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AAS 13-772

ORBIT DETERMINATION USING NONLINEAR PARTICLE FILTER
AND GPS MEASUREMENTS

Paula C. P. M. Pardal,” Rodolpho .V. Moraes’ and Helio K. Kuga*

A particle filter, specifically a Bayesian bootstrap filter algorithm, is applied
for estimating the state vector that characterizes the orbit of a satellite, using a
set of GPS measurements. The development will be evaluated through perfor-
mance and computational cost, comparing the bootstrap algorithm results
against the unscented Kalman filter (UKF) solution for the same problem. The
orbit determination is a nonlinear problem, with respect to the dynamics and
the measurements equations. It consists essentially of estimating values that
completely specify the body trajectory in the space, processing a set of mea-
surements (pseudo-ranges) related to this body. Such observations are collected
through GPS receivers onboard the satellite. The bootstrap filter is proposed
for implementing recursive Bayesian filters. It is a statistical, brute-force ap-
proach to estimation that often works well for systems that are highly nonlin-
ear. Here, the bootstrap particle filter will be implemented with resampling and
roughening, a scheme for combating the reduction in the number of truly dis-
tinct sample values.

INTRODUCTION

The orbit of an artificial satellite is determined using real data from the Global Positioning
System (GPS) receivers. In the orbit determination process of artificial satellites, the nature of the
dynamic system and the measurements equations are nonlinear. As a result, it is necessary to
manage a fully nonlinear problem in which the disturbing forces as well as the measurements are
not easily modeled. The variables that completely specify a satellite trajectory in the space are
estimated, with the processing of a set of pseudo-range measurements related to the body.

A spaceborne GPS receiver is a powerful resource to determine orbits of artificial Earth satel-
lites by providing many redundant measurements, which ultimately yields high degree of the ob-
servability to the problem. The Jason satellite is a nice example of using GPS for space position-
ing. Through an onboard GPS receiver, the pseudo-ranges (error corrupted distance from satellite
to each of the tracked GPS satellites) can be measured and used to estimate the full orbital state.

The UKF is an estimator that propagates mean and covariance information through a nonlinear
transformation, without needing the linearization steps " > °. However, the UKF is still only an
approximate nonlinear estimator, and divergence will occur when nonlinearities become too se-
vere *. On the other hand, the particle filter is a completely nonlinear state estimator. The boot-

" Dr., ICT, UNIFESP, paulacristiane@gmail.com, R. Talim, 330, Sdo José¢ dos Campos-SP-Brazil. CEP: 12231-280.
Dr., ICT, UNIFESP, rodolpho.vilhena@gmail.com, R. Talim, 330, Sao José dos Campos-SP-Brazil. CEP: 12231-280.
i Dr., DMC, INPE, hkk@dem.inpe.br, Av. Astronautas, 1758, Sdo José dos Campos-SP-Brazil. CEP: 12227-010.
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strap filter central idea is to express the required probability density function (pdf) as a set of ran-
dom samples, instead of a function over state space °.

In this orbit determination problem the main goal is to analyze the bootstrap filter behavior for
the highly nonlinear orbit determination problem. Its simulation results are compared with the
UKF for the same problem. Since the UKF application to orbit determination has been well stud-
ied ©7% it works as a reference solution for the bootstrap filter analysis.

PARTICLE FILTER

The particle filter was designed to numerically implement the Bayesian estimator *. The
Bayesian approach consists of constructing the pdf of the state based on all the available infor-
mation, and for nonlinear or non-Gaussian problem, there is no closed form expression for the
required pdf. The bootstrap filter represents the required pdf as a set of random samples, which
works as an alternative to the function over state space. This filter is a recursive algorithm for
propagating and updating these samples for the discrete time problem. The key update stage of
the method (Bayes rules) is implemented as a weighted bootstrap °.

