
Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 437–448.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.10.10.19

1D Component tree in linear time and

space and its application to gray-level

image multithresholding

David Menotti1, 2, Laurent Najman1 and Arnaldo de A. Araújo2

1 Université Paris-Est (UPE), LABINFO-IGM, UMR CNRS 8049, A2SI-ESIEE, France
{d.menotti,l.najman}@esiee.fr

2 Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
{menotti,arnaldo}@dcc.ufmg.br

Abstract The upper-weighted sets of a signal are the sets of points with
weight above a given threshold. The components of the upper-
weighted sets, thanks to the inclusion relation, can be organized
in a tree structure, which is called the component tree. In this
work, we present a linear time and space algorithm to compute the
component tree of one-dimensional signals. From this algorithm
we derive an efficient gray-level image multithresholding method,
which is based on the hypothesis that objects which appear on an
image can be represented by salient classes present in the histogram
of this image. These classes are modelled as the most significative
components of the histogram’s component tree. We show results of
the proposed method and compare it with classical methods.

Keywords: component-tree, weighted ordered sets, multithresholding.

1. Introduction

The upper-weighted sets of a signal are the sets of points with weight above
a given threshold. The components of the upper-weighted sets, thanks to
the inclusion relation, can be organized into a tree structure, that is called
the component tree. The component tree captures some essential features
of a signal. It has been used (under several variations) in numerous appli-
cations including image filtering and segmentation [5], video segmentation
[13], image registration [9], image compression [13]. In the literature, there
are several algorithms to compute the component tree [2, 8, 10, 13]. The al-
gorithm with the best time complexity to compute the component tree for
N dimensional signals (e.g., a mapping from ZN to Z, where N ∈ N) was
recently proposed in [10] and it is quasi linear.

In this work, we propose a time and space linear algorithm to com-
pute the component tree of a weighted ordered set (WOS), i.e., a model
of 1D signals. As a possible application, we propose a gray-level image
multithresholding method for image segmentation, which is based on the

437

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 437–448.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.10.10.19

hypothesis that objects which appear on an image can be represented by
salient classes present in the histogram of the image. These salient classes
are modelled as the most significative components of the component tree,
where the importance corresponds to the volume attribute.

The remaining of this paper is organized as follows. In Section 2, we
introduce definitions for WOS and define the component tree in this frame-
work. An algorithm to compute the component tree in linear time and space
for WOS is presented in Section 3. In Section 4, we introduce a new method
for gray-level image multithresholding. An experimental comparison with
classical methods is performed. In Section 5, conclusions are pointed out.

2. Weighted ordered sets and the component tree

In this section we introduce the notion of WOS, which allows us to model
1D signals, and the component tree of such WOS.

2.1 Basic notions for ordered set

Let P be a finite set of points and let ≺ be a binary relation on P (i.e.,
a subset of the Cartesian product P × P) which is transitive ((x, y) ∈≺
, (y, z) ∈≺⇒ (x, z) ∈≺), and trichotomous (i.e., exactly one of (x, y) ∈≺
, (y, x) ∈≺ and x = y is true). The relation ≺ defines an (total) order on P ,
and the pair (P,≺) is a (totally) ordered set. Let (P,≺) be an ordered set
and let x, y, z ∈ P . If (x, y) ∈≺ and there is no z such that (x, z) ∈≺ and
(z, y) ∈≺, then we say that y is the successor of x and x is the predecessor
of y. Let (P,≺) be an ordered set. Let X = {x0, x1, ..., xn} be a subset of
points of P where x0, x1, ..., xn are arranged in increasing order. If for any
i ∈ [1, n], xi is the successor of xi−1, then we say that X is a connected set.
We also say that x0 and xn are the starting and the ending points of X,
respectively.

