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Abstract While the notions of in�uence zones and skeleton by in�uence zones
(SKIZ) have many important applications, they have not been ex-
tended to fuzzy sets until now. The aim of this paper is to �ll this
gap and to show the potential usefulness of such an extension. The
proposed de�nitions are based on fuzzy dilations and their inter-
pretations in terms of distances. As another contribution, we show
how this notion can be used to de�ne a fuzzy median set, and a
series of fuzzy sets interpolating between two fuzzy sets.
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1. Introduction

Despite the interest of notions of in�uence zones and skeleton by in�uence
zones (SKIZ), surprisingly enough they have not really been exploited in
a fuzzy context until now. If knowledge or information is modeled using
fuzzy sets, it is natural to see the in�uence zones of these sets as fuzzy sets
too. The extension of these notions to the fuzzy case is therefore important,
for applications such as partioning the space where fuzzy sets are de�ned,
implementing the notion of separation, reasoning on fuzzy sets (fusion, in-
terpolation, negotiations, spatial reasoning on fuzzy regions of space, etc.),
motivating the work presented in this paper.

The �rst contribution is to propose de�nitions of notions of in�uence
zones and skeleton by in�uence zones for fuzzy sets. Both in�uence zones
and the SKIZ are then fuzzy sets, de�ned on the same space. The proposed
de�nitions rely on formal expressions of the SKIZ in terms of distances and
morphological dilations. Let S be the underlying space, endowed with a
distance d, and X be a subset of S composed of several connected compo-
nents: X =

⋃
iXi, with Xi ∩Xj = ∅ for i 6= j. The in�uence zone of Xi,

denoted as IZ(Xi), is de�ned as [15,18]:

IZ(Xi) = {x ∈ S / d(x,Xi) < d(x,X \Xi)}. (1)

The SKIZ of X, denoted as SKIZ(X), is then given by:

SKIZ(X) = (
⋃
i IZ(Xi))c.
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Let us denote by δλ the dilation by a ball of radius λ, and ελ the erosion
by a ball of radius λ. Then the in�uence zones can be expressed as:

IZ(Xi) =
⋃
λ

(δλ(Xi) ∩ ελ((∪j 6=iXj)c)) =
⋃
λ

(δλ(Xi) \ δλ(∪j 6=iXj)) . (2)

These two expressions of in�uence zones, in terms of morphological dilations
on the one hand and in terms of distances on the other hand, constitute the
basis for the proposed de�nitions in the fuzzy case (Section 2).

The second contribution (Section 3) is to exploit the notion of fuzzy
SKIZ to de�ne the median fuzzy set of two intersecting fuzzy sets. The
iterative application of the median set computation leads to the construction
of a series of interpolating sets from one fuzzy set to another one. To our
knowledge, this idea of interpolation between fuzzy sets is also novel.

2. Fuzzy in�uence zones and fuzzy SKIZ

While several notions involved in the SKIZ de�nition have been generalized
to fuzzy sets (such as distances, dilations, erosions) in�uence zones and
SKIZ have, to the best of our knowledge, never been de�ned in the case
of fuzzy sets. This is the aim of this section. We consider two fuzzy sets,
with membership functions µ1 and µ2 de�ned on S. The extension to an
arbitrary number of fuzzy sets is then straightforward.

2.1 Fuzzy structuring element and fuzzy dilation and
erosion

The morphological operations involved in the crisp case are performed using
a structuring element which is a ball of a distance. In Rn, the Euclidean
distance is generally considered. In a digital space, such as Zn, a discrete
distance is de�ned, based on an underlying discrete connectivity. The ball
of radius 1 of this distance is then constituted by the center point and its
neighbors according to the choice of the connectivity. More generally, the
structuring element can be de�ned from a binary relation on S, that is
assumed to be symmetrical in this paper (which is consistent if it is a ball
of a distance). In the fuzzy case, the same crisp structuring elements can
be used. We can also base the operations on a fuzzy structuring element,
which can represent local imprecision or a fuzzy binary relation. We denote
the structuring element by its membership function ν. All what follows
applies for crisp and for fuzzy structuring elements. In Rn or Zn, ν(x)
represents the degree to which x belongs to ν and ν(y − x) the degree to
which y belongs to the translation of ν at point x. If ν is derived from a
fuzzy binary relation, ν(y − x) denotes the degree to which y is in relation
to x.