The main idea of the bootstrap particle filter is intuitive and forthright. At the beginning, N
particles x;, (i =1,...,N) are randomly generated, based on the known initial pdf p(x,). At
each time step k, the particles are propagated to next time step using the dynamics equation *. Af-
ter receiving the measurement at time £, the pdf p(y, | x,iH) is evaluated. That is, the condition-

al relative likelihood of each particle x, ; is calculated. If an m-dimensional measurement equa-
tion is given as y, = h(x,)+v, and v, is a Gaussian random variable with a mean of zero and a
variance of R, v, ~ N(0,R), then a relative likelihood g, that the measurement is equal to a

specific measurement y *, given the premise that x, is equal to the particle x,’;fl , can be com-
puted as follow *:

g, = ply, =y 1%, =x_)
:pvk:y*_h(x;c—l)] )
o1 ~[yrneg ] R [y (XL_I)]}
(Zﬂ)%‘R‘% exp[ 2

The ~ symbol in Equation (1) means that the probability is directly proportional to the right side.
So if the equation is used for all particles x, ; , then the relative likelihoods that the state is equal
to each particle is correct. The relative likelihoods are normalized to ensure that the sum of all
likelihoods is equal to one. Next, a new set of randomly generated particles x;’ ; 1s computed
from the relative likelihoods ¢, . This resampling step can be done several different ways. Here, it
is used roughening, for preventing sample impoverishment. At this point, there is a set of particles
x;’l_ that are distributed accordingly the pdf p(x, | ¥, ), and any desired statistical measure of it

can be computed.
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The particle filter, adjusted to the orbit determination problem, can be summarized as follows:

1. The dynamic and measurement equations are given as:
X =H(x)+w,

2
y,=h,(x)+v, @

where W, and v, are independent white noise processes with known pdf’s.

2. N initial particles Xg,i (i =1,...,N) are randomly generated on the basis of the known ini-

tial state pdf p(x,). N is a parameter chosen as a trade-off between computational cost
and estimation accuracy *.

3. Fork=1,2,....

a. In the time propagation step, obtain a priori particles X, ; , using the dynamics

equation and the pdf of the process noise, both known:

X;,i = k—l(xl:—l,i) + ch—l (l = l’aN) (3)

where each WLI;—I noise vector is randomly generated on the basis of the known

pdfof w,_,.

b. Compute the relative likelihood ¢, of each particle x, ;, conditioned on the

measurement y, , using the nonlinear measurement equation and the pdf of the
measurement noise, as in Equation (1).

c. Normalize the relative likelihoods:

q;
4= )
z j=1 q/’

d. In the resampling step, generate a set of a posteriori particles x; ;» on the basis of

the relative likelihood g, .

e. Now there is a set of particles XZ,I. distributed according to the pdf p(x, | y,),

p(x, | y,),and mean and covariance statistical measures can be computed.

In the bootstrap filter implementation, at the start of the track and as the target approaches the
observer, there is only a small overlap between the prior and the likelihood. A procedure that may
be implemented for combating the consequent reduction in the number of truly distinct sample
values is roughening . Here, it was implemented a bootstrap particle filter with resampling (step
3.d) and roughening.
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Roughening

To each sample drawn in the update (resampling) step is added an independent ¢; sample from
N(0,J,), where J, is a diagonal covariance matrix. The standard deviation of the Gaussian

sample corresponding to a particular component of the state is given by o = KEN Ve , where E

is the length of the interval between the maximum and the minimum samples of this component
(before roughening), d is the state dimension, and K is a constant tuning parameter, chosen
K=02"

UNSCENTED KALMAN FILTER (UKF)

Basically, the UKF is a nonlinear filter generated after accommodating the unscented trans-
formation (UT) in the extended Kalman filter (EKF) algorithm. The UT is a manner of calculat-
ing the statistics of a random variable that passes through a nonlinear transformation, by selecting
a suitable set of points (sigma-points) so that their mean and covariance are X and P, respective-
ly »°. The nonlinear function is applied to each point of the set, in turn, to yield a cloud of trans-
formed points. The statistics of the transformed points (mean Yy and covariance P,,) can then be

calculated to form an estimate of the nonlinearly transformed mean and covariance.
The sigma-points are deterministically chosen so that they exhibit certain specific properties,

and they can be weighted in ways that are inconsistent with the distribution interpretation of sam-
ple points like in the particle filter 2.

