the flamma-

bility limit of premixed flames, allowing burning of ultra-lean mixtures (WOOD; HAR-

RIS, 2008). In opposition to the superadiabtic flames, so-called subadiabatic flames

have been predicted theoretically (MIN; SHIN, 1991) and later obtained experimen-

tally (VOGEL; ELLZEY, 2005). Low flame temperatures in the diffusion-flame regime

were also predicted theoretically with the use of a simple semi-heuristic formulation

(CHAO et al., 1994). Burning in low flame temperatures is an useful feature in low-

ering emissions of pollutants and formation of hazardous compounds, like NOx, for

instance (JUGJAI; PONGSAI, 2007; JUGJAI; PHOTHIYA, 2007).

2.2 Semi-heuristic formulation

The semi-heuristic equations of mass, mass fractions and energies are given by

∇ · ρ̄gū = 0, (2.16)

ρ̄gū · ∇Yi = ϕ∇ · (ρ̄gDi · ∇Yi)− ϕẇr,i, (2.17)

ρ̄gcp,gū · ∇T̄g = ϕ∇ ·
(
λg · ∇T̄g

)
+ hg

(
T̄s − T̄g

)
+ ϕẇr,i, (2.18)

0 = (1− ϕ)∇ ·
(
λs · ∇T̄s

)
− hg

(
T̄s − T̄g

)
+∇ · q̇r, (2.19)

in which Di is the mass diffusivity tensor of specie i, which contains mass disper-

sion effects, λg is the thermal conductivity tensor of the gas-phase, which contains

thermal dispersion effects, q̇r is the radiant heat flux vector and hg is the volumetric

interphase heat exchange coefficient.

For simplicity, it is usual to model the reaction source term as measured with its

averaged properties. Hence, for a single-step, second order reaction-rate, we have

ẇr,F = Bρ̄2
gT̄

a
g ȲF ȲO exp

(
− Ea
RT̄g

)
, (2.20)

where Ea is the activation energy, B is the frequency factor and a is a constant (that
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will be taken as a = 1 in Chapters 2 and 5, and as a = 0 in Appendix A).

The semi-heuristic momentum conservation equation is written as

ρ̄gū · ∇ū = −ϕ∇p+∇ (µ∇ū)− ϕ µ
K̄

ū− ϕ CE

K̄1/2
ρ̄g|ū|ū, (2.21)

where K̄ is the permeability tensor and CE is the Ergun constant. The left-hand side

are the macroscopic inertia forces. The first term in the right-hand-side is the pore

pressure gradient, the second term is the macroscopic shear stress diffusion term

(Brinkman viscous term), the third term is the microscopic viscous shear stress

(Darcy term) and the fourth term is the microscopic inertial force term (Ergun

inertial term).

For closure, the ideal gas equation of state is given by

p̄ =
R

M
ρ̄gT̄g. (2.22)

This set of equations is simpler than that obtained from the rigorous application

of the volume average method to the local problem. Here, the effects of the many

coefficients that appear in the original equations are accounted for using fewer coef-

ficients, namely the thermal conductivity tensors of both phases, the mass diffusion

tensor and the superficial convection heat transfer coefficient. For the momentum

conservation equation, the resistance force due to the tortuous porous channels is

accounted through the last two terms in Eq. 2.21.

2.3 Formulation for the present work

In the present work we consider a stagnation-point flow of oxidant against a pool

of liquid fuel, with the whole system immersed in an inert porous medium. In the

region where the mass fluxes are nearly in a stoichiometric proportion, a diffusion

flame is established. A schematic of the problem is shown in Fig. 2.3.

To solve this problem we consider some additional simplifications in order to obtain

the set of equations to be used. These simplifications are

• Two-dimensional problem;

• Boundary-layer approximation;

• Neglect of the Ergun term;
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• Isotropic and homogeneous porous medium;

• Rosseland approximation.

The consideration of an isotropic and homogeneous porous medium makes the ther-

mal conductivities and permeability to be zero order tensors. The Rosseland ap-

proximation makes the radiation field to be considered as an effective heat conduc-

tion. Neglection of the Ergun term is justified when the flow velocity is small. The

boundary-layer approximation makes the analysis to be made near the stagnation-

point (inside the viscous layer formed near the liquid surface) and the properties

variation along the stagnation-line to be much larger than variations normal to it.

Figure 2.3 - Schematic of the present problem.

A one-step irreversible chemical reaction is considered through

F + φ̄O −→ (1 + φ̄)P + {Q} , (2.23)

where φ̄ mass units of oxidant are consumed for each mass unit of fuel, generating
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(1 + φ̄) mass units of product and releasing an amount Q of heat.

The two spatial coordinates are x̄ (tangential to the liquid surface) and z̄ (normal

to the liquid surface). Below z̄ = 0 the porous matrix is filled with liquid fuel.

For z̄ > 0 we have a pure gas flow and the conservation equations, with the simpli-

fications stated previously, are given by

ρ̄
∂ū

∂x̄
+
∂ρ̄v̄

∂z̄
= 0, (2.24)

ρ̄ū
∂ū

∂x̄
+ ρ̄v̄

∂ū

∂z̄
= −ϕ∂p̄

∂x̄
+

∂

∂z̄

(
µ̄
∂ū

∂z̄

)
− ϕµ̄ ū

K̄
, (2.25)

ρ̄ū
∂v̄

∂x̄
+ ρ̄v̄

∂v̄

∂z̄
= −ϕ∂p̄

∂z̄
+

∂

∂z̄

(
µ̄
∂v̄

∂z̄

)
− ϕµ̄ v̄

K̄
, (2.26)

ρ̄v̄
dȲF
dz̄
− ϕ d

dz̄

(
ρ̄D̄F

dȲF
dz̄

)
= −ϕBρ̄2T̄gȲF Ȳ0e

−Ea/RT̄g , (2.27)

ρ̄v̄
dȲO
dz̄
− ϕ d

dz̄

(
ρ̄D̄O

dȲO
dz̄

)
= −ϕφ̄Bρ̄2T̄gȲF Ȳ0e

−Ea/RT̄g , (2.28)

ρ̄v̄cp
dT̄g
dz̄
− ϕ d

dz̄

(
λ̄g
dT̄g
dz̄

)
= ϕQBρ̄2T̄gȲF Ȳ0e

−Ea/RT̄g + hg(T̄s − T̄g), (2.29)

− (1− ϕ)λ̄s
d2T̄s
dz̄2

= −hg
(
T̄s − T̄g

)
, (2.30)

where ū and v̄ are the Darcy velocities, related with the local velocities ūlo and v̄lo

through {ū, v̄} = ϕ {ūlo, v̄lo}, where ϕ is the porosity.

The relation between the permeability K̄ and the porosity ϕ depends on the model

utilized for the porous matrix. In the present work we consider a bed of particles, or

fibers, which gives the permeability K̄ as (KAVIANY, 1995)

K̄ =
d̄2
p

180

ϕ3

(1− ϕ)2
, (2.31)

where d̄p is the mean particle diameter.

For simplicity, we consider the liquid fuel to be at its boiling temperature, such that

T̄l = T̄B and the only equations needed in the liquid-solid region, z̄ < 0, are the

mass conservation and the solid energy equation, given by

ρ̄lv̄l = ¯̇m, (2.32)
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− (1− ϕ)λ̄s
d2T̄s
dz̄2

= −hl(T̄s − T̄B). (2.33)

For z̄ → +∞ (far from the viscous boundary-layer) the flow is potential-like, gas

and solid phases are at thermal equilibrium and only oxidant is observed. Those

conditions are expressed as

ū = āx̄, v̄ = −ā(z̄ − z̄st), T̄g = T̄s = T̄∞, ȲO = ȲO∞, ȲF = 0, (2.34)

in which ā is the strain-rate and z̄st is the position of the stagnation-point (which is

determined by the vaporization rate ¯̇m).

The boundary conditions for the liquid-fuel reservoir, z̄ → −∞, are given by

v̄l = v̄l−∞, T̄s = T̄B. (2.35)

The injection velocity v̄l−∞ is such that the interface remains fixed at z̄ = 0.

At the liquid-gas interface, z̄ = 0, we consider ρ̄/ρ̄l � 1 such that the no-slip

condition ū = 0 may be used, as shown previously (SESHADRI et al., 2008). The

vertical velocity v̄(0) is an unknown related with the vaporization rate ¯̇m. We assume

that gas and liquid are at equilibrium at the interface, such that T̄g(0
+) = T̄B. The

solid conducts heat from the gas-solid region and at the interface it is at a higher

temperature than the gas, at T̄s(0) > T̄B.

Since the liquid is at its boiling temperature and the solid temperature is higher

(T̄s(0) > T̄B), below the gas-liquid interface there is a three-phase (liquid-gas-solid)

region with a high heat flux from above imposed by the flame sheet. Zhao and Liao

(2000) have shown that for low heat flux, the evaporation process occurs uniformly

at the surface. For increasing heat fluxes, a three-phase region is observed below

the surface. This three-phase region is characterized by the appearance of gaseous

bubbles at the pore walls, which decreases the effective heat transfer from solid to

liquid. A schematic of the bubble formation in the three-phase region, when the heat

flux is high, is shown in Fig. 2.4.

Modeling this three-phase region is quite complicated, with the need of considering

the interaction between gas, liquid and solid in this zone (RAJU; T’IEN, 2007). Since

our focus is mainly on how the porous medium affect the flame, when compared

to the non-confined case, a detailed model of this three-phase region is not needed.

For our purposes it is enough to model this phase-change region, denoted as boiling
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Figure 2.4 - Schematic of the bubble formation for increasing heat fluxes.

SOURCE: Zhao and Liao (2000).

zone, through a simple energy balance

ϕλ̄g
dT̄g
dz̄

∣∣∣∣
0+

+ hl

∫ 0−

−∞
(T̄s − T̄B)dz̄ = ¯̇mL, (2.36)

where L is the latent heat of vaporization of the liquid fuel. The energy balance

in the phase-change region states that heat is introduced from the gas phase and

from the heat exchange between solid and liquid. Since T̄l = T̄B everywhere in the

liquid-solid region, all the heat delivered to the liquid fuel goes to the phase-change

process.

The velocity of the gas at the liquid surface v̄+
0 is related with the vaporization rate

¯̇m through

ρ̄v̄(0+) = ρ̄lv̄l(0
−) = ¯̇m, (2.37)

and the velocities v̄(0+) (≡ v̄(0)) and v̄l(0
−) (≡ v̄l(0)) represent the velocities of

vapour and liquid at the interface; the subscripts + and − denote the gas and liquid
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sides of the interface, respectively.

At the interface, integration of Eq. 2.27 gives the fuel mass fraction conservation as

ϕρ̄D̄F
dȲF
dz̄

∣∣∣∣
0+

= −
(
1− ȲF0

)
(ρ̄v̄)|0+ . (2.38)

For closure of the problem, we have the state equation

p̄ = ρ̄RT̄g. (2.39)

2.3.1 Variable change and non-dimensional formulation

The non-dimensional variables are defined as u ≡ ū/v̄c, v ≡ v̄/v̄c, p ≡ p̄/(ρ̄∞v̄
2
c ),

ρ ≡ ρ̄/ρ̄∞, ρl ≡ ρ̄l/ρ̄∞, x ≡ x̄/lc, z ≡ z̄/lc, Tg ≡ T̄g/T̄∞, Ts ≡ T̄s/T̄∞, Tl ≡ T̄l/T̄∞

and YO ≡ ȲO/ȲO∞, YF ≡ ȲF , in which v̄c ≡ ā lc is a characteristic velocity of

the problem related with the characteristic length scale lc ≡ λ̄g∞/(ρ̄∞cpv̄c). The

characteristic length scale lc is then given by lc =
√
λ̄g∞/(ρ̄∞cpā).

For z̄ → +∞, momentum equations with 2.34 give the pressure distribution as

p̄0 − p̄ =
ρ̄∞ā

2

2ϕ

[
x̄2 + (z̄ − z̄st)2]+

āµ̄∞
2K̄

[
x̄2 − (z̄ − z̄st)2] . (2.40)

For the limit ϕ→ 1 we recover the usual pressure distribution for the non-confined

stagnation-point flow (SCHLICHTING, 1968). From the model used for the perme-

ability, Eq. 2.31, ϕ → 1 leads to K̄ → ∞. The second term in the right-hand side

of the expression 2.40 is the modification on the pressure distribution due to the

presence of the porous matrix. Note that the lower the medium permeability, the

higher the influence of the porous medium on the pressure field.

We introduce the following transformed variables in the gas-solid region

u = xU(η), ρv = −f(η), η =

∫
ρdz,

p0 − p =
1

2ϕ

[
x2 + 2F (η)

]
+
Pr

2K

[
x2 − 2F (η)

]
, (2.41)

where Pr is the Prandtl number, assumed constant, K ≡ K̄/l2c is the non-

dimensional permeability (Darcy number) and η is a mass-weighted coordinate. We

consider a temperature dependence of the viscosity, gas-phase thermal conductivity

22



and mass diffusion such that ρµ̄/µ̄∞ = ρλ̄g/λ̄g∞ = ρ2D̄i/D̄i∞ = 1. This temperature-

dependence was chosen to simplify the analysis, but extension to more realistic de-

pendences can be easily considered. The first two variable transformations in 2.41

satisfies the mass conservation equation through U = df/dη.

Non-dimensional governing equations are then given by

Pr
d3f

dη3
+ f

d2f

dη2
−
(
df

dη

)2

− βT 2
g

df

dη
= −Tg (1 + β) , (2.42)

Pr
d2(fTg)

dη2
+ f

d(fTg)

dη
− βT 3

g f = (1− β)
dF

dη
, (2.43)

− f dYF
dη
− ϕ

LF

d2YF
dη2

= −ϕDaYFYOe−Ta/Tg , (2.44)

− f dYO
dη
− ϕ

LO

d2YO
dη2

= −ϕφDaYFYOe−Ta/Tg , (2.45)

− f dTg
dη
− ϕd

2Tg
dη2

= ϕqDaYFYOe
−Ta/Tg + TgNg (Ts − Tg) , (2.46)

− Γ(1− ϕ)
d

dη

(
1

Tg

dTs
dη

)
= −TgNg (Ts − Tg) , (2.47)

where we defined Ng ≡ hg/(ρ̄∞cpā), β ≡ ϕPr/K (inversely proportional to the

Darcy number), Γ ≡ λ̄s/λ̄g∞, Da ≡ AȲO∞p̄c/(āR) (Damkohler number, where p̄c

is some characteristic pressure), Ta ≡ Ea/(RT̄∞), φ ≡ φ̄/ȲO∞, q ≡ Q/(cpT̄∞) and

if we assume that the average molecular weight is constant in our domain, we have

ρ = 1/Tg, i.e., variations in pressure are higher-order.

Since we consider Tl = TB everywhere in the liquid region, the only equation needed

is the solid energy equation, which is given by

− Γ(1− ϕ)
d2Ts
dz2

= −Nl(Ts − TB), (2.48)

where Nl ≡ hl/(ρ̄∞cpā). Note that in the liquid-solid region the spatial coordinate

is only made non-dimensional. This is because the flow in the liquid-solid region is

trivial.

Boundary conditions for η →∞ become

df

dη
= 1, Ts = Tg = 1, YF = 0, YO = 1. (2.49)
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At the surface η = 0, we have

df

dη
= 0, Tg = TB, YO = 0. (2.50)

The relation between velocities at the interface and the liquid mass conservation

gives

− f(0) = ṁ, (2.51)

where ṁ ≡ ¯̇m/(ρ̄∞
√
āαg) is the vaporization rate, which determines the mass flux

f(0) at the interface η = 0+. The solid temperature at the surface Ts(0) > TB is

an unknown to be obtained from the continuity of the solid phase heat flux at the

gas-liquid interface, given by

1

TB

dTs
dη

∣∣∣∣
0+

=
dTs
dz

∣∣∣∣
0−
. (2.52)

The term 1/TB appears in the left-hand side of the above equality because of the

use of different spatial coordinates in the gas-solid and in the liquid-solid regions.

Note that TB = Tg(0).

Reservoir condition, z → −∞, is given by

Ts = TB. (2.53)

At the interface η = z = 0, fuel mass fraction and energy conservation gives

ϕ

LF

dYF
dη

∣∣∣∣
0

= (1− YF0)f(0), (2.54)

ϕ
dTg
dη

∣∣∣∣
0+

+Nl

∫ 0−

−∞
(Ts − TB)dz = ṁ l TB, (2.55)

where l ≡ L/(cpT̄B) is the dimensionless latent heat of vaporization. The effective

latent heat is given by l TB because we define l with T̄B instead of T̄∞. Species

conservation at the interface 2.54 determines YF0, while energy conservation 2.55

determines the vaporization rate ṁ.

From the definition of β and the model used for K we have

β = 180

(
δ2

d̄2
p

)(
1− ϕ
ϕ

)2

, (2.56)
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where δ =
√
ν̄/ā is the thickness of the macroscopic viscous boundary-layer, with

ν̄ = µ̄∞/ρ̄∞ the gas kinematic viscosity far from the boundary-layer. Hence, β is

proportional to the square of the ratio between the thickness of the macroscopic

viscous boundary-layer δ and the mean particle diameter d̄p and to the square of the

ratio between the solid phase volume (1−ϕ) and the gas phase volume ϕ. With some

modifications, this discussion for β was made by Wu et al. (2005), who also showed

that for low enough permeability (high enough β), convective effects are negligible

and in this case the flow is determined by a balance between the Darcy pressure

term and viscous effect. For simplification, we define β∗ ≡ 180δ2/d̄2
p, which results

in β = β∗[(1− ϕ)/ϕ]2. Then, β varies with the porosity, but β∗ no.

If β � 1, then the flow is leading-order governed by the Darcy equation (modified

in order to account for thermal expansion). On the other hand, if β � 1, then

the Darcy term is a correction to the flow. In the energy conservation equations, if

Ng � 1, then leading-order thermal equilibrium between gas and solid is observed.