Let us denote by δν(µ) and εν(µ) the dilation and erosion of the fuzzy set
µ by the structuring element ν. Here, dual de�nitions of these operations are
chosen [5], i.e. verifying εν(µc) = (δν(µ))c, since this property is important,
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as seen in Equation 2. They are expressed as:

∀x ∈ S, δν(µ)(x) = sup
y∈S
>[µ(y), ν(y − x)], (3)

∀x ∈ S, εν(µ)(x) = inf
y∈S
⊥[µ(y), c(ν(y − x))], (4)

where > is a t-norm and ⊥ the t-conorm dual of > with respect to a comple-
mentation c (which automatically guarantees the duality between δ and ε).
Examples of t-norms are min, product, Lukasiewicz (max(0, a+ b−1)), and
they generalize intersection to fuzzy sets, while t-conorms generalize union
(examples are max, algebraic sum and Lukasiewicz min(1, a+b)). In this pa-
per, the following classical complementation is used: ∀t ∈ [0, 1], c(t) = 1− t.
Other de�nitions of fuzzy mathematical morphology have been proposed
(e.g. [7, 8, 14]), based on di�erent operators. Links with the ones used here
are developed in [3, 5].

Important properties of the de�nitions given in Equations 3 and 4, that
will be intensively used in the following, are: (i) fuzzy dilation and erosion
are equivalent to the classical dilation and erosion in case both µ and ν
are crisp; (ii) ν(0) = 1 ⇒ µ ≤ δν(µ) and εν(µ) ≤ µ, where 0 denotes the
origin of S (if ν represents a binary relation, it means that this relation is
re�exive); (iii) fuzzy dilation and erosion are increasing with respect to µ,
dilation is increasing with respect to ν while erosion is decreasing; (iv) fuzzy
dilation commutes with the supremum and fuzzy erosion with the in�mum;
(v) duality: εν(µc) = (δν(µ))c; (vi) iterativity property: successive dilations
(respectively erosions) are equivalent to one dilation (respectively erosion)
with a structuring element equal to the dilation of all structuring elements.

2.2 De�nition based on fuzzy dilations

Let us �rst consider the expression of in�uence zone using morphological
dilations (Equation 2). This expression can be extended to fuzzy sets by
using fuzzy intersection and union, and fuzzy mathematical morphology.

De�nition 1. For a given structuring element ν, we de�ne the in�uence
zone of µ1 as:

IZdil(µ1) =
⋃
λ

(δλν(µ1) ∩ ελν(µc2)) =
⋃
λ

(δλν(µ1) \ δλν(µ2)) . (5)

The dilation by λν is obtained by λ iterations of a dilation by ν in the
discrete case. The in�uence zone for µ2 is de�ned in a similar way. The
extension to any number of fuzzy sets µi is straightforward: IZdil(µi) =⋃
λ (δλν(µi) ∩ ελν((∪j 6=iµj)c)).

In these equations, intersection and union of fuzzy sets are implemented
as t-norms > and t-conorms ⊥ (min and max for instance). Equation 5
then reads: IZdil(µ1) = supλ>[δλν(µ1), 1− δλν(µ2)].

Note that the number of dilations to be performed to compute in�uence
zones in a digital bounded space S is always �nite (and bounded by the
length of the largest diagonal of S).
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De�nition 2. The fuzzy SKIZ is then de�ned as:

SKIZ(∪iµi) = (
⋃
i IZ(µi))c.

This expression also de�nes a fuzzy (generalized) Voronoï diagram. Al-
though the notion of Voronoï diagram has already been used in fuzzy sys-
tems, to our knowledge, no fuzzy version of it was de�ned until now.

