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Abstract This paper introduces a watershed-based stochastic segmentation
methodology. The approach is based on using M realizations of
N random markers to build a probability density function (pdf) of
contours which is then segmented by volumic watershed for defin-
ing the R most significant regions. It improves the standard water-
shed algorithms when the aim is to segment complex images into
a few regions. Three variants of the random germs framework are
discussed, according to the algorithm used to build the pdf: 1)
uniform random germs on the same gradient, 2) regionalised ran-
dom germs on the same gradient, and 3) uniform random germs on
levelled-based gradient. The last algorithm is more complex but it
yields the best results.
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1. Introduction

Watershed transformation is one of the most powerful tools for image seg-
mentation. Starting from a gradient, the classical paradigm of watershed
segmentation consists in determining markers for each region of interest.
The markers avoid the over-segmentation (a region is associated to each
minimum of the function) and moreover, the watershed is relatively robust
to marker position [2]. The markers-based watershed is appropriate for
interactive segmentation. Several watershed-based hierarchical approaches
allow addressing fields where the markers cannot be easily defined (e.g.,
multimedia applications). Mainly, two hierarchical techniques can be dis-
tinguished: 1) non-parametric waterfalls algorithm [3] and 2) hierarchies
based on extinction values, which allows to select the minima used in the
watershed according to morphological criteria (dynamics, surface area and
volume) [10,15].

The volume-based hierarchical segmentation is particularly useful in
many applications aiming at segmenting natural images since the volume,
which combines the criteria of dynamics and area, selects the most signif-
icant regions from a visual viewpoint. However, the performance of the
approach decreases drastically when the image is segmented in very few re-
gions, which is just the goal of several applications (e.g., segmentation-based
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image indexing). Figure 1 gives four colour images segmented by volumic
watershed into R = 10, 20 and 50 regions and we can observe that many
important regions are not well determined (even when R = 50). The classi-
cal solution involves to filter out the image in order to simplify the details
and to enhance the main regions (typically using morphological filters such
as levelings [11]).

Figure 1. Examples of colour images segmented by means of volumic water-
shed into the R most significant regions. First column, original images f ; second
column, colour gradient %LS+H(f); third column, sgR−vol(%LS+H(f), 10); fourth
column sgR−vol(%LS+H(f), 20), and last column sgR−vol(%LS+H(f), 50).

In fact, the problem lies in the deterministic criterion of volume, com-
puted for each minimum of the function to flood, which depends on the
local image information; and nevertheless, the final flooding watershed is
a competition between the different minima to determine the optimal par-
tition (in fact, it is the solution of shortest path problem when the path
cost is given by the maximum of the arc weights in the path [10]). The aim
of this paper is to introduce a watershed-based probabilistic framework to
detect the contours which are robust with respect to variations in the seg-
mentation conditions. More precisely, we explore here a stochastic approach
based on using random markers to build a probability density function of
contours which is then segmented by volumic watershed for defining the
most significant regions. Keeping in mind that the goal is the unsupervised
segmentation of natural images in very few regions.
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The probabilistic segmentation has been already studied in the litera-
ture, for instance using cooccurrence probability on graphs [5], Bayesian
framework [16], Markov Random Fields [7] (combined with watershed seg-
mentation [8]), Markov Chain Monte Carlo [14]. But to our knowledge,
this is first study of probabilistic segmentation based on random markers
simulations for watershed transformation. The closest previous work to our
study is [13], where the sum of watersheds from a series of polarimetric
images was used to define a final distribution of contours.

2. Basic notions and operators

Watershed segmentation. The function used in the watershed trans-
formation is the image gradient. In this paper, the aim is to segment
colour images and hence, according to our previous works [1], we propose
to compute a colour gradient in a luminance/saturation/hue (LSH) repre-
sentation, presenting better performances that other colour gradients. But
any other colour gradient can be also used, including for instance marginal
gradients in RGB. Let f(x) = (fL(x), fS(x), fH(x)) be a colour image in
the LSH representation, the colour gradient is given by %LS+H(f(x)) =
fS(x) × %◦(fH(x)) + (1 − fS(x)) × %(fL(x)) + %(fS(x)), where %(g(x)) is
the morphological gradient of the scalar function g(x) and %◦(a(x)) is the
circular centred gradient of the angular function a(x).