In this case, thermal non-equilibrium will be restricted to small regions near the

gas-liquid surface and around the flame sheet. If Ng � 1, then gas and solid phases

have a weak thermal coupling. The same discussion is valid for Nl.

From the momentum equation, Eq. 2.43, we can see that β = 1 represents a turning

point for the pressure distribution. For β > 1 we observe a maximum pressure above

the stagnation-point, while for β < 1 the maximum pressure is at the stagnation-

point, as in a non-confined problem. This feature was discussed previously (WU et

al., 2005) and the explanation was that for β > 1 the fiber-level viscous dissipation

was high, such that a higher pressure could be achieved above the stagnation-point.

When β = 1, Eq. 2.41 shows that p0 − p = ϕx2 (1 + β) /2. Particularly, at x = 0,

p = p0, which shows that no flow would occur for β = 1, as the pressure is constant

along the stagnation-line. By examining Eq. 2.43 we see that β = 1 is a singular

point. Hence, we do not consider it in our calculations. This result suggest that the

model may not be valid for β ≥ 1.

The term 1/Tg in the left-hand side of Eq. 2.47 appears from the coordinate trans-

formation η =
∫
ρdz. Then, this transformation leads to an effective solid thermal

conductivity Γ(1−ϕ)/Tg in the η plane. When Tg < 1, the solid has a larger effective

thermal conductivity in the transformed coordinate η, while the opposite holds when

Tg > 1. This happens because η is a mass-weighted coordinate, and when Tg > 1,

from the state equation ρ = 1/Tg, η < z, while for Tg < 1, η > z. Then, in order

to correctly account for the solid thermal conductivity, a correction must be made
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for the solid energy equation in the η plane. Far enough from the surface, when

Tg ∼ 1, η ∼ z, such that the solid thermal conductivity in the η plane is equal to

the conductivity on the physical z plane.

The term Tg in the right-hand side of Eqs. 2.46 and 2.47 is also a consequence of

the coordinate transformation. When η > z (Tg < 1), the flow residence time in

the η plane is greater than in the physical z plane, increasing the interphase heat

exchange. The opposite holds when η < z (Tg > 1). In order to correctly account for

the heat exchange term, the Tg appears in the governing equations in the η plane.

2.3.2 Numerical method

In order to numerically solve the set of conservation equations, we use a finite-

difference method with a pseudo-time marching technique. We first guess initial

profiles that satisfies the boundary conditions and then add a fictitious unsteady

term to the equations and the steady-state solution is obtained by marching in the

pseudo-time (we use an explicit method for the pseudo-time derivatives). Conver-

gence is said to be achieved when the transient terms ∂/∂t are less than 10−5. We

solve the flow for U = df/dη and then obtain f by integrating the solution for U

(T’IEN et al., 1978). The conservation equation for U is second-order, then easily

integrated.

For the first problem (Hiemenz flow), a higher-order central difference scheme is

used for the first derivatives, such that the error ∼ ∆η2, where ∆η is the constant

mesh spacing. For the two remaining problems (vaporization and combustion), an

upwind scheme is used for the convective terms, such that care must be taken when

f < 0. The free stream is considered to be achieved when dTs/dη ∼ 10−4, i.e., there

is no heat flux to outside the domain.

The constant mesh spacing for the first two problems is considered as ∆η = 0.05,

while for the third part we consider ∆η = 2.5× 10−2. For the first part we compare

our results (with the appropriate parameters) with the results obtained by Howarth

(1938), and it was shown that ∆η = 0.05 gives an error of less than 1%. For the

second and third part, the constant mesh spacing was such that lowering this value

in half showed no significant variation in the vaporization rate (burning rate) −f(0).

2.4 Physical discussion

The interaction between gas, liquid and solid renders complexities to the problem.

The tortuous channels of the porous matrix imposes a resistive force to the flow.
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This resistance force imposed to the flow by the porous matrix is accounted through

the parameter β in Eqs. 2.42 and 2.43. Thermal expansion of the gas increases the

gas velocity, which increases the Darcy resistance force. This feature is accounted

through the term T 2
g in Eq. 2.42. When ϕ → 1, β → 0 and if N → 0 the usual

reactive boundary-layer equations for the non-confined stagnation-point flow are

recovered.

If β � 1, the flow is leading-order given by the Darcy equation (modified in order to

account for thermal expansion). For the model used for K, the limit of β � 1 can be

achieved for low porosities - see Eq. 2.56. In this case, a high pressure gradient must

be imposed in order establish a flow due to the low value of the medium permeability

(recall that β ∼ 1/K). Then, when β � 1, high hydraulic losses are expected. Also,

when the pores are large, the Rosseland approximation is no longer valid and in this

case one must consider heat transport through radiation by the solid phase.

In the energy equations, the coupling is given by the heat exchange between phases

(right-hand side of Eqs. 2.46 and 2.47). When a heat source is present (in the present

case, such heat source is the flame), considering the local thermal non-equilibrium

between phases is essential. Heat is released at the flame sheet by the exothermic

reaction and is conducted away from the sheet by the gas, which then exchanges it

with the solid. Since the solid has a higher thermal conductivity, when compared to

the gas, the heat is transported to large regions from the flame sheet, and in the

process, it heats the incoming reactants. However, as discussed in the previous Sec-

tion, the heat distribution by the solid matrix cools the flame, as the rate-controlling

process for this flame is mass diffusion, rather than mass flux as in premixed flames.
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3 HEAT AND MOMENTUM TRANSFER PROBLEM:

STAGNATION-POINT FLOW AGAINST AN IMPERMEABLE

WALL

In this Chapter we analyze a stagnation-point flow established in an inert porous

medium with heat exchange. We consider an impinging jet against an impermeable

hot wall. Then, only the frozen equations for η > 0 are necessary (Eqs. 2.42, 2.43,

2.46 and 2.47), such that the reaction term in the gas energy equation is set to

zero. Liquid equations are not necessary. The equations for YF and YO are neglected

(YF does not exist in this case, and the equation for YO does not add any relevant

information).

The influence of the wall temperature T0, porosity ϕ, gas-solid heat exchange Ng

and solid-to-gas thermal conductivities ratio Γ on the wall properties and profiles

is analyzed. The results presented here have applications on the context of heat

exchangers.

Porous media that have a higher permeability whilst having a large thermal conduc-

tivity (compared to the gas thermal conductivity), are widely used as heat exchang-

ers as they increase heat dissipation (VAFAI; KIM, 1990; JENG; TZENG, 2007). This

enhancement occurs due to the heat conduction through the solid phase and the gas-

solid heat exchange. While the majority of heat transfer problems in porous media

consider local thermal equilibrium, such that a single energy conservation equation

is used, porous heat exchangers must be analyzed with the use of the two-equation

formulation: gas and solid are at thermal non-equilibrium. The local thermal non-

equilibrium feature is essential in determining the characteristics and to assess the

efficiency of heat exchangers.

When a non-isothermal problem is considered, heat and momentum transfer are

coupled. If a constant-density model is used, the temperature field is obtained a

posteriori from the flow field. Attia (2007) studied the effect of the porosity in a

stagnation-point flow impinging on a permeable surface by using a porosity param-

eter (inversely proportional to the porosity). At the impermeable wall, suction or

injection could be admitted as the boundary condition for the velocity. Results in-

dicated that increasing the porosity parameter, i.e., reducing the medium porosity,

causes a decrease on the thickness of both thermal and velocity boundary-layers and

an increase in the heat transfer at the permeable surface.

For simple geometries and flows, analytical solutions may be obtained. Lee and
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Vafai (1999) provided an extensive analytical characterization of forced convective

flow through a channel filled with a porous material. A heated wall was considered

to provide heat flux transversely to the flow. They obtained exact solutions for the

transverse temperature profiles of solid and fluid phases, and classified heat transfer

characteristics into three regimes, each of them dominated by a different physical

heat transfer mechanism: fluid conduction, solid conduction and internal heat ex-

change between solid and fluid phases. Based on the results obtained, a complete

electrical thermal network representative of transport through porous media was

established.

Kokubun and Fachini (2011) analyzed a stagnation-point flow in a porous medium

against an impermeable wall with heat exchange with a constant-density model,

and hence, obtained analytical solutions for the profiles. The asymptotic limit of

Γ ≡ λ̄s/λ̄g >> 1 (large solid-to-gas thermal conductivities ratio) was considered.

In that limit, two regions of interest exist: a large, outer region, in which the flow

is potential and an inner region, near-wall, where viscous effect balance the Darcy

pressure term. The interphase heat exchange was considered of the order of Γ, i.e.,

very large, such that in the outer region thermal equilibrium was admitted, with

thermal non-equilibrium being observed only in the inner region.

For non-isothermal problems the constant-density assumption is not realistic. The

deviations in the density field modifies the flow field, which may result in errors in

the calculation of the parameters of interest, such as the wall heat transfer and the

wall shear. The disparity between gas and solid thermal conductivities also adds

complexity to the problem, as heat transfer may occur in different length scales for

each phase, as discussed previously (KOKUBUN; FACHINI, 2011).

Here, we extend the previous results (KOKUBUN; FACHINI, 2011) by allowing gas

thermal expansion (variable density) and general values of Γ. Hence, a numerical

solution is sought to the coupled heat and momentum transfer problem.

3.1 Physical problem

The geometry to be studied is a two-dimensional stagnation-point flow established

in an inert porous medium against an impermeable wall at a constant temperature

T̄0, higher than T̄∞ (temperature of the incoming jet). Due to the hot wall, ther-

mal expansion decreases the gas density and couples flow and energy equations. A

schematic of the problem is shown in Fig. 3.1, where x̄ is the spatial coordinate tan-

gential to the impermeable wall and z̄ is the normal coordinate. The impermeable
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wall is located at z̄ = 0.

Figure 3.1 - Schematic of the problem.

Three different heat transport mechanism exist: convection and conduction through

the gas, and conduction through the solid. The solid temperature is influenced di-

rectly only by the local gas temperature. Since we consider a hot wall, the gas

temperature is higher in the present problem when compared to an incompressible

flow, because of the very low velocity close to the impermeable wall.

Thermal expansion modifies the velocity field as it induces a resistance force against

the incoming flow, lowering the local vertical velocity. The horizontal velocity, on

the other hand, increases with thermal expansion because of the boundary-layer

assumption ρ = ρ(z). The Darcy resistance term is proportional to the flow velocity.

Then, thermal expansion decreases the Darcy term in the normal direction and

increases in the tangential direction.
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3.2 Mathematical formulation

The following set of non-dimensional governing equations is valid for this problem

Pr
d3f

dη3
+ f

d2f

dη2
−
(
df

dη

)2

− βT 2
g

df

dη
= −Tg (1 + β) , (3.1)

Pr
d2(fTg)

dη2
+ f

d(fTg)

dη
− βT 3

g f = (1− β)
dF

dη
, (3.2)

− f dTg
dη
− ϕd

2Tg
dη2

= TgNg (Ts − Tg) , (3.3)

− Γ(1− ϕ)
d

dη

(
1

Tg

dTs
dη

)
= −TgNg (Ts − Tg) . (3.4)

Injection conditions for η →∞ are given by

df

dη
= 1, Ts = Tg = 1. (3.5)

At the impermeable wall, η = 0, we have

f =
df

dη
= 0, Ts = Tg = T0. (3.6)

In this particular problem we have four parameters of interest: ϕ, T0, Ng and Γ. The

first is the porosity (volume occupied by the gas phase), the second is the constant

wall temperature, the third quantifies the strength of the heat exchange between gas

and solid, while the fourth is the solid-to-gas thermal conductivities ratio. There are

also correlations between Ng, ϕ and Γ, which can be modeled or obtained empirically.

For the sake of simplicity we do not consider such correlations and vary Ng, ϕ and

Γ independently.

The numerical scheme is validated by comparing the results for ρ = ϕ = Pr = T0 =

1.0 and Ng = 0 with the results of Howarth (1938). The set of parameters used for

comparison defines an incompressible, isothermal flow in a non-confined medium,

which is the problem analyzed by Howarth (1938). For ∆η = 0.05, the calculated

wall shear is f ′′(0) = 1.2327, while Howarth’s result gives f ′′(0) = 1.2326, an error

of less than 0.01%. Hence, we use ∆η = 0.05 as our constant mesh spacing.
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3.3 Results

We analyze the influence of ϕ, T0, Ng and Γ on the present problem. A mean pore

diameter d̄p = 5 mm is considered. The impinging gas is air, with its properties

evaluated at 293 K. Then, characteristic profiles of temperatures, velocities and

pressure are obtained for Pr = ϕ = 0.7, Γ = 50.0, T0 = 1.6, β∗ = 1.08 and Ng = 1.0

and shown in Figs. 3.2, 3.3, 3.4 and 3.5, where we also compare results with the

constant-density model (ρ = 1). Profiles are plotted in the physical z plane.
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Figure 3.2 - Vertical velocities with and without thermal expansion with β∗ = 1.08, Pr =
ϕ = 0.7, Ng = 1.0, T0 = {1.6, 2.0, 10.0} and Γ = 50.0.

The presence of a hot wall induces thermal expansion on the flow right above the

stagnation-point, leading to a resistive force, which lowers the local flow velocity f ,

as seen in Fig. 3.2, where f is shown for T0 = {1.6, 2.0, 10.0} and compared with f for

the incompressible case. If the wall temperature is very high, then a stagnant-region

near the wall exists due to the high value of the resistive force induced by thermal

expansion. Since in the direction tangential to the impermeable wall no resistive

force other than Darcy exists (no incoming flow), thermal expansion enhances the
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horizontal velocity f ′ when compared to the incompressible case, as seen in Fig. 3.3.

The existence of a velocity overshoot in the boundary-layer occurs if there is a

temperature inside the boundary-layer higher than the free stream temperature. In

the context of an impinging, compressible flow against a heated wall this was first

analyzed by Cohen and Reshotko (1955). This velocity overshoot is more prominent

for higher values of T0. If the porosity is low enough, this velocity overshoot is

smoothed due to the high magnitude of the Darcy resistance term. This can be seen

in Fig. 3.6, where we show f ′ for different porosities.
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Figure 3.3 - Horizontal velocities with and without thermal expansion with β∗ = 1.08,
Pr = ϕ = 0.7, Ng = 1.0, T0 = {1.6, 2.0, 10.0} and Γ = 50.0.

Temperatures are also higher when thermal expansion is considered, as seen in Fig.

3.4. The lower f field due to the resistive force induced by thermal expansion makes

the gas temperature increase, which also increase the solid temperature, since they

are thermally coupled. This also makes the length of the region of thermal influence

larger. In Fig. 3.7 the difference between phases temperature is shown for the com-

pressible and incompressible cases. Near the wall the higher interphase heat exchange
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due to thermal expansion minimizes temperatures difference. However, as the region

of thermal influence is larger in such case, this difference in the incompressible case

goes to zero before than in the compressible case. From Figs. 3.2, 3.3 and 3.4 (cases

in which T0 = 1.6 for the velocities) we can see that the thickness of the viscous

boundary-layer is around η = 5.0, while the region of thermal influence is around

η = 20.0. This disparity, that occurs even considering Pr = O.7, exist because of the

existence of heat conduction through the solid phase, which is measured by Γ(1−ϕ)

(effective solid phase thermal conductivity). When Γ(1 − ϕ) = O(1) (high porosity

medium, or solid matrix with a thermal conductivity of the same order of the gas

thermal conductivity), the thickness of the thermal layer is of the same order of the

viscous boundary-layer if Pr = O(1).
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Figure 3.4 - Temperature profiles with and without thermal expansion with β∗ = 1.08,
Pr = ϕ = 0.7, Ng = 1.0, T0 = 1.6 and Γ = 50.0.

Since Γ is large (large solid-to-gas thermal conductivities ratio), when the porosity

is sufficiently far from unity, i.e., (1 − ϕ) >> Γ−1, Eq. 3.4 shows that the thermal

conduction through the solid phase reaches a region far from the wall. Then, since gas

and solid are thermally coupled, the gas temperature profile also has a larger region
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of influence. For lower porosities the extent of this region is larger. The same trend

is observed if Γ is increased, since, effectively, the term that govern the thickness

of the thermal layer is
√

Γ(1− ϕ). In Kokubun and Fachini (2011), the asymptotic

limit of Γ >> 1 with (1−ϕ) = O(1) was explored with the aid of a constant-density

model (ρ = 1). In this asymptotic limit (and when ρ = 1), two length-scales exist:

an outer region, in which the flow is potential, and an inner, near-wall, region, in

which viscous effects balance the Darcy pressure term.
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Figure 3.5 - Pressure profiles with and without thermal expansion with β∗ = 1.08, Pr =
ϕ = 0.7, Ng = 1.0, T0 = 1.6 and Γ = 50.0 T0 = 1.6.

