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Abstract This paper deals with a morphological approach to calculate tex-
ture gradients and it is shown how to use them for image seg-
mentation according to the texture; and more generally, for joint
colour/texture segmentation (i.e., structural segmentation). The
starting point is a decomposition of the colour image into two com-
ponents: the object layer and the texture layer. A multi-scale local
analysis from the texture layer is built using morphological op-
erators (openings/closings or levelings) to define the gradients of
texture. The proposed texture gradient is then combined with the
colour gradient to produce mixed segmentations by watershed.

Keywords: granulometry, leveling, colour/texture decomposition, colour gra-
dient, texture gradient, watershed transform.

1. Introduction

The classical paradigm of morphological segmentation is the watershed
transformation with imposed markers [14], which is one of the most pow-
erful segmentation techniques. Watershed-based hierarchical approaches
allow addressing fields where markers cannot be easily defined (e.g., natu-
ral images, video-surveillance, etc.). Two main hierarchical techniques can
be distinguished: 1) non-parametric waterfalls algorithm [4], which elim-
inates the contours completely surrounded by stronger contours; and 2)
hierarchies based on extinction values [12, 20], which allow to select the
minima used in the watershed according to different morphological crite-
ria (in particular, the volume, which combines the size and the contrast
of the regions, defines a good criterion to evaluate the visual relevance
of regions). These algorithms are built on a scalar gradient. A colour
gradient must be calculated to apply the watershed on a colour image.
According to our previous works [2], we propose to compute a complete
colour gradient in a luminance/saturation/hue representation, which is rel-
atively robust towards illumination condition variations. More precisely, if

363



Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 363–374.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.05.12.30

f(x) = (fL(x), fS(x), fH(x)) denotes a colour image in the LSH representa-
tion, its colour gradient is given by:

%col(f)(x) = (1− fS(x))× %(fL)(x) + fS(x)× %◦(fH)(x) + %(fS)(x),

where %(g)(x) is the morphological gradient of a scalar function g(x) (in
this case, the luminance fL(x) and the saturation fS(x)) and %◦(a)(x) is
the circular centered gradient of an angular function a(x) (in this case, the
hue component fH(x)).

f , mrks bf

%col(bf) Wshed(%col, mrks)

Figure 1. Example of colour segmentation by markers-based watershed.

In the traditional way to segment an image by watershed transformation,
the colour image is previously filtered by means of a connected operator,
typically a leveling [13], λ(m, f) (f is the reference image and m(f) is the
marker image, which is a rough simplification of the reference image), which
simplifies textures and eliminates small details, but preserving the contours
of remaining objects. For colour images, a marginal leveling can be applied
for each component R, G, B or a total colour leveling can be calculated [1].
In any case, the leveling needs an image marker which determines the struc-
tures to be preserved, i.e.,

f̂ = λ(ASFnB(f), f),

where ASFnB is an alternate sequential filter of size n and B is an isotropic
structuring element (other filters such as the Gaussian filters can be used to
build the marker). Then, the watershed is calculated on the colour gradient
of f̂ . The example of Figure 1 illustrates the segmentation with a marker
for each object of interest (each zebra and an additional marker for the
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background). As we can observe, the colour information does not make
possible to extract correctly the object contours.

Indeed, the texture is in certain images a very discriminating information
for object separation. However, to introduce texture into the segmentation
is not so simple as for the colour: texture is a regional notion which is
difficult to quantify. In [6], Hill et al. proposed a method to build a tex-
ture gradient starting from a wavelet transformation, which is then used
with the watershed to segment grey-level images. The combined use of
colour and texture is the topic of a certain number of recent works. Ma and
Manjunath [8] introduced the interest of Gabor filters for texture image seg-
mentation. Vanhamel et al. introduced in [21] a marginal approach to apply
Gabor filters to each component of a colour image and thus to construct a
colour/texture feature space for segmentation. In a similar way, Hoang et
al. [7] used Gabor filters to measure colour/texture and the segmentation
is obtained by k-means. The works by Malik et al. [10] are also based on
banks of Gaussian filters to calculate a texture gradient which is then com-
bined with luminance and colour gradients in a supervised learning frame-
work. Sofou et al. [18] introduced a joint intensity/texture segmentation
by a PDE-based watershed, where texture is measured by a demodulation
filter bank. This last work starts from an image decomposition according to
the model f = u + v by Y. Meyer [15], where u is the “cartoon component”
(homogeneous zones of the objects) and v is the “texture oscillation”. This
model was initially studied within the framework of a variational approach
by Vese and Osher [22]. More recent works, for example Patwardhan and
Sapiro [16] and Aujol et al. [3], explore fast variational algorithms for the
calculation of the images u and v. Sofou et al. proposed to obtain the tex-
ture component as the residue of a leveling, i.e., v = f − u = f − λ(m, f)
(the marker m is a Gaussian filter of f).