The n-dimensional random variable x, with X mean and P,, covariance, is approximated by
2n + 1 weighted points, the so known sigma-points, given by:

Lo =X
X[:i+ﬂﬂn+xﬂ§x) (5)
Lisn =§_(\I (n+x)Pyy )[

in which x provides an extra degree of freedom used to fine-tune the higher order moments and
is set as & =3 —n for a Gaussian distribution ’; and (,/(n + )P, )i is either the i-th row or col-

umn of the square root matrix of (n+ x)P,, . The transformation occurs as follows:

1. Transform each point through the nonlinear function to yield the set of transformed sigma
points:

v =f[x] ©)

2. The observations mean is given by the weighted average of the transformed points:
Y= ()

3. The covariance is the weighted outer product of the transformed points:
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P, = VVi[yi_y][yi_y]T (8)

K
W =
" (n+x)
1 ©)
Wo=——i=1..2n
2(n+x)

The following steps are processed, in order to generate the UKF:

1. Predict the new state system and its associated covariance, taking into account the effects
of the Gaussian white noise process.

2. Predict the expected observation and its residual innovation matrix considering the ef-
fects of the observation noise.

3. Predict the cross correlation matrix.

Table 1 presents an algorithm for the UKF. In the filter initialization, the mean, X 41 » and the

covariance matrix, P,_,, of the state vector x are calculated, in reference to the prior instant, sup-

posed t;.;. Following, the set of sigma-points is generated, from the mean and the covariance ma-
trix, previously calculated. In the propagation step, the generated state sigma-point set is propa-
gated to the instant t;, using the nonlinear dynamics equation (3.a), and the predict mean and co-
variance matrix are calculated (3.b). During the update cycle: the observations sigma-points are
generated (4.a), propagated through the nonlinear observations equation (4.b), and its mean is

obtained (4.c); the predict matrices of innovation, P,”, and correlation, P;”, are computed (4.d);
and finally the Kalman gain is calculated, in order to update the state X, , and the covariance

matrix, f’k . They are used as a priori information in the next instant, t;.;, to generate the new set
of sigma-points.
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Table 1. UKF algorithm.

1. Initialization (t = k-1 ):
X, = E[X,H]= E[XI,IWZ,I]T e R"
P = E[(xk—l =X )X, — X, )T]

2. Sigma-points:

Lok =Xy

Yisor =K,y + (,/(n + )P, ) S Kimis = Ky — (,/(n + )P, )

3. Propagation:

Yok :f[XO,H]
a)
Lix = f[Xik—l]’i =L...2n
2n
X, = ZW, Lik
DI
P, :ZWib(i,k _ik] b(x.k _ik]T +Q;
i=0
4. Update:
2) Kok =X,
Lk =X, +(,/(n+/1)ﬁ, ) S Wi = Xs —(,/(n+/1)fk )
Yor = thOkJ
b , .
) Yik = h[Xi.k]ai =1..2n
2n
c) Y= sz ik
i=0
2n
P = ZW, [yi,k _yk] [yi‘k _yk]T +R;
0
P = ZW: [Xi,k *ik][yi,k *S’k]T
i=0
K, =Pk”( k‘v) 1
e) X, =X, +Kk(yk _yk)
PA :E -K, B {
ORBIT DETERMINATION

The orbit determination is a process for obtaining values of the parameters that completely
specify the motion of an orbiting body (an artificial satellite), based on a set of observations of the
body. It involves nonlinear dynamical and nonlinear measurement systems, which depends on the
tracking system and the estimation technique (for instance, Kalman filter or least squares methods
%11 "The dynamical system model consists of describing satellite orbital motion, measurements
models, Earth’s rotation effects, and perturbation models. These models depend on the state vari-
ables defining the initial conditions, as well as a variety of parameters which affect both the dy-
namic motion as the measurement process '>. Due to the complexity of the applied models it is
hardly possible to solve such models equations directly for any of these parameters from a given
set of observations.
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The observation may be obtained from the ground station networks using laser, radar, Dop-
pler, or by space navigation systems, as the Global Positioning System (GPS). The choice of the
tracking system depends on a compromise between the goals of the mission and the available
tools. In the case of the GPS, the advantages are global coverage, high precision, low cost, and
autonomous navigation resources. The GPS may provide orbit determination with accuracy at
least as good as methods using ground tracking networks. The later provides standard precision
around tens of meters and the former can provide precision as tight as some centimeters. The GPS
provides, at a given instant, a set of many redundant measurements, which makes the orbit posi-
tion observable geometrically.