Two watershed algorithms are used in this study. Let mrk(x) be the
image of markers, the binary image of segmentation contours associated to
these markers, and according the colour gradient %LS+H(f(x)), is denoted
by sgmrk(%LS+H(x)). Using the same gradient, the volumic-based segmen-
tation into R regions is named sgR−vol(%LS+H(x)).

Leveling. The leveling λ(mrk, f) of a reference function f and a marker
function mrk (f(x) and mrk(x) are two grey level images) can be computed
by means of an iterative algorithm with geodesic dilations/erosions [11].
Several extensions to colour images have been proposed for levelings. We
propose for this study to apply a marginal approach in RGB, which consists
in computing a separated leveling for each red/green/blue colour compo-
nent, i.e. the colour leveling of image f(x) = (fR(x), fG(x), fB(x)) accord-
ing to the markers mrk(x) is the colour image λ(f ,mrk) = (λ(mrk, fR),
λ(mrk, fG), λ(mrk, fG)). The marginal approach introduces false colour
but this is not critical for segmentation purposes.

Generation of random germs. The paradigm of watershed segmen-
tation lays on the appropriate choice of markers, which are the seeds to
generate basins of attraction [2, 3]. It is claimed, and known from practice,
that the most intelligent part of this technique of segmentation resides in the
development of criteria used to select the required markers. In the present
approach, we follow an opposite direction, by selecting random germs for
markers. This arbitrary choice will be balanced by the use of a given number
M of realizations, in order to filter out non significant fluctuations.
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A rather natural way to introduce random germs [9] is to generate real-
izations of a Poisson point process with a constant intensity (namely average
number of points per unit area) θ. It is well known that the random number
of points N falling in a domain D with area |D| follows a Poisson distri-
bution with parameter θ |D|. In addition, conditionally to the fact that
N = n, the n points are independently and uniformly distributed over D.
In what follows, we will fix the value N of the number of random germs
(instead of using a random number as for the Poisson point process), and
we will generate independent realizations of the location of the germs in D.
In some cases, as will be illustrated below, it may be interesting to gener-
ate a non-uniform distribution of germs, with a regionalised intensity (or
measure) θ(x). In the Poisson case, N follows a Poisson distribution with
parameter θ(D), and conditionally to the fact that N = n, the n points
are independently distributed over D with the probability density function
θ(x)/θ(D). In what follows, the intensity θ(x) will be generated from the
image, and we will use a fixed number of germs N , as for the homogeneous
case.

Parzen method to calculate a pdf. The kernel density estimation,
or Parzen window method [6], is a way of estimating the probability den-
sity function (pdf) of a random variable. Let x1,x2, · · · , xM ∈ Rn be M
samples of a random variable, the kernel density approximation of its pdf is:
f̂h(x) = 1

Nh

∑N
i=1 K(x−xi

h ), where K(x) is some kernel and the bandwidth
h a smoothing parameter. Usually, K(x) is taken to be a Gaussian function
with mean zero and variance σ2, which determines the smoothing effect.

3. Uniform random germs segmentation

Let {mrki(x)}M
i=1 be a series of M realizations of N uniform random mark-

ers. Each one of these binary images of points is considered as the markers
for a watershed segmentation of colour gradient sgmrk(%LS+H(x)) and con-
sequently, a series of segmentations is obtained, i.e., {sgmrk

i (x)}M
i=1, see

Figure 2. Note that the number of points determines the number of re-
gions obtained (i.e., essential property of watershed transformation). As we
can observe from the example, the main contours appear regardless of the
position of germs.