In this paper, we focus on a similar framework to that of Sofou et al. [18],
but less expensive in computational terms. Our starting point is also a
colour image decomposition of f into two components:

f , f̂ ] ftex,

where f̂ is the object layer and ftex is the texture layer. The texture layer is
obtained as the residue of the components of luminance, i.e., ftex = fL− f̂L,
because the texture variations are mainly associated to the luminance.

2. Granulometries and morphological multi-scale
analysis

A granulometry is the study of the size distribution of the objects of an
image [11,17]. Formally, for the discrete case, a granulometry is a family of
openings Γ = (γn)n≥0 that depends on a positive parameter n (which ex-
presses a size factor) such as: 1) γ0(f) = f ; 2) f ≤ g ⇒ γn(f) ≤ γn(g),∀n ≥
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0, ∀f, g; 3) γn(f) ≤ f,∀n ≥ 0, ∀f ; 4) and γn verifies the semi-group ab-
sorption law; i.e., ∀n, m ≥ 0, γnγm = γmγn = γmax(n,m). Moreover, a
granulometry by closings (or anti-granulometry) can be defined as a family
of increasing closings Φ = (ϕn)n≥0. In practice, the most useful granu-
lometry and anti-granulometry are those associated to morphological open-
ings/closings: γn(f) = δnB(εnB(f)) and ϕn(f) = εnB(δnB(f)) respectively,
where B is a structuring element of unit size (typically a disc or a segment
of straight line) and n = 1, 2, · · · . The greedy algorithms for granulometries
involve consequently openings (closings) of increasing size, and thus they are
relatively expensive. However, optimised fast algorithms for granulometry
computation have been developed by Vincent [23].

ftex PSW (ftex, 2) PSW (ftex, 4)

PSW (ftex, 6) PSW (ftex, 8) %Γ
tex(ftex)

Figure 2. Texture layer, local granulometry (window Wx = 10× 10) by isotropic
openings, morphological texture gradient.

The granulometric analysis of an image f with respect to Γ consists in
evaluating each opening of size n with a measurement: M(γn(f)) (where
M is the integral of scalar function values). The granulometric curve, or
pattern spectrum [9], of f with respect to Γ and Φ, PSΓ,Φ(f, n) or PS(f, n),
is defined by the following normalised mapping:

PS(f, n) = 1
M(f)

{
M(γn(f))−M(γn+1(f)), for n ≥ 0,
M(ϕ|n|(f))−M(ϕ|n|−1(f)), for n ≤ −1.

The value of pattern spectrum PS(f, n) for each size n corresponds to
a measurement of bright structures of size n (similarly, the dark structures
are obtained by closings). The pattern spectrum PS(f, n) is a probability
density function (i.e., a histogram): a peak or mode in PS at a given scale
n indicates the presence of many image structures of this scale or size.
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Granulometric size distributions can be used as descriptors for texture
classification. However, the texture descriptor PS(f, n) is global to the im-
age f , and if f contains more than one texture, the classification should
be carried out at pixel level. This is the concept behind the granulometric
local analysis [5], which consists in calculating a local pattern spectrum,
or more precisely a pattern spectrum in a window Wx = sizeh × sizev

(sizeh is the horizontal size in pixels and sizev the vertical one) centered
at pixel x. The local pattern spectrum PSWx(f, n), or simply PSW (f, n),
is obtained by computing the function PS(fWx

, n) for each pixel x, where
fWx is the restriction of the image f to the window Wx. This method
is very expensive from a computational viewpoint. A faster approach to
obtain PSW (f, n) is based on the computation of only one series of open-
ings/closings and then, for each pixel x, to calculate locally the integral in
Wx, i.e., MWx(g) =

∑
y∈Wx

g(y). As result of this computation, a granu-
lometric curve is obtained for each pixel. This local texture descriptor can
be used to classify the various zones of texture in an image [5].

