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Abstract An interactive image segmentation method based on structural pat-
tern recognition has been recently introduced. A model graph is
generated from an oversegmentation of the image and from traces
provided by the user. An input graph is generated from the overseg-
mented image. Image segmentation is then obtained by matching
the input graph to the model graph. An important problem that
should be addressed is how to control the size of the input graph.
This size is given by the number of regions provided by the over-
segmentation. To address this problem, we propose to control the
maximum number of regions provided by the oversegmentation by
using watershed with markers. The markers are given automati-
cally by using two approaches: quadtrees and centroidal Voronoi
diagrams. Results on real images are discussed.

Keywords: inexact graph matching, oversegmentation control, image segmen-
tation quadtrees centroidal Voronoi diagrams.

1. Introduction

Image segmentation is a key problem in most situations in image processing,
analysis and computer vision. From the mathematical morphology point-of-
view, there are two main paradigms: the flat zone approach using connected
filters [4, 8] and the watershed-based methods [15]. Two key problems that
often arise in the context of the watershed are regularization and overseg-
mentation. Methods that address the regularization problem include the
viscous watershed transform [14] and watersnakes [10]. On the other hand,
oversegmentation may be addressed by watershed with markers [13] (the
most popular approach) or by a hierarchical approach [9].

375



Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10 –13, 2007, MCT/INPE, v. 1, p. 375–386.

http://urlib.net/dpi.inpe.br/ismm@80/2007/03.20.00.50

Inexact graph matching represents a structural alternative that has been
used for image segmentation [2,3,12]. Since it is a model-based approach, it
solves simultaneously the image segmentation and parts recognition prob-
lems. In the case of image segmentation, two attributed relation graphs
(ARGs) are required. A model graph Gm should be available. There are
different ways to obtain such models, depending on the application. On the
other hand, an input graph Gi is generated from an oversegmented image,
e.g., by using watershed. Image segmentation is then carried out by match-
ing the input graph to the model graph. The possible graph matches may
be shown to be equivalent to cliques of the association graph between input
and model graphs. There are |Vm|Vi| possible solutions for this problem,
|Vm| and |Vi| denote the number of vertices of Gm and Gi, respectively.
Because of the large number of possible matches, an objective function to
assess the quality of each clique must be defined and optimized in order to
provide the most suitable image segmentation.

The size of the model graph is controlled by the operator that creates
the model. On the other hand, a key problem is how to control the size of
the input graph, i.e., |Vi|, which is normally given by the number of regions
of the oversegmented image. As mentioned above, watershed oversegmen-
tation may be controlled either by markers or by a hierarchical approach.
This paper adopts watershed with markers, which is the key difference from
the previous methods [2,3,12]. Because the main goal of using the markers
in this case is not to identify the desirable objects in the image, but only to
control the number of segmented regions, the markers are generated auto-
matically from the image, the only parameter being the maximum number
of image regions in the oversegmented image. The other alternative, i.e.,
hierarchical watershed, will be explored and compared in future research.

We have recently introduced a semi-automated approach for model ini-
tialization to guide the graph matching segmentation procedure [3]. The
input image to be segmented is decomposed into regions using watershed,
as shown in Figure 1. Some regions of the oversegmented image are manu-
ally labeled by traces drawn on the main structures to be segmented. The
model graph is automatically derived from the image and the watershed
regions intersected by the label traces provided by the user.

This paper is organized as follows. Section 2 reviews our method. The
main novelty of the present paper, detailed in Section 3, consists of the
automatic generation of markers for watershed using quadtrees and the
centroidal Voronoi diagrams. Experimental results are described in Sec-
tion 4. This paper is concluded with some comments on our ongoing work
in Section 5.

2. Model-based image segmentation

We follow the notation described in [3], where more detailed information
may be found. G = (V,E) denotes a directed graph where V represents the
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Figure 1. The input and model graphs formation process: the input image is
oversegmented by a watershed procedure. Each region is represented as an input
graph vertex. An adjacency graph is then generated. The user defines the model
graph vertices by drawing label traces on some structurally important regions.
The model graph is created as a complete graph. (Adapted from [3]).

set of vertices of G and E ⊆ V ×V the set of edges. An attributed relational
graph (ARG) is defined as G = (V,E, µ, ν), where µ : V → LV assigns an
attribute vector to each vertex of V . Similarly, ν : E → LE assigns an
attribute vector to each edge of E. The vertices and the edges attributes
are called object and relational attributes, respectively. Two ARGs Gi =
(Vi, Ei, µi, νi) and Gm = (Vm, Em, µm, νm) are adopted, i.e., the input (i.e.,
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derived from the image) and the model graphs, respectively. |Vi| denotes
the number of vertices in Vi, while |Ei| denotes the number of edges in Ei.
We use a subscript to denote the corresponding graph, e.g., ai ∈ Vi denotes
a vertex of Gi, while (ai, bi) ∈ Ei denotes an edge of Gi. We define in this
paper µ(a) = (g(a)), where g(a) denotes the average gray-level of the image
region associated to vertex a ∈ V , normalized between 0 and 1 with respect
to the minimum and maximum possible gray-levels. Let a, b ∈ V be two
vertices of G, and pa and pb be the centroids of the respective corresponding
image regions. The relational attribute ν(a, b) of (a, b) ∈ E is defined as
the vector ν(a, b) = (pb − pa)/(2dmax), where dmax is the largest distance
between any two points of the input image region.

