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ABSTRACT 
The paper deals with the use of the various color pieces 

of information for segmenting color images and sequences 
with mathematical morphology operators. It is divided in 
four parts. The first one is concerning the choice of the color 
space suitable for morphological processing. The choice of 
a connection which induces a specific segmentation is dis- 
cussed in section 2. Section 3 presents the color segmen- 
tation approach which is based on a non-parametric pyra- 
mid of watersheds, with a comparative study of different 
color gradients. In section 4 is introduced another multi- 
scale color segmentation algorithm, relying on the merging 
of chromatic-achromatic partitions ordered by the saturation 
component. 

1. CHOICE OF A COLOR SPACE 

A recent study [7] has shown that many color spaces (HLS, 
HSV, ... ) having been developed for computer graphic ap- 
plications, are unsuited to image processing. A convenient 
representation must yield distances, or norms, and provide 
independence between chromatic and achromatic compo- 
nents. We adopt here an improved family of HLS sys- 
tems that satisfy these prerequisites, and compare it with 
other spaces, such as Lab. This space is named Im- 
ploved HLS (IHLS). There are three versions of IHW. us- 
ing the norm L I ,  the norm Lz  or the norm m a r  - min. 
The equations of transformation between RGB and the 
new HLS systems are given in [7] [13]. For the sake of 
simplicity, all the examples of the paper were obtained 
according to the equations: L = 0.212R + 0.715G + 
0.072B. S = max(R,G,B) - min(R,G,B),  H'  = 

2. CHOICE OF CONNECTIONS 

Another recent study 1121 proposes a theory where the seg- 
mentation of an image is defined as the maximal partition 
of its space of definition, according to a given criterion. See 

also Serra's paper in this conference [14]. The criterion 
cannot be arbitrary and permits to niaximize the partition 
if and only if the obtained classes are connected compo- 
nents of some connection (connective criterion). Therefore, 
the choice of a connection induces specific segmentation. 
In this paper, four connections are investigated, namely 
flat-zones, quai-flat zones, jump connection and watershed 
connection. 

3. NON-PARAMETRIC PYRAMID OF 
WATERSHEDS 

The watershed transformation, a pathwise connection, is 
one of the most powerful tools for segmenting images. The 
watershed lines associate a catchment basin to each mini- 
mum of the function [ I ]. Typically, the function to flood is a 
gradient function which catches the transitions between the 
regions. Using the watershed on a grey tone image without 
any preparation leads to a strong over-segmentation (large 
number of minima). There are two alternatives in order to 
solve the over-segmentation. The fist one consists in ini- 
tially determining markers for each region of interest: using 
the homotopy modification, the gradient function has as lo- 
cal minima only the region markers. The need of a criterion 
for defining the markers can make diffcult the generalisa- 
tion. The second alternative involves a non-parametric ap- 
proach which is based on merging the catchment basins of 
the watershed image belonging to almost homogenous re- 
gions; this technique known as waterfall algorithm [2] is 
discussed below. Both strategies can he performed in a hi- 
erarchical framework which levels yield different degrees 
of partition of the images structures. The watershed method 
is meaningful only for grey tone images (is based on the 
existence of a total ordering relation in a complete lattice). 
However, it can be easily used for segmenting color images 
by defining a scalar gradient function corresponding to the 
color image. 
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3.1. Color gradients 

The color gradient function at the point x is associated to a 
measure of color disimilarity or distance between the point 
and the set of neighbours at distance one from x : ,  K(x). For 
our purposes, three definitions of gradient have been used, 

Morphological gradient, of(.): This is the standard 
morphological (Beucher algorithm) gradient for grey 
level images (f : E -+ T ,  where E is an Eu- 
clidean or digital space and T is an ordered set of grey- 
levels)[IO],Vf= 6 ~ ( f )  - E K ( ~ ) .  

Circularcentred gradient, V,a(z): If a(.) is afunction 
containing angular values ((I : E -+ C,  where C i s  the 
unit circle), the circular gradient is calculated by the 
expression[6],VCa(t) = V[a(z)+a(y),y E I i (z)]-  
A [ a ( z ) t a ( y ) , y  E K ( z ) ] w b e r e a + d = I  a - a ' I  
iff I a - a' I< 90" and a i a' = 180"- I a - a' I iff 
I a - a' I< 90". 