After some advances of technology, the single frequency GPS receivers provide a good basis
to achieve fair precision at relatively low cost, still attaining the accuracy requirements of the
mission operation. The GPS allows the receiver to determine its position and time geometrically
anywhere at any instant with data from at least four satellites. The principle of navigation by sat-
ellites is based in sending signals and data from the GPS satellites to a receiver located onboard
the satellite that needs to have its orbit determined. This receiver measures the travel time of the
signal and then calculates the distance between the receiver and the GPS satellite. Those meas-
urements of distances are called pseudo-ranges, as shown in Figure 1.

The instantaneous orbit determination using GPS satellites is based on the geometric method.
In such method, the observer knows the set of GPS satellites position in a reference frame, obtain-
ing its own position in the same reference frame. Figure 1 illustrates the basic parameters for user

position determination: R pg, is the position of i-th GPS satellite in the reference system; p; is

the pseudo-range; and r,, is the user position in the reference system.

However, sequential orbit determination makes use of the orbital motion modeling to predict
between measurement times and measurement model to update the orbit by processing of meas-
urements from GPS. This gives rise to recursive and real time KF estimator for the orbit determi-

: 13
nation .

F'\

Z

Figure 1. The geometric method for orbit determination using GPS.
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Orbital Dynamic Model

In the case of orbit determination via GPS, the ordinary differential equations which represent
the dynamic model are, in its simplest form, traditionally given as follows:

r=v

. r

v=—,ur—3+a+wv (10)
b=d

d=0+Wd

wherein the variables are placed in the inertial reference frame. In Equation (10), r is the vector
of the position components (X, y, z); v is the velocity vector; a represents the modeled perturbing
accelerations; w, is the white noise vector with covariance Q; b is the user satellite GPS clock
bias; d, the user satellite GPS clock drift; and wy the noise associated with the GPS clock. The
GPS receiver clock offset was not taken into account, so as not to obscure the conclusions drawn
in this paper due to introduction of clock offset models in the filters. Indeed, the receiver clock
offset was beforehand obtained and used to correct the GPS measurements, so that the measure-
ments are free from the error derived from receiver clock offset.

Force Model

The main disturbing forces of gravitational nature that affect the orbit of an Earth’s artificial
satellite are: the non-uniform distribution of Earth’s mass; ocean and terrestrial tides; and the
gravitational attraction of the Sun and the Moon. There are also the non-gravitational effects, such
as: Earth atmospheric drag; direct and reflected solar radiation pressure; electric drag; emissivity
effects; relativistic effects; and meteorites impacts.

The disturbing effects are in general included according to the physical situation presented and
to the accuracy that is intended for the orbit determination. Here it was included a set of perturba-
tions which enables to analyze the performance of the particle filter: geopotential; direct solar
radiation pressure; and third body point mass effect of Sun and Moon.

Geopotential

The Earth is not a perfect sphere with homogeneous mass distribution, and cannot be consid-
ered as a material point. Such irregularities disturb the orbit of an artificial satellite and the kep-
lerian elements that describe the orbit do not behave ideally. The geopotential function can be

. 14
given by

U(r,g,A) zgi i(RrTj P, (sin qﬁ)(Cnm cosmA+S,, sinmi) (11)

n=0 m=0

where u is Earth gravitational constant; Rt is mean Earth radius; r is the spacecraft radial dis-
tance; ¢ is the geocentric latitude; A is the longitude on Earth fixed coordinates system; C,,, and
S, are the harmonic spherical coefficients of degree n and order m; P,,, are the associated Legen-
dre functions. The constants u, Ry, and the coefficients C,,, and S,,, determine a particular gravi-
tational potential model.
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Direct Solar Radiation Pressure

The intricate direct solar radiation pressure (SRP) model applied to Jason-2 satellite is based
on its geometry and is briefly described. Jason-2 is presented in Figure 2 .

Figure 2. Jason-2 satellite.

The SRP is a force of non-gravitational origin that causes perturbations in the motion of an ar-
tificial satellite. Direct or reflected SRP is engendered throughout a continuous flux of photons
that stumble at satellite surface, which can partially or totally absorb and reflect such flux.