An inexact match between Gi and Gm may be represented as an ap-
proximate homomorphism between Gi and Gm and is searched in the corre-
sponding association graph [2]. The association graph GA between Gi and
Gm is defined as the complete graph GA = (VA, EA), with VA = Vi × Vm.
An inexact match between Gi and Gm can be expressed as a clique (i.e.,
a complete subgraph) GS = (VS , ES) of the association graph GA between
Gi and Gm with VS = {aim = (ai, am), ai ∈ Vi, am ∈ Vm} such that ∀ai ∈
Vi,∃am ∈ Vm, aim ∈ VS and ∀aim ∈ VS ,∀bim ∈ VS , ai = bi ⇒ am = bm

which guarantees that each vertex of the image graph has exactly one label
(i.e., it is mapped onto a single vertex of the model graph) and |VS | = |Vi|.

There is a huge number of cliques that represent possible inexact matches
between Gi and Gm, namely |Vm||Vi|. The evaluation of the quality of a
solution expressed by GS is performed through an objective function:

f(GS) =
α

|VS |
∑

aim∈VS

cV (aim) +
(1− α)
|ES |

∑
e∈ES

cE(e), (1)

where cV (aim) is a measure of dissimilarity between the attributes of ai

and am. Similarly, if e = (aim, bim), cE(e) is a measure of the dissimilarity
between edge (ai, bi) of the image and edge (am, bm) of the model. The dis-
similarity objective function should therefore be minimized. Let aim ∈ VA,
ai ∈ Vi and am ∈ Vm. The dissimilarity measure cV (aim) is defined as
cV (aim) = |gi(ai)−gm(am)|, where gi(ai), gm(am) are the object attributes
of vertices ai ∈ Gi, am ∈ Gm, respectively. Let e = (aim, bim) ∈ EA.
We compute the modulus and angular differences between ν(ai, bi) and
ν(am, bm) as φm(e) = |‖ν(ai, bi)‖− ‖ν(am, bm)‖| and φa(e) = | cos(θ)−1|

2 , re-
spectively, where θ is the angle between ν(ai, bi) and ν(am, bm), i.e., cos(θ)
is calculated as:

cos(θ) =
ν(ai, bi) · ν(am, bm)
‖ν(ai, bi)‖‖ν(am, bm)‖

.

In order to define the dissimilarity measure cE(e), we need an auxiliary
function: ĉE(e) = γEφa(e)+(1−γE)φm(e). The parameter γE (0 ≤ γE ≤ 1)
controls the weights of φm and φa. It is important to note that ν(a, a) = ~0.
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This fact means that, when two vertices in Gi are mapped onto a single
vertex of Gm, we have cE(e) = ‖ν(ai1 , ai2) − ~0‖ = ‖ν(ai1 , ai1)‖, which
is proportional to the distance between the centroids of the corresponding
regions in the oversegmented image (in such cases, we define cos(θ) = 1).
Therefore, ĉE provides large dissimilarity values when assigning the same
label (i.e., the target vertex in Gm) to distant regions and lower values when
assigning the same label to near regions, which is intuitively desirable in the
present application.

Let ai1 , ai2 ∈ Vi and am1 , am2 ∈ Vm be vertices of Gi and Gm, respec-
tively. Suppose that ai1 and ai2 are matched to am1 and am2 , respectively.
In this case, the edge (ai1 , ai2) should be matched to (am1 , am2) and the dis-
similarity measure between them should be evaluated. However, depending
on the adopted graph topology, it is possible that one or both edges do not
actually exist and the dissimilarity measure should properly deal with such
situations. The edge dissimilarity measure is therefore defined by Equa-
tion 2. It is important to highlight the case of e′ = (ai1,m1 , ai2,m2). The
edge comparisons depend on the graph topology adopted for Gm and Gi.
In the present case, an adjacency graph has been adopted for Gi whereas
a complete graph is generated for Gm. Therefore, there are matching sit-
uations where there exists an edge in Gm but not on Gi (i.e., (ai1 , ai2) 6∈
Ei, (am1 , am2) ∈ Em) because of the different adopted graph topologies.
In this case, the (ai1 , ai2) features are calculated on-the-fly using the same
procedure to calculate the edge features, thus allowing the comparison to
(am1 , am2). This problem could be solved by adopting a complete graph for
Gi, as in our previous works, but this would naturally increase the memory
costs.

cE(e) =


ĉE(e), if (ai1 , ai2) ∈ Ei, (am1 , am2) ∈ Em,
ĉE(e′), if (ai1 , ai2) 6∈ Ei, (am1 , am2) ∈ Em,
∞, if (ai1 , ai2) ∈ Ei, (am1 , am2) 6∈ Em,
0, if (ai1 , ai2) 6∈ Ei, (am1 , am2) 6∈ Em.