Euclidean gradient, V ~ f ( z ) :  Very interesting for 
vectorial functions ( f (x)  = (f~(x), ...,f,,( z))), it is 
based on computing the Euclidean distance d E  [9],  
VEf(Z) = V [ ~ E ( ~ , Y ) , Y  E Ji(r)] - A [ d ~ ( z , y ) , y  E 
l i (x)] .  

Let f be a color image, its components in the IHLS color 
space are ( f ~ ,  f ~ ,  fs) and k t  ( f ~ ,  fa, fd be the compo- 
nents for the Lab color space. We define a series of gradi- 
ents for 9: ( I )  Luminance gradient: VLf(z)  = Vf~( . c ) ;  
( 2 )  Hue circular gradient: V H f ( i )  = VJH(Z): ( 3 )  Satu- 
mtion weighing-based color gmdient: Vsf(z) = fs (.) x 
V J H ( I )  +fi(z) x V ~ L  (z) (where f; is the negative of the 
saturation component): (4) Supemum-based color gradi- 
ent: Va"pf(x) = v [ V ~ , ~ ( z ) , f J f ~ ( x ) , V ~ f H ( . ~ ) j ;  (5)Chm- 
matic gradient: Vcf(z) = VF(fa, fb)(z): (6) Perceptual 
gradient: Vpf(z) = V ~ ( { f , , f ~ , f b ) ( ~ ) .  InFigure 1 isde- 
picted a comparative of the gradients of a color image. 

(d) (e) (0 

Fig. 1. Examples of color gradients: (a) VLf ,  (b) VHf ,  (c) 
VSf, (d) V"pf ,  (e) VCf and (0 VPf. 

3.2. Waterfall algorithm for color images 

Let g be a positive and bounded function (0 5 g(r) 5 A t )  
and let W ( g )  be its watershed. An efficient algorithm for 
implementing the waterfalls is based on building a new 
function R: h ( z )  = g(s) iff x E W(g) and h ( z )  = M 
iff 2 E W e ( g )  ( h  is obviously greater than y) and then, 
g is reconstructed by geodesic erosions from h [I], i.e. 
s^ = R*(g ,  h) .  Theminimaoftheresultingfunctionzcorre- 
spond to the significant markers of the original y, moreover, 
the watershed transform of ij produces the catchment basins 
associated with these significant markers. In practice, the 
initial image g is the gradient of the mosaic image in (after 
a watershed transformation, m is obtained by calculating 
the average value of the function in each catchment basin). 
By iterating the procedure described above, a hierarchy of 
segmentations is obtained. Dealing with color images has 
the drawback of the method for obtaining the mosaic color 
image mi of the level i. We propose to calculate the aver- 
age values (associated to the catchment basins) in the RGB 
components, i.e. m = ( n i R ,  mc, ing). The gradient of 
level i + 1 is obtained from mi, i.e. gi+l = Om;. In prac- 
tice, all the presented gradient functions can be applied on 
m. It is possible to consider a contradiction the fact that, for 
the mosaic image, the values are averaged in the RGB color 
components and then, the gradients (and consequently the 
watersheds) are computed using other color components. 
However, this procedure of data merging allows to obtain 
good results and on the other hand, the calculation of the 
mean of angular values (Hue, a, b components) is not trivial. 
The example of Figure 2 illustrates this hierarchical tech- 
nique (using V f ) .  

Level I Level 2 Level 3 Level 4 

Fig. 2. Pyramid of segmentation by waterfall algorithm. 
First row, mosaic images and second row, watershed lines. 

33. Segmentation'mults 

The segmentation results corresponding to the different gra- 
dients are given in Figure 3. Other tests have been per- 
formed on a representative selection of color images and 
the results have been similar. The use of only the hright- 
ness (VL) or only the color (VH and Vc) information pro- 
duces very poor results. We can observe in Figure I that the 
supremum-based color gradient is the most contrasted and 
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obviously achieves to good results of segmentation. The 
perceptual gradient, which has very interesting properties 
for colorimetric measures in perceptually relevant units (91, 
leads to better results for the dark regions. However, the 
best partitions have been obtained with the proposed satu- 
ration weighing-based color gradient. The rationale behind 
this operator is the fact that the chromatic image regions 
correspond to high values of saturation and the achromatic 
regions (grey, black or white) have low values in fs (or high 
values in f'j). According to the expression of Vs, for the 
chromatic regions the priority is given to the transitions of 
OH and for the achromatic regions the contours of VL are 
taken. 

is also possible to use a U for each component), obtain- 
ing a partition for each component, i.e. u [ f ~ ]  + P,,(~L). 
u[fs] + Po(fs), d f ~ ]  3 Pa(frr). In Figure 4(b)-(d) 
are shown the partitions by jump connection. Remark that 
we must fix a color origin for the hue component in order 
to have a totally ordered set which involves some disadvan- 
tages [6].  Remark also that non-significant small regions 
appear in the partitions (over-segmentation). 