Starting from the M realizations of contours, the probability density
function of contours is computed by Parzen window method. The smoothing
effect of the Gaussian kernel (typically σ = 3) is important to obtain a
function where closed contours (e.g., in textured regions or associated to
small regions) are added together. The pdf(x) could be thresholded in
order to obtain the most prominent contours, however the result are only
pieces of contours (not enclosing regions). In addition, we have studied the
histograms for several examples and there is not an optimal threshold to
separate the classes of contours.
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i = 1 i = 2 · · · i = M

· · ·

· · ·

N = 10, M = 50

pdf(x)

Figure 2. Left, M realizations of N uniform random germs, mrki(x), and corre-

sponding marker-based watershed contours, sgmrk
i (x). Right, probability density

function of contours computed by Parzen window method for N = 10 and M = 50.

The main drawback of using a uniform distribution of the random mark-
ers is to induce an over-segmentation of the largest watersheds, since the
average number of germs falling in a given region is proportional to its area.
This is avoided by means of a volume-watershed segmentation, or by using
a regionalised intensity of germs, as illustrated later. We propose to par-
tition the pdf(x) of contours with the volume-based watershed to obtain
the R most significant regions, i.e., sgR−vol(pdf(x), R). Each catchment
basin (each minima) of pdf(x) corresponds to one the regions of the sum (or
union) of the different sgmrk

i (x) and the integral of each catchment basin
corresponds to the probability to be region of the segmentation. Conse-
quently, the volumic watershed of pdf(x) yields the regions according to
their probabilities. In Figure 3 is given a comparison of segmentation into
R = 10, 20 and 50 regions for two different pdf(x). The results should be
compared with those associated to sgR−vol(%LS+H(x), R) (see Figure 1). A
property of the Gaussian filter, observed from the examples, is the regular-
isation of pdf(x) which involves relatively rounded watershed contours.

3.1 Influence of parameters N and M

From the examples of Figure 1 and other similar results, we state that the
method hardly depends on the number of realizations M , which is a good
characteristic to guarantee its robustness. In practice, we have verified that
the pdf(x) converges to a stable distribution of contours even for low values
of M (20 or 50). We propose in any case, to take a higher value, typically
M = 100 or 200 in order to obtain more regular contours.

The random points explore uniformly the image space and the choice
of N is important to fix the degree of stochastic sampling (note that the
probability depends on the ratio between N and the image size or number of
pixels). Moreover, if the value of N is low, a segmentation into large regions
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N = 50, M = 100

pdf(x) R = 10 R = 20 R = 50

N = 100, M = 200

pdf(x) R = 10 R = 20 R = 50

Figure 3. Left, probability density function of contours, pdf(x) for N unifom germs
and M realizations. Right, volumic watershed-based segmentation of pdf(x) into
the R most significant regions, sgR−vol(pdf), R).

is privileged; instead of a high value of N will produce smaller regions. If N
is too high, the over-segmentation of sgmrk

i leads to a very smooth pdf(x),
which loss its property for selecting the R contours. In fact, we can conclude
that the uniform germs segmentation is mainly depending on parameter N
which is related to R (number of regions to be determined) and it is logical
to take N > R. But again, the method is quite robust to the choice of N :
from the examples of images of size 256× 256 to be segmented into R = 10,
20 or 50 the choice of N = 50 or 100 produces exactly the same results.

λ = 0 λ = 0, 33 λ = 0, 50 λ = 0, 66 λ = 1

Figure 4. First row, probabilistic gradient ρ(x) (i.e., linear combination of colour
gradient and pdf) for different values of λ and second row, associated volumic
watershed-based segmentation into R = 20 regions.
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3.2 Probabilistic gradient

The function pdf(x) can be combined with the initial gradient in order
to reinforce the gradient contours which have a high probability: ρ(x) =
ω1%

LS+H(f(x)) + ω2pdf(x), considering a typical barycentric combination
(both functions defined in [0, 1]), i.e., ω1 = (1 − λ) and ω2 = λ.