2.2 Basic notions for weighted ordered set

We denote by F(P,D), or simply by F , the set composed of all mappings
from P to D, where D is any set equipped with a total order e.g., the
set of rational numbers or the set of integers). For a mapping F ∈ F ,
the triplet (P,≺, F) is called a weighted ordered set (WOS). For a point
p ∈ P , F (p) is called the weight (or level) of p. Let F ∈ F and h ∈ D, we
define the h upper-weighted set of F , denoted by Fh, as {p ∈ P |F (p) ≥ h}.
A connected set X of an upper-weighted set Fh, which is maximal (i.e.,
X = Y whenever X ⊆ Y ⊆ P and Y is connected), is called a (h-weighted)
connected component (of F). A h-weighted connected component of F that
does not contain a (h + 1)-weighted connected component of F is called
a (regional) maximum of F . We define hmin = min{F (p)|p ∈ P} and

438

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 437–448.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.10.10.19

1

F

1F

2F

3F

4F

5F

F

11

111 1111

0

1 1 1

11 1 1 1 1111111

4

1 1 11111111111111

1 1

11111

1 111

1

0

0

0

0

0

0

2

0

0

0

4

0

0

0

5

0

0

0

4

0

0

0

2

0

0

0

5

0

0

0

4

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

2

0

0

0

3

0

0

0

2

0

0

0

0

(a)

1

00n
M

h

1

25503

1 1

22

0

0

0

0

1

4

11

44

01

2

0

0

000

2

(b)

[5,1] Level 5

Level 4

Level 3

Level 2

Level 1

Level 0

[2,1][2,0]

[1,0]

[3,0]

[0,0]

[4,0] [4,1]

[5,0]

(c)

Figure 1. A component tree example. (a) A weighted ordered set (P,≺, F) and its
upper-weighted sets at weights 0, 1, 2, 3, 4 and 5. (b) The associated component
mapping M . (c) The component tree C(F) of F .

hmax = max{F (p)|p ∈ P} as the minimum and the maximum weights in
the mapping F , respectively.

Figure 1(a) shows a WOS (P,≺, F) with 16 points and the 6-upper-
weighted sets of F , from hmin = 0 to hmax = 5. The set F5 is made of
two connected components which are regional maxima of F . The set F3, in
turn, is made of three connected components - one of them being a regional
maximum of F .

2.3 Component tree

From the example shown in Figure 1(a) we observe that the weighted con-
nected components of the different upper-weighted sets may be organized
to form a tree structure, thanks to the inclusion relation.

Let F ∈ F and let s ⊆ P be a connected component of F . We set
f(s) = max{h|s is a (h-weighted) connected component of F}. Note that
f(s) = min{F (p)|p ∈ s}. Let h = f(s), we say that s is a (h-weighted)
(proper) component of F . We define C(F) as the set of all components of
F . Let F ∈ F and let x and y be distinct elements of C(F). We say that
x is the parent of y if y ⊂ x and there is no other z ∈ C(F) such that
y ⊂ z ⊂ y. In this case, we also say that y is the child of x. In a parent-
children relationship, C(F) forms a directed tree named component tree of
F , which will also be denoted by C(F) by abuse of terminology.

Any element of C(F) is called a node. The node that has no parent,
in turn, is called the root of the component tree. In the following, for the
sake of algorithm description, we denote by ch,n the (n + 1) -th h-weighted
component of C(F), where the order of the h-weighted components is derived

439

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 437–448.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.10.10.19

from the order of their starting point in (P,≺). In applications, we need
to recover the component to which a given point belongs to. For such aim,
let us consider the component mapping M defined for any point p ∈ P by
M(p) = [h, n], where h = f(p) and ch,n contains p.

Figure 1(c) and Figure 1(b) show the component tree of the WOS de-
picted in Figure 1(a) and the associated component mapping, respectively.
The component c0,0 at weight 0 is associated with the node [0, 0], the com-
ponent c1,0 at weight 1 is associated with the node [1, 0], and so on.

