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Abstract In this paper we approach the segmentation problem by attempt-
ing to incorporate cues such as intensity contrast, region size and
texture in the segmentation procedure and derive improved results
compared to using individual cues separately. We propose efficient
simplification operators and feature extraction schemes, capable of
quantifying important characteristics like geometrical complexity,
rate of change in local contrast variations and orientation, that
eventually favor the final segmentation result. Based on the mor-
phological paradigm of watershed transform we investigate and ex-
tend its Partial Differential Equation (PDE) formulation in order
to satisfy various flooding criteria, and couple them with texture
information thus making it applicable to a wider range of images.
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1. Introduction

In this work we treat image segmentation as a set of procedures that need to
be followed starting from the initial image and yielding the final partition-
ing perceived either as a region map or a segmentation boundary. Indepen-
dently of the method used to achieve the partitioning, this can be divided
into the following stages: (i) image simplification (ii) feature extraction and
(iii) partitioning into disjoint regions. The simplification stage encompasses
tasks such as smoothing, noise reduction, redundant information removal
(resulting in an image consisting mostly of flat and large regions), as well as
image decomposition into constituent parts. The feature extraction deals
with gradient features computation, texture measurements, marker extrac-
tion, whereas the final stage of partitioning is the application of the selected
segmentation algorithm so as to produce a region map of the image.

Motivated by the efficacy of watershed transform along with latest trends
in image segmentation research that encourage combination of different cues
[2, 9], we try to incorporate the generalized flooding concept of watershed,
thus exploiting intensity contrast and region size criteria [19], with other
perceptually meaningful image characteristics such as texture, aiming at
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improved segmentation results. Additionally, we aim at integrating the
aforementioned ideas with Partial Differential Equation (PDE) modeling.

In this paper we propose well-motivated and efficient image simplifica-
tion and feature extraction techniques as necessary tasks of the presegmen-
tation part. We focus on generalized watershed techniques, investigate their
PDE formulation encompassing various flooding criteria, such as region size
and volume, and incorporate geometric and textural features in flooding
using a leveling-based image decomposition scheme. The resulting segmen-
tation method couples contrast, size and texture information driven by two
separate image components: Cartoon U (for contrast information) and Tex-
ture component V , resulting from U + V image decomposition model. The
modeling is done via PDEs using ideas from curve evolution and level sets,
and the implementation is accomplished by adapting specialized level set
methodologies, which ensure speed and reduced computational cost. The
performance and efficacy of the proposed segmentation scheme is demon-
strated through a set of qualitative, quantitative and comparative experi-
mental results.

2. Image simplification

The simplification stage is concerned with noise and redundant information
removal, resulting in an image with smoother structure, but at the same
time with key features accurately preserved, easier to handle and more ap-
propriate for further processing such as feature extraction and partition-
ing. The primary concern here is the selection of the filtering the image
has to undergo in order to retain meaningful information but at the same
time suppress pointless structures without causing boundary blurring or
contour displacement. An efficient family of filters that have the afore-
mentioned properties are the morphological connected operators [11,12,17].
For image simplification we use contrast/area/volume filtering and level-
ings. Further, generalized openings γ and closings ϕ are often combined
sequentially to produce Alternating Sequential Filters (ASF): ΨASF(I) =
ϕnγn...ϕ2γ2ϕ1γ1(I), where i = 1, 2, ...n denotes the increasing scale of the
filter.

Contrast filtering The graylevel reconstruction opening ρ− and closing
ρ+ of an image I(x, y) given a marker signal M(x, y) are:

ρ−(M |I) = lim
n→∞

Fn, Fn = δB(Fn−1|I), F0 = M, (1)

ρ+(M |I) = lim
n→∞

Fn, Fn = εB(Fn−1|I), F0 = M, (2)

where δB(M |I) and εB(M |I) denote the conditional dilation and erosion,
respectively, of M by a unit disk B constrained by I. To achieve contrast
filtering we set the marker M = I − h and M = I + h for reconstruction
opening and closing, respectively, with h being a constant that controls the
contrast of the bright/dark connected components that will be merged.

