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Abstract Algorithms for the computation of the basis (maximal intervals of
the kernel) of binary and gray-scale translation-invariant and lo-
cally defined morphological operators are presented. Some exam-
ples that illustrate the dynamics of the algorithms as well as their
use as learning algorithms are also presented.
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1. Introduction

One interesting aspect of morphological operators is the existence of canon-
ical representations [1, 2, 9–11]. According to the canonical decomposition
theorem, any translation-invariant morphological operator can be expressed
as a supremum of sup-generating (also known as interval) operators. Al-
though this theorem holds for any translation-invariant mapping between
two complete lattices, in this work we restrict the scope to binary and gray-
level image operators. If we also impose local definition by a neighborhood
W , it can be shown that all kernel elements can be restricted to W [5].
Such operators are called W -operators. A W -operator can be characterized
by a function whose domain is restricted to sub-images in W and its value
to gray-scales of the image. This fact is important if our concern is the
computational representation of image operators.

In the binary case, a W -operator Ψ : P(E) → P(E), where E = Z2 de-
notes the image domain, is characterized by a binary function ψ : P(W ) →
{0, 1}. Its kernel is defined as

K(Ψ) = {X ∈ P(W ) : ψ(X) = 1}, (1)

and its basis, denoted B(Ψ), consists of the set of maximal intervals in the
kernel.

Interval operators are parameterized by a pair of structuring elements
that form intervals. The kernel induces a canonical decomposition while the
basis induces a minimal decomposition as a supremum of interval operators.
In terms of its kernel and basis, ψ can be expressed respectively as follows:

ψ(X) = max{λ[A,A](X) : [A,A] ⊆ K(ψ)} , (2)
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and
ψ(X) = max{λ[A,B](X) : [A,B] ∈ B(ψ)} , (3)

where the interval operator λ[A,B] is defined as

λ[A,B](X) = 1 ⇐⇒ X ∈ [A,B] . (4)

Similar definitions exist for gray-scale W -operators [3].
In this work we are particularly concerned with a specific problem. Sup-

pose we have knowledge of some elements that are and that are not elements
of a kernel. How do we compute a set of intervals that are consistent with
this set of elements? In other words, elements known to be in the kernel
must belong to at least one of the intervals and those known not to be in
the kernel must not belong to any of the intervals. By representing the set
of elements by intervals, our goal is to have a compact representation of the
operator. In particular, we are interested in the representation of functions
of the following types:

a) ψ : {0, 1}n → {0, 1}, n > 0 an integer,

b) ψ : {0, 1}n → {0, 1, 2, . . . , k}, n, k > 0 integers, and

c) ψ : {0, 1, 2, . . . , k1}n → {0, 1, . . . , k2}, n, k1, k2 > 0 integers.

These functions characterize, respectively, W -operators (a) between binary
images, (b) between binary and gray-level images, and (c) between gray-
level images.

In the following three sections we present algorithms for the computation
of a set of maximal intervals covering the elements that are known to be in
the kernel and not covering the ones that are known not to be in the kernel,
for the three cases above. In the last section we present the conclusions of
this work.

2. Binary input and output

Finding maximal intervals of the kernel of a binary W -operator is equiv-
alent to finding the minimal sum of products form of a Boolean function.
Classical algorithms such as the one due to Quine and McCluskey are well
known in the fields of switching theory and logic design [6]. It is known that
this problem is NP (computationally intractable). Therefore many imple-
mentations use heuristics to circumvent computational difficulties. One of
such implementations is the Berkeley Espresso [4].

While Quine-McCluskey’s approach follows a bottom-up strategy of join-
ing smaller intervals in the kernel in order to generate a larger one, until no
more joining are possible, another alternative option we have proposed is
based on a top-down approach [8]. The approach, called ISI (Incremental
Splitting of Intervals), starts the process with the whole interval [∅,W ] and
then removes from this interval the elements that are not in the kernel. The
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result of the removing operation can be expressed by means of a set of sub-
intervals of the initial interval. Thus, subsequent removing have the effect of
sequentially breaking (or splitting) one ore more of these intervals. At the
end of the process, when all elements that are not in the kernel have been
removed, only elements of the kernel will remain covered by the resulting
intervals.