2.3 De�nitions based on distances

Another approach consists in extending the de�nition in terms of distances
(Equation 1) and de�ning a degree to which the distance to one of the sets is
lower than the distance to the other sets. Several de�nitions of the distance
of a point to a fuzzy set have been proposed in the literature. Some of them
provide real numbers and Equation 1 can then be applied directly. But then
the imprecision in the object de�nition is lost. De�nitions providing fuzzy
numbers are therefore more interesting, since if the sets are imprecise, it
may be expected that distances are imprecise too, as also underlined e.g.
in [2, 10]. In particular, as will be seen next, it may be interesting to use
the distance proposed in [2], based on fuzzy dilation:

d(x, µ)(n) = >[δnν(µ)(x), 1− δ(n−1)ν(µ)(x)]. (6)

It expresses, in the digital case, the degree to which x is at a distance
n of µ (> is a t-norm, and n ∈ N∗). For n = 0, the degree becomes
d(x, µ)(0) = µ(x). This expression can be generalized to the continuous
case as:

d(x, µ)(λ) = inf
λ′<λ

>[δλν(µ)(x), 1− δλ′ν(µ)(x)], (7)

where λ ∈ R+∗, and d(x, µ)(0) = µ(x).

First method: comparing fuzzy numbers

When distances are fuzzy numbers, the fact that d(x, µ1) is lower than
d(x, µ2) becomes a matter of degree. The degree to which this relation is
satis�ed can be performed using methods for comparing fuzzy numbers. Let
us consider the de�nition in [9], which expresses the degree µ(d1 < d2) to
which d1 < d2, d1 and d2 being two fuzzy numbers, using the extension
principle:

µ(d1 < d2) = sup
a<b

min(d1(a), d2(b)). (8)

De�nition 3. The in�uence zone of µ1 based on the comparison of fuzzy
numbers (using Equation 8) is de�ned as:

IZdist1(µ1)(x) = µ(d(x, µ1) < d(x, µ2))

= sup
n<n′

min[d(x, µ1)(n), d(x, µ2)(n′)]. (9)
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Note that this approach can be applied whatever the chosen de�nition
of fuzzy distances.

Second method: direct approach

When distances are more speci�cally derived from a dilation, as the ones
in Equations 6 and 7, a more direct approach can be proposed, taking into
account explicitly this link between distances and dilations. Indeed, in the
binary case, the following equivalences hold:

(d(x,X1) ≤ d(x,X2))⇔ (∀λ, x ∈ δλ(X2)⇒ x ∈ δλ(X1))
⇔ (∀λ, x ∈ δλ(X1) ∨ x /∈ δλ(X2)). (10)

This expression extends to the fuzzy case as follows.

De�nition 4. The degree µ(d(x, µ1) ≤ d(x, µ2)) to which d(x, µ1) is less
than d(x, µ2) is de�ned as:

µ(d(x, µ1) ≤ d(x, µ2)) = inf
λ
⊥(δλν(µ1)(x), 1− δλν(µ2)(x)), (11)

where ⊥ is a t-conorm.

This equation de�nes a new way to compare fuzzy numbers representing
distances.

The comparison of fuzzy numbers representing distances, as given by
Equation 11 is re�exive (µ(d(x, µ1) ≤ d(x, µ1)) = 1) if and only if ⊥ is
a t-conorm verifying the excluded middle law (Lukasiewicz t-conorm for
instance). Moreover, in case the fuzzy numbers are usual numbers, the
comparison reduces to the classical comparison between numbers.

De�ning in�uence zones requires a strict inequality between distances,
which is deduced by complementation:

µ(d(x, µ1) < d(x, µ2)) = 1− µ(d(x, µ2) ≤ d(x, µ1)). (12)

De�nition 5. The in�uence zone of µ1 using the comparison introduced
in De�nition 4 is de�ned as:

IZdist2(µ1)(x) = 1− inf
λ
⊥(δλν(µ2)(x), 1− δλν(µ1)(x)). (13)

Whatever the chosen de�nition of IZ, the SKIZ is always de�ned as in
De�nition 2.

2.4 Comparison and properties

Proposition 1. De�nitions 1 and 5 are equivalent: IZdil(µ1) = IZdist2(µ1).

Although this result is not surprising, both interpretations in terms of
dilation and distance remain interesting.

However, the two distance based approaches are not equivalent, since
they rely on di�erent orderings between fuzzy sets. Actually the direct
approach always provides a larger result.
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Proposition 2. ∀x ∈ S, IZdist1(µ1)(x) ≤ IZdist2(µ1)(x).