412



Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 411–422.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.19.23.33

Self-dual filtering The above operators are either anti-extensive or ex-
tensive, simplifying bright or dark image components, respectively. Sym-
metrical simplification of image components requires self-dual filters, such
as the levelings, which are nonlinear, increasing and idempotent filters
that have many interesting scale-space properties [11, 12]. They treat sym-
metrically the image foreground and background; further, they can be an-
alyzed as composition of reconstruction opening and closing. They oper-
ate on a reference image I by locally expanding/shrinking an initial seed
image, called the marker M , and globally constraining the marker evolu-
tion by the reference image. Specifically, iterations of the image operator
λ(F |I) = (δ(F ) ∧ I) ∨ ε(F ), where δ(F ) (resp. ε(F )) is a dilation (resp.
erosion) of F by a small disk, yield in the limit the leveling of I w.r.t. M ,

Λ(M |I) = lim
k→∞

Fk, Fk = λ(Fk−1|I), F0 = M. (3)

Levelings preserve the coupling and sense of variation in neighbor im-
age values and do not create any new regional maxima or minima across
scales. In practice, they can reconstruct whole image objects with exact
preservation of their boundaries and edges. In this reconstruction process
they simplify the original image by completely eliminating smaller objects
inside which the marker cannot fit.

Area filtering The need often occurs to filter out small light (respectively
dark) particles from graylevel images without damaging the remaining struc-
tures. The operator that achieves this kind of filtering is the area opening
(closing) of size n that keeps only the light (dark) connected components
whose area (number of pixels) is equal or greater than a threshold n. For
binary images X =

⋃
i Xi expressed as disjoint union of connected compo-

nents Xi, the area opening is α−n (X) =
⋃
{Xj : Area(Xj) ≥ n}. Dually,

the binary area closing is α+
n (X) = [α−n (Xc)]c. The graylevel area opening

is defined via threshold superposition:
α−n (I)(x, y) = sup{h : (x, y) ∈ α−n (Th(I))}, (4)

where Th(I) = {(x, y) : I(x, y) ≥ h} are the upper level sets of the image I
by thresholding it at level h. Similarly for the graylevel closing.

Volume filtering A combination of the above contrast and size connected
operators yields the volume reconstruction operator. Volume operators re-
move connected components from the image whose volume is below a certain
threshold. They are defined as:

β−n (I)(x, y) = sup{h : (x, y) ∈ β−n (Th(I))}, (5)

β+
n (I)(x, y) = sup{h : (x, y) ∈ β+

n (Th(I))}, (6)

where in the binary case, if Th(I) = X =
⋃

i Xi we define β−n (X) =
⋃
{Xj :

Area(Xj) ·h ≥ n} with Xj being connected components. Volume operators
present the formal properties of openings and closings and can be used as a
mean of simplification filtering that balances contrast and size criteria.
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3. Feature extraction

The feature extraction stage deals with the extraction of special image fea-
tures which facilitate the final segmentation step, and requires a more severe
but detailed processing of the image. As features we denote regions of in-
terest, gradients, texture measurements, as described below.

Gradient features High values of the image’s gradient are indicative of
abrupt intensity changes and specify possible object/region contours. Ad-
ditionally, the topographic relief, emerging from the gradient magnitude
function is used in the flooding process that leads to the final segmentation
map. There are many different types of gradients that have been exten-
sively used in the edge detection framework. Among them, we choose the
morphological gradient M∇(I) = [(I ⊕ B) − (I 	 B)]/2 for its robust be-
havior low complexity, and better segmentation results compared to other
edge strength operators.