(2)

The objective function (Equation 1) should be optimized in order to find
a suitable inexact match between Gi and Gm. There are many different op-
timization algorithms that may be used and the reader is referred to [2]
for a comparative review that includes beam-search, genetic algorithms and
Bayesian networks. The results presented in this paper have been obtained
using the clique-search algorithm described in [3]. The optimization algo-
rithm starts with an empty clique GS and incrementally increases it by
evaluating the objective function (Equation 1). The cheapest clique is cho-
sen and a new vertex is added to it at each iteration. The algorithm stops
when a clique that represents a complete solution is found. The vertices
of GA are of the form aim = (ai, am), ai ∈ Vi, am ∈ Vm. For each ai ∈ Vi

there is a set of vertices aim = (ai, am), am ∈ Vm that represents all possible
labels to which ai may be assigned. Each of these sets is called a supervertex
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of GA, defined as:

si = {aim = (ai, am) ∈ Vs, ai ∈ Vi,∀am ∈ Vm}.

A clique GS that represents a valid solution is composed by one single
vertex aim of each supervertex si in GA. For each supervertex, the associ-
ation vertex aim with the best node cost defines the supervertex cost. The
proposed algorithm selects the cheapest supervertex si at each iteration. All
vertices aim of the selected supervertex si are considered in order to iden-
tify the one minimizing the objective function (Equation 1) when added to
the solution clique. This idea is inspired by the Sequential Forward Search
(SFS) algorithm for feature selection [7]. The final solution produced by the
matching procedure may be represented as a labeled image where a label
associated to the model vertices is assigned to each pixel (actually, to all
pixels of each watershed connected region). A mode filter is applied to the
labeled image to smooth the produced boundaries and to eliminate small
noisy labels.

3. Markers detection

In order to find markers suitable for the watershed, we use quadtrees and
centroidal Voronoi diagrams, an approach originally proposed for generating
mosaic effects [6]. The simplest method for finding markers is by sampling
the image adaptively using a quadtree. The stop criterion in the quadtree
is that the intensity of all pixels in a cell is close to the average intensity in
the cell. To avoid getting to single-pixel cells, we also stop the subdivision
when cells get too small. The markers are the centers of the leaf cells
in the quadtree. This quadtree sampling method generates two kinds of
points: points that are clustered around the image edges, and points in the
middle of homogeneous regions (having a low level of detail). Both kinds of
points are needed for a fair sampling of the image. The important aspect
is that the center of different cells tends to be on different image basins,
thus defining potentially good markers for the watershed. Because only a
maximum number of quadtree cells are available, oversegmentation may be
controlled by the allowed total number of cells.

A more sophisticated method for finding markers is to use a centroidal
Voronoi diagram whose sites are adjusted to the image features. The Voronoi
diagram of a set of points, called sites, is a decomposition of the space into
cells, one cell for each site, such that the cell corresponding to a site p is the
set of all points in space which are closer to p than to any other site [1,11].
A centroidal Voronoi diagram is a Voronoi diagram in which each site is the
centroid of its cell [5].

Centroidal Voronoi diagrams are very rare. However, any Voronoi di-
agram can be transformed into a centroidal Voronoi diagram by a simple
relaxation procedure known as Lloyd’s algorithm: replace each Voronoi site
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by the centroid of its Voronoi cell, recompute the Voronoi diagram for the
new sites, and repeat until convergence.

A major ingredient in the definition of a centroidal Voronoi diagram is
an underlying density function with respect to which the centroids of the
Voronoi cells are found. More precisely, the centroid of a region V with
respect to a density function µ is the point z given by

z =

∫
V

xµ(x) dx∫
V

µ(x) dx

·

Naturally, for images we use sums over pixels as the discrete analogues
of these integrals. The density function µ does not enter in the computation
of the Voronoi diagram, which is still computed using the Euclidean metric.

Centroidal Voronoi diagrams adapt themselves to the mass distribution
implied by the density function, having larger cells where the density is
low and smaller cells where the density is high. As in the mosaic approach
described in [6], we use the Euclidean norm of the gradient of the image as
density function. The gradient is computed using central differences. We
start from the markers found in the quadtree sampling step and compute a
centroidal Voronoi diagram using a few iterations of Lloyd’s algorithm. The
new markers are the centroids of the final Voronoi diagram.