The pressure recovery F along the stagnation line is shown in Fig. 3.5. Close to the

wall the resistive force due to thermal expansion induces a decrease on the local

pressure, increasing F ∼ p0 − p. Far from the wall the pressure recovery for the

incompressible case is higher. The porous matrix induces an increase on the local

pressure gradient due to the higher flow resistance. For β∗ = 1.08 and ϕ = 0.7, β ∼
0.198. When ϕ = 0.3, we obtain β ∼ 5.88. In this case, as discussed previously, the

pressure field presents a maximum, F < 0, above the stagnation-point. This can be

seen in Fig. 3.8, where we show the pressure profile for ϕ = 0.3 for the compressible
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(variable density) and incompressible (constant density) case. The location of the

maximum pressure point is found by setting F ′ = 0 in Eq. 3.2{
Pr

d2(fTg)

dη2
+ f

d(fTg)

dη
− βT 3

g f

}∣∣∣∣
ηmax

= 0 (3.7)

where ηmax is the location of the maximum pressure point. Then, thermal expansion

plays a role in determining this maximum pressure position, while β > 1 deter-

mines its existence (as discussed phenomenologically by Wu et al. (2005) and shown

mathematically in the previous section).
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Figure 3.6 - Velocity overshoot for different porosities and with β∗ = 1.08, Pr = 0.7,
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The wall shear f ′′(0) variation with the wall temperature T0 is shown in Fig. 3.9

for three different porosities ϕ. When the porosity is high (ϕ = 0.9), an increase

on the wall temperature increases the wall shear. However, when the porosity is

low (ϕ = 0.3), such that β is sufficiently higher than 1, the wall shear presents

a maximum and then decreases with increasing wall temperatures. When β > 1,

the Darcy term has a strong influence on the flow. Then, when β is sufficiently
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higher than 1, the high Darcy resistance decreases the local flow velocity, leading

to lower values of the wall shear f ′′(0). As the wall temperature increases, this

effect is stronger because the Darcy resistance is accounted effectively through the

term βT 2
g in Eq. 3.1, which decreases the wall shear. If β is sufficiently lower than

1, thermal expansion (enhancement of the local flow velocity) surpass the Darcy

resistance, and the wall shear increases with the wall temperature, as one would

expect in a non-confined (no porous matrix) problem. It is worth to note that this

feature is dominated by β, therefore, even though we discuss it through variations

in the porosity, the same trend is observed for different mean particle diameter d̄p

or strain-rate ā (specifically, β ∼ 1/(ād̄2
p)).
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The heat transfer at the wall by gas Qg and solid Qs is computed, respectively,

through

Qg = −ϕ dTg
dη

∣∣∣∣
0

, Qs = −Γ(1− ϕ)T−1
0

dTs
dη

∣∣∣∣
0

, (3.8)

where the minus is introduced only to make {Qg, Qs} > 0. Both gas and solid heat
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transfer at the wall increase for increasing wall temperatures, as expected. For higher

porosities, the contact area between gas and the impermeable wall increases, which

increases the gas heat transfer and decreases the solid heat transfer. These features

can be seen in Figs. 3.10 and 3.11.
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Figure 3.8 - Pressure profiles for ϕ = 0.3 with β∗ = 1.08, Pr = 0.7, Ng = 1.0, T0 = 1.6
and Γ = 50.0

The influence of the porosity ϕ on the wall shear f ′′(0) for different wall temperatures

T0 is shown in Fig. 3.12. As the porosity increases, the wall shear decreases because

of the lower influence of the Darcy resistance term (recall that β ∼ [(1−ϕ)/ϕ]2). For

low porosities the wall shear is higher when the wall temperature is lower, opposed

as what happens in a non-confined flow. This happens when β > β0 (for the set

of parameters considered, β0 ∼ 7.5, as seen in Fig. 3.12), and it is an effect of

the lower local flow velocity induced by the high influence of the Darcy resistance

term βT 2
g . When β < β0, thermal expansion surpass this resistance, and the flow

accelerates, leading to a higher wall shear when the wall temperature is higher. If

an incompressible flow is considered, higher wall temperatures will always lead to a

higher wall shear.
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The effect of the magnitude of the interphase heat exchange Ng on the wall shear

f ′′(0) is minimum. For the set of parameters considered, a variation from Ng = 0.1 to

Ng = 10 modifies f ′′(0) = 1.946 to f ′′(0) = 2.014, or approximately a 3.5% increase.

The wall heat flux, on the other hand, changes significantly as one can see in Fig.

3.13. As Ng increases, the gas phase heat transfer at the wall diminishes, while the

solid phase increases. When Ng is large, Ts − Tg decreases, as one can see in Fig.

3.14.. Then, at the wall, the gas heat flux decreases while the solid heat flux increases

for increasing values of Ng. Note that the solid is always at a higher temperature

than the gas because of its higher thermal conductivity.

The wall shear variation with Γ is also negligible, as it goes from f ′′(0) = 1.916

to f ′′(0) = 2.014 when Γ changes from 10−3 to 100. The phases heat flux changes

significantly, on the other hand. Figure 3.15 shows that increasing values of Γ increase

the solid heat flux at the wall, while the gas heat flux decreases. Recalling that Γ is

the solid-to-gas thermal conductivities ratio, this result is expected.

The solid matrix volume (1−ϕ) influences the length of the thermal layer. For lower
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porosities (larger solid volume), heat conduction through the solid phase becomes

more relevant. In this case, heat is transported to larger regions and the extent of

the thermal layer ηTBL increases. Its growth is proportional to
√

Γ(1− ϕ) and if we

define the length of this thermal layer as the position where T = 1.05 (a temperature

rise of 5% when compared to the free stream temperature), this behavior can be seen

in Fig. 3.16.
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Figure 3.10 - Heat transfer at the wall × wall temperature, for different porosities with
β∗ = 1.08, Pr = 0.7, Ng = 1.0 and Γ = 50.0.

3.4 Conclusions

We analyzed a stagnation-point flow established in a porous medium with interphase

heat exchange. Through a semi-heuristic formulation we studied the coupled heat

and momentum transfer problem. It was shown that thermal expansion decreases

the vertical velocity f and increases the horizontal velocity f ′. This happens because

thermal expansion induces a resistive force against the incoming vertical mass flux,

but the horizontal velocity has no such resistance, such that thermal expansion only

increase the horizontal velocity component. The presence of a hot wall induces a
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velocity overshoot in the boundary-layer. If the porosity is low enough, the high

magnitude of the Darcy resistance term smooths this overshoot. The porous matrix

enhances gas temperature, as it provides heat to the flow.
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From the non-dimensionalization, the parameter β arises, which measures the square

of the ratio between the thickness of the macroscopic viscous boundary-layer δ and

the mean particle diameter d̄p (with the use of a bed-of-particles model for the

permeability). This parameter, which was already recognized previously in the lit-

erature (WU et al., 2005), determines the existence of a maximum pressure above

the stagnation-point. Thermal expansion determines its location, as seen in Eq. 3.7.

The flow is influenced by the crossed effects of viscosity, inertia and Darcy resis-

tance term. The magnitude of βT 2
g determines the strength of the Darcy term in

this dynamics, where the term T 2
g comes from thermal expansion.

For β sufficiently lower than 1, an increase on the wall temperature leads to an

increase on the wall shear due to the horizontal acceleration of the gas near the
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wall. However, when β is sufficiently higher than 1, increasing wall temperatures

first increase the wall shear and then decrease it. This is an effect of the increase

of the Darcy resistance (which is proportional to the local flow velocity, and due to

thermal expansion, also to the gas temperature), which lowers the local flow velocity.

As discussed, the flow is influenced by the crossed effects of viscosity, inertia and

Darcy resistance. When β > 1, the Darcy resistance has a strong influence on the

flow. So, even though thermal expansion induces an acceleration on the flow velocity,

the same effect induces a stronger flow resistance, which lowers the wall shear for

increasing wall temperatures. This behavior is opposite to what is observed in non-

confined mediums, as an increase on the wall temperature will always enhance wall

shear in such cases. The existence of a maximum pressure above the stagnation-point

when β > 1 is also an effect of this high resistance force, as discussed previously

(WU et al., 2005).
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Since the phases are thermally coupled, heat conduction through the solid phase

enhances the thickness of the thermal layer for this problem. Its growth is pro-
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portional to
√

Γ(1− ϕ), as seen in Eq. 3.4 and Fig. 3.13. In the asymptotic limit

Γ >> 1 with (1 − ϕ) = O(1), an outer region arises, which is dominated by heat

conduction through the solid phase. When an incompressible flow is considered, the

flow is potential in this outer region (KOKUBUN; FACHINI, 2011). Since large val-

ues of
√

Γ(1− ϕ) leads to thicker thermal layers, porous heat exchangers are more

efficient in the low-porosity limit ϕ << 1, or for materials that have larger val-

ues of Γ. However, one must balance this gain with the consideration that flows in

low-porosity mediums have high hydraulic losses (for low porosities, the imposed

pressure gradient must be high).

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0  2  4  6  8  10
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

Q
g

Q
s

Ng

Qg
Qs

Figure 3.13 - Heat transfer at the wall × Ng with β∗ = 1.08, Pr = 0.7, ϕ = 0.7, T0 = 1.6
and Γ = 50.0.

The distinct flow behavior for different β must be considered for calculations of

the wall heat exchange and wall shear. We utilized a bed-of-particles model for the

porous matrix, such that β ∼ 1/(ād̄2
p). Generally speaking, β ∼ 1/K, with K the

dimensionless medium permeability (Darcy number). The existence of a singular

point when β = 1 suggests that a different model for the pressure could be used in

this case.
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4 PHASE CHANGE PROBLEM: STAGNATION-POINT FLOW

AGAINST A LIQUID POOL

In this Chapter we replace the impermeable wall by a pool of liquid. The injected

gas is at a higher temperature than the liquid, that is at its boiling temperature.

Then, a steady vaporization regime is analyzed. Since we do not consider chemical

reaction to take place, the case analyzed here may be viewed as a frozen flow limit.

Studies concerning phase change in porous media are also extensively found in the

literature due to its vast amount of possible applications (YORTSOS; STUBOS, 2001).

Drying processes (DAURELLE et al., 1998), geothermal systems (WOODS, 1999) and

nuclear safety issues are some examples of such system. The evaporation of a thin

film of liquid water within a heated porous bed subjected to a stagnation-point flow

was studied analytically (ZHAO, 1999). In that work, the coupled heat and mass

transfer problem was analyzed in the proposed geometry. Local thermal equilibrium

was considered, and the focus was on the parameters influence on the heat and mass

transfer properties. The obtained results are of significance for the design of indirect

evaporative air cooler systems.

Boiling in a saturated porous medium was analyzed by Ramesh and Torrance (1993)

by considering a heat supply from below and a cooling from above. Using numer-

ical methods, they analyzed the possible flow regimes with the consideration of a

moving liquid/two-phase interface. The authors conducted a parametric study con-

sidering the liquid-phase Rayleigh number and the non-dimensional bottom heat

flux. Their results recognized three different regimes: conduction-dominated for low

Rayleigh number, convection-dominated for intermediary Rayleigh number, and os-

cillatory convection for high Rayleigh number. In the convection-dominated regime,

as the non-dimensional bottom heat flux increases, transitions to multiple cell pat-

terns were observed. The stability of the obtained solutions to perturbations was

also conducted. The interphase heat exchange was considered fixed as a heat loss

parameter.

Effects of local thermal non-equilibrium on the infiltration of a hot fluid into a cold

porous medium was analyzed by Rees et al. (2008). In order to study this flow

configuration, the moving thermal front resultant from the thermal non-equilibrium

was analyzed. By performing a scale analysis and numerical simulations, the dif-

ferent manners in which the temperature fields evolve in time were discussed. It

was found that the thickness of the thermal front is a function of the governing

parameters (namely, the non-dimensional interphase heat transfer parameter, the
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porosity-modified conductivity ratio and the diffusivity ratio). This has the implica-

tion that local thermal equilibrium is not equivalent to a single equation formulation

of the energy equation. Their results for a large-time analysis showed that local ther-

mal equilibrium is achieved in such limit, but in a solution different from that which

would be obtained by an one-equation modeling. It was also observed the formation

of a shock wave when the velocity of the infiltrating fluid was sufficiently large.

There is also a good amount of studies in the open literature concerning natural

evaporation, specially concerning the analysis of drying of porous media. Such prob-

lem finds applications to areas such as wood, paper, and the textile industry. Il´ichev

et al. (2008) studied the gravitational instability of the salinity profile during the

evaporation of saline groundwater. The stability analysis concluded that the most

significant effect controlling the stability is the permeability of the soil. The effects

of the different characteristic length scales in the problem of evaporative drying of

a porous medium was analyzed by Lehmann et al. (2008). By comparing the roles

of gravity, capillarity and viscous dissipation forces, they deduced the characteristic

length for the maximum hydraulically connected film region between the drying front

and the surface. The characteristic lengths depend on the size range between the

smallest and largest pores within the film region. For media with large pores sizes,

the characteristic length is dominated by gravity and capillarity, and the viscous dis-

sipation is negligible. For media with small pores sizes (fine-textured) it was shown

that viscous dissipation may limit the maximum hydraulically connected distance

between the drying front and the evaporating surface. The authors also conducted

experiments with two types of sand in order to determine the characteristic lengths

and the extent of the film region.

The situation when heat is supplied to the condensed phase by a hot impinging gas

arise, for instance, in the steam injection process of thermal oil recovery (NARAYAN;

WALSH, 1988; JABBOUR et al., 1996). When a well contains heavy oil, its recovery may

be achieved by means of heat addition in the reservoir, increasing its temperature

and lowering the oil viscosity and hence increasing its mobility. The initial (injection)

temperature of the steam must be high.

Heavy-oils have low volatility, such that the enhancement of the vaporization rate

caused by heat transport through the solid phase is the main responsible for its

phase change. In the context of a constant-density model and in the limit Γ >>

1 (asymptotically large solid-to-gas thermal conductivities ratio), a liquid of l =

O(Γ) >> 1 (very low volatility) was considered previously (KOKUBUN; FACHINI,
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2012). It was shown that in this case, in order to have vaporization of the liquid,

it was necessary that the difference between the injection temperature T̄∞ and the

liquid boiling temperature T̄B is high. In that problem this condition was expressed

as (T̄∞ − T̄B)/T̄∞ = O(1).

In the present problem we consider l = O(1), ρ 6= 1 (thermal expansion) and a

large, but finite, value of Γ. These conditions are used in order to generalize the

previous work (KOKUBUN; FACHINI, 2012) and it shown that the addition of a porous

matrix enhances liquid vaporization, because it provides an additional heat source

to the phase change process. This shows that porous-medium can be used to make

vaporization of liquids more efficient (for instance, they can replace spraying-type

nozzles, which are energy-consuming and requires larger volumes for operation).

4.1 Physical problem

Instead of an impermeable wall at η = 0 (as in Chapter 3), we have a pool of liquid

as depicted in Fig. 4.1.

Figure 4.1 - Schematic of the problem.
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The injected gas is at a high temperature, a condition that makes gas phase provide

heat to the liquid phase-change. The existence of a solid phase enhances heat trans-

port to larger regions, including to inside the liquid pool. Then, the heat exchange

between liquid and solid below the gas-liquid interface is an additional heat source

that enhances vaporization of the liquid.

In the present case, the coupling between flow and temperature fields due to ther-

mal expansion enhances the heat fluxes near the surface, which enhances the liquid

vaporization rate. Since the gas temperature decreases from injection to the sur-

face, its density increases, a process that compresses the flow, increasing its vertical

velocity and pushing the stagnation-point closer to the liquid surface. Velocity over-

shoot is not observed because it only occurs when there is a temperature in the

viscous boundary-layer higher than the free stream temperature, a feature that hap-

pens for the previous case (hot wall) and for the next, when a flame sheet in the

boundary-layer is accounted, but not for the present frozen flow.

4.2 Mathematical formulation

The governing equation for YO is not necessary, and the chemical reaction term in

the equations for YF and Tg is set to zero. Then, the non-dimensional governing

equations for this problem in the gas-solid region, η > 0, are given by

Pr
d3f

dη3
+ f

d2f

dη2
−
(
df

dη

)2

− βT 2
g

df

dη
= −Tg (1 + β) , (4.1)

Pr
d2(fTg)

dη2
+ f

d(fTg)

dη
− βT 3

g f = (1− β)
dF

dη
, (4.2)

− f dYF
dη
− ϕ

LF

d2YF
dη2

= 0, (4.3)

− f dTg
dη
− ϕd

2Tg
dη2

= TgNg (Ts − Tg) , (4.4)

− Γ(1− ϕ)
d

dη

(
1

Tg

dTs
dη

)
= −TgNg (Ts − Tg) . (4.5)

For the liquid region, z < 0, since the liquid is at its boiling temperature, the only

governing equation to be solved is the one for the solid, and it is given by

− Γ(1− ϕ)
d2Ts
dz2

= −Nl(Ts − TB). (4.6)

50



Injection conditions for η →∞ are given by

df

dη
= 1, Ts = Tg = 1, YF = 0. (4.7)

At the surface η = 0, we have the gas at thermal equilibrium with the liquid (both

at the liquid boiling temperature TB) and the no-slip condition (zero tangential

velocity, which is valid when ρ/ρl � 1). Also, mass conservation relates the vertical

component of the velocity with the vaporization rate. These conditions for η = 0 are

given by

Tg = TB,
df

dη
= 0, − f(0) = ṁ. (4.8)

The solid temperature at the surface Ts0 > TB is an unknown to be obtained from

the continuity of the solid phase heat flux at the gas-liquid interface, given by

1

TB

dTs
dη

∣∣∣∣
0+

=
dTs
dz

∣∣∣∣
0−
. (4.9)

Reservoir condition, z → −∞, is given by

Ts = TB. (4.10)

At the interface η = z = 0, species and energy conservation gives

ϕ

LF

dYF
dη

∣∣∣∣
0

= (1− YF0)f(0), (4.11)

ϕ
dTg
dη

∣∣∣∣
0+

+Nl

∫ 0−

−∞
(Ts − TB)dz = ṁ l TB, (4.12)

where l ≡ L/(cpT̄B) is the dimensionless latent heat of vaporization. The definition

of l with respect to T̄B instead of T̄∞ makes the effective latent heat of vaporization

to be given by l TB. This definition was made this way in order to keep l fixed for

different injection temperatures.