3. Linear component tree algorithm for WOS

3.1 Description

In this work, we build the component tree C(F) of a WOS (P,≺, F) (i.e.,
1D signal) by detecting the components and the parent-children relationship
among them. Simultaneously, we build its respective component mapping
M . The components of C(F) are detected in the WOS by analyzing the con-
nected components of F . In an 1D space, the connected components of the
upper-weighted sets can be determined by their limits, i.e., the starting and
the ending points of the connected components. The connected component
limits of upper-weighted sets provide the component limits and, therefore,
information for the detection of the components.

In fact, in order to build the component tree we do not need to know
exactly the position of the components in the WOS. What we need is to
know the components hierarchy, since they respect an inclusion relation. In
order to build the component tree in linear time, we propose to analyze
the WOS from the starting point up to the ending point. By processing
the WOS point by point, we determine every connected components and,
consequently, the components present in the WOS with a single scan. In this
same scan, we can also establish the hierarchy of the components necessary
to create the parent-children relationship. Adopting this approach we can
compute the component tree for 1D signals in linear time.

The proposed algorithm roughly works as follows. For each point in the
WOS, it checks if the point is a starting point, an ending point, or an inner
point (a point which is neither a starting nor an ending point) of a compo-
nent of F . During this analysis of the WOS points, if a component indicated
by a point is found to have descendants it is stored into a stack. The stack
plays a fundamental role to maintain the hierarchy of the component tree,
as the parent-children relationships are created as edges between parent and
child components. In the following paragraphs we explain in details how the
component tree and component mapping are build.

The first point, or the starting point p in the WOS (P,≺, F) receives a
special treatment. It belongs to the first component at weight ph = F (p),
and receives the label 0 at the weight ph. Hence, the node [ph, 0] is associated
with the point p on the component mapping. Once the starting point has

440

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 437–448.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.10.10.19

been analyzed, we consider the next points. For the sake of simplicity,
consider the point p as the current point being analyzed and suppose we
want to make decisions about the component, indicated by its predecessor
r. We first analyze the weights ph = F (p) and rh = F (r), we can find three
possibilities: ph > rh, ph = rh, and ph < rh, as shown in Figures 2(a), 2(b),
and 2(c).

In the first case, where ph > rh (Figure 2(a)), we create a new component
at weight ph, that is, p is the starting point of a component and receives a
new label pn at weight ph. The node [ph, pn] is associated with the point p on
the component mapping. Since the node [rh, rn] has at least one descendant,
i.e., [ph, pn], it will be inserted into the stack. Note that no other component
with weight smaller or equal to ph will be inserted into the stack while the
component [ph, pn] is there.

In the second case, where ph = rh (Figure 2(b)), we know that the point
p belongs to the same component indicated by the point r. Therefore, the
node [rh, rn] is associated with the point p, which is the same node as the
one which contains r, in the component mapping.

In the last case, where ph < rh (Figure 2(c) — an ending or inner point),
we know for certain that the component to which r belongs to is already
analyzed, i.e., the point r is the ending point of the component. In this
situation, we have to decide which component is the parent of the node
[rh, rn]. This decision is based onto the relationship of the nodes in the
stack (nodes with descendants to be analyzed) and the node [ph, pn]. Four
scenarios might appear here, as shown in Figures 2(c), 2(d), 2(e), and 2(f).

The first scenario involves the stack being empty. If there are no elements
left on the stack (Figure 2(c)), we conclude that the node [ph, pn] is the
parent of [rh, rn]. In this situation, we know that the point p belongs to
a new component, which is assigned a new label, i.e., pn, at weight ph.
Hence, the node [ph, pn] is associated with the point p on the component
mapping. Note that in this case, the point p is not the starting point of this
component.