In our case, this local granulometric analysis must be done on the texture
layer ftex and the series of images which code this analysis is denoted by
{tΓΦ

k (x)}k∈K = tΓΦ(x), where

tΓΦ
k (x) = PSWx(ftex, k).

The function tΓΦ
k (x) is named the image of local energy of size k (k ≥ 0

for the bright structures and k ≤ −1 for the dark structures). In Figure 2
the texture layer for the image of zebras is shown, as well as the images
of local energy associated to the local granulometry by isotropic openings
(window Wx = 10 × 10 and K = {−16,−14, · · · ,−2, 2, 4, · · · , 16}). It is
observed that the structures of ftex have high values of local energy for
their corresponding sizes. In the example, only four images tΓk (x) are shown
(bright structures); a dual analysis tΦk (x) provides the local energies for the
different scales of dark structures. The choice of the size of the window
depends on the “texture scales”. However, its influence is limited: for all the
examples of natural images presented in this study the choice Wx = 10×10
showed to be appropriate. In Figure 3 another example of colour/texture
decomposition is given, including also two images of local energy. Obviously
we can use other non isotropic structuring elements B in order to describe,
for example, orientated textures.

In mathematical morphology, we can build other multi-scale analysis
using other operators different from openings/closings. Let ASFn(f) =
ϕnγn · · · ϕ2γ2 ϕ1γ1(f) be the alternate sequential filter of size n (we can
define another family of filters by reversing the order of the opening/closing).
The family Ξ = (ASFn)n≥0 verifies the semi-group law of absorption and
consequently, it allows to define multi-scale simplification (or selection, by
considering the residues) of the structures of ftex. In addition, if each scale
is associated to a leveling, the new family of transformations, Λ = (λn)n≥0
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f bf ftex

PSW (ftex, 2) PSW (ftex, 4) %Γ
tex(ftex)

Figure 3. Colour/texture decomposition, two images of local energy, morphologi-
cal texture gradient.

such that λn(f) = λ(ASFn(f), f), provides a decomposition of the recon-
structed objects according to each scale n. It should be noted that using
the levelings, both bright/dark objects of size n appear in the same image.

This leveling-based quantitative analysis of the objects associated to
each size n makes it possible to define a pseudo-granulometric curve, named
Λ-pattern spectrum, which is defined as follows:

ΛPS(f, n) = M(λn(f))−M(λn−1(f)),

for n ≥ 0. As for the granulometry, a local version of ΛPS(f, n) is defined
by computing the measure in a window W centered in each pixel. The
associated series of images of local energy, i.e.,

tΛk (x) = ΛPSWx(ftex, k),

gives an alternative multi-scale representation (typically k ∈ K = {2, 4,
· · · , 16}). It must be remarked that for tΓΦ

k and tΛk the maximal size k

is limited by the size of leveling used to build f̂ , e.g., the maximal size of
structures in ftex. Other morphological multi-scale decompositions could
be used in order to define other texture descriptors: operators associated
with dynamics, area, volume, etc. [19,20].

3. Morphological gradients of texture

We consider now the alternatives to calculate a gradient, associated to the
multi-scale analysis, which allows determining the contours for the zones of
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different textures.
In each point x, the morphological gradient %(x) of unit size B(x) of an

image g can be written in terms of increments, i.e., %(g)(x) = δB(g)(x) −
εB(g)(x) = ∨[g(x) − g(y), y ∈ B(x)]. Using this formulation, it is possible
to use an Euclidean distance to define a gradient of morphological type for
the series of images of local energy, i.e.,

%tex(ftex)(x) = ∨y[dE(t(x), t(y)), y ∈ B(x)],

where dE(t(x), t(y)) =
√∑

k∈K(tk(x)− tk(y))2 is the Euclidean distance
between the two pixels x and y for all the images of local energy.