Species conservation at the interface 4.11 determines YF0, while energy conservation

4.12 determines the vaporization rate ṁ.
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4.2.1 Liquid-solid region

In the liquid-solid region, the solution for the solid temperature equation is straight-

forward obtained as

Ts(z) = TB + b0 e
√
Nl/(Γ(1−ϕ))z, (4.13)

where the condition Ts → TB for z → −∞ was used and b0 is determined from the

continuity of the solid heat flux at the interface 4.9, such that

b0 =
1

TB

dTs
dη

∣∣∣∣
0+

√
Γ(1− ϕ)

Nl

. (4.14)

Then, the solid temperature in the liquid-solid region is given by

Ts(z) = TB +

 1

TB

dTs
dη

∣∣∣∣
0+

√
Γ(1− ϕ)

Nl

 e
√
Nl/(Γ(1−ϕ))z. (4.15)

The temperature difference between solid and liquid at the surface (Ts0 − TB) is

proportional to the solid heat flux from the gas-solid region dTs/dη|0+ .

The solid temperature at the interface is then given by

Ts0 = TB +
1

TB

dTs
dη

∣∣∣∣
0+

√
Γ(1− ϕ)

Nl

(4.16)

Using 4.16 in the energy conservation at the interface 4.12 gives the expression for

the vaporization rate as

ṁ =
T−1
B

l

{
ϕ
dTg
dη

∣∣∣∣
0+

+
Γ(1− ϕ)

TB

dTs
dη

∣∣∣∣
0+

}
. (4.17)

Note that the heat flux from the solid phase enhances the vaporization rate. This

enhancement is proportional to the solid matrix volume (1−ϕ) and to the solid-to-

gas thermal conductivities ratio Γ. For ϕ = 1 we recover the result for a non-confined

problem.

The expression 4.17 for the vaporization rate could be obtained by first integrating

Eq. 4.6 from z → −∞ to z = 0. Noting that dTs/dz → 0 when z → −∞, we obtain
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from the continuity of the solid phase heat flux at the surface 4.9 that

Nl

∫ 0−

−∞
(Ts − TB)dz =

Γ(1− ϕ)

TB

dTs
dη

∣∣∣∣
0+
, (4.18)

which shows that all the heat provided to the liquid-solid region is given to the

phase change of the liquid. Since we consider Tl = TB everywhere, this result is

straight-forward.

Species conservation 4.11 determines the fuel mass fraction at the surface YF0 as

YF0 = 1 +
ϕ

LF ṁ

dYF
dη

∣∣∣∣
0

. (4.19)

In order to numerically solve this problem, values for the eigenvalue ṁ and for

the unknowns Ts0 and YF0 are first guessed and the profiles that obey these guessed

values are obtained by marching in the pseudo-time until the steady-state is achieved

(we consider the steady-state to be achieved when ∂/∂t ∼ 10−5). Then, ṁ, Ts0 and

YF0 are calculated through the discretized versions of Eqs. 4.16, 4.17 and 4.19. If

the difference between the calculated and the guessed values is greater than 10−5,

the guesses are updated and a new iteration is made. A constant mesh spacing of

∆η = 0.05 was used. Decreasing ∆η below this value showed no significant influence

on the vaporization rate −f(0), such that ∆η = 0.05 was considered appropriated.

4.3 Results

In order to obtain characteristic profiles we consider the liquid to be water and

an impinging air, with its properties evaluated at 293 K, such that l = 5.826.

A mean pore diameter d̄p = 5 mm is considered. Then, characteristic profiles of

temperatures, velocities and vapor mass fraction are obtained for Pr = ϕ = 0.7,

Γ = 50.0, TB = 0.333 (impinging jet at a temperature three times higher than

the liquid boiling temperature), β∗ = 1.08 and Ng = Nl = LF = 1.0 and shown

in Figs. 4.2, 4.3 and 4.4, respectively, where we also compare with results of the

incompressible model (constant density). Profiles are given in the physical z plane.

From the state equation ρ = 1/Tg, the gas density increases from injection to the

liquid surface, as the temperature decreases from injection to the liquid surface. This

increase on the gas density compress the flow, enhancing its vertical velocity, when

compared to the constant-density case, and pushing the stagnation-point closer to

the surface. In addition, due to the high value of the temperature field, which en-
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hances the heat flux at the surface, the vaporization rate for the compressible case

is higher when compared to the incompressible case. For the set of parameters con-

sidered, we have ṁ = 0.246 and ṁ = 0.185 for the compressible and incompressible

cases, respectively. Consequently, the vapor mass fraction at the surface is higher in

the compressible case, as seen in Fig. 4.4. We obtain YF0 = 0.464 and YF0 = 0.335

for compressible and incompressible cases, respectively. The vapor is transported by

convection and diffusion from the surface to the stagnation-point, and after that only

by diffusion against the incoming flow. Since the flow velocity in the incompressible

case is lower than in the case with thermal expansion, the vapor is able to diffuse

more above the stagnation-point in the incompressible case, as one can see in Fig.

4.4.
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Figure 4.2 - Temperature profiles with and without thermal expansion for β∗ = 1.08,
Ng = Nl = LF = 1.0, Pr = ϕ = 0.7, Γ = 50.0 and TB = 0.333.

Physically, it is expected that Nl > Ng because of the following: the contact time

between gas and solid is smaller than the contact time between liquid and solid,

the density, viscosity, heat capacity and thermal conductivity of the liquid are much

higher than of the gas. The consideration of Nl = Ng = 1.0 is made to obtain char-
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acteristic profiles, but the overall physical behavior will be the same if we consider

the more realistic case of Nl > Ng. From the solid temperature in the liquid-solid

region, Eq. 4.15, we can see that the thickness of the thermal non-equilibrium region

is proportional to
√
N−1
l , such that it decreases for increasing values of Nl. In the

asymptotic limit Nl >> 1, Ts → TB, such that no heat exchange between liquid and

solid would occur. However, from the integral term in Eq. 4.12 we can see that the

heat exchange between liquid and solid is linearly dependent on Nl. Then, in the

asymptotic limit of Nl >> 1 the vaporization rate scales with
√
Nl. This trend may

be seen in Fig. 4.5, where we show the influence of Nl on the vaporization rate ṁ

and fuel mass fraction at the surface YF0. Figure 4.6 shows the temperature profiles

for Nl = 1.0 and Nl = 100.0, where one can see that the thickness of the thermal

non-equilibrium region between liquid and solid when Nl = 100.0 is smaller than

when Nl = 1.0.
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Figure 4.3 - Velocities profiles with and without thermal expansion for β∗ = 1.08, Ng =
Nl = LF = 1.0, Pr = ϕ = 0.7, Γ = 50.0 and TB = 0.333.

Gas and solid heat fluxes at the surface determines the vaporization rate (see Eq.
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4.17) and they are given respectively by

Qg = ϕ
dTg
dη

∣∣∣∣
0

, Qs = Γ
(1− ϕ)

TB

dTs
dη

∣∣∣∣
0

. (4.20)

A decrease on the medium porosity ϕ leads to an increase on the solid heat flux,

which enhances Ts0, leading to higher values of the vaporization rate ṁ and, conse-

quently, increasing the vapor mass fraction at the surface YF0. These features can

be seen in Fig. 4.7, where we show ṁ, Ts0 and YF0 variations with the porosity ϕ.

The increase on the gas heat flux at the surface Qg and the decrease on the solid

heat flux Qs with the porosity ϕ is shown in Fig. 4.8.
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Figure 4.4 - Vapor mass fraction profiles with and without thermal expansion for β∗ =
1.08, Ng = Nl = LF = 1.0, Pr = ϕ = 0.7, Γ = 50.0 and TB = 0.333.

As expected, an increase on the injection temperature (measured by 1 − TB) leads

to an increase on the vaporization rate ṁ and vapor mass fraction at the surface

YF0, as shown in Fig. 4.9. The increase on the solid temperature at the surface is

measured as Ts0/TB, instead of only Ts0, because the dimensionalization is made

with respect to the injection temperature. Then, Ts0 measures an increase in terms
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of T̄∞, but Ts0/TB is an absolute measure of the increase of the solid temperature

at the surface.
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Figure 4.5 - {ṁ, YF0} × Nl with β∗ = 1.08, Ng = LF = 1.0, Pr = ϕ = 0.7, Γ = 50.0 and
TB = 0.333.

Higher values of the solid-to-gas thermal conductivities ratio Γ leads to higher values

of the vaporization rate ṁ, solid temperature at the surface Ts0 and vapor mass

fraction at the surface YF0, as seen in Fig. 4.10. This occurs because when Γ is

large, the heat conduction through the solid phase is large, leading to a higher

value of its temperature at the gas-liquid surface, which consequently increase the

vaporization rate and the vapor mass fraction at the surface. The contributions to

the vaporization rate come from the gas and solid heat fluxes at the surface, as seen

in Eqs. 4.17 and 4.20. For increasing values of Γ, the gas contribution decreases,

while the solid increases, as one can see in Fig. 4.11.

Increasing values of Ng leads to increasing values of the vaporization rate ṁ, as one

can see in Fig. 4.12. For Ng = 0 the vaporization occur only because of the gas-liquid

heat exchange at the surface. As Ng starts to increase, the solid phase heat flux at
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the interface increases, which decreases the gas phase heat flux at the interface. Since

the solid thermal conductivity is much higher than the gas thermal conductivity, the

vaporization rate increases as the solid phase contribution to the vaporization rate

increases. As Ng increase further, the intensification of the interphase heat exchange

increases gas temperature and decreases solid temperature, leading to an increase on

the gas phase heat flux at the surface and to a decrease on the solid phase heat flux

at the surface. This behavior makes the solid temperature at the surface to present

a maximum, as one can see in Fig. 4.12. In Fig. 4.13 we show the phases heat flux

with respect to Ng.
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Figure 4.6 - Temperature profiles for Nl = {1.0, 100.0}, with β∗ = 1.08, Ng = LF = 1.0,
Pr = ϕ = 0.7, Γ = 50.0 and TB = 0.333.

The vapor Lewis number LF influence only the vapor mass fraction at the surface

YF0 because it changes the concentration of YF near η = 0. If the vapor Lewis

number increases, heat diffusion becomes more relevant than mass diffusion, which

enhances the vapor mass fraction at the surface YF0, as shown in Fig. 4.14.
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4.4 Conclusions

In this Chapter we analyzed a hot impinging flow against a liquid surface, which

vaporizes due to the high temperature of the incoming gas flow. The gas-liquid

system is immersed in an inert porous matrix. Since the solid phase has a higher

thermal conductivity, when compared to the gas phase, the addition of the porous

matrix enhances heat transport to large regions, including into the liquid, providing

an extra heat source to the phase change process. Then, the vaporization rate is

enhanced by the porous matrix. The increase on the vaporization rate is proportional

to the solid volume (1− ϕ), as seen in Eq. 4.17 and Fig. 4.7.

From ρ = 1/Tg, thermal expansion compresses the flow from injection (high temper-

ature) to the liquid surface (which is at the liquid boiling temperature), pushing the

stagnation-point closer to the surface. The enhancement of the temperatures due to

thermal expansion increase the vaporization rate and the higher flow velocity diffi-

cult the transport of vapor from the liquid surface against the incoming jet (mass

diffusion above the stagnation-point).
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The thickness of the thermal non-equilibrium region between liquid and solid dimin-

ishes for increasing values of the liquid-solid interphase heat exchange coefficient Nl,

as one can see in Fig. 4.6. The thickness of this thermal non-equilibrium region is

proportional to
√
N−1
l . Increasing values of Nl increases the vaporization rate, as

seen in Eq. 4.12 and Fig. 4.5. In the asymptotic limit of Nl � 1, the solid tempera-

ture Ts in the liquid-solid region approaches the liquid boiling temperature TB and

the vaporization rate is proportional to
√
Nl.

Higher values of Γ leads to higher values of the vaporization rate, as the solid phase

heat flux at the surface depends linearly on Γ. Since Γ measures the difference

between heat transport in solid and gas phases, high values of Γ means that heat is

transported through the solid phase to larger regions. Then, heat exchange between

gas and solid heats the gas at larger distances when Γ is large.

For increasing values of Ng, the coupling between phases increase the vaporization

rate due to the high value of the solid phase thermal conductivity when compared to

the gas phase thermal conductivity. When Ng increase enough, the high interphase
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heat exchange between phases increase the gas temperature profile, while decrease

the solid temperature profile.
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The vapor Lewis number LF modifies the concentration of vapor at the surface.

Increasing values of LF lead to increasing values of YF0, because we are increasing

heat diffusion with respect to mass diffusion.
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5 REACTIVE PROBLEM: DIFFUSION FLAME ESTABLISHED IN A

STAGNATION-POINT FLOW CONFIGURATION

In this Chapter we extend the previous Chapters by considering that the liquid

is a fuel and the impinging jet is an oxidant. A flame sheet is established in the

region where the mass fluxes are at stoichiometric proportion, inside the viscous

region around the plane that contains the stagnation-point. The exothermic reaction

releases heat, which is conducted to both sides of the flame sheet. In the fuel side,

this heat is used to vaporize the liquid fuel, a process that supplies the necessary

vapor to sustain the diffusion flame.

For liquid fuels, it has been shown that porous medium burner have some advan-

tages over the conventional spray systems (MUJEEBU et al., 2009). The intense radi-

ation field generated by the heated solid enhances the evaporation of fuel droplets

in the confined medium. For situations such that the droplets vaporize and mix

with oxidant prior to the combustion zone (MARTYNENKO et al., 1998; KAYAL;

CHAKRAVARTY, 2005), essentially a premixed flame is established.

The burning of fuels in non-premixed configurations has not received large atten-

tion, which can be measured by the small number of studies found in the literature.

However, potentially low emissions of NOx and CO for the burning of liquid fu-

els have been addressed (HOWELL et al., 1996). Hence, the study of non-premixed

flames in porous media deserves some attention. The evaporation and combustion of

ethanol from a porous surface when subjected to a boundary-layer-type flow of air

were studied experimentally (BOYARSHINOV et al., 1994). It has been found that the

flow velocity has a considerable effect on the flame temperature and the distribution

of mass flows over the wall. Also, heat and mass transfer coefficients decreased in

combustion. In addition, a similar boundary-layer-type reactive flow was considered

in analytical and numerical studies (LIU et al., 2008). The developed analytical model

investigates the dynamics of non-premixed flames in a shear layer established be-

tween a mainstream flow of fuel-rich combustion products and a porous surface with

an angled injection of air. The results were compared with numerical simulations

and a qualitative agreement in the surface temperature was observed. Furthermore,

comparison of the stability limits predicted by the model with the experimental data

was performed and a good qualitative agreement was obtained.

The problem of a free-convective diffusive flame in a porous media was also analyzed

by Chao et al. (1994). A similarity solution was considered in the infinitely thin

flame sheet limit of the reaction of a condensed fuel with an oxidizer flow driven by
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the buoyancy force. The results showed that the temperature and species profiles

are qualitatively similar to those of the conventional, non-confined, free convection

flow. However, the flame temperature is lower as a result of a high value for the

effective Lewis number. This elevation on the effective Lewis number causes the

flame to moves towards the wall. It was also shown that the velocity field may have

a maximum at the reaction sheet or two maxima depending upon the temperature

dependence of the flow viscosity.

The specific case of stagnation-point diffusion flames stabilized next to a porous wick

was analyzed numerically by Raju and T’ien (2007). The porous wick was dipped

inside the liquid fuel reservoir and through capillary action the liquid is transported

to the surface of the wick and then evaporates and diffuses to the flame. Two regimes

beneath the flame, in the porous wick, were characterized: funicular and evaporative

regime. In the funicular regime a vapor-liquid (two-phase) region exists close to the

surface, with a single-phase liquid region below. In the evaporative regime there is

a single vapor phase above the two-phase region. It was shown that the funicular

regime was the only stable solution in the porous wick.

In the context of the in-situ combustion, Akkutlu and Yortsos (2003) studied the

conditions in which the flame propagation in a porous reservoir is stable. They have

considered weak heat losses to the ambient and derived expressions for temperature

and concentration profiles and the velocity of the combustion front, under both

adiabatic and non-adiabatic conditions. A coefficient that express the effective heat

transfer was obtained in terms of the reservoir thickness and front propagation speed.

Mailybaev et al. (2011) analyzed the in-situ combustion of oil with pyrolysis and

vaporization. By considering injection of air into a porous medium filled with inert

gas, medium or high viscosity oil and water, they analyzed the one-dimensional flow

generated by a combustion wave. Three pseudo-components were distinguished in the

oil: asphaltenes, medium and light oil. At high temperatures, the heavy components

were converted to coke, which undergoes combustion. The medium components of

the oil cracks and releases gaseous oil, while the light components and water are

vaporized. They considered that the condense phase was fixed in the reservoir and

analyzed the global problem of the propagating combustion front, then they obtained

solutions as a series of traveling waves.

The analysis of the in-situ combustion phenomenon through the propagating com-

bustion wave neglects diffusion as the analysis is focused on the global aspects of the

front. In those cases, the condensed fuel is considered to be at a fixed position inside
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the porous matrix. If the local problem is to be considered (close to the condensed

phase), then mass diffusion of reactants must be considered in the analysis, as well

as the heat conduction.

In the present problem we consider a flame stabilized by a stagnation-point flow

against a condensed (liquid) phase, all the system immersed in an inert porous

matrix. Then, we analyze how the addition of a porous matrix modifies the overall

properties of this problem. Differently from previous Chapters, we do not compare

the obtained results with the incompressible model, because the modifications caused

by the addition of the porous matrix renders enough physical discussions. Also, we

consider a very high Damkohler number, such that we are analyzing a picture close

to the infinitely thin flame limit. This is different than the case analyzed in Appendix

A, where the finite-rate chemistry is exploited in order to obtain the extinction limits

for the confined diffusion flame.

5.1 Physical problem

A schematic of the present problem is given in Fig. 5.1. The exothermic chemical

reaction releases heat, which is conducted to both sides of the flame sheet. Gas and

solid are thermally coupled such that the heat conducted from the sheet heats the

solid, which in turns exchange this heat with the gas and with the liquid. Since

mass diffusion towards the flame is the rate-controlling process, the heat removal

from the flame through the solid phase lowers the flame temperature. In the context

of an one-equation model this result was explained as due to the high value of the

effective Lewis number (which takes into account the sum of gas and solid thermal

conductivities) (CHAO et al., 1994). In the present case we show that the addition of

a resistive force (Darcy term) decreases the local flow velocity, which allows fuel to

diffuse to larger distances from the stagnation-point, such that the flame establishes

farther from the surface. Then, the vaporization rate decreases, which also decreases

the flame temperature. It must be noted that the heat removed from the flame and

conducted to the fuel side is recovered, as it is used to vaporize the liquid fuel.