In the other three scenarios assume that there are elements left on the
stack, and consider that the stack head element corresponds to the node
[qh, qn]. If [qh, qn] has its weight qh smaller than ph, i.e., ph > qh (Fig-

hp

hr

(a)

r h ph

(b)

hr

hp

(c)

q

h

r h

p

h

(d)

h p

r

h

h

q

(e)

q

h

ph

r

h

(f)

Figure 2. Possible predecessors (r’s) of p and the disposition of p in relation to
the stack (q’s): (a) ph > rh; (b) ph = rh; (c) ph < rh; (d) ph > qh; (e) ph = qh;
(f) ph < qh.

441

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 437–448.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.10.10.19

ure 2(d)), we have the same situation as when there are no elements on the
stack.

In contrast, if [qh, qn] has its weight qh equal to ph, i.e., ph = qh (Fig-
ure 2(e)), we observe that the point p belongs to the same component as q,
i.e., ph = qh and pn = qn (the node [ph, pn] is associated with the point p on
the component mapping). Hence, the node [ph, pn] (or [qh, qn]) is the parent
of [rh, rn]. In this case, the node [qh, qn] is removed from the stack, since the
possible descendant components between the points q and p have already
been computed. Nevertheless, the node [qh, qn] can be inserted again into
the stack later.

The last possible scenario shows that the node [qh, qn] has its weight qh

greater than ph, i.e., ph < qh (Figure 2(f)). Here we have that [qh, qn] is the
parent of [rh, rn]. The node [qh, qn] is removed from the stack, since [ph, pn]
has a weight smaller than it. This is necessary to keep the consistency of
the stack.

After the node is removed from the stack, we need to find its parent.
The node [ph, pn] or the new node on the stack head are candidate parents
of the removed node [qh, qn]. The decision about which component is the
parent is done by naming the removed component [qh, qn] as [rh, rn], and
starting the decision process again according to the situations presented in
Figures 2(c), 2(f), 2(d), and 2(e), as described previously.

Once all points in the WOS were processed, we can still have some
components left on the stack. In this case, the component on the stack
head is the parent of the component pointed by the ending point of the
WOS. The next component on the stack, if there is any, is the parent of the
stack head, and so on. These components are removed from stack one by
one, and edges are inserted between the parent and child components such
that the parent-children relationship is finished. When the stack is empty
the component tree is complete.

3.2 Implementation

Algorithm 1 shows an implementation (with low level details) of the al-
gorithm described in Section 3.1 to compute in linear time and space the
component tree C(F), the component mapping M of a WOS (P,≺, F). The
component tree structure (CT) obtained from the algorithm is composed of
vectors which store pairs of the child and parent components (the parent-
children relationship). Another vector, nnodes, composes the CT structure.
It is used to indicate the number of nodes at each weight. Thus, the vector
nnodes is used to generate unique labels for the new nodes at each weight
during the processing of the WOS. The stack used, CP (to store pairs
[qh, qn]), implement four basic operations: StackPush, StackPop, Stack-
Empty, and StackView. In order to build the parent-children relationship of
the component tree, the function InsEdge is used to insert edges between
nodes in the CT structure.

442

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 437–448.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.10.10.19

Algorithm 1: BuildComponentTree.
Data: (P ,≺, F) - weighted ordered set with n points
Result: CT - component tree structure
Result: M - a map from P to [hmin...hmax, 0...n− 1]
CT .nnodes[F (0)] + + ; M(0)← [F (0), 0];1