The way the perturbations due to SRP will affect the keplerian elements depends on the pres-
sure model adopted (if it includes or not shadow, for example). Meanwhile, in the general case, it
causes secular and periodic perturbations on the angular variables (€2, ®, and M) and periodic per-
turbations on the metric variables (a, e, and 7).

The components of SRP force can be expressed in several systems. Throughout these systems,
the orbital elements of the satellite can be connected with Sun's position. This procedure was used
for the direct SRP model adopted for Jason-2. Since the force due to the emerging radiation flux
on the surface of the satellite depends on the angle of incidence, the attitude of the satellite must
be also taken into account .

According to Marshall and Luthcke’s model ', the total force acting on Jason-2 is:

10

A
F, :chmﬂz(@k+pcosekjﬁk+(l_pk>g} = F-3F (12)

c k=1

where G is the solar radiant flux (W/m®); 4 is the surface area of each plate (m”); & is the diffu-
sive reflectivity, percentage of the total incoming radiation; p is the specular reflectivity, percent-
age of the total incoming radiation; 7 is the surface normal vector; s is the source incidence
vector; @ is the angle between surface normal and solar incidence; and ¢ is the speed of light
(m/s). Subscript k varies from 1 to 10, representing each plate of the adopted box-wing approxi-
mating model, and F is the total direct SRP acting on the satellite.
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Sun-Moon Gravitational Attraction

Another gravitational perturbation source is that due to the Sun and the Moon attraction.
They are more meaningful at farther distance from Earth. As the orbital variations are of the same
type, be the Sun or the Moon the attractive body, they are normally studied without distinguishing
the third body. The Sun-Moon gravitational attraction mainly acts on node and perigee causing
precession of the orbit and on the orbital plane. The general three-body problem model is here
simplified to the circular restricted three-body problem. In this problem, the orbital motion of a
third body (a satellite, which mass can be neglected), around two other massive bodies is studied.
The force that acts on the satellite, in the inertial reference frame, can be expressed as ' '*:

r r

oo 13 23

ty =—-Gm —-—-Gm, — (13)
I3 I3

where ¥|; =r;—r,, I); =r;—T,,and r;, i=1,2,3 corresponds to the i-th body distance vector to

the center of mass of the system; and m; and m, are the masses of the Sun and the Moon, respec-
tively.

Observations Model

The nonlinear equation of the observation model is
Ve =h(xp t) + v, (14)

where, at time t;, y; is the vector of m observations; h; (x;) is the nonlinear function of state x,,
with dimension m; and v, is the observation errors vector, with dimension m and covariance R;.

For the present application, the ion-free pseudo-range measurements from the Jason-2 GPS re-
ceiver are used. Also, the receiver clock offset was computed before and used to correct the pseu-
do-range measurements. Additionally, the nonlinear pseudo-range measurement was modeled
according to (Reference 20).

RESULTS

The tests and the analysis for the bootstrap filter and the UKF algorithms are presented. To
validate and to analyze the methods, real GPS data from the Jason-2 satellite are used. Ocean Sur-
face Topography Mission (OSTM)/Jason-2 is a follow-on altimetric mission to the very success-
ful TOPEX/Poseidon mission and Jason-1. It is a joint mission between NASA and CNES
(French space agency), launched June 20, 2008. Jason-2 has a repeat period of approximately 10
days with 254 passes per cycle. Its nodal period is 6,745.72 sec. Sometimes there may be anoma-
lous or missing data. Occasionally Jason-2 must perform maneuvers to maintain orbit. When the
satellite detects something abnormal it will go into safehold and will turn off all instruments and
no data will be collected *'.

The filters estimated position and velocity are compared with Jason-2 precise orbit ephemeris
(POE) from JPL/NASA. The test conditions consider real ion-free pseudo-range data, collected
by the GPS receiver onboard Jason-2, on October 22nd, 2010, presenting up to 12 GPS satellites
tracked. The tests were limited to 5.5 hours of GPS data spaced 10s. After that there was an unde-
sirable data gap which could spoil the test case, Such 5.5 hours arc (near 3 Jason-2 orbital period)
was considered sufficient for evaluating the bootstrap particle filter in this orbit determination
application.