If the interphase heat exchange is high enough, the flame may extinguish (see Ap-

pendix A). This result was shown previously (ROY et al., 2014) for premixed flames in

the context of smoldering combustion (reactive solid phase). In the present Chapter

we do not analyze the extinction limits. The reader is referred to Appendix A, where

a comprehensive analysis of the extinction limits of diffusion flames established in

inert porous media is performed. In this Chapter we analyze the influence of the

porous medium in the overall combustion characteristics of the diffusion flame that
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is generated by the stagnation-point flow against the condensed (liquid) phase.

Figure 5.1 - Schematic of the present problem.

The expressions for the solid temperature at the surface Ts0, vaporization rate ṁ and

fuel mass fraction at the surface YF0 are the same as the ones obtained for the pure

vaporization case, given by Eqs. 4.16, 4.17 and 4.19. However, in the present case

we have the existence of an additional heat source and reactants sink, namely the

flame. This new heat source enhances the gas temperature, which by consequence

enhances the solid temperature because they are thermally coupled. The increase of

the temperature in the gas and solid phases enhances the vaporization rate because

of the higher value of the heat fluxes (gas and solid) towards the liquid-solid region

(recall that the vaporization rate is given by Eq. 4.17).

Thermal expansion enhances the local flow velocity, which increases the magnitude

of the Darcy resistance term (which is proportional to the local flow velocity, as

one can see from Eq. 2.42). Hence, at the flame this resistance is high (because

of the high local temperature, which by thermal expansion increases the local flow

velocity. Note that the Darcy resistance is effectively accounted by βT 2
g ). If the
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Darcy resistance is high enough, the flow decrease its local velocity at the flame,

rather than to increase it as in a non-confined problem. This makes the horizontal

flow velocity present a two-peak behavior, similar to the one reported by Chao et

al. (1994) in the context of a free-convective flame sheet established in an inert

porous media. If the Darcy resistance term is low enough, the flow resembles that

of the non-confined problem, with a local maximum horizontal velocity near the

flame and caused by gas acceleration due to the heat release at the flame sheet.

The Darcy term is proportional to the square of the local gas temperature T 2
g and

to β ∼ [(1 − ϕ)/ϕ]2/(ād̄2
p), such that its magnitude can be changed by considering

different values of the heat of combustion q (which modifies the flame temperature),

strain-rate ā, medium porosity ϕ and particle sizes d̄p (which modify β).

5.2 Mathematical formulation

The full mathematical formulation derived in Chapter 2 is considered now. Then,

for the gas-solid region η > 0 the governing equations are given by

Pr
d3f

dη3
+ f

d2f

dη2
−
(
df

dη

)2

− βT 2
g

df

dη
= −Tg (1 + β) , (5.1)

Pr
d2(fTg)

dη2
+ f

d(fTg)

dη
− βT 3

g f = (1− β)
dF

dη
, (5.2)

− f dYF
dη
− ϕ

LF

d2YF
dη2

= −ϕDaYFYOe−Ta/Tg , (5.3)

− f dYO
dη
− ϕ

LO

d2YO
dη2

= −ϕφDaYFYOe−Ta/Tg , (5.4)

− f dTg
dη
− ϕd

2Tg
dη2

= ϕqDaYFYOe
−Ta/Tg + TgNg (Ts − Tg) , (5.5)

− Γ(1− ϕ)
d

dη

(
1

Tg

dTs
dη

)
= −TgNg (Ts − Tg) . (5.6)

For the liquid-solid region z < 0, we have

− Γ(1− ϕ)
d2Ts
dz2

= −Nl(Ts − TB). (5.7)

The boundary conditions are the same as the ones used in Chapter 4, but now we

must consider the additional boundary conditions for the oxidant mass fraction YO.
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The boundary conditions for η →∞ are then given by

df

dη
= 1, Ts = Tg = 1, YF = 0, YO = 1. (5.8)

At the surface η = 0, we have

df

dη
= 0, Tg = TB, YO = 0. (5.9)

The relation between velocities at the interface and the liquid mass conservation

gives

− f(0) = ṁ. (5.10)

The solid temperature at the surface Ts(0) > TB is an unknown to be obtained from

the continuity of the solid phase heat flux at the gas-liquid interface, given by

1

TB

dTs
dη

∣∣∣∣
0+

=
dTs
dz

∣∣∣∣
0−
. (5.11)

Reservoir condition, z → −∞, is given by

Ts = TB. (5.12)

At the interface η = z = 0, fuel mass fraction and energy conservation gives

ϕ

LF

dYF
dη

∣∣∣∣
0

= (1− YF0)f(0), (5.13)

ϕ
dTg
dη

∣∣∣∣
0+

+Nl

∫ 0−

−∞
(Ts − TB)dz = ṁ l TB. (5.14)

The solid phase temperature profile in the liquid-solid region is the same as the one

given by Eq. 4.15

Ts(z) = TB +

 1

TB

dTs
dη

∣∣∣∣
0+

√
Γ(1− ϕ)

Nl

 e
√
Nl/(Γ(1−ϕ))z. (5.15)

The vaporization rate and the fuel mass fraction at the surface are also given by

Eqs. 4.17 and 4.19

ṁ =
T−1
B

l

{
ϕ
dTg
dη

∣∣∣∣
0+

+
Γ(1− ϕ)

TB

dTs
dη

∣∣∣∣
0+

}
, (5.16)
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YF (0) = 1 +
ϕ

LF ṁ

dYF
dη

∣∣∣∣
0

. (5.17)

As in previous Chapters, we add a fictitious unsteady term into Eqs. 5.1 to 5.7, guess

initial profiles that satisfies the boundary conditions and integrate in the pseudo-time

until the steady-state is achieved. Then, compare the guessed conditions (namely

vaporization rate, solid temperature at the surface and fuel mass fraction at the

surface) with the ones calculated through the discretized Eqs. 5.15, 5.16 and 5.17,

update if necessary and integrate in the pseudo-time again until the difference be-

tween guessed and calculated interface values is less than 10−5. We consider a high

Damkohler number and the solutions converge quickly as long as the initial guessed

profile for the gas temperature is energetic enough. The constant mesh spacing used

was ∆η = 2.5 × 10−2 and this value was enough to capture the overall flame prop-

erties (some variations are expected around the values of flame temperature and

position because of the high value of the Damkohler number, but the overall trend

is correctly predicted). When considering l = 4.32, LF = LO = 1.0, Pr = ϕ = 0.7,

q = 100.0, φ = 8.0, TB = 2.5, Ta = 10.0, Da = 107, β∗ = 1.08, Ng = Nl = 1.0

and Γ = 50.0, we obtained −f(0) = 0.45855 with ∆η = 2.5 × 10−2. Dividing the

mesh spacing by a factor of two showed no influence up to the fifth decimal, such

that ∆η = 2.5 × 10−2 was considered a small enough mesh space. In the reactive

term, the reactants mass fractions are calculated implicitly, but the gas temperature

explicitly. This avoids the need of linearizing the non-linear Arrhenius term.

5.3 Results

As before, we consider the impinging jet to be air with its properties evaluated at

T̄ = 293 K. A mean pore diameter d̄p = 5 mm is considered. Combustion properties

are only representative and do not represent any particular fuel. Then, typical profiles

for temperatures, mass fractions and velocities are given in Figs. 5.2 and 5.3 with

the consideration of l = 4.32, LF = LO = 1.0, Pr = ϕ = 0.7, q = 100.0, φ = 8.0,

TB = 2.5, Ta = 10.0, Da = 107, β∗ = 1.08, Ng = Nl = 1.0 and Γ = 50.0.

Figure 5.2 shows the temperatures and mass fraction profiles (the temperatures

profiles for η < 0 are not shown, but they are similar to the ones obtained in the

previous Chapter: constant for the liquid, exponential-like for the solid, as seen from

Eq. 5.15 and Fig. 4.2). The consideration of Da = 107, very high Damkohler number,

means that the reactants are almost completely consumed at the flame, which is very

thin in this case (a situation very close to the infinitely thin flame limit). At the

flame, which for the conditions considered is located approximately at η = 1.9, as one
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can see in Fig. 5.2, the gas has its peak temperature, namely the flame temperature.

Since the phases are thermally coupled, the solid has its maximum temperature at

the flame as well, but at a lower value Tsf . The solid then conducts heat away from

the flame. As we move away from the flame, the solid has a higher temperature than

the gas because it has a higher thermal conductivity. Since the phases are thermally

coupled, the solid heats the incoming reactants, elevating the gas temperature far

from the flame sheet.
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Figure 5.2 - Temperature and mass fraction profiles for β∗ = 1.08, Ng = Nl = LF = LO =
1.0, l = 4.32, φ = 8.0, Pr = ϕ = 0.7, q = 100.0, Da = 107, Γ = 50.0 and
TB = 2.5.

The Darcy term represents a resistance force to the flow. For ϕ = 1.0 this force is

zero, and as we decrease the porosity, the magnitude of this force increases. The

Darcy resistance is effectively accounted through the term βT 2
g that appears in Eq.

5.1. When this resistance is high enough, it decreases the local flow velocity. In

this case, fuel vapor can diffuse to larger distances from the stagnation-point to

the oxidant side, because the incoming flow has a lower velocity. Then, for lower

porosities the flame is established farther from the surface. This decreases the heat
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flux to the liquid fuel, such that the vaporization rate decreases.
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Figure 5.3 - Velocities profiles for β∗ = 1.08, Ng = Nl = LF = LO = 1.0, l = 4.32, φ = 8.0,
Pr = ϕ = 0.7, q = 100.0, Da = 107, Γ = 50.0 and TB = 2.5.

Figure 5.4 shows the velocities profiles for ϕ = {0.5, 0.7, 1.0}, where one can see that

a two-peak behavior for the horizontal velocity f ′ exist when ϕ = 0.7 (see also Fig.

5.3). This two-peak is a result of the competition between Darcy resistance, viscosity

and convection terms. Thermal expansion enhances velocity, but this also increases

the Darcy resistance to the flow (which is proportional to the flow velocity). If the

Darcy term is sufficiently high (measured by βT 2
g ), the flow resistance imposed by

the porous matrix is high and the flow suffer a decrease in its velocity at the flame,

rather than an increase, as in non-confined problems (ϕ = 1.0 case). The velocity

overshoot in the boundary-layer is smoothed by the Darcy resistance as one can see

from Fig. 5.4. If the Darcy resistance is high enough, the second-peak is suppressed,

as one can see when ϕ = 0.5. One can also see from Fig. 5.4 that the vaporization

rate (which is measured by ṁ = −f(0)) is higher for ϕ = 1.0. This is because of the

higher flame temperature when ϕ = 1.0 (for ϕ = 0.7 we obtain Tf ∼ 7.6, while for

ϕ = 1.0, Tf ∼ 11.02).
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Figure 5.4 - Velocities profiles for ϕ = {0.5, 0.7, 1.0} and β∗ = 1.08, Ng = Nl = LF =
LO = 1.0, l = 4.32, φ = 8.0, Pr = 0.7, q = 100.0, Da = 107, Γ = 50.0 and
TB = 2.5.

The tangential velocity f ′ has a local minimum at the flame because it is at the

flame that βT 2
g has its maximum value (maximum value of the Darcy resistance),

as one can see from Fig. 5.5, where we show f ′ and βT 2
g for ϕ = 0.7. Then, when

β is sufficiently high, the flame acts almost as an wall to the flow, imposing a high

resistive force.

The magnitude of the Darcy resistance force is given by βT 2
g , with a maximum at

the flame because Tg is maximum at the flame. Recalling that β = β∗[(1−ϕ)/ϕ]2, it

is easy to see that for lower porosities this resistance is higher. In Fig. 5.6 we show

the maximum value of the Darcy resistance βT 2
f with respect to the porosity ϕ,

and in Fig. 5.7 we show the positions of the flame and of the stagnation-point with

respect to the porosity ϕ. One can see that for decreasing porosities the maximum

Darcy resistance βT 2
f increases, which favors mass diffusion of the fuel vapor farther

from the stagnation-point, which makes the flame to be established farther from the

surface.

As argued previously, the presence of the porous medium decreases the flame temper-
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Figure 5.5 - Velocity profile and Darcy resistance for ϕ = 0.7, β∗ = 1.08, Ng = Nl = LF =
LO = 1.0, l = 4.32, φ = 8.0, Pr = 0.7, q = 100.0, Da = 107, Γ = 50.0 and
TB = 2.5.

ature because the solid phase removes heat from the flame and distributes it to both

sides of the sheet. Since for lower porosities the heat flux through the solid phase is

enhanced, it is expected that if the porosity is low enough the flame will extinguish

(see Appendix A). In the present case, however, since we consider Da = 107, very

high Damkohler number, this does not occur. In Fig. 5.8 we compare temperature

and mass fraction profiles for ϕ = 0.5 and ϕ = 1.0. The flame temperature decreases

from Tf = 11.02 to Tf = 5.97, approximately, for the cases ϕ = 1.0 and ϕ = 0.5,

respectively, and its position changes from ηf ∼ 1.6 to ηf ∼ 1.9.

The influence of the medium porosity ϕ on flame temperature Tf and vaporization

rate ṁ is shown in Fig. 5.9. For low porosities the heat removed from the flame

by the solid phase is high, which lowers the flame temperature and the vaporization

rate (which also lowers because the flame is located farther from the surface). As the

porosity increases, heat loss diminishes and the flame approaches the surface, such

that flame temperature and vaporization rate increases. Starting from ϕ = 1.0 (non-

confined problem) and decreasing ϕ, the heat loss to the oxidant side is small, and
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in this case, the heat conduction through the solid phase to the fuel side enhances

the vaporization rate. These properties makes the dependence of the vaporization

rate with the porosity ϕ to present a maximum at approximately ϕ = 0.925 for the

considered conditions. Note that for the considered conditions, when ϕ < 0.8, the

vaporization rate is smaller than the vaporization rate obtained for the non-confined

problem (ϕ = 1.0). Hence, the porous medium enhances the vaporization rate for

ϕ > 0.8.

In a previous work we analyzed this problem with the assumption of very low per-

meability medium and under the scope of a constant-density model (KOKUBUN;

FACHINI, 2013). In that work, it was shown that the flame temperature and vapor-

ization rate decreased with increasing porosities, an opposite result to what it is

obtained in the present work (see Fig. 5.9). However, this happens because in that

previous work we considered a very low permeability (low porosity) and then extrap-

olated the results for higher porosities. In the present notation, the consideration

of a very low permeability in that work was accounted through K = Γ−1 << 1, or

β = Γ >> 1. Recalling that the model utilized for the permeability 2.31 determines
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β through β = β∗[(1− ϕ)/ϕ]2, and that β∗ = O(1), then, the it can be shown that

the previous model is valid up to ϕ ∼ 1/(
√

Γ + 1). By considering Γ = 50.0, we see

that the previous model was valid for porosities lower than ϕ ∼ 0.12, i.e., very low

porosities. If we analyze the gas and solid heat fluxes at the surface, Qg and Qs in

Eq. 4.20 and shown in Fig. 5.10, we can see that when the porosity is high the gas

contribution to the vaporization rate is higher than the solid contribution. As we

decrease the porosity, the solid contribution becomes higher than the gas contribu-

tion, even though both are decaying due to the lowering on the flame temperature.

If the flame was not allowed to extinguish, in the limit of very low porosity the solid

would be the responsible for the leading-order contribution to the vaporization rate.

Then, in this scenario, a decrease on the porosity enhance the vaporization rate

and consequently the flame temperature. Since the trend observed in the previous

work (KOKUBUN; FACHINI, 2013) and the one observed now are opposed, a theoret-

ical turning point is expected to occur at some intermediary porosity. This trend is

given schematically in Fig. 5.11.
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Efficient porous burners have a high porosity whilst having small pores. This is

mainly because: (1) if the porosity is low, the hydraulic loss are high and (2) if the

pores are large, heat loss by radiation through the solid phase is high. In the present

work we do not consider radiation (and also do not calculate the hydraulic losses

associated with the lowering in the porosity, i.e., increasing in β), but our results

show that we have an optimum porosity to which the vaporization rate is maximum.

In this case, the maximum vaporization rate is associated with a balance between the

heat loss to the oxidant side and the enhancement of the heat flux towards the liquid

fuel, that is caused by the presence of the solid matrix (see Eq. 5.16). It is worth to

note that even though the vaporization rate has a maximum, the flame temperature

does not have such maximum (the highest flame temperature is achieved in the non-

confined case, ϕ = 1.0). This is because the gas and solid are coupled, even when

the porosity is high, such that the conditions for the establishment of the diffusion

flame are achieved farther from the surface, which makes the flame temperature to

be lower.
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5.4 Conclusions

In this Chapter we extended the previous results by considering an impinging jet

of oxidant against a pool of liquid fuel, with all the system immersed in an inert

porous matrix. A diffusion flame is established approximately where the reactants

mass fluxes are at stoichiometric proportion. The solid matrix removes heat from

the flame and transports it to both sides of the flame. At the fuel side, the heat is

recovered because it is completely used to the liquid fuel phase change (the liquid

fuel is considered to be at its boiling temperature), while at the oxidant side, part of

the heat is lost (in the sense that it is not recovered by the flame sheet), such that

the flame has a lower temperature when compared to the non-confined case.