Besides this vectorial gradient, it is also possible to define another kind of
gradient, by combining the gradients of each scalar image of energy. Various
tests showed that the gradient by supremum, i.e.,

%tex(ftex)(x) =
∨

k∈K

[%(tk(x))],

is as useful for the segmentation as the vectorial gradient defined by Eu-
clidean distance, and easier to compute. Figure 2 gives also the morpholog-
ical gradient %Γ

tex(ftex) calculated according to the sup of scalar gradients.
For the example of Figure 3, the gradient has been computed using the
vectorial formulation.

%ΓΦ
tex(ftex) %I−α=1

str−ΓΦ %II−α=0.8
str−ΓΦ

%II−α=0.2
str−ΓΦ %Λ

tex(ftex) %I−α=1
str−Λ

Figure 4. Examples of markers-based watershed segmentation with texture gra-
dients and structural gradients (colour+texture), i.e., Wshed(%, mrks).

These texture gradients, derived from the images of local energy {tΓΦ
k (x)}

and {tΛk (x)}, respectively %ΓΦ
tex(x) and %Λ

tex(x), can be used with the water-
shed to segment the image into regions according to the texture. See the
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two corresponding results in Figure 4, to be compared with the colour seg-
mentation of Figure 1. As we can observe, both texture gradients segment
correctly the region of each zebra (which are certainly defined by their tex-
ture), such as we wanted. However, we can also note that the contours of the
obtained regions are not very precise. Indeed, the segmentation according
to a texture gradient gives rough regions.

4. Structural gradient for watershed-based joint
colour/texture segmentation

The approach to produce a structural segmentation consists in constructing
a joint gradient of colour and texture. Once both a colour gradient and a
texture gradient are available, it seems obvious that we can combine them
to obtain the called structural gradient. Among the different alternatives
for the combination of gradients, we retained two of them which appear
particularly simple to implement and sufficiently flexible to evaluate the
influence of a gradient with respect to the other. In fact, it deals, on the one
hand, with the sum of the colour gradient and a weighted texture gradient
(to control the influence of the second one); and on the other hand, with a
barycentric linear combination of both gradients. In mathematical terms,
we have:

%I−α
str (f)(x) = %col(f̂)(x) + α%tex(ftex)(x),

%II−α
str (f)(x) = (1− α)%col(f̂)(x) + α%tex(ftex)(x),

where 0 ≤ α ≤ 1. For both cases, %col(x) and %tex(x) correspond to the defi-
nitions previously introduced in the paper. It is obvious that both structural
gradients are essentially equivalent; moreover, permitting α > 1, identical
linear combinations could be obtained. However, as remarked above, the
aim of %I−α

str (f)(x) is to incorporate the information of texture gradient as
a secondary term with respect to the colour, whereas the barycentric for-
mulation %II−α

str (f)(x) defines a trade-off between texture/colour gradients.
In addition, the inherent normalisation of equation %II−α

str (f)(x) preserves
the dynamic range of the final gradient image, which could be necessary for
watershed computation. We could also consider that the weighting values
are not constant for all the image points; or in other words, to define for
instance %II−α

str (f)(x) = (1−α(x))%col(f̂)(x)+ α(x)%tex(ftex)(x) , where α(x)
is the local weighting function. The appropriate computation of α(x) is out
of the scope of this paper.

Figure 4 shows a comparison of segmentation by watershed on the image
of zebras according to various structural gradients. We observe that for the
texture analysis based on openings/closings as well as for that based on
levelings, the balanced structural gradient, i.e., %I−α=1

str−ΓΦ(f) and %I−α=1
str−Λ (f)

respectively, improves the segmentations compared to the colour gradient
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%col(f̂). In addition, for this example, we observe also that the best result
corresponds to %II−α=0.8

str−ΓΦ (f); (texture here is more appropriate than the
colour). Moreover, the fact of combining the texture gradient with the
colour gradient leads to more precise contours.