2.1 Algorithm review

The removing operation or splitting rule [8] can be thought as the difference
between two intervals [A,B] and [C,D] expressed in terms of the maximal
intervals contained in [A,B] \ [C,D].

Proposition 1 (Splitting rule). Let [A,B] and [C,D] be two intervals in
[∅,W ]. Then, the set of maximal intervals contained in [A,B] \ [C,D] is
given by{

[A,B ∩ {c}c] : c ∈ C ∩Ac
}
∪

{
[A ∪ {d}, B] : d ∈ Dc ∩B

}
, (5)

where the complement ·c is with relation to W . If C = D = X, X ∈ P(W ),
the rule simplifies to

{[A,B ∩ {a}c] : a ∈ X ∩Ac} ∪ {[A ∪ {b}, B] : b ∈ B ∩Xc}. (6)

The ISI algorithm consists basically on applying the splitting rule re-
peatedly in order to remove from interval [∅,W ] all elements X such that
ψ(X) = 0 (those elements that are not in the kernel of ψ). Thus, after
the removing process finishes, the remaining intervals cover the elements X
such that ψ(X) = 1 and eventually some elements X such that ψ(X) is
unknown (don’t cares). If {X : ψ(X) = 1}∪{X : ψ(X) = 0} = P(W ), then
the resulting collection of intervals corresponds to the basis of ψ. Other-
wise, it is a basis that is consistent with ψ with respect to the elements in
{X : ψ(X) = 1} ∪ {X : ψ(X) = 0}.

The collection of maximal intervals resulting from the removing process
may contain redundant intervals. That is, it may contain an interval [A,B]
such that all its elements are contained in some other intervals of the collec-
tion (although [A,B] itself is not contained in any other interval). Hence,
in a second step of the ISI algorithm a minimum cover (sub-basis) should
be computed [6]. A minimum cover corresponds to a smallest sub-collection
of intervals that is enough to cover all elements in {X : ψ(X) = 1}.

When don’t cares are present, some heuristics can be applied to acceler-
ate the algorithm. For instance, during the removing process, intervals that
do not contain any element of {X : ψ(X) = 1} can be disregarded because
they will not be needed for the minimum cover. As an example, in Figure 1,
filled circles represent the elements of the kernel, non-filled circles are the
elements for which ψ takes value 0, and the absence of a circle indicates an
element for which the value of ψ is not defined (dont’t care). Figure 1(a)
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shows the removing of element 001 from the interval [000, 111], resulting in
three intervals, [000, 110], [100, 111] and [010, 111]. The one (enclosed by a
dashed box) does not contain any element of K(ψ) and, therefore, it can be
discarded, as illustrated in Figure 1(b).

110

010

000

100001

011

101

111

(a)

000

110

100

111

(b)

Figure 1. (a) The three intervals after the removing of 001. (b) Discarding of
interval [010, 111], which will not be needed for the minimum cover.

More details of this algorithm, as well as some interesting heuristics to
improve the processing time, can be found in [8].

2.2 Application example

The above algorithm may be used as a learning (generalization) algorithm,
as shown in the next example. Figure 2(a) shows an input-output pair of
training images (to be used to estimate a kernel). From the training images,

(a)

(b)

Figure 2. Learning binary image operators: (a) training images and (b) test
images.

the elements known to be in the kernel are
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while those known not to be in the kernel are

The resulting basis is given by the set of intervals

[[[[ ]]]] ,,,,

Figure 2(b) shows the result obtained by applying the above basis on an-
other image. The learned operator is the 8-connected internal edge extrac-
tor. Additional application examples can be found in [7].

3. Binary input and multi-level output

Operators that map binary images to gray-scale images can be characterized
by a function of the form ψ : {0, 1}n → {0, 1, . . . , k}, where k denotes the
maximum gray-level. Their kernel are defined by level, that is, the kernel
of ψ at level i, i = 0, 1, . . . , k, is the collection Ki(ψ) given by, for any
x ∈ {0, 1}n,

x ∈ Ki(ψ) ⇐⇒ ψ(x) ≥ i. (7)

Notice that Kk(ψ) ⊆ Kk−1(ψ) ⊆ · · · ⊆ K1(ψ) ⊆ K0(ψ). The basis of ψ at
level i, Bi(ψ), is the collection of maximal intervals in Ki(ψ).