1086



The force model comprises perturbations due to: geopotential up to order and degree 50x50;
direct solar radiation pressure; and Sun-Moon gravitational attraction. This model of forces is
suitable for implementation in orbit determination because of the low computational cost added
compared to the improvement in the results accuracy > *> . The pseudo-range measurements
were corrected to the first order with respect to ionosphere.

This work is not a search for results accuracy. It aims at analyzing the application of a boot-
strap filter to the orbit determination problem. The analysis is based on comparing the errors in
position (translated to the orbital radial, normal, and along-track RNT components) with the UKF
solution. The RNT system interpretation is straightforward: the radial component “R” points to
the nadir direction, the normal “N” is perpendicular to orbital plane, and the transversal (along-
track) “T” is orthogonal to “R” and “N”, and so is also the velocity component. Thus, it is possi-
ble to analyze what happens with the orbital RNT components and with the orbit evolution as
well. There is also interest for processing time, in order to analyze the computational efforts face
to the accuracy achieved by each algorithm.

Regarding time of processing, tcpy, it was expected that the time required for the PF algorithm
was greater than the UKF, since, even now it is the PF computational burden that is its principal
obstacle to more widespread use. According to the estimator nature, each element of the state will
be replaced by a certain array. The UKF uses 272+ 1 (n is the state dimension) sigma-points in
place of each state variable while the PF use N particles, where N is a trade-off between computa-
tional cost and estimation accuracy. Here, the state dimension is n = 8, so 17 sigma-points were
generated; while for the PF, tests were done for 17, 100, and 500 particles.

The PF first case of test was N = 17 because it is equal to the 17 sigma-points generated by the
UKEF, although the estimators approach is completely different. As shown in Table 2, for 17 parti-
cles, the PF was 1.7 times longer than the UKF for the processing, and the number of particles is
the same as the number of sigma-points. In the case N = 100, the time of processing was 5.6 times
greater than the PF (V= 17) and 10 times greater than the UKF. For N = 500, the PF was 5 times
longer than the PF (N = 100), 28.8 times longer than the PF (N = 17), and 49 times longer than
the UKF for processing the data. The increase in the number or particles is about 5.9 times from
17 to 100 particles; 5 times from 100 to 500; and around 29.4 times from 17 to 500. The CPU
time and the increase in the number of particles show that the time of processing is related to the
chosen number of particles only when the number of particles changes, but has no relation with
the estimator implemented.

Table 2. Time of processing.

Estimator teru
UKF (17 s-p) 27 sec
PF(N=17) 46 sec
PF (N =100) 4 min 19 sec
PF (N =500) 22 min 02 sec

For computing time of processing and for all the simulations shown, it was used a computer
Intel ® Core ™ i5-2430M processor of 2.40 GHz, with 2.70 GB of RAM. The program was cod-
ed in FORTRAN 77 within Windows XP operating system and Compaq Visual Fortran version
6.1 compiler.
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As said before, the number of particles is chosen as a trade-off between computational cost
and estimation accuracy. The results in Table 3 confirms that the greater the number of particles,
the better the estimation accuracy. Mean and standard deviation of the errors in RNT components
were evaluated in 4 implementations: UKF; PF (N = 17); PF (N = 100); PF (N = 500). The best
result was achieved by the UKF algorithm, and the PF closest performance was obtained in the
PF (N = 500) version. If only the statistics are analyzed, it is clear that the estimation accuracy
improves as the number of particles increases. The largest standard deviation occurred for the PF
(N = 17). In the along-track component was detected a divergence occurrence, that disappeared
when N was increased. For N = 100, the standard deviation was around 20m in each component,
with a larger scattering between 1 and 3 hours of processing. When N = 500, the statistics and the
errors behavior were very similar to the UKF solution.

Table 3. Mean and standard deviation statistics of the RNT errors.

[Estimator Radial (m) Normal (m) Along-track (m)
UKF (17 s-p) -4.07+£11.02 -1.23£4.05 -0.17+£2.97
PF (N=17) -41.46+£77.29 - 8.65£67.83 - 546.47 £ 540.16
PF (N =100) -1.48+2243 8.10 £25.65 4.68 £23.95
PF (N =500) -4.02+£1243 -1.37+£4.22 0.85+3.28

Even though a particular configuration of the PF has reached equivalent performance to the
UKF, Table 2 shows a high computational effort of this PF version (22 min for 5.5h of data).
These results represent the PF first experiment and, likewise the Kalman filter, it has many vari-
ants and can be tuned. This means that adjusts might be done in order to improve its efficiency.
Around 100 particles should be suitable for orbit determination implementations, as long as the
performance remains similar to the UKF, because the CPU time is 4 min for 5.5h of processing,
according to Table 2.