Texture features A way of acquiring texture information from an image
I is via a decomposition scheme [13, 21], according to which the image is
expressed as I = U + V , where U is the “cartoon component” and consists
of relatively flat plateaus for the object regions surrounded by abrupt edges,
whereas V is the “texture oscillation” and contains texture information plus
noise. Simple texture patterns appearing in V component can be modeled
as narrowband 2D AM-FM signals [4,7] of the form α(x, y) cos[φ(x, y)], with
a spatially varying amplitude a(x, y) and a spatially-varying instantaneous
frequency vector ~ω(x, y) = ∇φ(x, y) The amplitude is used to model local
image contrast and the frequency vector contains rich information about
the locally emergent spatial frequencies. An efficient way to estimate the
2D amplitude and frequency signals is via the 2D Teager energy operator
[7] Ψ(f) , ||∇f ||2 − f∇2f . Applying Ψ to the AM-FM signal yields
Ψ[a cos(φ)] ≈ a2||~ω||2, i.e., the product of the instantaneous amplitude and
frequency magnitude squared, which may be called the texture modulation
energy. Complex (wideband) image textures can be modeled as a sum of
2D AM-FM signals; i.e., f(x, y) =

∑
k=1 αk(x, y) cos[φk(x, y)]. In our case,

Ψ is applied on narrowband versions of the wideband signal V , which are
obtained by convolving it with a dense filterbank [4] of 2D Gabor filters hk.
The modulation energies of the filtered texture components are measured
via the 2D Energy Operator Ψ, smoothed by a local averaging filter ha

and then are subjected to pixelwise comparisons. This yields the Maximum
Average Teager Energy Ψmat[f(x, y)] = maxk ha ∗ Ψ [f ∗ hk] (x, y). It is a
slowly-varying indication of texture modulation energy, which can classify
among different energy levels. It provides both local and global texture
information and tracks the most dominant texture components along mul-
tiple modulation bands [5]. The derived image texture feature is capable
of quantifying important characteristics like geometrical complexity, rate of
change in local contrast variations and texture scale.
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Markers Markers are predefined image locations that serve as starting
points of the region-growing procedure. These seed points grow in time
according to a set of specified criteria until the image plane is totally cov-
ered by them. It is common practice that markers are chosen as regions
where some homogeneity criterion is constant or a key characteristic is of
certain strength. In our research work we emphasize on contrast, volume
and texture-based markers, i.e., image areas where the homogeneity crite-
rion is contrast, volume (area and contrast) and texture, respectively. In
all three cases we extract markers via a reconstruction procedure as valleys
or peaks of an image transform that resembles one of the aforementioned
characteristics. In all cases, the scale is incorporated in the structuring el-
ement or reconstruction controlling parameter. Specifically, we distinguish
the following cases.

Contrast, Area or Volume - based markers. Markers are estimated as
valleys (or peaks) of certain strength of a generalized Bottom (Top) Hat
Transform. The Bottom Hat Transform is defined as: HB(I) = ϕ(I) − I,
where ϕ(I) is a generalized closing and I is an intensity image (initial or
simplified). Similarly, Top Hat Transform is defined as: HT (I) = I −
γ(I), where γ(f) is a generalized opening. Depending on what kind of
closing /opening transform we choose, we obtain: (a) contrast markers if
the generalized closing is based on reconstruction, i.e., ϕ(I) = ρ+(I + h|I)
that is where the parameter h controls the contrast (valley depth), (b) area
markers if ϕ(I) is area closing, (c) volume markers if ϕ(I) is volume closing,
in which case contrast and area criteria are exploited.

Texture - based markers. Again markers are estimated as peaks of an
image transform that relies on texture characteristics. Therefore, peaks
(valleys) either of the texture component V or its dominant modulation
energy are extracted as highly (poorly) textured regions. The peak (valley)
extraction is based on a reconstruction procedure as discussed earlier.

4. Generalized watershed and PDEs

Apart from the standard morphological flooding approach implemented ei-
ther via immersion simulations [22] or hierarchical queues [1], the watershed
transform has also been modeled in a continuous way via the eikonal PDE
[14] and implemented in [8] using curve evolution and level sets. Further,
generalized floodings and corresponding watersheds have been investigated
in [10]. Using a PDE-based modeling in the flooding process of watershed
transform, each emanating wave’s boundary is viewed as a curve, which
evolves with predefined speed. In the case of uniform height watershed
flooding, let us consider a moving smooth closed curve, which is the bound-
ary of the marker region, ~C(p, t) where p ∈ [0, 1] parameterizes the curve
and t is an artificial marching parameter. The PDE that implements the
generalized watershed flooding is:
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∂ ~C