The sup-decomposition [3] of ψ in terms of its kernel and basis are given,
respectively, ∀x ∈ {0, 1}n, by

ψ(x) = max{i : x ∈ Ki(ψ), i = 0, 1, . . . , k}, (8)

and
ψ(x) = max{i : x ∈ [a,b], [a,b] ∈ Bi(ψ), i = 0, 1, . . . , k} . (9)

3.1 Algorithm

To compute the basis Bi(ψ), i = 0, 1, . . . , k, of ψ : {0, 1}n → {0, 1, . . . , k},
ISI is applied repeatedly, one time for each level i. Initially, all elements
with label 0 are removed from the interval [∅,W ]. In this process, all other
elements are regarded as 1s. The resulting intervals correspond to B1(ψ),
the intervals that cover all elements with label greater or equal to 1. In the
next step, the same process is repeated for all elements with label 1. This
time, the initial intervals are those in B1(ψ) and the resulting intervals
correspond to B2(ψ). This process is repeated successively for the next
labels until all elements of label k− 1 are removed, resulting in the basis at
level k.

As an example, consider ψ : P(W ) → {0, 1, 2, 3}, with |W | = 3, given
by ψ(000) = 0, ψ(010) = 1, ψ(100) = 1, ψ(101) = 2, ψ(110) = 2 and
ψ(111) = 3. The remaining elements are don’t cares. Figure 3 shows the
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dynamics of the algorithm, while Figure 4 shows the resulting basis. The
basis at level 0, B0(ψ), is the set composed by the interval [∅,W ]. To
compute B1(ψ), all elements with label 0 are removed from the interval
[∅,W ], resulting in B1(ψ) = {[001, 111], [010, 111], [100, 111]}. To compute
B2(ψ), all elements with label 1 are removed from the intervals in B1(ψ),
resulting in B2(ψ) = {[001, 111], [110, 111]}. Proceeding similarly, we obtain
B3(ψ) = {[011, 111]}. Notice that intervals X11, 11X, 1X1 and 111 are
discarded because they are contained in another intervals, while 0X1 is
discarded because it contains only don’t cares.

0X1 X11

X11

11X

11X

XXX

X1X

X11 11X

1X1

111

XX1 1XX

1XXXX1

XX1

B0(ψ)

B1(ψ)

B2(ψ)

B3(ψ)

removing of 000

removing of 010

removing of 100

removing of 101

removing of 110

Figure 3. Example of the application of multi-level output ISI.

33
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0

B0(ψ) B1(ψ) B2(ψ) B3(ψ)

Figure 4. Lattice view of the intervals of Figure 3.

Given a partially defined ψ, let M = {(X, l) : ψ(X) = l, l = 0, 1, . . . , k}
(all elements whose label is known). The basis computation process is sum-
marized in Algorithm 1.

4. Gray-level input and output

Gray-scale W -operators can be characterized by functions in the form ψ :
{0, 1, . . . , k1}n → {0, 1, . . . , k2}, where k1 and k2 correspond to the input
and output maximum gray-levels. Analogous to the previous case, the kernel
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Algorithm 1 Basis computation.
1: I← {[∅, W ]}, with label 0; Ifinal ← ∅ ;
2: M1 =M ;

// Repeat for each level, except k
3: for all l ∈ {0, 1, . . . , k − 1} do
4: M0 = {(X, i) ∈M1 : i = l} ; // elements to be removed
5: M1 =M1 \M0 ; // elements to be covered

// Remove each X ∈M0 from I
6: for all (X, l) ∈M0 do
7: INew ← ∅ ;
8: IP ← {[A, B] ∈ I : X /∈ [A, B]} ;
9: Itmp ← {[A, B] ∈ I : X ∈ [A, B]} ;

// Split each interval that contains X
10: for all [A, B] ∈ Itmp do

11: Isplit ← maximal intervals in [A, B] \ {X} ;

// Discard all intervals that does not cover any element inM1 and all
those that are covered by another interval

12: for all [A′, B′] ∈ Isplit do

13: if ∃X ∈M1 such that X ∈ [A′, B′] then
14: if [A′, B′] 6⊂ [E, F ], ∀[E, F ] ∈ IP then
15: INew ← INew ∪ {[A