for i← 1 ; i < n ; i + + do2

ph ← F (i) ; [rh, rn]←M(i− 1);3

if (ph > rh) then4

pn ← CT .nnodes[ph] + + ; M(i)← [ph, pn];5

StackPush(CP, [rh, rn]);6

else if (ph = rh) then7

pn ← rn ; M(i)← [ph, pn];8

else if (ph < rh) then9

while (!StackEmpty(CP)) do10

[qh, qn]← StackView(CP);11

if (ph ≥ qh) then break ;12

InsEdge(CT , [qh, qn], [rh, rn]) ;13

StackPop(CP);14

[rh, rn]← [qh, qn];15

if (StackEmpty(CP) and (ph < rh)) or (ph > qh) then16

pn ← CT .nnodes[ph] + + ; M(i)← [ph, pn];17

InsEdge(CT , [ph, pn], [rh, rn]);18

else if (ph = qh) then19

pn ← qn; M(i)← [ph, pn];20

InsEdge(CT , [ph, pn], [rh, rn]);21

StackPop(CP);22

while (!StackEmpty(CP)) do23

[qh, qn]← StackPop(CP);24

InsEdge(CT , [qh, qn], [ph, pn]);25

[ph, pn]← [qh, qn];26

DefineRoot(CT , [ph, pn]);27

3.3 Complexity analysis

Initially, we stated upper bounds for the data structures used in Algorithm 1
in order to perform the space complexity (SC) analysis. Let n denote the
numbers of points in the WOS (P,≺, F), i.e., n = |P |, and let m denote the
ordered set amplitude, i.e., m = hmax−hmin +1. The size of vector nnodes
corresponds to the domain’s size of the mapping F , i.e., the SC of nnodes is
O(m). A WOS with n points can have a maximum of n components (when
each component is composed of a single point). Therefore, the maximum
size of the stacks is the number of points in the ordered set, i.e., the SC of

443

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 437–448.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.10.10.19

CP is O(n). Now we consider the rooted tree. It is a tree with a root node,
where every node has a single parent, but the root node does not have a
parent. From that we have that all rooted trees with e nodes have e − 1
edges. As a component tree is a rooted tree, the component tree of a WOS
can have at maximum n−1 edges. The vectors inside the CT structure have
a maximum of n elements (n− 1 elements and the field for the root node),
and therefore the SC of these vectors is O(n). After this analysis of data
structures used in Algorithm 1 we can state that the SC of the algorithm
proposed is O(max(n, m)), i.e., it is linear.

Now considering a time complexity (TC) analysis we have that all func-
tions implemented in the Algorithm 1 are atomic, i.e., they can be executed
in O(1). Then, to obtain the TC of Algorithm 1 we have to analyze the
two main loops. The first loop (for in Line 2) is executed n− 1 times while
analyzing n− 1 points. Although this loop uses a stack, the only insertion
point into the stack CP is on the line 6. This fact confirms the SC O(n) of
the stack CP . Continuing on the loop presented in Line 2, we have an inner
loop (while) guided by the stack CP in Line 10. This loop has an amortized
TC at maximum n−1, since each time it is analyzed i.e., the nodes [ph, pn],
[qh, qn] are compared) one edge will be inserted into the tree. The insertion
will be done by either the loop itself (Line 13) or the conditions of the others
two conditionals (when ph > qh in Line 18 and when ph = qh in Line 21).
Then, the first loop has a linear TC,i.e., i.e., O(n). The second main loop
(while) in Line 23 is executed whereas there are elements on the stack.
Every time it is executed one element is removed from the stack. Thus this
loop can be executed at maximum n−1 turns, i.e., the maximum stack size.
Then, the second loop also has TC of O(n). Therefore, the algorithm has a
linear TC, i.e., O(n).

3.4 Attributes

The component tree based approaches use measures extracted from the
nodes of the tree structure. These measures are called attributes. Let
[h, n] ∈ C(F). We define the height, the surface, and the volume attributes
of the component ch,n as being:

ht(ch,n) = max
x∈ch,n

{F (x)− hp},

s(ch,n) = cardinality(ch,n),

v(ch,n) =
∑

x∈ch,n

(F (x)− hp),

respectively, where hp is the parent weight of ch,n. It is possible to com-
pute, simultaneously, the component tree and these attributes of compo-
nents without changing the time complexity of the algorithm.

444

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 437–448.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.10.10.19

4. Multithresholding

We now turn towards an application for the 1D component tree. Segmen-
tation by multiple-threshold selection, or simply multithresholding, relies
to the assumption that homogeneous regions present in the image can be
detected in the histogram of the image. This segmentation method consists
of selecting threshold levels by analyzing the histogram of the image. These
thresholds determine histogram classes, and therefore any image pixel is
classified according to the histogram class it belongs to.