4. Experimental results

The proposed approach has been applied to different images of the Berkeley
Image Segmentation Database1. The traced strokes manually defined for
three test images are shown in Figure 2. Each color represents a different
label to be recognized by the matching procedure. In order to compare the
different approaches, the same set of traced strokes for each test images
have been used to generate the models for the three approaches assessed
in the present paper: (i) watershed without markers; (ii) watershed with
markers generated by quadtrees; (iii) watershed with markers generated by
the centroidal Voronoi diagrams. It is worth noting that the image regions
may present similar gray-level and belong to different model classes defined
by the user labels. Also, there are some image regions with substantial gray-
level variation because of belonging to non-homogeneous textured regions,
which are traditionally very difficult to segment. The structural information
leads to a robust segmentation performance even in such cases.

The segmentation results are shown in Figures 3, 4 and 5. These figures
present, for each image, the results using the watershed without markers

1
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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(top row), the watershed with markers provided by the quadtree (middle
row) and the watershed with markers provided by the centroidal Voronoi
diagram (bottom row). The first column shows the oversegmentation in the
case of the watershed without markers and the corresponding quadtree and
Voronoi partitions with the cells seeds, which are used as markers for the
watershed. The middle column shows the corresponding watershed parti-
tions (red) and the final segmentation result in green. Finally, the last row
shows the final segmentation results with the region labels provided by the
inexact matching procedure.

Figure 2. Strokes traced by the user on each test image are used to generate the
graph models. Each color is associated to a different label, i.e., a different class
to be recognized by the matching procedure.

As it can be seen, though a smaller number of larger regions are used
by the matching procedure in the case of the watershed with markers (both
quadtree and Voronoi), the final segmentation results are comparable. In
some cases, the segmentation actually improves, once the watershed with-
out markers lead to too many regions, some very small, which makes more
difficult the correct matching and may lead to misclassifications. Therefore,
in general, the final segmentation is comparable for any of the three assessed
approaches. Nevertheless, the main difference lies in the memory and run-
ning time costs, as shown in Table 1. It can be seen from that table that
the input and model graphs are substantially smaller than with the previ-
ous approach without markers. The running time differences decrease from
nearly an hour to some seconds. This important decrease in running time
is explained because the total number of possible solutions is exponential in
the sizes of the graphs (|Vm|Vi|) and, once both |Vi| and |Vm| decrease, the
search space is considerably shrinked. It is also important to note that, al-
though the centroidal Voronoi method performs a kind of fine tuning in the
position of the markers, there is apparently no strong differences between
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the final result produced by it and the results produced by the quadtrees.

(a)

(b)

(c)

Figure 3. (a) Graph matching without markers; (b) Graph matching with
quadtree markers; (c) Graph matching with Voronoi markers.

Once the quadtrees approach is computationally cheaper, it may be more
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(a)

(b)

(c)

Figure 4. (a) Graph matching without markers; (b) Graph matching with
quadtree markers; (c) Graph matching with Voronoi markers.

(a)

(b)

(c)

Figure 5. (a) Graph matching without markers; (b) Graph matching with
quadtree markers; (c) Graph matching with Voronoi markers.
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advantageous. However, because different density functions may be adopted
for the centroidal Voronoi diagram, we feel that a good research topic is
to look for more suitable functions that could improve its performance.
For instance, an obvious drawback of the quadtree/Voronoi approaches is
that, because the oversegmented image is partitioned in a smaller number
of regions, some true edges are lost. It would be nice to have a method to
avoid such a problem.

Table 1. The table summarizes the size of the input and model graphs (|Vi| and
|Vm|, respectively) and the running time to segment the image.

Watershed Figure |Vi| |Vm| Running time

Without markers 3(a) 1482 352 1h34m20s

Quadtree 3(b) 226 152 25s

Voronoi 3(c) 226 133 24s

Without markers 4(a) 1102 373 59m30s

Quadtree 4(b) 187 121 14s

Voronoi 4(c) 187 117 13s

Without markers 5(a) 1003 317 35m10s

Quadtree 5(b) 232 152 30s

Voronoi 5(c) 232 134 27s

5. Conclusion

We have recently introduced an interactive image segmentation approach
based on inexact graph matching. The present paper improves our previous
works by exploring the watershed with markers automatically generated by
using quadtrees and centroidal Voronoi diagrams. The results are equiv-
alent in quality, but the improvement expressively decreased running time
and memory requirements. Our ongoing work includes research to find more
suitable density functions for the centroidal Voronoi diagram and the inclu-
sion of additional object attributes such as color and texture. Also, we
intend to explore the method for the recognition of object parts by using
different model and input images.
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