′, B′]} ;
16: end if
17: end if
18: end for
19: end for
20: I← IP ∪ INew ;
21: end for
22: Label all intervals in I with l + 1 ;
23: Ifinal = Ifinal ∪ I ;
24: end for
25: Return Ifinal ;

of ψ at level i, i ∈ {0, 1, . . . , k2}, is the collection Ki(ψ) given by, for any
x ∈ {0, 1, . . . , k1}n,

x ∈ Ki(ψ) ⇐⇒ ψ(x) ≥ i, (10)

and the basis of ψ at level i, Bi(ψ), is the collection of maximal intervals in
Ki(ψ).

The sup-decomposition [3] of ψ in terms of kernel and basis are given,
respectively, ∀x ∈ {0, 1, . . . , k1}n, by

ψ(x) = max{i ∈ {0, 1, . . . , k2} : x ∈ Ki(ψ)} , (11)

and
ψ(x) = max{i ∈ {0, 1, . . . , k2} : x ∈ [a,b], [a,b] ∈ Bi(ψ)} . (12)

In this section we present the extension of ISI for the computation of
the basis. From the binary ISI we inherit the idea of splitting intervals, and
from the multi-level output ISI we inherit the idea of a pyramid of basis.
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4.1 Algorithm

To simplify notations, we consider k1 = k2 = k and K = {0, 1, . . . , k},
and in order to generalize the splitting rule for this case, we introduce two
auxiliary functions ξI e ξO. Let x = (x1, x2, . . . , xn) be an element in KW

and let O = (O1, O2, . . . , On) and I = (I1, I2, . . . , In) be the smallest and
the largest elements of KW , respectively. We define

ξI(x, i) = (I1, . . . , Ii−1, xi − 1, Ii+1, . . . , In) (13)

and
ξO(x, i) = (O1, . . . , Oi−1, xi + 1, Oi+1, . . . , On) . (14)

Proposition 2. Let [a,b] and [c,d] be two intervals in KW , such that
[c,d] ∧ [a,b] 6= ∅. Let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), c =
(c1, c2, . . . , cn) and d = (d1, d2, . . . , dn), where ai, bi, ci, di ∈ K,∀i ∈ [1, n].
The set of maximal intervals resulting from the subtraction of [c,d] from
[a,b] is given by{

[a,b ∧ ξI(c, i)] : i ∈ [1, n]
}
∪

{
[a ∨ ξO(d, i),b] : i ∈ [1, n]

}
. (15)

Similarly to the binary case, when c = d = x, where x = (x1, x2, . . . , xn),
the above formula simplifies to{

[a,b ∧ ξI(x, i)] : i ∈ [1, n]
}
∪

{
[a ∨ ξO(x, i),b] : i ∈ [1, n]

}
. (16)

After a removing operation, the number of resulting intervals as well as
their dimension depend on the localization of the interval being removed.
For an interval of dimension n, the number of resulting intervals may vary
from n to 2n. Figure 5 shows the three possibilities for the removing from
an interval of dimension 2.

Figure 5. Three possible localizations of an element in an interval of dimension
2 and the intervals resulting from the splitting by that element.

Let [A1, B1] and [A2, B2] be two intervals such that there is a third
interval [C,D] that intercepts both (that is, [C,D] ∩ [A1, B1] 6= ∅ and
[C,D] ∩ [A2, B2] 6= ∅). For the binary and multi-level output ISI, if we
split both [A1, B1] and [A2, B2] by [C,D], it is possible to show that no
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interval resulting from the splitting of [A1, B1] is contained in any interval
resulting from the splitting of [A2, B2], and vice-versa [8].

However, for the gray-level ISI, the same is not true. For example, in
Figure 6, two intervals [10, 44] and [04, 44] are given, and the element to be
removed is 24. From the splitting of [10, 44] there results three intervals,
[30, 44], [10, 43] and [10, 14]. From the splitting of the second interval there
results [04, 14] and [34, 44]. Analyzing the resulting intervals, we observe
that [34, 44] ≤ [30, 44]. This implies that the algorithm must, besides veri-
fying whether the resulting intervals of a splitting by [c,d] are not contained
in intervals of IP (those that do not intercept [c,d]), also verify if they are
not contained in an interval resulting from the splitting of another interval
by [c,d].