We have studied the behaviour of ρ(x) for volumic segmentation, i.e.,
sgR−vol(ρ(x)), with respect to the value of control λ (note that for λ = 0
the gradient is obtained and for λ = 1, exclusively the probability density
function of contours). In Figure 4 is shown an example of segmentation
into 20 regions for different λ. It is observed that, even for low values of
λ, the results of segmentation are notably improved. This is coherent with
the fact that the pdf(x), derived from the gradient, contains all the useful
information for the segmentation. In any case, we have confirmed on the
basis of many other examples that when λ = 0, 5 (averaged combination)
the results are in general more satisfactory.

4. Regionalised random germs segmentation

In the previous algorithm, the random germs are uniformly distributed in
the image domain. We have also studied how a regionalised distribution of
germs could be used to build the distribution of contours. The first question
to deal with is the choice of the regionalisation function θ(x).

i = 1 i = 2 · · · i = M

· · ·

· · ·

θ = %LS+H (x),

M = 50

pdfθ(x)

sgR−vol(pdfθ, 20)(x)

Figure 5. Left, M realizations of regionalised random germs (the function of

regionalisation is the colour gradient θ = %LS+H), mrki(x), and corresponding

marker-based watershed contours, sgmrkθ

i (x). Right, probability density function
of contours computed by Parzen window method for M = 50, and segmentation
of pdfθ(x) into R = 20 volumic regions.
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Several alternatives are possible. We can for instance use the component
of luminance θ(x) = fL(x) (respectively, the negative of luminance θ(x) =
fc

L(x)), in such a way that the bright regions (respectively, the dark regions)
will produce random germs. It is evident that this kind of regionalisation
is not very useful for segmentation. It seems more natural to work on the
colour gradient, θ(x) = %LS+H(x). In this case, the germs of mrkθ

i (x) are
located around the zones of high gradient value, that is the zones closed to
the contours. Once the series of M contours sgmrkθ

i (x) is computed, the
corresponding probability density of contours pdfθ(x) is obtained by the
Parzen window method. As previously, this function is finally segmented
by volume-based watershed, see the example of Figure 5. The regionalised
segmentation depends on the properties of dynamics of colour gradient.
Moreover, the different random point realizations using the same θ(x) are
quite similar and consequently, the realizations of contours too. By this
regionalised sampling, another characteristic of the obtained pdfθ(x) is that
the distribution is very similar to the gradient, but where all the contours
are enhanced. The final results of segmentation for sgR−vol(pdfθ, R) are in
any case better than for sgR−vol(%LS+H , R). We have also evaluated the
interest of θ(x) equal to the negative of the gradient (i.e., locating germs in
low gradient zones); however in this case too many germs are introduced in
each realization and the over-segmentation involves useless pdf’s.

5. Uniform random germs leveling and segmentation

The morphological connected filters suppress details but preserve the con-
tours of the remaining objects. Levelings are a subclass of symmetric con-
nected operators which are very useful to simplify an image before segmen-
tation by watershed transformation [11]. In fact, the image marker for the
leveling is a rough simplification of original image. Pushing our approach
to the limit, the rationale behind the last variant of the proposed stochastic
segmentation is based on using the random germs as markers before for the
leveling, in order to obtain a very simplified gradient on which is computed
the watershed with the same markers.

The steps of this algorithm are summarised as follows (see Figure 6).

• To throw the M realizations of N uniform random germs:
{mrki(x)}M

i=1.

• To compute the leveling for the colour image associated to each image
of germs: levi(x) = λ(f ,mrki).

• To calculate the series of colour gradients associated to the leveled
colour image: %i(x) = %LS+H

i (levi).

• Each colour gradient %i is segmented with the markers mrki:
sglev−mrk

i (x) = sgmrki(%i).
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i = 1 i = 2 · · · i = M

· · ·

· · ·

· · ·

· · ·

N = 10, M = 50

pdflev(x)

sgR−vol(pdflev, 10)(x)

Figure 6. Left, M realizations of N uniform random germs, mrki(x), marginal
colour levelings using the random germs as markers, levi(x), associated colour gra-
dients, %i(x) and corresponding marker-based watershed contours, sglev−mrk

i (x).
Right, probability density function of contours computed by Parzen window
method for N = 10 and M = 50, and segmentation of pdf lev(x) into R = 10
volumic regions.