∂t
=

c

Area(t)‖∇I‖
· ~N, (7)

where c is a constant, ‖∇I‖ is the gradient magnitude of the image function
I, ~N is the unit outward vector normal to the curve, and Area(t) is either 1 if
we perform only contrast-based segmentation (height flooding) or Area(t) =
Area(~C), that is Area(t) is equal to to area enclosed by the propagating
curve at the specific time t in case of contrast and size segmentation (volume
flooding) [19]. The above propagation PDE implies that the evolution speed
is inversely proportional to the intensity (volume) variation at each image
point, in the direction of the outward normal vector. For implementation
we use the level set approach [15] where at each time the evolving curve is
embedded as the zero level set Γ(t) = {(x, y) : Φ(x, y, t) = 0} of a higher
dimension space-time function Φ(x, y, t). Then this embedding function Φ
evolves in space-time according to the following PDE:

∂Φ
∂t

=
c

Area(t)‖∇I(x, y)‖
‖∇Φ‖. (8)

Modeling generalized watersheds via the eikonal has the advantage of a
more isotropic flooding but it also introduces some challenges in the im-
plementation. Efficient algorithms [18] to solve time-dependent eikonal
PDEs are the narrow-band level sets methods, and more specifically, the
fast marching method, an algorithm for stationary formulations of eikonal
PDEs.

Experimental results using height and volume flooding segmentation of
Equation 7 are illustrated in Figure 1, exploiting the basic property of vol-
ume flooding, i.e., retaining the balance between area and contrast. The
image shown left in Figure 1 is synthetically produced by taking the dis-
tance transform of the corresponding binary image and adding an arbitrary
constant to each of their connected components. For illustration purposes,
a flooding source has been superimposed for each object. Bright objects
appear with higher altitude compared to darker objects. Next in Figure 1
we illustrate the contour lines of each object, with blue color corresponding
to lower altitude and red corresponding to higher altitude. The cases of
uniform height and volume flooding are examined and presented in third
and fourth column of Figure 1, respectively. In the case of height flooding
the object of lowest contrast is totally lost, whereas in the case of volume
flooding the undetected object is the one of lowest volume (area and con-
trast).

5. Coupled contrast-texture segmentation

The aforementioned generalized watershed segmentation schemes use as
prominent characteristic the image intensity viewed either as seeds’ con-
trast, size or volume. Any textural information present in the image is in-
corporated in intensity. Based on evidence from psychophysics according to
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Figure 1. Height and volume flooding segmentation results: (from left to right)
synthetic image, contours corresponding to different altitudes (gray values), height
flooding segmentation regions, volume flooding segmentation regions.

which humans combine multiple cues in order to detect boundaries from im-
ages [16], we try to exploit contrast and texture as two separate information
sources so as to improve and balance the segmentation results and eliminate
false boundaries introduced by intensity variations in amplitude and phase,
owing to textured parts. Ideally we want to add a texture-controlled term to
the height/flooding PDE (7) that will be able to quantify properly the avail-
able image texture information by enabling the growing seeds surpass false
edges introduced by texture structures in the image, thus speeding up the
evolution at such places. This can be achieved by the Ψmat operator, which
provides both local and global texture information, tracks the most domi-
nant texture components along multiple modulation bands and is capable
of quantifying important characteristics like geometrical complexity, rate of
change in local contrast variations and texture scale. We thus conclude to
the following PDE:

∂ ~C

∂t
=

(
λ1

max(ε,Area(t)||∇I||)
+ λ2Ψmat(I)

)
~N, (9)

where λ1 and λ1 are parameters that control the contribution of each cue
and 0 ≤ ε ≤ 1 is used to handle instabilities caused by gradient’s zero
values. The seeds’ evolution speed depends on two eikonal terms, linked with
some optimality criterion. The first term drives the curve (seed’s boundary)
with speed that maximizes the flooding of the image toward its watershed.
The second term can be shown to correspond to a flow that maximizes the
average texture energy: max

∫∫
R(C)

Ψ(I) =⇒ ∂ ~C/∂t = Ψ(I) ~N . This term
pushes the curve toward regions with large average texture energy.