Thermal expansion induces an increase on the local flow velocity, but since the Darcy

resistance term is proportional to the flow velocity, thermal expansion also induces

an increase on the magnitude of the Darcy resistance term. This dynamics leads to

a complex flow behavior if compared to a non-confined case. If the porosity is low

enough (for the considered conditions, ϕ = 0.7 was considered low enough), the flow
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lower its velocity at the flame sheet (instead of increasing it as in a non-confined

problem), and a two-peak behavior is observed for the horizontal (tangential) flow

velocity. However, if the Darcy resistance is increased further, the velocity overshoot

is smoothed, and may even be eliminated, as one can see in Fig. 5.4. Also, since the

Darcy resistance is higher for lower porosities, such that the velocity is lower, the fuel

is able to diffuse to larger regions when the porosity is low. This makes the flame to

be established farther from the surface. This lowers the heat flux towards the liquid

phase, such that the vaporization rate and the flame temperature are lower.

The vaporization rate ṁ variation with the porosity ϕ presents a maximum close to

ϕ = 0.925 (for the set of parameters considered). This is explained because when

the porosity is very high, the heat flux to the oxidant side is practically restrict to

that by the gas phase and in this situation the heat flux to the fuel side (and to the

liquid fuel) is large, consequently the vaporization rate is enhanced. However, if the

porosity is lower than ϕ ∼ 0.925, then the heat flux to the oxidant side surpass the

heat conduction to the fuel side by the solid phase, such that the vaporization rate

starts to decrease.
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Figure 5.11 - Expected variations of flame temperature and vaporization rate with respect
to the porosity ϕ.
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6 CONCLUSIONS

In this work we analyzed a diffusion flame established inside an inert porous medium.

An impinging jet of oxidant against a liquid fuel pool, with all the system (gas and

liquid phases) immersed inside the porous matrix, was the considered geometry. A

semi-heuristic formulation was utilized, in which the Darcy term was added to the

usual compressible Navier-Stokes equations for the momentum components. The

thermal interaction between phases was accounted through an interphase heat ex-

change term, that couples gas and solid; and liquid and solid energy equations. In

order to obtain a better understanding of the physical features that occurr in such

system, we divided the problem in three parts.

In the first, we analyze a frozen impinging flow of gas against a hot impermeable

wall (the gas is confined in the porous matrix): heat transfer problem. The results

obtained, which are relevant for the study of porous heat exchangers, shows the

existence of velocity overshoot in the viscous boundary-layer, like in a non-confined

problem. However, if the porosity is low enough, the Darcy resistance to the flow

smooth this overshoot. The presence of the solid phase enhances heat transport to

large regions because the solid has a higher thermal conductivity compared to gas.

This increases the length of the thermal boundary-layer (a growth that is propor-

tional to
√

Γ(1− ϕ), i.e., the square root of the product between the solid-to-gas

thermal conductivities ratio Γ and the solid volume (1−ϕ)). Comparing the obtained

results with results obtained for an incompressible model (constant density), it is

shown that thermal expansion usually enhances the wall shear. However, if the wall

temperature is high enough, the Darcy resistance term may be high (as it is mea-

sured by βT 2
g ), which may lowers the local flow velocity, leading to a decrease on the

wall shear for high values of the wall temperature, a behavior not captured by incom-

pressible models (which measures the Darcy resistance only through β). Depending

on the value of β (inverse of the Darcy number, which is based on the viscous length-

scale), the pressure field may present a maximum above the stagnation-point due

to the high pore-level dissipation. The existence of a singular point for β = 1 might

point to the need of using a different model for the pressure when the permeability

is low (β > 1).

In the second part we replace the impermeable wall by a liquid pool and consider

that the incoming jet is hot, such that a vaporization problem was analyzed. In this

case, the heat and mass transfer properties in the confined problem were analyzed

by considering a frozen flow (chemical term set to zero). Velocity overshoot was
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not observed because this demands the existence of a temperature in the viscous

boundary-layer higher than the free-stream temperature. The addition of a porous

matrix enhances heat transport towards the liquid, which increases the vaporization

rate. The consideration of thermal expansion leads to higher values of the vaporiza-

tion rate, solid temperature at the surface and vapor mass fraction at the surface.

Also, since the flow velocity is enhanced, vapor transport from the surface to above

the stagnation-point is more difficult. The liquid vaporization rate increases with

increasing values of the liquid-solid heat exchange coefficient Nl. In the asymptotic

limit of Nl � 1 the vaporization rate growth is proportional to
√
Nl. An increase on

the solid-to-gas thermal conductivities ration Γ also increases the vaporization rate

because it increases heat transport through the solid phase. For increasing values of

the gas-solid heat exchange coefficient Ng the vaporization rate increases. From Fig.

4.13 one can see that for small Ng the solid has a greater influence on the vaporiza-

tion rate than the gas. As Ng increases, the lowering on the temperatures difference

leads to the phases contributing more equally to the vaporization rate. Since the

solid has a much larger thermal conductivity than the solid, when Ng is small the

growth of the vaporization rate is much more prominent than the growth when Ng

is greater, as one can see from Fig. 4.12.

Finally, in the third part we consider the incoming jet to be oxidant and the liquid to

be fuel. The chemical reaction was then taken into account and a confined diffusion

flame was analyzed. The solid matrix removes heat from the flame and conducts it

to oxidant and fuel sides. For the fuel side, this heat is recovered because it is used

to vaporize the liquid fuel, which is at its boiling temperature. For the oxidant side,

part of this heat is lost (in the sense that it is not recovered at the flame sheet).

Then, the porous matrix lowers the temperature of the confined diffusion flame. The

increase of the Darcy resistance term when the porosity is low makes the flow velocity

decrease at the flame, which leads the flow to present a two-peak behavior, with a

local minimum at the flame. The lower local flow velocity due to the high Darcy

resistance also allows the fuel to diffuse to larger regions beyond the stagnation-

point, which makes the flame to establish farther from the surface. Even though

the flame temperature only decreases with decreasing porosities, the vaporization

rate presents a maximum with the porosity. This occur because when the porosity

is high, the heat transport to the fuel side is enhanced by the solid matrix, such

that the vaporization rate increases accordingly. However, if the porosity is lowered

enough, the heat loss to the oxidant side becomes more relevant, such that the

heat flux towards the liquid fuel diminishes, lowering the vaporization rate. The low

temperatures achieved for the confined diffusion flames makes this system to have
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potentially lower emissions of pollutants.

In Appendix A we perform an asymptotic analysis of the extinction limits of a dif-

fusion flame established in a porous chamber, in order to clarify the influence of

the gas-solid heat exchange on the extinction behavior of such confined flame. It

was shown that low porosities may extinguish this flame because of the increase of

the heat exchange coefficient N . The reactant that is more consumed at extinction

depends on the injection velocity V̄ (which modifies the interphase heat exchange

coefficient). When the extinction diagram is shown with respect to the dimensionless

injection velocity, we can see that two extinction points exist: one for low injection

velocities and the other for high injection velocities. The extinction point associated

with the high injection velocity is the usual kinetic extinction point, which is associ-

ated with a low residence time of the reactants in the reaction region. The extinction

point associated with the low injection velocity is associated with a high value of the

heat loss (heat exchange between gas and solid phases). This low-velocity extinction

point was already observed previously in the literature (MATALON et al., 1979; MAT-

ALON; LUDFORD, 1979; TIEN, 1986; SIBULKIN, 1988; CHAO et al., 1990; CHAO; LAW,

1993; WANG et al., 2007), but differently from those cases, the Damkohler number

for the low-velocity extinction point is low, instead of high. This occur because the

injection velocity modifies the Burke-Schumann solutions in this confined problem,

as it changes the interphase heat exchange coefficient N , which modifies the stoichio-

metric flame temperature T sf (temperature associated with complete combustion).

If the heat exchange is high enough, namely N = O(ε−1) (where ε� 1 is the inverse

of the dimensionless activation energy), then the interphase heat exchange becomes

important in the reaction region. In this case, the leakage of reactants through the

flame sheet become of order of unity and the flame will fall into Liñan’s premixed

flame regime (LIÑAN, 1974), such that a different asymptotic treatment is required.

6.1 Future works

Even though we attempted to cover a wide range of physical situations when we

divided the problem into three distinct, but closely related, parts, some simplifica-

tions that were considered when constructing the mathematical model deserve some

attention.

The consideration of constant interphase heat exchange coefficients Ng and Nl is

not realistic. These coefficients have no closed-form expression, but instead their

expressions rely on empirical correlations (in Appendix A we utilize one of such

correlations). For increasing flow velocities, these coefficients decrease, because the
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higher contact time between fluid and solid decreases the heat exchange between

phases. This is expected to have a significant influence in the gas-solid region, which

have a complex flow profile. Also, if the pores are large, the Rosseland approxima-

tion fails and one must take into consideration heat transfer by radiation through

the solid phase. This will have a significant effect on the vaporization rate and on

the flame temperature. In the realistic case where a three-phase region below the

interface exists, the formation of bubbles at the pore walls decrease the local heat

transfer between solid and liquid, which will decrease the vaporization rate. Then,

the consideration of a constant-temperature, two-phase zone in which the liquid fuel

undergoes phase change overpredicts the vaporization rate. If the heat transfer is

intense, there is a dramatic reduction in the vaporization rate (ZHAO; LIAO, 2000).

For diffusion flames, the rate-controlling process is the mass diffusion of reactants

towards the flame sheet. Then, the pre-heating of the reactants caused by the solid

phase should be significant only if the mass diffusion of reactants towards the flame

increases. Since we consider ρ2Di = 1, this effect is minimum (if not completely

negligible). If we consider the more realistic case of ρ2Di ∼ T ag (where a > 0), it is

expected that the pre-heating of the reactants becomes relevant, as it will influence

directly the mass diffusion of reactants towards the flame sheet. In this case, results

for the flame temperature will be higher than the ones obtained in the present work.

Nevertheless, the proposed model can shed some light into the heat and mass transfer

processes that occur in confined media. The work presented here form the basis

for future researches that can be performed. We anticipate some of the possible

extensions:

• Consideration of proper models for Ng and Nl, i.e., the interphase heat

exchange coefficients;

• Consideration of radiation through the solid-phase;

• More realistic temperature-dependences for the gas viscosity and for the

mass-diffusion coefficients;

• Proper modelling of the three-phase region right below the gas-liquid sur-

face (using the model developed by Raju and T’ien (2007) as basis, for

instance);

• Ignition conditions for the problem analyzed in Chapter 4;

• Extinction limits for the problem analyzed in Chapter 5.
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APPENDIX A: ASYMPTOTIC ANALYSIS OF EXTINCTION OF A

DIFFUSION FLAME IN A POROUS CHAMBER

In this Appendix we analyze a steady, planar diffusion flame established inside an

inert porous chamber. Gaseous fuel is injected from the bottom at a constant velocity

and mixes with the oxidant that is entering the porous chamber through diffusion.

The reactants mix at the molecular level and reacts in a diffusion flame. A schematic

of the problem considered here is presented in Fig. A.1.

Figure A.1 - Schematic of the present problem.

The solid is heated due to the heat release at the flame sheet. It then transports this

heat to both sides of the flame, pre-heating the incoming reactants. At the top of

the chamber, due to the difference on the conductivities, the phases have different

temperature values. The gas is at thermal equilibrium with the outer stream at

a temperature T̄0 , while the solid is at a higher temperature T̄s0 (that must be

determined). Due to this difference, the solid loses heat to the outer flow.
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We consider a single-step chemical reaction of the Arrhenius type. Due to the energy

generation in the gas phase we must consider a two-equation model for the gas-solid

system. The porous medium is considered isotropic and dispersion effects are ne-

glected, such that the effective thermal conductivities are order zero tensors. Hence,

the gas and solid conservation equations are coupled only through the interfacial

convective heat transfer coefficient h.

The major findings are related with the low flame temperatures achieved, when

compared to non-confined problems, and with the extinction limits. The extinction

diagram, when presented as a function of the injection velocity, shows the existence

of two distinct extinction points, one associated with a high velocity, and the other

associated with a low velocity. The high-injection-velocity extinction point is as-

sociated with kinetic extinction (low residence time for the reactants in the flame

sheet). The low-injection-velocity extinction point is associated with high values of

the interphase heat exchange.

It is interest to point that the existence of two extinction points was already rec-

ognized in the literature, and the low extinction point was associated with heat

losses with a high Damkohler number. In the present case, on the other hand, the

low extinction point (low injection velocity) is associated with a low value of the

Damkohler number. This occurs because the stoichiometric temperature is reduced

when the injection velocity is large (due to the enhancement of the interphase heat

exchange), which leads to a decrease on the reactive Damkohler number.

The results to be presented in the following were obtained in partnership with Pro-

fessor Moshe Matalon, from the University of Illinois at Urbana-Champaign.

A.1 Mathematical formulation

We consider a characteristic length1 given by ls = λs/(ρ̄cpV̄ ), with λs the thermal

conductivity of the solid, ρ̄ the gas density, cp the gas specific heat capacity at

constant pressure and V̄ the injection velocity of the gaseous fuel. Mass fractions

are non-dimensionalized with respect to their initial values ȲF−∞ and ȲO0 , for fuel

and oxidant, respectively. The temperatures are non-dimensionalized with respect

to q/cp , with q ≡ QȲF−∞ being the heat released per unit mass of fuel.

The non-dimensional governing equations are then given by

1Note that the characteristic length scale given here is different than the one used in previous
Chapters.
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dYF
dz
− 1

ΓLF

d2YF
dz2

= −ΓDa YF YO e−Ta/Tg , (A.1)

dYO
dz
− 1

ΓLO

d2YO
dz2

= −Γφ Da YF YO e−Ta/Tg , (A.2)

dTg
dz
− 1

Γ

d2Tg
dz2

= Γ Da YF YO e−Ta/Tg + ΓN(Ts − Tg), (A.3)

− pd
2Ts
dz2

= −ΓN (Ts − Tg), (A.4)

where LF and LO are the fuel and oxidant Lewis numbers, respectively, φ ≡
φ̄ȲF−∞/ȲO0 is the initial mixture strength, Da ≡ BλgȲO0/(cpV̄

2) is the Damkohler

number with B the frequency factor and we define N ≡ λgh/(ϕ(ρ̄cpV̄ )2) as the heat

exchange parameter and p ≡ (1−ϕ)/ϕ as the porosity parameter, with ϕ being the

porosity and h the volumetric surface-convection coefficient.

The non-dimensionalization process introduces the parameter Γ ≡ λs/λg, the solid-

to-gas thermal conductivities ratio. In this problem we consider the asymptotic limit

Γ � 1. Hence, one can see that we introduce a far-field length-scale, in which

convection is dominant and a region of the order of Γ−1 from the top of the chamber

in which convection and diffusion transport balance. Since in the convective, far-

field region, the solution for the oxidant mass fraction is given by YO = 0 (due

to the boundary condition for z → −∞), the chemical reaction is negligible in this

region. Chemical reaction occurs in the convective-diffusive region, which is analyzed

through the re-scaled spatial coordinate z̃ = Γz. In the limit of very high porosity,

such that p = O(Γ−1) � 1, its easy to show that up to all orders Ts = Tg = T−∞

in the far-field. In this case, the consideration of the far-field length scale is not

necessary and we can simply analyze the problem in the usual viscous length scale

for non-confined problems (in this case, Γ−1ls). In Fig. A.2 we show a representative

picture of the profiles in each length-scale.

Boundary conditions for z → −∞ are given by

YF = 1, YO = 0, Ts = Tg = T−∞. (A.5)

For the top of the chamber z = 0,

YF = 0, YO = 1, Tg = T0, (A.6)
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and considering a conductive heat loss model for the solid temperature, we have

dTs
dz

∣∣∣∣
0

= −K (Ts0 − T0) , (A.7)

where K ≡ K̄/((1−ϕ)ρ̄cpV̄ ) is the dimensionless heat loss parameter and Ts0 is the

solid temperature at the top of the chamber.

Figure A.2 - Representative profiles in the two length-scales.

The flame is located in a thin sheet and the variables experience jumps across it.

To leading-order the reactants are completely consumed at this sheet and the gas

temperature is the stoichiometric flame temperature (associated with the complete

consumption of reactants). We follow the formulation derived by Cheatham and

Matalon (2000) for the jumps across the flame sheet.
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To leading-order the following jump relations must be satisfied across the flame sheet

[
YF (0)

]
=
[
YO(0)

]
=
[
Tg(0)

]
= 0,

[
dTg(0)

dz

]
= − 1

LF

[
dYF (0)

dz

]
= − 1

φLO

[
dYO(0)

dz

]
,

(A.8)

in which [ F ] = F (z+
f ) − F (z−f ) denotes the jump across the flame sheet which is

located at zf (z+
f and z−f denotes the oxidant and fuel sides of the flame, respectively)

and F(0) is the leading-order term of the expansion F = F(0) + εF(1) + o(ε).

Also, complete combustion is required for the leading-order reactants, such that

YF (0)

∣∣
zf

= YO(0)

∣∣
zf

= 0. (A.9)

To O(ε) the the following jump relations must be satisfied across the flame

[
Tg(1)

]
= −L−1

F

[
YF (1)

]
= − (φLO)−1 [YO(1)

]
, (A.10)[

Tg(1) −
dTg(1)

dz

]
= −

[
YF (1) − L−1

F

dYF (1)

dz

]
= −

[
YO(1) − (φLO)−1 dYO(1)

dz

]
, (A.11)

in which ε ≡ cpR
(
T̄ sf
)2
/(qEa) is the inverse of the activation energy parameter,

with R the gas constant, Ea the activation energy and T̄ sf the dimensional flame

temperature associated with complete combustion (or stoichiometric temperature).

For the solid phase, we must consider continuity of the temperature and its flux up

to all orders

[Ts] =

[
dTs
dz

]
= 0. (A.12)

Leakage of reactants through the flame sheet is given by the higher-order terms,

such that

YF (1)(z
+
f ) = LF SF (γ, δ), YO(1)(z

−
f ) = φ LO SO(γ, δ), (A.13)

where SF and SO are the fuel and oxidant leakage functions, respectively. This

leakage of reactants modifies the flame position. It is not so straight-forward to define

the correction for the flame position ηf . The first choice would be the point where

the temperature reach its peak, but in this case ηf must be determined numerically.