To complement the results of our study, we tested the structural gra-
dients on a series of natural colour images and we evaluated the colour
segmentation vs. the structural segmentation by watershed. Figure 5 shows
four representative images: Examples 1–3 correspond to the segmentation
by marker-based watershed (a marker for the object of interest and a marker
for the background) and Examples 4–6 correspond to the volume-based seg-
mentation into 50 regions. For each image the segmentation according to
the colour gradient and the structural segmentation according to a balanced
colour+texture for the two families of texture descriptors that we studied
in the paper (%I−α=1

str−ΓΦ and %I−α=1
str−Λ ) are given. Due to the fact that it is dif-

ficult to know a priori for an image if it is the colour or the texture which
constitutes the most relevant information for the segmentation, we think
that the most judicious choice is a balanced combination of this type.

We note that for the example of the butterfly, the structural segmenta-
tion is always more coherent than that of the colour. With %I−α=1

str−ΓΦ, only
a part of the wings is obtained (which have same colour-texture) and with
%I−α=1

str−Λ the two colour-textures of the wings are taken into account, pro-
ducing a perfect segmentation. A similar analysis can be made for the
segmentation of the image 2 (a marker following the people and another
for the background). In this case, the “texture” corresponds to the head
and clothes details of the people. The image of the tiger is a good coun-
terexample which shows that if the texture between the object of interest
and the background is very similar, the fact of using a structural gradient
will probably introduce a biased segmentation (an intermediate result is ob-
tained using the barycentric linear combination with a greater weight for
the colour gradient than for the texture gradient).

For the segmentation of complex images into 50 regions which contain
well contrasted coloured objects as well as large areas with or without tex-
ture. We see that the structural gradient makes it possible to improve the
well-known problem of the volume-based watershed which over-segments
the large and homogeneous areas (e.g., sky in Image 4). In addition, certain
objects of small size are better segmented with the structural gradients. The
contribution of texture allows finding the contours of certain texture zones
which are not determined by the colour, as can be observed on Images 5
and 6.

Finally, it is difficult to affirm generally, and without more exhaustive
and systematic tests in a large database, if the partitions for %I−α=1

str−ΓΦ are
more relevant than those for %I−α=1

str−Λ . We observe from the examples that
in random textures (e.g., tiger or bear fur, natural textures of Image 6) the
segmentation associated to an openning/closing granulometry, %I−α=1

str−ΓΦ, is
more satisfactory. In other examples, where the notion of texture is more
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related to certain significant structures (e.g., the image of the butterfly), the
gradient %I−α=1

str−Λ from the pseudo-granulometry of connected filters seems
to be more appropriate.

1

2

3

4

5

6

%col(bf) %I−α=1
str−ΓΦ %I−α=1

str−Λ

Figure 5. Watershed-based colour segmentation versus structural segmentation.
Examples 1–3, markers for objects; Examples 4–6, selection of 50 volumic regions.

372



Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 363–374.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.05.12.30

5. Conclusions and perspectives

This paper presented a morphological approach to calculate texture gradi-
ents and it showed how to use them for image segmentation according to
the texture; and more generally, for joint colour/texture segmentation (i.e.,
structural segmentation). We illustrated that these gradients are directly
usable for morphological segmentation by watershed and that the partitions
obtained with structural gradients are, in most of cases, more relevant than
those obtained only with colour gradients. In particular, we showed that
the areas of texture are better determined and that the over-segmentation
of large and homogeneous zones is reduced.

At present, we are interested in the definition of colour-texture decompo-
sitions, without limiting the texture layer to the luminance information. Our
purpose is to evaluate the interest of residues of colour openings/levelings
(for instance, colour operators defined by means of total orderings in the
luminance/ saturation/ hue representation). In addition, we are working on
an automatic and local combination of the gradients of colour and texture
such that this coupling of information should be adapted to the local image
characteristics (i.e., computation of function α(x)).
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