In order to show the behavior of the errors in terms of RNT coordinates, Figures 3, 4 and 5 are
presented. Figure 3 shows the solution obtained in UKF, which is similar to the PF (N = 500) and,
for this reason, PF (N = 500) results were suppressed. Figure 4 presents the worse results, ob-
tained when the PF (N = 17) was implemented. The errors decreases considerably for the PF (N =
100) implementation, despite an incongruous behavior between 1 and 3 hours of processing,
which the PF recovers later, as can be seen in Figure 5. In these graphics, dark blue curves corre-
spond to radial component; green, to normal; and gray, to along-track.
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Errors - RNT - UKF

100
= radial
75 = normal
= along-track
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N
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time (h)

Figure 3. Errors in RNT coordinates, for the UKF simulation.

Errors - RNT - PF (N=17)
500

= radial

= normal
250

= along-track

N
13
S

P

errors (m)
o .
o
o
,

4
a
o

-1-000 \
-1250 \ /

-1500

time (h)

Figure 4. Errors in RNT coordinates, for the PF (V= 17) simulation.
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Errors - RNT - PF (N=100)

100

= radial
= normal

= along-track

errors (m)

time (h)

Figure 5. Errors in RNT coordinates, for the PF (N =100) simulation.

In order to properly evaluate the PF (N = 500) performance, two other graphics were generat-
ed. Figures 6 and 7 present Arand A v (errors in position and velocity), respectively, where the
results obtained in the PF (green curves) are compared with the UKF (dark blue curves). Accord-
ing to the results, it is clear that this version of the PF is as competitive as the UKF, in terms of
accuracy. This means that the PF was correctly implemented and, from now, it is necessary to
tune it more adequately. It also depends on the knowledge about the PF variants and, as said be-
fore, these results are the authors’ first experiment with this issue. In each Figure, Ar and
A v represent, respectively, the absolute value of the errors in position and in velocity, in the
ECEF (Earth-Centered Earth-Fixed) reference frame, also known as ECR (Earth-Centered Rota-
tional).

——UKF ——PF (N=500)
1.0E+03
1.0E+02
E
G1.0E+01 |\
1.0E+00
1.0E-01 ‘
0 1 2 3 4 5
time (h)

Figure 6. A1 obtained in the PF (V= 500) and the UKF simulations.
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——UKF ——PF (N=500)
1.0E+00

time (h)

Figure 7. AV obtained in the PF (N = 500) and the UKF simulations.

CONCLUSIONS

A Bayesian bootstrap filter algorithm was applied for the satellite orbit determination problem,
using a set of GPS measurements. The development was evaluated through performance and
computational cost, comparing the bootstrap algorithm results and the UKF solution for the same
problem. The PF was implemented with resampling and roughening.

Regarding time of processing, results showed that the time required for the PF algorithm is
greater than the UKF. As for the PF the number of particles is chosen as a trade-off between
computational cost and estimation accuracy, the CPU time is directly related to the number of
particles chosen only when the number of particles changes. There is no relation between time of
processing and estimator implemented.

Results confirm that the greater the number of particles, the better the estimation accuracy.
The best result was achieved by the UKF algorithm, and the PF closest performance was obtained
in the PF (N=500) version. Even though a particular configuration of the PF has reached equiva-
lent performance to the UKF, a high computational effort was demanded. As these results repre-
sent the PF first experiment and it has many variants, it can be tuned, likewise the Kalman filter.

In order to obtain better PF performance, especially in terms of estimation accuracy, adjusts in
the many filter variants might be done, for improving its efficiency. Such adjusts are directly re-
lated to the knowledge about the filter. Procedures as prior editing can also be used to solve im-
plementation issues such as sample impoverishment. Another approach for improving particle
filtering is to combine it with another filter such as EKF or UKF. In this approach, each particle is
updated at the measurement time using the EKF or the UKF, and then resampling is performed
using the measurements.
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