Then, if we define ηf as the point where the correction for the flame temperature is

continuous, we have [
Tg(1)

]
+ ηf

[
dTg(0)

dz̃

]
= 0, (A.14)

as the relation that defines the flame position correction ηf .

101



The auxiliary parameters that characterizes the internal flame structure are

γ ≡
dTg(0)/dz

∣∣
z+f

+ dTg(0)/dz
∣∣
z−f[

dTg(0)/dz
] , δ ≡ 4φLFLO[

dTg(0)/dz
]2 D exp

{
1 + γ

2
h∗O +

1− γ
2

h∗F

}
,

(A.15)

where γ is a parameter that depends on the temperature profiles for complete com-

bustion and h∗O and h∗F are the excess/deficient enthalpy at the flame, given by

h∗O = T−f1 +
1

φLO
Y −O , h∗F = T+

f1 +
1

LF
Y +
F , (A.16)

where Tf1 is the dimensionless correction of the flame temperature, which is ex-

panded as Tf = T sf + εTf1 + o(ε).

The modified (reactive) Damkohler number D is given by

D = ε3Da e−Ta/T
s
f , (A.17)

where the usual distinguish limit of D = O(1) is considered for the asymptotic

analysis of the flame structure.

One can see that the excess enthalpy at the flame makes the relation between δ and

D non-trivial. For zero excess enthalpy at the flame they are directly proportional

to each other (a case that occurs for Li = 1 in an adiabatic, non-confined problem),

such that they represent the same physical state. In the present case, the excess

enthalpy at the flame is induced by non-unitary Lewis numbers and by the heat

exchange between gas and solid phases.

Cheatham and Matalon (2000) provided approximations for the leakage curves SF

and SO. For the lower branch (solutions that tend to the Burke-Schumann limit of

complete combustion when δ → +∞) we have

SO = a0 δ
−4/3exp {−a1 (δ − δc)a2} , (A.18)

SF = b0 δ
−4/3exp

{
−b1 (δ − δc)b2

}
, (A.19)

with

a0 = 0.61923 + 3.2523|γ|+ 0.52069|γ|2,

a1 = 1.9077− 1.901|γ|+ 1.055|γ|2,

a2 = 0.46137− 0.15374|γ| − 0.06769|γ|4 − 0.23288|γ|6,
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b0 = 0.61923(1− |γ|)15exp {10.469|γ|} ,

b1 = 1.9077 + 11.588|γ|2 − 17.014|γ|4 + 55.865|γ|6,

b2 = 0.46137 + 0.27706|γ| − 0.2029|γ|2.

For the upper branch (solutions that corresponds to states with increasingly large

leakage of reactants and which become invalid when δ is sufficiently large)

SO = δ−1/3 {q0 + q1 (δ − δc)q2} , (A.20)

SF = δ−1/3 {r0 + r1 (δ − δc)r2} , (A.21)

q0 = 0.72704 (1− |γ|)−0.63858 exp
{

1.4311|γ|0.5696
}
,

q1 = 2.7108 +
10.788tan (π|γ|/2)

1 + 2.5459|γ| − 2.8114|γ|2
,

q2 = 0.625,

r0 = 0.72704 (1− |γ|)15 exp {10.451|γ|} ,

r1 = 2.7108 (1− |γ|)5.8507 ,

r2 = 0.625− 0.49221|γ|+ 2.0203|γ|2 − 4.2464|γ|3 + 4.2286|γ|4.

It is worth to note that the above approximations were obtained for −1 < γ ≤ 0,

which is the case when more heat is transported to the fuel side. When 0 ≤ γ < 1,

the roles of SF and SO must be interchanged.

In the above expressions, the critical δc was obtained by Liñan (1974) and it is given

by

δc = e
{

(1− |γ|)− (1− |γ|)2 + 0.26(1− |γ|)3 + 0.055(1− |γ|)4
}
. (A.22)

When N � 1, gas and solid temperature approach each other. In this case,

[dTg/dz̃] ∼ [dTs/dz̃] and it can be shown from the addition of Eqs. A.3 and A.4

that

γ = −
[
dT(0)

dz̃

]
(1 + Γp) . (A.23)

Then, unless p = O(Γ−1) (high-porosity) or
[
dT(0)/dz̃

]
= O(Γ−1) (small heat re-

lease), γ will be large because Γ � 1. For |γ| > 1, there is O(1) reactant leakage

from the flame. Hence, when N � 1 the flame will fall into Liñan’s premixed flame

regime (LIÑAN, 1974) and a different asymptotic treatment is required.
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The dimensional heat exchange coefficient h is modeled following Fu et al. (1998)

and gives a dimensionless parameter N as

N = ϕ(m′−4)/2

(
λg
cp

)2
C ′

µm′

(
ρ̄V̄

√
4

π

1

39.37ϕ̄

)m′−2

, (A.24)

in which C ′ and m′ are experimentally-determined constants, µ is the gas-phase

kinematic viscosity and ϕ̄ is the linear-pore density. Note that in this Appendix we

consider the correlations between the interphase heat exchange coefficient h, the

porosity ϕ and the flow velocity V̄ , differently than in the previous Chapters. We

do so here because the flow field is trivial and given by the constant value V̄ of the

injection velocity, and in the previous Chapters the flow field is more complex.

It is important to note that the formulation introduces two different perturbation

parameters, ε and Γ−1 , the first being associated with incomplete combustion and

leakage of reactants through the flame-sheet, and the second being associated with

the difference between gas and solid heat transport. For the sake of simplicity, we

analyze the distinguished limit of Γ−1 ∼ ε, such that we consider ε = cΓ−1 , with

c = O(1) being a proportionality constant.

A.2 Far-field, convective region

It is easy to show that mass fraction solutions in the far-field, convective region,

are simply given by YF (z) = 1 and YO(z) = 0 when the asymptotic limit of Γ � 1

is considered. Hence, chemical reaction is negligible in the convective region. Then,

one can manipulate energy equations and obtain

dTg
dz
− 1

Γ

d2Tg
dz2
− pd

2Ts
dz2

= 0, (A.25)

− pd
2Ts
dz2

= −ΓN(Ts − Tg). (A.26)

One can see that the leading-order term for both phases is equal, as the heat exchange

term is dominant in the second equation. Hence, we expand gas and solid solutions

in series as

Ts(z) = T(0) + Γ−1Ts(1) + o(Γ−1), (A.27)

Tg(z) = T(0) + Γ−1Tg(1) + o(Γ−1), (A.28)

where we emphasize that the temperature difference arises only in the higher-order

terms.
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Substituting the proposed solutions into the set of governing equations, we obtain

leading and higher-order equations as

dT(0)

dz
− p

d2T(0)

dz2
= 0, (A.29)

dTg(1)

dz
−
d2T(0)

dz2
− p

d2Ts(1)

dz2
= 0, (A.30)

− p
d2T(0)

dz2
= −N(Ts(1) − Tg(1)). (A.31)

Leading-order solution is given by

T(0)(z) = T−∞ + c0 e
z/p, (A.32)

where c0 is a constant. If we integrate the higher-order equation for the gas-phase

and apply the result for z → −∞, we have the relation

Tg(1) = T ′(0) + pT ′s(1), (A.33)

where the prime denotes differentiation with respect to z. Substituting this in the

higher-order equation for the solid-phase we obtain

pT ′s(1) − Ts(1) = −c0

p

(
1 +

1

N

)
ez/p. (A.34)

Hence, the higher-order solution for the solid is given by

Ts(1)(z) = c1 e
z/p − c0

(
1 +

1

N

)
z

p2
ez/p, (A.35)

where c1 is a constant. Higher-order solution for the gas-phase is straight-forward

obtained as

Tg(1)(z) = c1 e
z/p − c0

N p
ez/p − c0

(
1 +

1

N

)
z

p2
ez/p. (A.36)

Then, temperature solutions in the convective region are given by

Tg(z) = T−∞ + c0 e
z/p + Γ−1

{
c1 e

z/p − c0

N p
ez/p − c0

(
1 +

1

N

)
z

p2
ez/p
}

+ o(Γ−1),

(A.37)

Ts(z) = T−∞ + c0 e
z/p + Γ−1

{
c1 e

z/p − c0

(
1 +

1

N

)
z

p2
ez/p
}

+ o(Γ−1). (A.38)

It is easy to see that when N � 1 (very intense interphase heat exchange), Ts → Tg,

while for p � 1 (very high porosity), {Ts, Tg} → T−∞. The unknown constants c0
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and c1 are to be determined.

A.3 Convective-diffusive region

In a length scale of the order of Γ−1 close to z = 0, consumption of reactants is

observed, as it is in this region that convection and diffusion reactants transport

balance. Hence, in order to analyze this region we stretch the spatial coordinate as

z̃ = Γz and obtain the following governing equations

dYF
dz̃
− 1

LF

d2YF
dz̃2

= −Da YF YO e−Ta/Tg , (A.39)

dYO
dz̃
− 1

LO

d2YO
dz̃2

= −φ Da YF YO e−Ta/Tg , (A.40)

dTg
dz̃
− d2Tg

dz̃2
= Da YF YO e−Ta/Tg +N (Ts − Tg), (A.41)

− Γp
d2Ts
dz̃2

= −N(Ts − Tg). (A.42)

Boundary conditions for z̃ = 0 are given by

Tg = Tg(0), YF = 0, YO = 1, Γ
dTs
dz̃

∣∣∣∣
0

= −K (Ts(0)− Tg(0)) . (A.43)

We seek solutions in powers of ε = cΓ−1, or

YF (z̃) = YF (0) + εYF (1) + o(ε), (A.44)

YO(z̃) = YO(0) + εYO(1) + o(ε), (A.45)

Tg(z̃) = Tg(0) + εTg(1) + o(ε), (A.46)

Ts(z̃) = Ts(0) + εTs(1) + o(ε). (A.47)

For the mass fractions we have the following solutions (utilizing the boundary con-
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ditions and jumps at the flame sheet shown previously)

YF (z̃) =



1− e(z̃−z̃f )LF

+

ε
{

1 + SO/SF −
{

LF /LO

φ+(1−φ)e
z̃f LO

}(
1−ez̃f LO

1−ez̃f LF

)}
LF SF e(z̃−z̃f )LF , for z̃ < z̃f

εLF SF
(
1− ez̃LF

)
/
(
1− ez̃fLF

)
, for z̃ > z̃f


,

(A.48)

YO(z̃) =


ε φ LO SO e(z̃−z̃f )LO , for z̃ < z̃f

1−
(

1−ez̃LO

1−ez̃f LO

)
+ ε LF SF

φ

φ+(1−φ)e
z̃f LO

(
1−eLOz̃

1−eLOz̃f

)
for z̃ > z̃f .

 .

(A.49)

Note that YF = O(ε) for z̃ > z̃f and YO = O(ε) for z̃ < z̃f , which denotes the small

leakage of reactants across the flame sheet.

Leading-order solution for the solid is given by

Ts(0)(z̃) = (c0 + T−∞), (A.50)

where matching with the far-field region was imposed.

Leading-order equation for the gas is given by

T ′g(0) − T ′′g(0) +N Tg(0) = N(c0 + T−∞). (A.51)

where prime denotes differentiation with respect to z̃. This equation must be solved

for both sides of the flame.

The general solution is given by

Tg(0)(z̃) = (c0 + T−∞) + ez̃/2
(
K1 e

Az̃/2 +K2 e
−Az̃/2) , (A.52)

where A ≡
√

4N + 1 comes from the characteristic equation of the homogeneous

solution.

For the fuel side, z̄ < z̄f , matching with the far-field solution gives K−2 = 0. Then,

leading-order solution of the gas in the fuel side is given by

Tg(0)(z̃ < z̃f ) = (c0 + T−∞) + c2 e
(1+A)z̃/2, (A.53)
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where c2 = K−1 is to be determined.

For the oxidant side, condition at the top of the chamber gives K+
2 = −K+

1 −c0+∆T ,

where ∆T = T0−T−∞ is the temperature differential across the chamber. Then, we

have

Tg(0)(z̃ > z̃f ) = (c0 + T−∞) + c3 e
(1+A)z̃/2 − (c0 −∆T + c3) e(1−A)z̃/2, (A.54)

where K+
1 = c3 is to be determined.

Higher-order equation for the solid is given by

c p T ′′s(1) +NTg(0) −N(c0 + T−∞) = 0. (A.55)

For the fuel side the following equation holds

c p
d2Ts(1)

dz̃2
+N c2 e

(1+A)z̃/2 = 0. (A.56)

Then, higher-order solution for the solid on the fuel side is given by

Ts(1)(z̃ < z̃f ) =
c0

c p
z̃ +

c1

c
− 4N c2

c p(1 + A)2
e(1+A)z̃/2, (A.57)

where matching with the far-field was imposed.

For the oxidant side, z̄ > z̄f , we have the following governing equation

c pT ′′s(1) −N(c0 −∆T + c3) e(1−A)z̃/2 +N c3 e
(1+A)z̃/2 = 0. (A.58)

General solution is given by

Ts(1)(z̃ > z̃f ) = K+
1 +K+

2 z̃ +
e(1−A)z̃/2

4Nc p

{
(c0 −∆T + c3) (1 + A)2 − c3 e

Az̃(1− A)2
}
.

(A.59)

Up to leading-order the solid is at a constant temperature c0 + T−∞. At the top of

the chamber, we have Ts(0) = (c0 + T−∞) + Γ−1Ts1 + o(Γ−1). The correction of the

order of Γ−1 (Ts1) would have to be obtained from the heat loss condition at the

top of the chamber for the O(Γ−1) terms. For the present problem and discussion,

it is enough to consider Ts1 = 0, such that the condition at the top of the chamber
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Ts(1)(0) = 0 determines

K+
1 = − 1

4Ncp

{
(c0 −∆T + c3)(1 + A)2 − c3(1− A)2

}
, (A.60)

such that

Ts(1)(z̃ > z̃f ) = K+
2 z̃−

1

4Ncp

{
(c0 −∆T + c3)(1 + A)2

(
1− e(1−A)z̃/2

)
− c3(1− A)2

(
1− e(1+A)z̃/2

)}
.

(A.61)

Applying the heat loss condition at the top of the chamber and collecting O(1)

terms, we have

c
dTs(1)

dz̃

∣∣∣∣
0

= −K(c0 −∆T ), (A.62)

which determines the constant K+
2 in terms of c3 and c0 as

K+
2 = −K

c
(c0−∆t)− 1

4Ncp

{
(c0 −∆T + c3)(1 + A)2 (1− A)

2
− c3(1− A)2 (1 + A)

2

}
.

(A.63)

Then we have the following solution

Ts(1)(z̃ > z̃f ) = −K
c

(c0−∆T )z̃− 1

4Ncp

{
(c0 −∆T + c3)(1 + A)2

(
1− e(1−A)z̃/2 +

(1− A)z̃

2

)
−

c3(1− A)2

(
1− e(1+A)z̃/2 +

(1 + A)z̃

2

)}
. (A.64)

Higher-order equation for the gas is given by

T ′g(1) − T ′′g(1) +NTg(1) = NTs(1), (A.65)

which must be solved for both sides of the flame.

For the fuel side we have the following governing equation

T ′g(1) − T ′′g(1) +NTg(1) = N

{
c1

c
+

c0

c p
z̃ − 4N c2

c p(1 + A)2
e(1+A)z̃/2

}
. (A.66)
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General solution (discarding the exponentially large term) is given by

Tg(1)(z̃ < z̃f ) = c4 e
(1+A)z̃/2+

(
c1

c
− c0

Ncp
+

c0

c p
z̃

)
+

4N2 c2

A2(1 + A)2c p
(Az̃−1) e(1+A)z̃/2.

(A.67)

One can see that this solution matches properly with the far-field solution. The

integration constant c4 = K−1 is determined from the condition of continuity at the

flame (higher-order terms).

For the oxidant side, we have the following governing equation

T ′g(1) − T ′′g(1) +NTg(1) =

N

{
−K
c

(c0 −∆T )z̃ − 1

4Ncp

{
(c0 −∆T + c3)(1 + A)2

(
1− e(1−A)z̃/2 +

(1− A)z̃

2

)
−

c3(1− A)2

(
1− e(1+A)z̃/2 +

(1 + A)z̃

2

)}}
. (A.68)

For the sake of compactness, we express the above in a general equation of the form

T ′g(1) − T ′′g(1) +NTg(1) = N
{
f1z̃ + f2 e

(1−A)z̃/2 + f3 e
(1+A)z̃/2 + f4

}
, (A.69)

where

f1 = −K
c

(c0−∆T )− 1

4Ncp

{
(c0 −∆T + c3)(1 + A)2 (1− A)

2
− c3(1− A)2 (1 + A)

2

}
,

(A.70)

f2 =
1

4Ncp
(c0 −∆T + c3)(1 + A)2, f3 = − 1

4Ncp
c3(1− A)2, (A.71)

f4 = − 1

4Ncp

{
(c0 −∆T + c3)(1 + A)2 − c3(1− A)2

}
. (A.72)

We have a general solution given by

Tg(1)(z̃ > z̃f ) =
(N f4 − f1)

N
+ f1z̃+

N

A2
f2(1 + Az̃) e(1−A)z̃/2 +

N

A2
f3(1− Az̃) e(1+A)z̃/2 + ez̃/2

{
K+

1 eAz̃/2 +K+
2 e−Az̃/2

}
.

