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Abstract The analysis of different representation levels has been largely used
to handle the multiscale nature of image data. Here, we explore
the scale-space properties of a toggle operator defined on a scaled
morphological framework. These properties conduce to a well-
controlled image extrema simplification, yielding sound segmen-
tation and filtering results even when the operator is used in a
binarization process. Also, the watershed transform using mark-
ers extracted from the processed image gives better segmentation
results than when using markers from the original one. To show
the robustness of our approach, we carried out tests on images of
different classes and subjected to different lighting conditions.
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1. Introduction

Multiscale approaches have been largely considered in several signal pro-
cessing applications, allowing the analysis of different representation levels
and, further, the choice of the ones exhibiting the interest features.

One of the basic problems that arises when using multiscale methods
originates from the difficulty to relate meaningful information of the signal
across scales. In [20], Witkin proposed a novel multiscale approach, named
scale-space, where the representation of an interest signal feature describes
a continuous path through the scales. In such a way, it is possible to relate
information obtained in different representation levels, as well as to have a
precise localization of the interest features in the original signal.

Another important characteristic is that the transformation to a coarser
level in the scale-space representation does not introduce artifacts, that
is, signal features present at a scale σ are also present at all finer scales.
This property is called monotonicity, since the number of features must
necessarily be a monotonic decreasing function of scale [20].

Since the introduction of the scale-space theory, a large number of for-
mulations have been proposed, based on different assumptions. In the linear
approach, formalized by Witkin [20], a family of images is generated by con-
volving the original image with a Gaussian kernel. The signal extrema and
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its first derivative constitute the features of interest. However, any convo-
lution kernel used to obtain the scale-space introduces new extrema (the
image maxima and minima) as the scale increases and, thus, the mono-
tonicity property for linear filters and signal extrema does not hold [9]. To
avoid this problem, other linear and non-linear approaches have been intro-
duced [2].

Here, we explore the scale-space properties of a toggle-based operator in
segmentation applications. The operator is defined in a scaled morphological
framework using concave structuring functions, which was proved to have
contrast properties [14]. Furthermore, it considers local pixel information
(not only scale knowledge) to determine if each pixel should be processed
by erosion or dilation, in contrast to other multiscale approaches that take
into account mainly global information. All this characteristics conduce to
an image simplification that enables the identification of important image
structures using very simple operations, even in ill-illuminated images.

The next section presents basic multiscale morphology definitions. Sec-
tion 3 defines the scale-space toggle operator and some of its main properties.
Finally, we show some results in Section 4 and draw some conclusions and
future work perspectives in Section 5.

2. Morphological-based scale-space

The notion of scale is related to the way we observe the physical world,
where different features are made explicit at different scales. In mathemat-
ical morphology, the concept of scale (or size) dependent observations was
introduced by Matheron [11] in his work on granulometry, which captures
the size distribution of spatial observations.

To introduce the notion of scale, we can make the basic morphologi-
cal operations of erosion and dilation scale-dependent by defining a scaled
structuring function gσ : Gσ ⊂ R2 → R, such that [4]

gσ(x) = |σ|g(|σ|−1x) x ∈ Gσ,∀σ 6= 0, (1)

where Gσ = {x : ‖x‖ < R} is the support region of the function gσ.
To ensure reasonable scaling behavior, some other conditions are neces-
sary [4], requiring a monotonic decreasing structuring function along any
radial direction from the origin. In this paper, we use as structuring func-
tion g(x, y) = −max{x2, y2}, that in the scaled version is given by

gσ(x, y) = −|σ|−1 max{x2, y2}, (2)

where σ represents the scale. Observe that, for a 3× 3 structuring element
(used in this work), gσ is zero at position 0 and −|σ|−1 otherwise. Figure 1
illustrates the structuring function.

Scaled morphological operators have been frequently associated to non-
linear filters and scale-space theory. Jackway [4] introduced a scale-space
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Figure 1. The structuring function.

based on the Multiscale Morphological Dilation Erosion (MMDE) operator,
which unifies the scaled erosion and dilation transformations so that both
positive and negative scales are taken into account (the image is processed
by dilation, for positive scales, and by erosion for the negative ones). The
interest features are the watershed of the smoothed signal in a certain scale.
However, this method cannot be directly associated with image segmenta-
tion since “the watershed arcs moves spatially with varying scale” [3, 4].