The PDE (9) consists of two terms: the gradient magnitude operator
quantifying intensity changes and the energy modulation operator quan-
tifying AM-FM variations corresponding to texture. Our next concern is
to apply these two different operators of separate image transformations
emphasizing on different type of information. We take advantage of the
recently proposed image decomposition model [13, 21], which provides an
effective way of linearly distinguishing contrast and texture from a single
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image, in the form I = U +V . Specifically, the U component, known as car-
toon, serves very well as a contrast descriptor since it consists of relatively
flat plateaus that correspond to object regions, surrounded by abrupt edges
that correspond to object boundaries. The V component, which is in fact
the texture oscillation contains texture oscillations plus noise information
and serves as texture descriptor. Combining the U +V image decomposition
philosophy with the PDE (9) and level set formulation [15] we derive the
following coupled segmentation PDEs:

∂ ~C

∂t
=

(
λ1

Area(t)||∇U ||
+ λ2Ψmat(V )

)
~N, (10)

∂Φ
∂t

=
(

λ1

Area(t)||∇U ||
+ λ2Ψmat(V )

)
||∇Φ||. (11)

Contrast variations are taken into account from the U part, which is
obtained by applying the leveling operator on the initial image and texture
oscillations are approached through the residual V = I − U . The elimina-
tion of division-by-zero scenario as introduced in Equation 9 can be as well
applied in Equation 10 and Equation 11 in order to handle instabilities.

In the PDE derived above each cue’s contribution is controlled by a
coefficient, namely λ1 geometric evolution controlling parameter and λ2

texture evolution controlling parameter. We set these λ parameters to be
spatially adaptable, taking advantage of the fact that the U + V image
decomposition model gives evidence about the existence of each component
(geometry and texture) at every image location. All the needed information
about contrast at each image pixel is encapsulated by 1/|∇U | component
and texture contribution is captured by Ψmat(V ). Hence, we estimate λ1

(geometric coefficient) and λ2 (textural coefficient) as the mean square error
between the observed image I and the texture V or contrast U component,
respectively. These mean square errors are weighted locally by a small
Gaussian window Gσ(x, y) of scale σ, i.e., λ1(x, y) = [Gσ ∗ (I − V )2](x, y)
and λ2(x, y) = [Gσ ∗ (I − U)2](x, y). We can either use this estimated
λ-space functions directly or normalize their sum to 1. Alternatively, the
coefficients can be estimated as: λ1(x, y) = exp(−[Gσ ∗ (I −U)2](x, y)) and
λ2(x, y) = exp(−[Gσ ∗(I−V )2](x, y)). The former selection of λ parameters
has experimentally been found to yield slightly better results.

The curves that propagate according to the aforementioned evolution
scheme are multiple, initialized as the contours of a set of markers, thus
indicating significant image regions. The marker extraction is done accord-
ing to the methodologies described in Section 3. Specifically, depending on
the type of image to be segmented we choose our markers to be contrast-
oriented, texture-oriented, a combination of the above or manually placed at
areas of interest. The PDE (11) is of pure eikonal-type and its implementa-
tion is based on established techniques from level sets methods, specifically
the fast marching methodology (FMM) [18,20] that ensures computational
speed.
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6. Experiments, comparisons, and conclusions

In Figure 2 we demonstrate a set of the extracted features and segmentation
results on a biomedical image from prostate tissue used for gleason scale
measurement. The reference image is shown left on top row of Figure 2.
In same row we illustrate the automatically extracted marker set, U and V
image components obtained after image decomposition. In the second row
we illustrate the texture modulation energies Ψmat(I), and Ψmat(V ), as well
as the corresponding segmentation results using PDEs (9) and (10).

Figure 2. Image features and segmentation results: (from left to right) Origi-
nal image, Markers, Cartoon U , Texture V , Texture modulation energy Ψmat(I),
Texture modulation energy Ψmat(V ), Coupled segmentation on I, Coupled seg-
mentation on U + V .