(A.73)

Again, for a matter of simplicity, we consider as a boundary condition at the top of

the chamber Tg(1)(0) = 0. Hence, we obtain K+
2 in terms of K+

1 as

K+
2 = −(N f4 − f1)

N
− (f2 + f3)

N

A2
−K+

1 . (A.74)
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Then, higher-order solution for the gas in the oxidant side is given by

Tg(1)(z̃ > z̃f ) =
(N f4 − f1)

N

{
1− e(1−A)z̃/2

}
+ f1z̃+

N

A
f2z̃ e

(1−A)z̃/2 − N

A
f3z̃ e

(1+A)z̃/2 + c5

{
e(1+A)z̃/2 − e(1−A)z̃/2

}
, (A.75)

where K+
1 = c5 is to be determined.

We have up to now six undetermined constants ci , with i = {0, 1, 2, 3, 4, 5}. Four of

them are to be obtained from the jumps at the flame sheet, while the other two are

obtained from the continuity of the solid temperature and heat flux at the flame.

These constants that depends on z̃f , N , c and p are lengthy and can be expressed

as

c0 = c
(1)
0 ∆T + c

(2)
0 , c1 = −c(1)

1 ∆T + c
(2)
1 ,

c2 =
(e−Az̃f − 1)

A e(1−A)z̃f/2
− c0 + ∆T, c3 = −c0 + ∆T − e(A−1)z̃f/2

A
,

c4 = ∆T c
(1)
4 + c

(2)
4 + SF E1 − SO E2,

c5 = ∆T c
(1)
5 + c

(2)
5 + SF F1 − SO F2, (A.76)

with

E1 =

(
LF
LO

)
(1− ez̃f LO)

φ+ (1− φ)ez̃fLO

{
(A− 1) e(A−1)z̃f/2 + (1 + A) e−(1+A)z̃f/2

2A(1− ez̃f LF )

}
+

LF (1− e−Az̃f ) e(A−1)z̃f/2

A(1− ez̃f LF )
,

E2 =

{
(A− 1) e(A−1)z̃f/2

2A
(1− e−Az̃f ) + e−(1+A)z̃f/2

}
,

F1 =

(
LF
LO

)
1

φ+ (1− φ)ez̃fLO

(
1− ez̃f LO

1− ez̃f LF

)
(A− 1) e(A−1)z̃f/2

2A
+
LF e(A−1)z̃f/2

A(1− ez̃f LF )
,

F2 =
(A− 1) e(A−1)z̃f/2

2A
, (A.77)

where the auxiliary constants
{
c

(1)
0 , c

(2)
0 , c

(1)
1 , c

(2)
2 , c

(1)
4 , c

(2)
4 , c

(1)
4 , c

(2)
4

}
depend on the

problem parameters A,N, c, ϕ, z̃f and K. In the limit of {N,K} → 0 we have A→ 1

and
{
c0, c1, c

(1)
4 , c

(2)
4 , c

(1)
5 , c

(2)
5

}
→ 0, and its easy to show that we recover the profiles

for the gaseous (non-confined) case 2.

2One must be careful when taking this limit. If we look to the governing equations in the far-
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Leading-order flame position z̃f is obtained from the leading-order reactants jump

at the flame
1

LF

[
dYF (0)

dz̃

]
=

1

φLO

[
dYO(0)

dz̃

]
, (A.78)

and it gives

z̃f = − 1

LO
log
(
1 + φ−1

)
, (A.79)

which is the same expression for the non-confined case (CHEATHAM; MATALON, 2000)

and it only depends on the Lewis number of the reactant that must diffuse against

the incoming mass flux (in this case, oxidant, that is diffusing into the chamber

against a mass flux of fuel).

The stoichiometric temperature (associated with complete combustion) is given by

T sf =
1

A
+ T−∞ +

(
∆T e(1−A)z̃f/2 − 1

A

)
eAz̃f + c0

(
1− e(1+A)z̃f/2

)
, (A.80)

and the parameter γ has the form

γ = − 1

A
+ (1 + A)

{(
e(A−1)z̃f/2 −∆T

A

)
+ c0

}
e(1+A)z̃f/2. (A.81)

Again, for the limit of N → 0, we have that A → 1 and c0 → 0, such that in this

limit case of N → 0 we obtain

T sf → 1 + T−∞ + (∆T − 1) ez̃f , γ → −1 + 2(1−∆T )

(
φ

1 + φ

)1/LO

, (A.82)

or exactly the expressions for the gaseous case (non-confined) (CHEATHAM; MAT-

ALON, 2000). Recovering the gaseous, non-confined results for the limit in which gas

and solid phases decouple is an indicative of the the consistency of the formulation.

The excess enthalpy functions are given by

h∗O = h
(1)
O ∆T + h

(2)
O + SO G1 − SF G2, (A.83)

h∗F = h
(1)
F ∆T + h

(2)
F + SO G1 − SF G3, (A.84)

field, we note that the limit N � 1 only decouples the phases if we consider that NΓ � 1. Since
Γ does not appear explicitly in the solutions, as it is the perturbation parameter, the proper way
to consider NΓ � 1 would be to jointly with N � 1 consider c � 1. The obvious limit would be
c→ N−1.
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where

G1 =
(A− 1)(1− eAz̃f )

2A
,

G2 =

(
LF
LO

){
LO

(1− eAz̃f )

A(1− ez̃fLF )
−

(
1− ez̃fLO

)
φ+ (1− φ) ez̃fLO

(
(1 + A) + (A− 1) eAz̃f

2A(1− ez̃fLF )

)}
,

G3 =

(
LF
LO

)
(1− eAz̃f )(A− 1)

φ+ (1− φ) ez̃f LO

(
1− ez̃f LO

2A(1− ez̃f LF )

)
−
{
LF (1− eAz̃f )− A(1− ez̃f LF )

A(1− ez̃f LF )

}
,

(A.85)

and h
(1)
O , h

(2)
O , h

(1)
F , h

(2)
F depends on A,N, c, ϕ, z̃f and K In the limit N → 0 (together

with c→ 1/N , as argued previously), we have A→ 1 and
{
h

(1)
O , h

(2)
O , h

(1)
F , h

(2)
F

}
→ 0,

and again its easy to show that we recover the expressions for the excess enthalpy for

the gaseous (non-confined) case (CHEATHAM; MATALON, 2000; KUKUCK; MATALON,

2001; METZENER; MATALON, 2006).

Evaluating the expression for the correction of the flame position, Eq. A.14, we

obtain

ηf = η
(1)
f ∆T + η

(2)
f + SO −

(
LF
LO

)
SF

φ+ (1− φ)ez̃fLO

(
1− ez̃f LO

1− ez̃f LF

)
, (A.86)

where η
(1)
f and η

(2)
f depends on z̃f , N , c and p. The heat exchange between phases

modifies the flame position through the leakage functions SF , SO and through the

parameters η
(1)
f , η

(2)
f . For the limit N → 0, we have

{
η

(1)
f , η

(2)
f

}
→ 0, such that we

recover the result for the gaseous (non-confined) case.

In the next section we analyze the Burke-Schumann limit (leading-order solutions) in

order to show how the porosity and heat exchange affects the leading-order features

of the flame.

A.4 Burke-Schumann limit

In the limit of infinitely high δ we have no leakage of reactants through the flame

sheet and the flame has its highest temperature, T sf (stoichiometric temperature).

We considered ∆T = 0, YF−∞ = 0.4, YO0 = 0.21 and φ = 1.2 for plotting the

profiles. Lewis numbers were considered as LF = 0.96 and LO = 1.01. It is worth to

note that in the gaseous (non-confined) case, the injection velocity does not influence

the leading-order problem, as its influence appears only on the Damkohler number.

However, in the present case it affects N and K, the heat exchange between gas and

solid and the heat loss at the top of the chamber, respectively. Hence, it affects the

Burke-Schumann solution as shown ahead.
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In the far-field region, the temperatures are at thermal equilibrium up to O(1), and

no chemical reaction occurs since YO = 0, YF = 1. The leading-order temperature

profiles in the far-field is shown in Fig. A.3

In a region of the order of O(Γ−1) from the top of the chamber, consumption of

reactants occurs and gas and solid are no longer at thermal equilibrium. The gas

temperature peaks at the flame sheet. Temperatures and mass fraction profiles in

the convective-diffusive region are shown in Fig. A.4.

The influence of the porosity on the stoichiometric temperature T sf , solid tempera-

ture at the flame Tsf (which is the same as the solid temperature at the top of the

chamber) and the parameter γ (ratio of the excess heat conducted to one side of the

reaction sheet to the total heat generated in the reaction zone) is shown in Fig. A.5.
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Figure A.3 - Temperature profiles in the far field.
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Even though for high porosities the heat loss is high, the small heat exchange between

phases does not allow a high decrease of the flame temperature, as it can be seen in

Fig. A.6.

For an increase on the injection velocity3, we have a decrease on the heat exchange

and heat loss, which results in a higher stoichiometric temperature. In Fig. A.7 we

can see that the stoichiometric temperature approaches asymptotically the flame

temperature Tfg for the gaseous, non-confined case, as shown previously. The pa-

rameter γ also tends asymptotically to its value for a non-confined problem. It is

interest to note that differently from the gaseous, non-confined case, the injection

velocity affects the Burke-Schumann solution through N and K.
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Figure A.4 - Profiles in the consumption zone.

3The dimensionless injection velocity is given by N1/(m′−2), as seen from the model used for N .
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A.5 Reactant leakage curves

In this section we present the fuel and oxidant leakage curves SF and SO, respectively,

based on the formulation presented earlier. Since the injection velocity modifies

the Burke-Schumann solution, it also modifies γ. Hence, one must be careful when

obtaining the reactants leakage curves that characterizes extinction for this flame,

as the expressions of SF and SO are different for each γ, as one can see from Eqs.

A.18 to A.21.

For each δ we have two different solutions, one associated with a more intense burning

state (higher temperature) and the other associated with increasingly high leakage of

reactants (lower temperature). Below δc we have no solutions, and hence δc represents

the state of flame extinction. We utilize the expressions for SF and SO presented

earlier and analyze how the porosity and the injection velocity (heat exchange)

affects the flame extinction. We point to the fact that the injection velocity modifies

not only the Damkohler number D, but also N and K, affecting the extinction of

this flame in a more complex way when compared with the gaseous, non-confined,

case.
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Figure A.5 - Porosity influence.
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In Fig. A.8 we show the influence of the porosity ϕ on the leakage curves SF and

SO (for V̄ = {20, 100, 500} mm/s 4) close to extinction. We also show the variation

of γ and ηf with respect to ϕ in Fig. A.9. If the porosity is low enough, the heat

removal from the flame through the solid matrix decreases flame temperature, which

increases the leakage of reactants, and eventually leads to extinction. The reactant

that is more consumed close to extinction depends on the value of the injection

velocity, as one can see from Figs. A.8 and A.9. For instance, when V̄ = 20 mm/s,

γ < 0 everywhere, including at the extinction point ϕex ∼ 0.46. Then, in this case

the more consumed reactant close to extinction is the fuel, which makes the flame

to shift to the oxidant side. In the case in which V̄ = 500 mm/s, γ > 0 everywhere,

including at the extinction point ϕex ∼ 0.33. Then, in this case the more consumed

reactant close to extinction is the oxidant, which shifts the flame to the fuel side.
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Figure A.6 - {N,K} × ϕ.

As we increase the injection velocity V̄ from 20 mm/s to 500 mm/s the extinction

4Note that since N varies with ϕ, we can not fix a dimensionless injection velocity to different
values of ϕ, hence, we fix the dimensional injection velocity V̄ instead.
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porosity decreases and then increases. In a non-confined problem, an increase on the

injection velocity only decreases the Damkohler number. One could expect that a

similar behavior would occur for the confined case, but that is not the case. In the

present case, increasing the injection velocity first increase the Damkohler number up

to a maximum (as opposed to what happens in a non-confined problem), and further

increasing the injection velocity decrease the Damkohler number. Since for low V̄

we have a high value of the interphase heat exchange N , the intense heat transfer

between gas and solid decreases the stoichiometric flame temperature T sf , which

decreases exponentially the reactive Damkohler number D (from A.17, D ∼ e−Ta/T
s
f ).

These features may be seen in Fig. A.10, where we show T sf and D as a function of

V̄ for ϕ = 0.7.

The influence of the dimensionless injection velocity N1/(m′−2) on the reactants leak-

age is presented in Fig. A.11 with ϕ = 0.7, while in Fig. A.12 we present γ and ηf

variations with respect to the dimensionless injection velocity (as no porosity vari-

ation is considered here, the dimensionless velocity V ≡ N1/(m′−2) may be used). It

can be seen that the flame presents high leakage of reactants for both low and high

values of the injection velocity (Fig. A.13 show the low-velocity extinction point,

while Fig. A.14 show the high-velocity extinction point).

For the lower extinction point (low injection velocity and high heat exchange), more

heat is conducted from the flame sheet towards the fuel side, such that fuel is the

more consumed reactant, while for the higher extinction point (high injection velocity

and low heat exchange) the opposite holds, as seen in Figs. A.13 and A.14. For

N → 0, γ tends to its value on the gaseous, non-confined case, as shown in a

previous section. For high porosities, such that p = O(Γ−1), it can be shown that

the low extinction point (low injection velocity and high heat exchange) may be

eliminated. In other words, in this case, the flame supports higher amounts of heat

loss. However, when N = O(ε−1) � 1 the formulation breaks down, as the heat

exchange now occurs in the reaction region, and in this case the jumps at the flame

sheet must be modified, as the flame structure equations must consider the gas-solid

heat exchange.

It is interest to point that the existence of two extinction points was observed earlier

in the gaseous, non-confined case, when a finite chamber was considered (MATALON et

al., 1979; MATALON; LUDFORD, 1979), with a lower boundary through which gaseous

fuel was injected. In those works, when the fuel injection rate was low enough, the

flame was established close to the lower boundary, allowing high heat losses, such
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Figure A.7 -
{
Tf , T

g
f , Tsf

}
× V̄ .

that a low extinction point was possible. However, for the semi-infinite chamber such

second extinction point is not observed.

More generally, the existence of two-extinction points is observed when heat losses

are present. The possibility of an upper and lower bound for D for extinction was

proposed by Tien (1986) (for a stagnation-point flow) and Sibulkin (1988) (for a free-

convection diffusion flame), but their works considered radiation from the condensed-

phase surface. It was then shown the existence of the dual extinction points in the

analyses of Chao et al. (1990) and Chao and Law (1993). In those theoretical works,

it was shown that when the stretch rate is small, the flame thickness increases, pro-

moting radiative losses by the flame. If the stretch rate is low enough, the excessive

heat loss leads to flame extinction. This analysis was later extended by Wang et al.

(2007) to consider non-unity Lewis number.

In the present case, starting from the high extinction point (associated with kinetic

extinction), D increases and after reaching a maximum, decreases, reaching the

extinction point associated with heat loss at a low value of D (instead of a high, as

seen in previous works). The lowering on D for low injection velocities is an effect
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Figure A.8 - Reactants leakage × ϕ for V̄ = 20, 100, 500 mm/s.

of the decrease of T sf .

If conditions are such that the flame can support high amounts of heat exchange,

there is O(1) leakage of reactants through the sheet and the flame falls into Liñan’s

premixed flame regime (LIÑAN, 1974), such that a different asymptotic treatment is

required). When N = O(ε−1) the formulation breaks down, because in this case we

must consider heat exchange in the reaction region.

A.6 Conclusions

In this Appendix we performed an asymptotic analysis of the extinction limits of

a diffusion flame established in an inert porous chamber. The asymptotic limit of

Γ � 1 was considered, such that in addition of the two usual length-scales of in-

terest (convection-diffusion region, where no chemical reaction takes place, and a

diffusive-reactive region, where all the heat is released by the exothermic reaction),

an additional region arises: a far-field where heat conduction through the solid phase

balance heat convection through the gas-phase. The general formulation derived by

Cheatham and Matalon (2000) for the structure of diffusion flames was applied in
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Figure A.9 - {γ, ηf} × ϕ for V̄ = 20, 100, 500 mm/s.

order to obtain curves for the leakage of reactants. The influence of porosity and

injection velocity (interphase heat exchange) on the extinction limits of this flame

is analyzed.

It is important to emphasize that in this analysis we considered a empirical model

for h, but in the remaining Chapters of this work we fix a N instead (independent

of the flow velocity). We use a more precise model in this Appendix because of

the simplicity of the flow field (constant injection velocity), in contrast to the more

complicated flow field in the other Chapters.
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	COVER
	VERSUS
	TITLE PAGE
	INDEX CARD
	APPROVAL TERM
	EPIGRAPHY
	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	CONTENTS
	1 INTRODUCTION
	2 MATHEMATICAL FORMULATION
	2.1 General conservation equations and the local-average method
	2.2 Semi-heuristic formulation
	2.3 Formulation for the present work
	2.3.1 Variable change and non-dimensional formulation
	2.3.2 Numerical method

	2.4 Physical discussion

	3 HEAT AND MOMENTUM TRANSFER PROBLEM: STAGNATION-POINT FLOW AGAINST AN IMPERMEABLE WALL
	3.1 Physical problem
	3.2 Mathematical formulation
	3.3 Results
	3.4 Conclusions

	4 PHASE CHANGE PROBLEM: STAGNATION-POINT FLOW AGAINST A LIQUID POOL
	4.1 Physical problem
	4.2 Mathematical formulation
	4.2.1 Liquid-solid region

	4.3 Results
	4.4 Conclusions

	5 REACTIVE PROBLEM: DIFFUSION FLAME ESTABLISHED IN A STAGNATION-POINT FLOW CONFIGURATION
	5.1 Physical problem
	5.2 Mathematical formulation
	5.3 Results
	5.4 Conclusions

	6 CONCLUSIONS
	6.1 Future works

	REFERENCES
	A APPENDIX A: ASYMPTOTIC ANALYSIS OF EXTINCTION OF A DIFFUSION FLAME IN A POROUS CHAMBER
	A.1 Mathematical formulation
	A.2 Far-field, convective region
	A.3 Convective-diffusive region
	A.4 Burke-Schumann limit
	A.5 Reactant leakage curves
	A.6 Conclusions