In [7, 8], Leite and Teixeira explored the extrema preservation property
of MMDE by using the extrema set obtained during the filtering process
as markers in a homotopic modification of the original image, avoiding the
spatial shifting of the watershed lines. They controlled the extrema merg-
ing through the different scales, obtaining good segmentation results. The
authors also defined a new operator that explores the idempotence of the
MMDE, establishing a relation between the structuring function gσ and the
extremes that persist at a given scale σ.

Scaled morphological operators have also been applied for image sharp-
ening. Kramer [5] proposed a non-linear operator that replaces the original
gray value of a pixel by the local minimum or maximum, depending on
what value is closer to the original one. Shavemaker et al. [14] general-
ized this result by defining a new class of iterative scaled morphological
image operators. In fact, they proved that all the operators that use a
concave structuring function have interesting sharpening properties. Here,
we explore some important characteristics of these operators to introduce
a toggle transformation having interesting scale-space extrema preservation
properties, as explained next.

3. Operator definition

A toggle operator has two major points: the primitives and a given deci-
sion rule [16]. Here, we use as primitives an extensive and an anti-extensive
transformation, namely, the scale dependent dilation and erosion. The de-
cision rule involves, at a point x, the value f(x) and the primitives results.
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Formally:

(f � gσ)k(x) =

 ψk
1 (x) if ψk

1 (x)− f(x) < f(x)− ψk
2 (x),

f(x) if ψk
1 (x)− f(x) = f(x)− ψk

2 (x),
ψk

2 (x) otherwise,
(3)

where ψk
1 = (f ⊕ gσ)k, that is, the dilation of f with the scaled structuring

function gσ, k times. In the same way, ψk
2 = (f 	 gσ)k.

In the following, we analyze the operator’s behavior regarding on scale
changing and on the recursive application of the primitives.

3.1 Changing the number of iterations

To avoid undesirable effects such as halos and oscillations, idempotent toggle
operators are used [15]. Since the defined operator (Equation 3) is not
idempotent, we use an alternative solution to this problem based on the
specific knowledge of the pixels transformation. The following proposition
formalizes an important property of the operator (see proof in [6]), which
guarantees that it has a well-controlled behavior.

Proposition 1. Let x be a pixel of the image and g be a structuring function
with a single maximum at the origin, that is, g(x) is a local maximum implies
x = 0. The sequence defined by (f � gσ)k(x) is stationary and monotonic
increasing (decreasing) until a certain iteration k0, while it is monotonic
decreasing (increasing) after the iteration k0.

This property states that a pixel can initially converge to a specific local
minimum and, after a certain iteration, to converge to an image maximum,
or vice-versa [6]. Furthermore, since the sequence is stationary, we have
the guarantee that it converges to a constant value, that is, it stabilizes
after a certain number of iterations. Note that k0 can be 1, that is, a pixel
transformed value is strictly increasing or decreasing.

In Figure 2, as the number of iterations increases, the influence zone of
the deeper minimum m2 grows significantly, in such a way that the value of
f(m1) become closer to the dilated values, and stabilizes after 10 iterations.

At this step, we can conclude that, in some neighborhood of an important
minimum (maximum), the pixels values will be eroded (dilated) in such
a way that it is possible to identify the significant extrema of the image
and their influence zones. In this sense, we can define a new thresholding
operation that uses a decision rule similar of that in Equation 3:

(f � gσ)k(x) =
{

255 if ψk
1 (x)− f(x) <= f(x)− ψk

2 (x)
0 otherwise, (4)

where, again, ψk
1 (x) = (f ⊕ gσ)k(x), that is, the dilation of f(x) with

the scaled structuring function gσ k times. In the same way, ψk
2 (x) =
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(a) After seven iterations (b) After ten iterations

Figure 2. Operator behavior through different iterations using g = [−1 0 − 1].

(f 	 gσ)k(x). This binary approach yields sound segmentation and filtering
results, as we shall illustrate in Section 4.1.