Proposition 3. For N being the size of S in each dimension, the com-
plexity of computation of IZdist1 is in O(N5) in 3D and O(N4) in 2D.
The complexity of computation of IZdist2 or IZdil is at least one order of
magnitude less.

Proposition 4. De�nitions 1, 2, 3 and 5 are equivalent to the classical
de�nitions in case of crisp sets and crisp structuring elements.

Finally, the SKIZ is symmetrical with respect to the µi, hence indepen-
dent of their order.

2.5 Illustrative example

The notion of fuzzy SKIZ is illustrated on the three objects of Figure 1.
The structuring element ν is a crisp 3 × 3 square in Figure 2 and a fuzzy
set of paraboloid shape in Figure 3. The in�uence zones of each object are
displayed, as well as the SKIZ. These results are obtained with the dilation
based de�nition. Each in�uence zone is characterized by high membership
values close to the corresponding object, and decreasing when the distance
to this object increases. The use of a fuzzy structuring element results in
more fuzziness in the in�uence zones and SKIZ.

Figure 1. Three fuzzy objects and their union. Membership degrees range from 0
(white) to 1 (black).

Figure 2. In�uence zones of the three fuzzy objects of Figure 1 and resulting fuzzy
SKIZ, obtained using a binary structuring element (3× 3 square).

Figure 3. In�uence zones of the three fuzzy objects of Figure 1 and resulting fuzzy
SKIZ, obtained using a fuzzy structuring element (paraboloid shaped).
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(a) (b) (c)

Figure 4. Binary decision using watershed for ν crisp (a) and fuzzy (b). Lines
with a very low membership degree in the SKIZ of (b) have been suppressed in
(c).

A binary decision can be made in order to obtain a crisp SKIZ of fuzzy
objects. An appropriate approach consists in computing the watershed lines
of the fuzzy SKIZ. It is appropriate in the sense that it provides spatially
consistent lines, without holes, and going through the crest lines of the
membership function of the SKIZ. A result is provided in Figure 4. For
a fuzzy structuring element ν, the lines can go through the objects (Fig-
ure 4(b)). While this is impossible in the binary case, in the fuzzy case this
is explained by the fact that an object can, to some degree, be built of sev-
eral connected components, linked together by points with low membership
degrees. The values of the SKIZ at those points are low too. This is the
case for the third object in Figure 1. The low values of the SKIZ along the
line traversing this object are in accordance with the fact that the object
has only one connected component with some degree, and two components
with some degree. The line separating the third object can be suppressed
by eliminating the parts of the watersheds having a very low degree in the
fuzzy SKIZ (Figure 4(c)). This requires to set a threshold value.

3. Fuzzy median set and interpolation between fuzzy
sets

In the mathematical morphology community, two types of approaches have
been considered to de�ne the median set of two crisp sets, or to interpolate
between two sets. The �rst one relies on the SKIZ [1, 19], while the second
one relies on the notion of geodesics of some distance [11, 16, 17]. Here, we
propose to extend the �rst approach to the case of fuzzy sets, based on the
de�nitions of the fuzzy SKIZ proposed in Section 2. The median set of two
intersecting sets X and Y is de�ned as the in�uence zone of X1 = X ∩ Y
with respect to X2 = (X ∪ Y )c.

3.1 De�nitions

Let us consider two fuzzy objects with membership functions µ1 and µ2

and with intersecting supports. Two de�nitions can be given for the fuzzy
median set, depending on the chosen de�nition for the in�uence zones.
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De�nition 6. Based on the de�nition of in�uence zones from dilations, or
equivalently the direct approach from distances, the median fuzzy set of µ1

and µ2 is de�ned as the in�uence zone of µ1 ∩µ2 with respect to (µ1 ∪µ2)c
(intersection is still de�ned by a t-norm and union by a t-conorm):

∀x ∈ S,M(µ1, µ2)(x) = sup
λ
>[δλν(µ1 ∩ µ2)(x), 1− δλν((µ1 ∪ µ2)c)(x)]

= sup
λ
>[δλν(µ1 ∩ µ2)(x), ελν(µ1 ∪ µ2)(x)]. (14)

De�nition 7. By using the de�nition of in�uence zones based on compar-
ison of fuzzy distances, the median set is de�ned as:

M ′(µ1, µ2)(x) = sup
n<n′

min[d(x, µ1 ∩ µ2)(n), d(x, (µ1 ∪ µ2)c)(n′)]. (15)

Proposition 5. For any two fuzzy sets µ1 and µ2, we always have:

∀x ∈ S,M ′(µ1, µ2)(x) ≤M(µ1, µ2)(x). (16)

This notion of median set can be exploited to derive a series of interpolat-
ing sets between µ1 and µ2, by applying recursively the median computation
in a dichotomic process.