• To obtain the probability density function of contours: pdf lev(x) =
1
M

∑M
i=1 sglev−mrk

i ∗ Gσ.

• Let %̂(x) = 1
M

∑M
i=1 %i(x) be the averaged colour gradient for the

M realizations, to compute the leveling-based probabilistic gradient
which is defined as follows: ρlev(x) = (1 − λ)%̂(x) + λpdf lev(x) (typ.
λ = 0.5).

• To segment by volumic watershed into R regions the function of con-
tours sgR−vol(pdf(x)) (or the probabilistic gradient sgR−vol(ρlev(x))).

Figure 7 shows a final comparison with examples of colour images seg-
mented by volumic watershed (R = 10, 20 and 50) on probabilistic gra-
dient ρ(x) and on leveling-based probabilistic gradient ρlev(x) (both with
λ = 0.5). These results should be compared with those of Figure 1. It
is evident that the stochastic algorithms proposed in this study yields to
better segmentations than the standard watershed. It is observed also that
the last method including levelings results in very good image partitions.
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f(x)
N = 100 R = 10 R = 20 R = 50

M = 200

pdf(x)

pdf lev(x)

pdf(x)

pdf lev(x)

pdf(x)

pdf lev(x)

Figure 7. Examples of colour images segmented by means of volumic watershed
into the R most significant regions (R = 10, 20 and 50) on probabilistic gradients
ρ(x) and ρlev(x) (both with λ = 0.5) and derived from pdf(x) and pdf lev(x)
respectively (both for N = 100 and M = 200).

274



Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 265–276.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.05.12.37

6. Implementation issues

The M realizations of uniform/regionalised random germs contours are ob-
tained from the same function (i.e., colour gradient) using different markers.
Consequently, working on the neighbourhood graph of catchment basins and
its minimum spanning tree (MST) [12], the N random markers can be con-
sidered as N random nodes of the MST instead of N image points. Two
main advantages are associated to the graph implementation: firstly, a fast
computation of M segmentations from different markers on the same MST;
and secondly, the control of watershed bias which could be associated to the
random positions of markers [4].

The algorithm using the uniform random germs as markers, first for the
levelling and then for the watershed has an upper computational load (time
of computation). Moreover, in each realization, the gradient is different (i.e.,
a different graph) and therefore the MST cannot be reused. In any case,
nowadays using the fast implementations of watershed algorithms (100 ms
for a 256 × 256 images running on a current standard Laptop), the time of
execution to segment a colour image according our stochastic framework is
around 10 s.

7. Discussion and conclusions

We have introduced in this paper a new morphological stochastic segmen-
tation approach which improves the standard watershed algorithms when
the aim is to segment complex images into a few regions. The improve-
ment in the segmentation is less important for images presenting specific
objects on a homogenous background. We have illustrated three variants of
the random germs framework, according to the algorithm used to build the
probability density of contours: uniform random germs on the same gradi-
ent, regionalised random germs on the same gradient and uniform random
germs on levelled-based gradient. The last algorithm is more complex but
it yields the best results.

In ongoing research, we consider to explore other variants using evolved
random point simulations (structural grids, conditional models, etc.), work-
ing on a multi-scale framework (image pyramids and image decompositions).
We are also working on probabilistic approaches combining colour gradients
and texture information. In the last case, probabilistic rules of aggrega-
tion in the construction of the watersheds from the random seeds would
introduce a second level of randomness in the segmentation process.

From a fundamental viewpoint, the idea behind our approach is that
there are two types of contours associated to the watershed of a gradient:
1st order contours, which correspond to “significant” regions and which are
relatively independent from markers; and 2nd order contours, associated to
“small”, “low contrasted”or“textured”regions and which depend strongly on
the place of markers. Our probabilistic framework aims at enhancing the 1st
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order contours from a sampling effect, to improve the result of watershed. It
should be interesting to study if it is possible to determine by deterministic
methods the type of each contour present in an image.
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