3.2 Changing the scale

By taking into account the increasing of scale, the defined transformation
(Equation 3) results in a new scale-space definition. The following proposi-
tion states that if an extrema of the signal is present at a given scale σ, it
must be found at all the intermediate scales.

Proposition 2 (Behaviour of image extrema). Let g be a structuring func-
tion with a single maximum at the origin, that is, g(x) is a local maximum
implies x = 0. To avoid level-shifting and horizontal translation effects, we
require that supt∈G{g(t)} = 0, and g(0) = 0. Thus

1. if (f�gσ)(xmax) is a local maximum, then f(xmax) is a local maximum
of f(x) and (f � g)(xmax) = (f ⊕ g)(xmax) = f(xmax),

2. if (f�gσ)(xmin) is a local minimum, then f(xmin) is a local minimum
of f(x) and (f � g)(xmin) = (f 	 g)(xmax) = f(xmin),

3. If 0 < σ1 < σ2 and (f � gσ2)(xmax) is a local maximum, then (f �
gσ1)(xmax) is a local maximum and (f�gσ1)(xmax) = (f�gσ2)(xmax),

4. If 0 < σ1 < σ2 and (f � gσ2)(xmin) is a local minimum, then (f �
gσ1)(xmin) is a local minimum and (f�gσ1)(xmin) = (f�gσ2)(xmin).

These results (see proofs in Appendix) guarantee that the number of
extrema does not decrease when the scale tends to zero. This aspect con-
stitutes the morphological scale-space monotonicity property.

Theorem 1 (Monotonicity Theorem). Monotonicity property for the de-
fined scale-space. Let f : Df ⊆ Rn → R be a limited function, gσ : Gσ ⊆
Rn → R be a structuring function that satisfies the properties of Propo-
sition 1, and the following set of points Emax(f) = {x : f(x) is a local
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maximum} and Emin(f) = {x : f(x) is a local minimum} represent the
extrema points of f . Then, for any 0 < σ1 < σ2,

Emin(f � gσ2) ⊆ Emin(f � gσ1) ⊆ Emin(f), and
Emax(f � gσ2) ⊆ Emax(f � gσ1) ⊆ Emax(f).

That is, the number of local maxima (minima) decreases monotonically
with the increase of scale [4].

Finally, proposition 3 states that the operator approaches f(x) as the
scale parameter approaches zero. In other words, as σ → 0, the value of the
operator converges to the original image value (see proof in Appendix).

Proposition 3 (Convergence to the original image value). If the signal
f(x) : Df ⊆ Rn → R is continuous at some x ∈ Df , then (f�gσ)(x) → f(x)
as σ → 0.

4. Results

First, we give some examples of the binary transformation represented by
Equation 4, where segmentation and filtering results are easily obtained.
After, we apply the h-maxima transform in the image processed by Equa-
tion 3, to further extract markers to be used in a watershed transform.

4.1 Binary results

The first example shows the segmentation of a historical document in which
the front side of the paper contains ink components from its verso side. The
results were compared against the moving averages [19] algorithm, specially
designed for segmenting text images. This method considers a threshold
based on the mean gray level of the last n pixels. Figure 3 illustrates the
better performance of our operator in the sense that it suppresses properly
the components belonging to the reverse side of the paper.

(a) (b) (c) (d) (e)

Figure 3. Segmentation example for a historical document image. (a) Original
image, and segmentation results for two select regions using the moving averages
algorithm ((c) and (e)) and the proposed operator ((b) and (d)).

The second experiment was carried out based on a set of images with
varying lighting conditions (linear, Gaussian and sine-wave) [13], and on a
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set of well-known threshold-based segmentation methods described in lit-
erature, namely, moving averages [19], regional thresholds [13], and the
Otsu’s [12] thresholding algorithm. An evaluation of these methods as well
as the set of considered images can be found in [13]. Figure 4 shows the seg-
mentation results for the mentioned algorithms and for the operator defined
by Equation 4.