De�nition 8. Let µ1 and µ2 be two fuzzy sets. A series of interpolating
sets is de�ned by recursive application of the median computation:

Interp0 = µ1 Interp1 = µ2

Interp i+j
2

= M(Interpi, Interpj) for 0 ≤ i ≤ 1, 0 ≤ j ≤ 1.

This sequence allows transforming progressively µ1 into µ2. These two
fuzzy sets can represent spatial objects, di�erent situations, sets of con-
straints or preferences, etc. For instance the sequence allows building inter-
mediate estimates between distant observations or pieces of information.

3.2 Examples

On various examples, it can be actually observed that M ′ leads to lower
membership values than M (Proposition 5). The result provided by M is
visually more satisfactory and is moreover faster to compute. Therefore, in
the following the chosen de�nition is the one given by Equation 14. Figure 5
illustrates an example of interpolation between two fuzzy sets. The series
of interpolating fuzzy sets is computed recursively from the median set
(the fourth set in the sequence displayed in the �gure). It is clear on this
example that the shape of interpolating sets evolves progressively from the
one of the �rst object towards the one of the second object. This evolution
is in accordance with the expected interpolation notion.
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µ1 Interp(µ1,µ2)1/8 Interp(µ1,µ2)1/4 Interp(µ1,µ2)3/8

Interp(µ1,µ2)1/2 Interp(µ1,µ2)5/8 Interp(µ1,µ2)3/4 µ2

Figure 5. Interpolation between two fuzzy sets µ1 and µ2 (Interp(µ1, µ2)1/2 =
M(µ1, µ2)).

Let us now consider real objects, from medical images. We consider the
putamen (a brain structure) in di�erent subjects, obtained from the IBSR
database1. The images are registered, which guarantees a good correspon-
dence between the di�erent instances. Fuzziness at the boundary of the
objects is introduced to represent spatial imprecision due to partial volume
e�ect or imprecise segmentation, using a fuzzy dilation. Four examples of
the resulting fuzzy objects are illustrated in Figure 6. The fuzzy median set
has been computed between the two �rst instances, then between this result
and the third instance, etc. Results are displayed in Figure 6. Using this
iterative approach, the fuzzy median set between the 18 instances of this
structure has been computed (corresponding to the 18 normal subjects of
the IBSR database). Such results could be used for instance for representing
the inter-individual variability, or to build anatomical atlases.

Figure 6. Four instances of a brain structure from four di�erence subjects, and
median set between two, three, four instances and between the 18 instances of the
IBSR database.

Let us now consider another example, in the domain of preference mod-

1http://www.cma.mgh.harvard.edu/ibsr/
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eling, as in [13], on which morphological operators can be de�ned [4]. We
consider a propositional language based on a �nite set of propositional sym-
bols, on which formulas are de�ned. We denote by Ω the set of all inter-
pretations. The models of a formula are considered as a fuzzy subset of Ω.
To illustrate the application of the median operator, we consider a simple
example, with three propositional symbols a, b, c, and two formulas ϕ1 and
ϕ2, expressing respectively preferences for ¬ab¬c with a degree 0.2, and
preferences for anything except abc with degrees as given in Table 1. For
de�ning the morphological operators, we use the Hamming distance (i.e.
two models are at a distance equal to the number of symbols instantiated
di�erently), and the structuring elements are the balls of this distance. The
conjunction of ϕ1 and ϕ2 is equal to ϕ1 and their disjunction is equal to ϕ2.

Table 1. Fuzzy sets of Ω representing the preferences expressed by ϕ1 and ϕ2, and
derivation of M(ϕ1, ϕ2).