(4 (b) (C) (4 

Fig. 4. Examples of segmentation by using a jump connec- 
tionofk = 20on: (a) f = fs x fH + 
fs, ( 4  f H .  

x f ~ , ( b )  fr,.(c) 

(4 (e) (e) 

Fig. 3. Examples of color segmentation (level 4 of pyra- 
mid): (a) VLf, (b) VHf, (c) VSf, (d) VrYFf, (e) VCf and 
(f) VPf. 

4. ORDERED PARTITION MERGING 

Now, we propose the way for applying other connections: 
jumpconnection [l  I],flatzones [31 andquasi-patzones [81, 
to color images. The examples are illustrated with jump 
connection, but the flat or quasi-flat zones can be also used. 
Let U be a connective criterion which segments the function 
f obtaining a partition P, i.e. u[f] 3 P,(f). The connec- 
tive criteria are typically defined for functions f : E --t T 
where T is a totally ordered lattice. As for the watersbed, 
the application to color images involves special consider- 
ations. The simplest way lies in associating a grey level 
image f to the color image f ,  and after segmenting f by 
U ,  the partition is applied to f .  This image f can be ob- 
tained as a linear combination of the color components (lu- 
minance, principal components, etc. have the drawback that 
the RGB components are strongly correlated) or using ohw 
techniques. Following the idea of putting together the hue 
and the brightness, we have initially tested the interest of the 
functionf(-r) = fs(r) x ~ H ( G ) + ~ ; ( G )  x fL(z),however, 
the results were unsatisfactory, Figure 4(a). 

There is another way of doing it. In the IHLS color 
systems, the U is applied to each grey level component (it 

4.1. Region growing in partition lattice 

There are several possible alternatives to reduce the over- 
segmentation (taking a higher IC can lead to lose important 
contours). The segmentation may be refined by the classi- 
cal region gmwing algorithm, based on merging initial re- 
gions according to a similarity measure between them. An 
efficient implementation of the merging process uses a hi- 
erarchical queue and a Region Adjacency Graph structure, 
see [5].  In our approach, the jump connection (or quasi-flat 
zones) partition is considered as the finest partition. For the 
region merging process, each region is defined by the mean 
of grey levels and the merging criterion is the area a of the 
region. Note that the iteration of the area operator is idem- 
potent and moreover it is another connective criterion. 

4.2. Combination of chromatic-achromatic partitions 

Now, the question is how the obtained partitions can be 
combined. As we can see in the examples, the partition 
Po(f~) represents well the chromatic regions, as well as 
Pa (fL) the achromatic ones, We propose the following 
strategy. Starting from the mosaic image associated to 
Po(fs) ,  we can threshold the saturation at US in order to 
obtain a binary key, Xs which classifies all the pixels as 
chromatic or achromatic. Using SS. the chromatic and 
achromatic partitions are again merged by the saturation in- 
formation, i.e. Pc(f) = (Po(fH) A -us) v (Po(fL) A Rs). 
This idea of using a thresholded saturation was introduced 
in [4], where a method is also proposed to obtain the opti- 
mal US. Figure 5 illustrates the technique, showing the final 
segmentation by jump connection and quasi-flat zones, re- 
tined by region merging. The performance of segmentation 
is very good using both approaches. 
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Fig. 5. Jump connection k = 20 + region merging a < 50: 
(a) p,(f~), (b) PAfr r ) ,  (c) F‘,(.~s), ( 4  X S  at US = 45, 
(e) combined partitions P ,  ( f ) ,  (0 segmentation. Quasi-flat 
zones X = 15 + region merging a < 50 + us = 45: (9) 
Po (f), (h) segmentation. 

5. CONCLUSIONS 

We discuss two multiscale algorithms which incorporates 
concepts of mathematical morphology in color image seg- 
mentation. Both approaches involve a color space rep- 
resentation of type “hue-luminance-saturation”, where the 
saturation component plays an important role in order to 
merge the chromatic and the achromatic information dur- 
ing the segmentation procedure. The present methods are 
both good and fast. 
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