In order to judge the quality of the obtained segmented images, we have
used some quality measures in order to quantify the results and test them
against other segmentation methodologies. Although there is a variety of
goodness criteria for the evaluation of segmentation methodologies, and each
criterion can be used in different segmentation scenarios, there is no global
measure that can be applied in every case. Among the goodness measures
[23] established according to human perception and intuition, we eventu-
ally concluded to measure each region intensity variance using a cartoon
version of the image, as well as each region’s modulation energy variance,
thus incorporating both contrast and texture information. The lower those
variance values, the better are the segmentation results.

The proposed method was tested against height and volume flooding wa-
tershed segmentation, as well as the multicue scheme without image decom-
position of Equation 9, since these methods produce similar segmentation
results in terms of closed boundaries and disjoint, plane-filling regions.

In Figure 3, we provide a set of different segmentation results obtained
by applying the aforementioned methods on four different reference images:
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1) a soilsection image consisting of highly contrasted and textured areas,
2) an aerial photo 3) a biomedical image of prostate tissue and 4) an animal
image of differently textured areas. The different segmentation methodolo-
gies are tested using the same set of automatically extracted markers via
contrast or volume criteria for each image (in the case of the animal image
markers are placed manually). Marker sets’ illustration is omitted due to
lack of space. Apart from visual comparisons, we provide Table 1, where the
aforementioned goodness measures are computed for each case. As it can
be observed, the proposed scheme incorporating image decomposition out-
performs the other segmentation methodologies. It provides better results,
in the sense that the resulting partitioning map consists of more uniform re-
gions (low cartoon variance values) with smoother texture (low modulation
energy variance), compared to the other methodologies.

Figure 3. Comparisons of different types of watershed-like segmentation results:
(columns from left to right) Reference images, Multicue segmentation results with-
out decomposition, Multicue segmentation results with decomposition, Height wa-
tershed flooding segmentation results, Volume watershed flooding segmentation
results.
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Table 1. Segmentation comparisons.

Quality

Measures

Segmentation Method

Coupled Type Watershed Flooding

I U + V Height Volume
so

il
var(U) 0.921 0.823 0.893 1.108

var(Ψmat(V)) 0.280 0.259 0.281 0.254

length(Γ) 4855 4987 4982 5742

a
er

ia
l var(U) 0.335 0.281 0.337 0.383

var(Ψmat(V)) 0.473 0.468 0.479 0.555

length(Γ) 3934 4206 4054 4442

b
io

m
ed var(U) 0.327 0.294 0.314 0.365

var(Ψmat(V)) 0.138 0.135 0.140 0.139

length(Γ) 6529 6630 6728 7593

m
a
d
ri

ll var(U) 0.046 0.024 0.046 0.034

var(Ψmat(V)) 0.272 0.232 0.271 0.285

length(Γ) 1167 1210 1201 1960

Concluding remarks The presented research work addressed the prob-
lem of image segmentation in terms of simplification, feature extraction
and image partitioning with focus on a generalized flooding procedure us-
ing geometric and textural information. Generalized watershed transform
was modeled via PDEs and extended to incorporate geometric and textural
information using ideas such as U+V image decomposition and texture AM-
FM modeling. The quality of segmentation results was illustrated through
qualitative, quantitative and comparative results.

It should be noted that geometric curve evolution of the form ∂ ~C/∂t =
g(c − µκ) ~N has been proposed by Caselles et al [3] and Malladi et al [6].
However, our proposed scheme has three differences compared to the afore-
mentioned evolution: i) it has a term that achieves watershed type flooding
ii) it has a second term that is a new contribution and acts on the texture
component of the image that, to our best knowledge, has never been used
before in segmentation schemes, and iii) the curvature component κ is not
present in our scheme since it was experimentally determined that it does
not provide any significant improvement to the overall segmentation.

Acknowledgments

This research work was supported by the project PYTHAGORAS (of
EPEAEK II) which is co-funded by the European Social Fund (75%) and
the Greek National Resources (25%). The authors also wish to thank G.
Evangelopoulos for his valuable help in the texture analysis part and G.
Papandreou and S. Lefkimmiatis for help with pdfLaTeX.

421



Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 411–422.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.19.23.33

References

[1] S. Beucher and F. Meyer, The Morphological Approach to Segmentation: The Wa-
tershed Transformation, Mathematical morphology in image processing, 1993.