Models abc ¬abc a¬bc ab¬c ¬a¬bc ¬ab¬c a¬b¬c ¬a¬b¬c
ϕ1 0 0 0 0 0 0.2 0 0

ϕ2 0 0.5 0.5 0.5 0.5 0.8 0.5 0.7

δ1(ϕ1) 0 0.2 0 0.2 0 0.2 0 0

ε1(ϕ2) 0 0 0 0 0.5 0.5 0.5 0.5

δ2(ϕ1) 0.2 0.2 0 0.2 0.2 0.2 0.2 0.2

ε2(ϕ2) 0 0 0 0 0 0 0 0.5

M(ϕ1, ϕ2) 0 0 0 0 0 0.2 0 0.2

The successive steps of the computation of the median set are illustrated
in Table 1. The models of the median set also constitute a fuzzy set of
Ω. On this example, the classical fusion, according to [12] would lead to
the intersection of the sets of models, i.e. ϕ1. The result of the median is
somewhat larger, since it includes also a model of ϕ2 that was not a model of
ϕ1 (¬a¬b¬c), and gives a more fair point of view expressing an intermediate
solution between both sets of preferences. This can be interpreted as follows:
if an individual as a set of preferences described by ϕ1, which is very strict
and constraining, he will be tempted to extend his preferences to obtain
a better agreement with the preferences of the second individual. On the
other hand, the second individual is ready to restrict his choices to achieve a
consensus with the �rst one, and will be more satis�ed if a fair account of all
his preferences is obtained. Note that the fact that the median is included
in the disjunction (see Proposition 6) guarantees that it does not contain a
solution that nobody wants to accept. The resulting membership degrees
re�ect the low consistency that exists between both sets of preferences on
this example.
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3.3 Some properties

Proposition 6. If ν(0) = 1 (or if ν represents a re�exive relation), then the
median set is included in the union of the two objects: ∀x ∈ S,M(µ1, µ2)(x) ≤
(µ1 ∪ µ2)(x).

Proposition 7. Under the same condition (ν(0) = 1), the cores verify
the following inclusion relations: Core(µ1 ∩ µ2) ⊆ Core(M(µ1, µ2)) ⊆
Core(µ1 ∪ µ2).

The core of a fuzzy set is the set of points having a membership value
equal to 1. Note that the core of the median set can be empty.

Proposition 8. If additionally the origin is the only modal value of ν
(ν(0) = 1 and ∀x ∈ S \ {0}, ν(x) < 1), then the median set and the union
of the two sets have the same support and the cores of the median set and
of the intersection are equal.

In particular, in the case where the structuring element is crisp (for
instance a square of size 3× 3), this property does not hold, while it holds
for the paraboloid shaped structuring element used in the presented results.

Figure 5 illustrates that the median set and the union have the same
support. It should be noticed that in a large part of the support, the
membership values are very low (0.1 in this example), and that it would be
very easy to eliminate these low values if a more reduced support is desired,
as could be intuitively preferable.

4. Conclusion

In this paper, novel notions of fuzzy SKIZ, median and interpolation were
introduced, based on mathematical morphology concepts. The proposed
de�nitions are applicable whatever the dimension of the underlying space S
and whatever the semantics attached to the fuzzy sets. The only hypothesis
is that it should be possible to de�ne a structuring element, either from a
distance on S, or from a binary symmetrical relation.

The de�nitions of median set and interpolation can be extended to non
intersecting fuzzy sets if a translation on S can be de�ned. The cases where
S does not have an a�ne structure are planned for future work.

Another approach for de�ning median sets in the crisp case is based on
geodesic distances [16]. Extension of this approach to the fuzzy case could
be another interesting research direction. Extensions to a logical framework
for mediation applications was proposed in [6], but not to the fuzzy sets
framework until now.

Extensions of the median set to more than two fuzzy sets could be inter-
esting too, for instance for deriving generic models from di�erent instances.
In the brain structure example, the median has been computed iteratively,
a process which depends on the order. A direct method involving all objects
simultaneously deserves to be developed.
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Finally, applications of the propositions of this paper could be further
explored, for instance for fusion, with a comparison to other operators also
based on distance [12,13], for the de�nition of compromises or negotiations,
for smoothing fuzzy sets representing preferences, observations, etc., or for
�nding the fuzzy sets in between two sets.
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