44

04
40

10

24

[10, 44]

[04, 44]

[34, 44]

[04, 14]

[30, 44]

[10, 43]

[10, 14]

Figure 6. An interval resulting from the splitting of an interval may be contained
in an interval resulting from the splitting of another interval by the same element.

As for the algorithm, the only modification needed with respect to the
previously presented one is in Line 14, in order to include the verification
discussed above. Of course, the splitting rule of Line 11 must be substituted
by its equivalent for the gray-level case. Below follows Lines 14 to 16 of the
modified algorithm, in order to compute the basis of a gray-level function.

if [a′,b′] 6⊂ [e, f ], ∀[e, f ] ∈ IP ∪ INew then
INew ← INew ∪ {[a

′,b′]} ;
end if

Figure 7 shows an example of the application of the gray-level ISI algo-
rithm, step by step. The intervals obtained after removing each element are
shown step by step in Figure 8. A minimum cover is computed each time
all elements with a same label are removed.

Figures 8(b) to 8(e) show the intervals that result after removing ele-
ments with label 1, while Figures 8(f) to 8(h) show the intervals that result
after removing elements with label 2. Intervals that do not cover any labeled
elements are also removed and are not shown. Removing all elements with
label 1 results in intervals that do not cover any element with label 1, but
cover all elements of label greater than 1. Similarly, removing afterwards all
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B0 = B1

B2

B3 = B4

removing of 00

removing of 03

removing of 24

removing of 14

removing of 40

removing of 31

removing of 10

[00, 44]

[10, 44]

[10, 44] [01, 44]

[11, 44]

[01, 42]

[01, 42]

[01, 42][04, 44]

[30, 44]

[30, 44]

[10, 14]

[10, 43]

[10, 43] [04, 14] [34, 44]

[10, 13]

[31, 44] [30, 34] [10, 33] [11, 43]

[32, 44]

[32, 44]

[41, 44]

[41, 44] [10, 30] [10, 23] [12, 33] [11, 23]

[12, 43]

[12, 43] [41, 43]

[20, 23] [11, 23]

Minimum cover computation

Covered by another interval

Does not cover any element with greater label

Figure 7. Example of the application of gray-level ISI.

elements with label 2 results in intervals that cover all elements with label
greater than 2, but do not cover any element with label 1 or 2.

The basis at level 0 (B0) is the initial interval and since there are no
elements with label 0, it is also the basis at level 1 (B1). Four and three
splitting operations, respectively, were performed to remove elements with
label 1 from B1 and elements with label 2 from B2. Since there are no
elements with label 3, the basis at level 4 is the same at level 3. The
resulting basis is depicted in Figure 9.

5. Conclusion

We have reviewed and presented algorithms for the computation of maxi-
mal intervals contained in the kernel of binary and gray-level morphological
operators. They are based on operations that remove non-kernel elements
from intervals and express the resulting elements of the interval by means
of a set of subintervals. Implementation of these algorithms must take into
consideration the fact that kernels are not always entirely known. Our al-
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Figure 8. Maximal intervals after removing elements with label 1 (removing of (a)
00, (b) 03, (c) 24, and (d) 14) followed by minimum cover computation, and after
removing elements with label 2 (removing of (e) 40, (f) 31, and (g) 10) followed
by minimum cover computation, for the example of Figure 8.

gorithms deal with cases in which some elements are known to be or not to
be in the kernel, while nothing is known about the others. In the binary
case, the algorithm corresponds to incompletely specified Boolean function
minimization. Since these algorithms demand high computational cost, the
use of smart data structures and good heuristics need to be considered. A
simple example was given to illustrate the use of these algorithms as learning
(or generalization) algorithms.

Further issues to be investigated include efficient implementation of the
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B0 = B1 = {[00, 44]} B2 = {[10, 43], [30, 44]} B3 = B4 = {[41, 44], [12, 43]}

Figure 9. Resulting basis for the example depicted in Figure 8.

algorithm for the gray-scale case, conversion of an arbitrary representation
of the kernel of image operators (such as decision trees, neural networks,
support vector machines) to the basis representation, and efficient represen-
tation of the basis (aiming fast computation).
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