[2] T. Brox, M. Rousson, R. Deriche, and J. Weickert, Unsupervised Segmentation Incor-
porating Colour, Texture, and Motion, Computer Analysis of Images and Patterns,
2003, pp. 353–360.

[3] V. Caselles, R. Kimmel, and G.Sapiro, Geodesic Active Contours, Int’l J. Comp.
Vision 22 (1997), no. 1, 61–79.

[4] J. P. Havlicek, D. S. Harding, and A. C. Bovik, The Multi-component AM-FM Image
Representation, IEEE Trans. Image Processing 5 (1996), no. 6, 1094–1100.

[5] I. Kokkinos, G. Evangelopoulos, and P. Maragos, Advances in Texture Analysis: En-
ergy Dominant Components and Multiple Hypothesis Testing, Proc. ICIP, 2004.

[6] R. Malladi, J. A. Sethian, and B. C. Vemuri, Shape modeling with front propagation:
A level set approach, IEEE Tr. Pattern Anal. Mach. Intel. 17 (1995), no. 2, 158–175.

[7] P. Maragos and A. C. Bovik, Image Demodulation Using Multidimensional Energy
Separation, J. Opt. Soc. Amer. A 12 (1995), no. 9, 1867–1876.

[8] P. Maragos and M. A. Butt, Curve evolution, differential morphology, and distance
transforms applied to multiscale and eikonal problems, Fundamenta Informaticae 41
(2000), 91 –129.

[9] D. Martin, C. Fowlkes, and J. Malik, Learning to Detect Natural Image Boundaries
Using Local Brightness, Color, and Texture Cues, IEEE Tr. Pattern Anal. Mach.
Intel. 26 (2004), no. 5, 530 –549.

[10] F. Meyer and P. Maragos, Multiscale morphological segmentations based on water-
shed, flooding, and eikonal pde, Proceedings of scale-space, 1999, pp. 351–362.

[11] , Nonlinear scale-space representation with morphological levelings, J. Visual
Communications. & Image Representation 11 (2000), 245–265.

[12] F. Meyer, The Levelings, Proc. fourth international symposium on mathematical
morphology and its applications to image processing, 1998June, pp. 199 –206.

[13] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equa-
tions, University Lecture Series, vol. 22, AMS, 2002.

[14] L. Najman and M. Schmitt, Watershed of a continuous function, Signal Processing
38 (1994), no. 7, 99–112.

[15] S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: Algo-
rithms based on hamilton-jacobi formulations, J. Comp. Phys. 79 (1988), 12–49.

[16] J. Rivest and P. Cavanagh, Localizing contours defined by more than one attribute,
Vision Research 36 (1996), no. 1, 53 –66.

[17] P. Salembier and J. Serra, Flat zones filtering, connected operators, and filters by
reconstruction, IEEE Trans. Image Processing 4 (1995), no. 8, 153–1160.

[18] J. A. Sethian, Level set methods and fast marching methods, Cambridge University
Press, 1999.

[19] A. Sofou and P. Maragos, PDE-based Modeling of Image Segmentation using Volu-
mic Flooding, Proc. Int’l Conf. Image Processing, 2003.

[20] J. N. Tsitsiklis, Efficient algorithms for globally optimized trajectories, IEEE Trans.
Automat. Contr. 40 (1995), no. 9, 1528–1538.

[21] L. A. Vese and S. J. Osher, Modeling textures with total variation minimization and
oscillating patterns in image processing, J. Sci. Comp. 19 (2003), no. 1-3, 553–572.

[22] L. Vincent and P. Soille, Watershed in digital spaces: An efficient algorithm based
on immersion simulations, IEEE Tr. Pat. Anal. Mach. Intel. 13 (1991June), 583–598.

[23] Y. J. Zhang, A survey on evaluation methods for image segmentation, Pattern
Recognition 29 (1996), no. 8, 1335–1346.

422


	Generalized watershed and PDEs for geometric-textural segmentation
	Introduction
	Image simplification
	Feature extraction
	Generalized watershed and PDEs
	Coupled contrast-texture segmentation
	Experiments, comparisons, and conclusions