In this work, we propose a method for multithresholding gray-level im-
ages in K levels. This method is based on the hypothesis that objects
which appear on an image can be represented by salient classes present in
the histogram of the image. These classes can be represented as the K most
significative components extracted from component tree of the histogram of
the image (an histogram is modelled as a WOS) - see Appendix for details.

The proposed method can be described in five main steps: 1) Histogram
computation from gray-level image; 2) Computation of the Component tree
of the histogram of the image; 3) Identification of the salient markers present
in the histogram by means of the extraction of K most significative com-
ponents of the histogram’s component tree; 4) Histogram segmentation by
watercourse transform (i.e., the dual of the watershed transform [1,3]) using
the salient markers extracted in step 3; 5) Image segmentation by applying
the segmented histogram to the original image.

Figure 3 shows the application of the proposed method to six classical
images, namely: lena, goldhill, fruits, barbara, cameraman, and house. The
first four images are of size 512×512 pixels and the last two of size 256×256
pixels. They are shown in the first column of Figure 3. We multithreshold all
the histograms of image in five classes, and therefore the image in five levels.
We chose the same number of classes for all images because all of them have
at least five concise regions. On the other columns of Figure 3, we have,
starting from the second column, the histograms of the input images, the
five most important leaf components of the histograms of images and their
not overlapped ascendant components coverage (as lighter as important -
remark that the histograms are not smoothed), the segmented histograms
in five classes (the classes are separated by vertical lines), and the output
images with five levels (where the level for each histogram region was chosen
as the nearest integer of the mean level in the respective histogram region).

We perform a quantitative comparison of our method, Kapur et al. [6],
Khotanzad and Bouarfa [7], and Otsu [11] using a well-known objective
measure, i.e., the Peak Signal to Noise Ratio (PSNR) [12]. The results
are shown in Table 1. We observe that our method obtains PSNR values
close to the PSNR value achieved by the other methods on four images:
lena, barbara, cameraman and house. Indeed, we can see that our method
segments the images in concise/homogeneous regions in 4 out of 6 images.
However, in the goldhill and fruits images (second and third rows) the salient

445

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 437–448.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.10.10.19

Figure 3. Real examples of classical images illustrating our multithresholding
method. Columns from left to right: input original image, input image histogram,
five (5) most important leaf components (maxima), segmented histogram in five
(5) regions, and output segmented image in five (5) levels.

classes of the histograms of images are overlapped, and so our method is
not suitable. In the cases where the histogram hypothesis holds, we argue
that our method segments the images in regions more homogeneous than
the other methods.

446

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 437–448.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.10.10.19

Table 1. PSNR for test images.

Images Kapur Khotanzad Otsu Our method

lena 25.3574 27.0722 28.2001 27.5316

goldhill 21.8978 22.4819 27.0583 21.6181

fruits 20.7996 22.5991 26.3987 19.6554

barbara 25.4540 26.1957 27.1348 26.4002

cameraman 19.3428 25.5831 27.8837 25.2907

house 20.1270 28.2576 29.3351 28.1030

5. Conclusion

In this paper we introduced, described, and illustrated a time and space
linear complexity algorithm to compute the component tree for weighted
ordered sets, i.e., 1D signals.

We proposed a new method for gray-level image multithresholding, based
on the hypothesis that objects which appear on an image can be represented
by salient classes present in a histogram of the image. These salient classes
were modelled as the most significative components, where the importance
corresponds to the volume attribute. Experiments showed that our method
is competitive compared to classical ones when the hypothesis hold.

For future works, we plan to establish some methodology to select au-
tomatically the number of the most significative components present in the
component tree, yielding an automatic multithresholding algorithm with re-
spect to the number of classes in the output image. We also plan to extend
our method to segment color images [4].