(a) (b) (c) (d) (e)

Figure 4. Segmentation results for images with different illumination conditions
(linear, Gaussian and sine-wave, respectively). (a) original image, (b) moving
averages, (c) Otsu’s method, (d) regional thresholding and (e) proposed operator
((i) facel (for k = 1 and σ = 0.1), (ii) skyg (for k = 1 and σ = 0.06) and (iii)
pascals (for k = 2 and σ = 0.1).

This well-controlled behavior reflects the results of the previous proposi-
tions. The image extrema merge in an organized way, and no new maxima
or minima are created, according to the morphological scale-space theory
which constitutes the basis of our approach. Finally, note that the operator
selects one threshold per pixel based on local features, as it is the case for
dynamic thresholdings.

4.2 Gray-scale results

Image segmentation consists basically on partitioning an image into a set of
disjoint (non-overlapping) and homogeneous regions which are supposed to
correspond to image objects that are meaningful to a certain application. In
a morphological framework, this is typically done by first extracting markers
of the significant structures, and then using the watershed transform [1] to
extract the contours of these structures as accurately as possible.
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Although image extrema are frequently used as markers, they can also
correspond to insignificant structures or noise. Thus, to prevent the over-
segmentation problem, it is necessary to select image extrema according to
some criteria, such as contrast, regions area and so forth. A typical approach
consists on use the h-maxima (h-minima) transform to suppress all image
maxima (minima) whose contrast is lower than a specified value h, and use
the extended (regional) extrema as markers.

This notion is closely related to the concept of dynamics, that assigns
to each image extrema a value that characterizes the persistence of the
structure it marks when applying increasing contrast filters (in other words,
the minimal size of the contrast filter for which the extrema is eliminated).
Indeed, a regional extrema of an image f is also an extrema of its h-maxima
transform only if the structure it marks has contrast higher than h, which
also implies a dynamics higher than h [17,18].

In this paper, we apply the h-maxima transform to select the image
maxima that should be used as markers in a watershed transform. The
methodology is summarized in the Algorithm 1 below.

Algorithm 1 Segmentation procedure using h-extrema as markers.
1: given a height h and an input image I;
2: generate a transformed image, I1, applying Eq. 3 on I;
3: compute the h-maxima of I1;
4: extract the extended (regional) maxima;
5: compute the watershed transform using these maxima as markers.

Quantifying the results of a segmentation algorithm is a challenging task,
since this remains a ill-defined problem. Here, we perform a qualitative
analysis of the results based on some specific criteria, such as robustness to
badly illuminated images. We also compute steps 3 − 5 of Algorithm 1 in
the original image I, and compare the results against ours.

Figure 5 and Figure 6 show the segmentation results obtained for ill-
illuminated images used previously (the parameters are in the Figures’ cap-
tions). In the last column of each figure, we show the best results obtained
using markers from the original image. The markers extracted from the
transformed image are less sensitive to illumination problems, yielding a
segmentation that enhances the most important structures of the image
without introducing artifacts. In Figure 6, we can see that our approach
separates correctly the main regions of the figure.

Figure 7 shows the segmentation results, by considering different values
of h, for the road image transformed by the operator defined in Equation 3
using scale 60 and one iteration. Note that, as the value of h increases, less
structures are marked and, thus, less regions are segmented.

Figure 8 shows the segmentation results for the well-known cameraman
image. As in the previous cases, the quantity of segmented regions depends
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(a) (b) (c) (d)

Figure 5. Segmentation results for the skyg image. (a) original image, and using
transformed images (b) σ = 60 and k = 1, with h = 2; (c) σ = 60 and k = 1, with
h = 10, and (d) based on the original image using h = 10.

(a) (b) (c)

Figure 6. Segmentation results for the facel image. (a) original image, (b) using
transformed image σ = 10 and k = 5, with h = 45, and (c) based on the original
image using h = 45.

(a) (b) (c) (d)

Figure 7. Segmentation results for the road image, (a) original image, and using
transformed images σ = 60 and k = 1 with (b) h = 5, (c) h = 20 and (d) h = 40.

on the relationship between the σ and h values.
The dynamics’ principle can be applied to other families of increasing

morphological filters by reconstruction, not only to contrast filters [17]. Fig-
ure 9 shows the results obtained for the lenna image when including an
opening by reconstruction between the steps 3 and 4 of the Algorithm 1.
We also make an opening by reconstruction in the original image and further
extract the extended maxima to compare the results. Figure 9(b)-(c) show
the results for the original image and Figure 9(d)-(e) for the transformed
image. In the following, we present some overall conclusions.
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(a) (b) (c)

Figure 8. Segmentation results for the cameraman image. (a) Original image and
using transformed images (b) σ = 15 and k = 10, with h = 80 and (c) σ = 31 and
k = 2, with h = 31.

(a) (b) (c) (d) (e)

Figure 9. Segmentation results for the lenna image. (a) original image, using
original image with (b) h = 11, (c) h = 21, and using transformed images (d)
σ = 21 and k = 2, with h = 21, and (e) σ = 31 and k = 2, with h = 31.

5. Conclusions

In this paper, we explored a new scale-space toggle operator, taking into ac-
count the strong monotonicity property for regions of a 2D signal, according
to the morphological scale-space theory discussed in literature [4, 20]. The
defined operator uses concave structuring functions, which was proved to
have contrast properties [14].

In our approach, we deal with transformations of the image maxima
and minima at the same time. This aspect, together with the monotonicity
property, guarantees that we have an extrema merging simplification that
considers the relation between the image extrema along the whole transfor-
mation.

We work with an explicit notion of scale guided by the scale-space theory,
using a toggle transformation for segmentation problems, unlike the other
applications of this operator which consider mainly problems related to
image contrast enhancement.

Results comprove the robustness of our approach when dealing with
ill-illuminated images. Also, the image simplification obtained using Equa-
tion 3 allows a more effective marker extraction.

As a future work, we will deal with problems of locally controlling the
extrema merging by taking into account the height of the structuring func-
tions and the distance between the image extrema in the definition of a
parametric mapping using both these information.
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Appendix: Proof of the propositions

Proposition 2. First, we prove that the operator defined in Equation 3
performs a dilation on image maximum, that is, (f � gσ)(xmax) = (f ⊕
gσ)(xmax). To avoid level-shifting and horizontal translation effects, we
require that supt∈G{g(t)} = 0, and g(0) = 0. Assume that the sup occurs
for t = ζ.

(f ⊕ gσ)(xmax) = sup
t∈N

{f(xmax − t) + gσ(t)}

= f(xmax − ζ) + gσ(ζ)
≤ f(xmax − ζ) ≤ f(xmax).

Since at t = 0 we have f(xmax) + gσ(0) = f(xmax), it follows that
supt∈N {f(xmax − t) + gσ(t)} = f(xmax). The proof for (f � gσ)(xmin) =
(f 	 gσ)(xmin) is analogous. Based on this, the final proof of Proposition 2
can be found in [4], as well as the proof of Theorem 1.

Proposition 3. The operator defined in Equation 3 can be easily rewritten
as

(f � gσ)(x) =

 ψk
1 (x) if f(x) > 1

2 (βn + αn),
f(x) if f(x) = 1

2 (βn + αn),
ψk

2 (x) otherwise,

with αn = max
t∈N(x,k),t6=0

{f(x), f(x− t) + (−|σn|−1))} and βn =

min
t∈N(x,k),t6=0

{f(x), f(x− t)− (−|σn|−1)}, where σn is the n-th scale and

N(x, ε) represents the set of pixels located in a chess distance less or equal
ε from x. The sequence (αn) satisfies:

� αn ≥ f(x);

� (αn) is monotonically decreasing, i.e., αn ≥ αn+1∀n;

� (αn) is stationary, i.e., ∃n0/∀n ≥ n0, αn = f(x0).

The sequence (βk) satisfies:

� βn ≤ f(x);

� (βn) is monotonically increasing, i.e., βn ≤ βn+1∀n;

� (βn) is stationary, i.e., ∃n0/∀n ≥ n0, βn = f(x0).

Let γn = 1
2 (αn + βn). Since the sequences (αn) and (βn) are stationary

and monotone, we have that the sequence (γn) is both monotonic and sta-
tionary [10]. This yields a sequence γk that is monotonically increasing or
decreasing and converges to the original image value after a certain number
of iterations.
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