Acknowledgments

We would like to acknowledge support for this research from UFMG,
CAPES/MEC, CNPq/MCT and FAPEMIG.

References

[1] S. Beucher and F. Meyer, The morphological approach to segmentation: The water-
shed transform, Mathematical Morphology in Image Processing, 1992, pp. 433–481.

[2] E. J. Breen and R. Jones, Attribute openings, thinnings and granulometries, Com-
puter Vision and Image Understading 64 (1996), no. 3, 377–389.

[3] L. H. Croft and J. A. Robinson, Subband Image Coding Using Watershed and Wa-
tercourse Lines of the Wavelet Transform, IEEE Transactions on Image Processing
3 (1994), no. 6, 759–772.

[4] T. Geraud, P.-Y. Strub, and J. Darbon, Color Image Segmentation based on Auto-
matic Morphological Clustering, IEEE ICIP (2001), pp. 70–73.

447

Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 437–448.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.10.10.19

[5] R. Jones, Component trees for image filtering and segmentation, IEEE Workshop
on Nonlinear Signal and Image Processing (1997).

[6] J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, A new method for Gray-Level Picture
Thresholding Using the Entropy of the Histogram, Computer Vision, Graphics, and
Image Processing 29 (1985), 273–285.

[7] A. Khotanzad and A. Bouarfa, Image Segmentation by a Parallel, Non-Parametric
Histogram Based Clustering Algorithm, Pattern Recognition 23 (1990), no. 9, 961–
973.

[8] J. Mattes and J. Demongeot, Efficient algorithms to implement the confinement
tree, DGCI (2000), LNCS, vol. 1953, pp. 392–405.

[9] J. Mattes, M. Richard, and J. Demongeot, Tree representation for image matching
and object recognition, DGCI (1999), LNCS, vol. 1568, pp. 298–312.

[10] L. Najman and M. Couprie, Building the component tree in quasi-linear time, IEEE
Transaction on Image Processing 15 (2006), no. 11, 3531–3539.

[11] N. Otsu, A threshold selection method from grey-level histograms, IEEE Transactions
on Systems, Man and Cybernetics 9 (1979), no. 1, 41–47.

[12] M. Rabbani and P. W. Jones, Digital Image Compression Techniques, 1st, Society
of Photo-Optical Instrumentation Engineers (SPIE), Bellingham, WA, USA, 1991.

[13] P. Salembier, A. Oliveras, and L. Garrido, Anti-extensive connected operators for
image and sequence processing, IEEE Transaction Image Processing 4 (1998), no. 7,
555–570.

Appendix: Extracting the most significative
components

In introduction, we have mentioned as simple use of the component tree the
image filtering (removing nodes of the tree whose attribute value is below
a given threshold). Here, we show a more advanced use for the component
tree; determination of the K most significative components of the compo-
nent tree. We hypothesized the volume attribute can model the importance
of a salient region present in the histogram of the image. By using the
tree, this task reduces to the search for the K nodes that have the largest
attribute values and are not bound with each other (even transitively) by
the inclusion relation. An algorithm to achieve this task is proposed in
[10, Algorithm 3]. Its complexity is O(sort(n) + n), where n is the number
of points in the WOS and sort(n) is the complexity of the sorting algorithm
(it can be linear). Once the K most significative components are selected,
we go back to the initial component tree and take as markers for the salient
classes the leaf components corresponding to those K components. These
markers are used in histogram segmentation by the watercourse transform.

Note that similar results could be obtained by performing attribute
based operations using several volume threshold values.

448

	1D Component tree in linear time and space and its application to gray-level image multithresholding
	Introduction
	Weighted ordered sets and the component tree
	Basic notions for ordered set
	Basic notions for weighted ordered set
	Component tree

	Linear component tree algorithm for WOS
	Description
	Implementation
	Complexity analysis
	Attributes

	Multithresholding
	Conclusion

