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Abstract Mathematical Morphology (MM) is used in medical image analy-
sis for applications such as segmentation and skeletonization. The
available efficient MM methods do not readily adapt to true Eu-
clidean disc/sphere structuring elements (SE), which we are par-
ticularly interested in, without sacrificing accuracy for efficiency.
An efficient method for MM using convex/symmetric SE, including
Euclidean discs/spheres, is presented. Performance results for the
proposed method are compared to the performance of a commer-
cially available software package for a 512 x 512 x 418 chest CT
dataset. Increasing gains of the method for larger SE are demon-
strated, making the method suitable for analysis of high resolution
images. The method is efficient for iso/anisotropic SE.

Keywords: structuring element decomposition, sphere, disc, circle.

1. Introduction

Mathematical morphology (MM) is based on set theory and can be used to
analyze image shape features [5,7,15]. MM is useful for a wide variety of
applications including object recognition, image segmentation, and indus-
trial inspection [16]. In medical imaging, MM is used for such applications
as brain segmentation from MR images [4] and airway/vessel segmentation
from CT images [6,10].

Dilation and erosion are the elementary operations of MM. Other oper-
ations such as morphological opening and closing may be formed by com-
bining dilation and erosion in sequence [15,16]. A structuring element (SE)
is the morphological kernel that is translated over the image domain and
compared with the overlapping image region. For flat (binary) SE, the com-
parison operation is a local maximum for dilation and a local minimum for
erosion, where the local neighborhood is defined by the SE’s shape. These
min/max comparisons for gray-level images reduce to logical AND/OR op-
erations for erosion/dilation of binary images using flat SE.
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Morphological analysis methods used in medical imaging generally re-
quire SE of different sizes and shapes. Since some of these methods require
multiple larger sized SE, which require greater processing time, such meth-
ods can take several hours for a single image [10]. Long processing times
impede clinical utility of applications as well as application/algorithm de-
velopment itself.

The processing time for brute-force implementation of MM is propor-
tional to the discrete mass (number of pixels/voxels) of the SE. As such, for
2D and 3D SE, which are used for medical image processing, the processing
time can increase polynomially with respect to SE diameter and can be-
come prohibitive. A multitude of methods have been proposed to accelerate
MM and the majority of these involve some form of SE decomposition. The
HGW algorithm is regarded as the most efficient for a 1D straight line SE
[18,19]; logarithmic decomposition (LD) is also very efficient for 1D and as
such may be applied to separable 2D and 3D SE [3,5]. However, only a sub-
set of useful SE are separable. Some methods are applicable only to binary
images or require preprocessing/encoding of the image [9,12]; others cater
to particular constraints such as the limited region of support of specialized
hardware [8,13].

We are particularly interested in 2D Euclidean disk and 3D Euclidean
sphere SE that incur no further approximation beyond quantization it-
self, with no restriction placed on the isotropy of the quantization. Effi-
cient methods that have already been proposed for convex/symmetric SE
[11, 21] are usually discussed and demonstrated in 2D and don’t readily
lend themselves to a true 3D extension. Although the sphere falls into
convex/symmetric category, as far as we know, these methods may not be
used to obtain the decomposition of a sphere. Moreover, the definition of
convexity used in these methods is not consistent and as such, Euclidean
disks/spheres are outside the scope of some such methods. Methods for
decomposition of a disc SE usually sacrifice accuracy for efficiency and still
do not lend themselves to the 3D sphere [1,5,19,21]. Some methods refer
to gray-level disk SE as spheres [1,5]; these SE are not the focus of this
paper and are not to be confused with binary 3D spheres. Although the
method using local histograms described in [5] may be applied to spheres, it
does not readily lend itself to an efficient vectorized implementation, which
is important for certain types of computation platforms.

SE decomposition as a union of partitions is described in [2] where ge-
netic algorithms are used to compute the decomposition. A deterministic
method for decomposing a 2D disc SE into a union of partitions is intro-
duced in [20]. However, the decomposition is described analytically and
may be difficult to understand and implement. We present a reworking of
this method and describe the decomposition using morphological primitives.
As such, it is now easier to understand /implement. The new morphological
decomposition naturally extends itself to all 2D and 3D convex symmetric
SE, such as Euclidean spheres. We present timing results and comparison
for a large CT lung volume dataset.
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In the remainder of this paper we refer to the following notations and
definitions and introduce additional elements as necessary.

U : Union @ : Dilation e : Morphological closing
N : Intersection © : Erosion o : Morphological opening

Definition 1 (Convex SE). If the discrete SE is equal to the set of all
voxels that fall inside its Euclidean convex hull [17] it is considered to be
convex. Continuous domain convex shapes that are discretized satisfy this
definition of digital convexity. O

Definition 2 (Symmetric SE). A symmetric SE has a clearly defined center.
When the center of a symmetric SE is translated to the origin of a standard
Cartesian coordinate system, the translated SE would be symmetric about

the x =0,y =0, and z = 0 planes. O
Definition 3 (Sparse SE). In general, a 3D SE that is not face-connected,
or a 2D SE that is not edge-connected, is said to be sparse. O
2. Method

2.1 Overview of the proposed decomposition

The proposed method decomposes the SE into a union of partitions (Equa-
tion la), where each partition, P;, consists of two factors; the first is the
largest cube, C;, that can morphologically open the partition without change,
and the second is a sparse factor S; (Equation 1b). This method will de-
compose any 2D or 3D convex/symmetric SE.

SE=PLUP,UP;... (1a)
SE=(C1®S1)U(Ca® S2)U(C5a Ss)... (1b)
SE=(C1®S1)U(C1®Ly)®S)U((CrdLa® L) S3)... (L)
SE=C1®(S1ULy® (S2U (L3 Ss3)...)) (1d)

As a consequence of convexity of the underlying SE, C; is a factor of
Cy and Cy is a factor of C3 and so on (Equation 1c). The L; factors
that relate the different C; factors are described below and illustrated in
Figure 3. This allows us to further decompose C; and reuse morphological
comparisons across the cubic factors (Equation 1d).

Figure 1 illustrates Equation 1a and shows the three partitions obtained
by using the proposed method to decompose the example 2D SE shown on
the right hand side. The cubic and sparse factors of each of these partitions
are shown in Figure 2, which illustrates Equation 1b.

463



Proceedings of the 8th International Symposium on Mathematical Morphology,
Rio de Janeiro, Brazil, Oct. 10-13, 2007, MCT/INPE, v. 1, p. 461-472.

http://urlib.net/dpi.inpe.br/ismm@80,/2007/03.20.04.48

P, P Py SE=P UP,UP,

Figure 1. The proposed method decomposes the example SE (right) into a union
of partitions P;, P>, and Ps3. The origin of each partition is the center. The
partitions overlap; this is possible due to the idempotency property of comparison
operations (OR, AND, min, max) used to combine the partitions.

c, S,

P =C @5

S s, P,=C,®S,

Figure 2. Each partition P; has a cubic factor C; and a sparse factor S;, where
i =1,2,3 in this example. The origin of each factor is at its center.

2.2 Usage of the decomposition

Binary image dilation and erosion

IeSE=IaP)UIBP)UI®P;)... (2a)
IeSE=IaC®S1)U[I®Co@S)U(IaC3@Ss)... (2b)
IoSE=1C1®(S1ULy® (S2U (L3 ® S3)...)) (2¢)

Substituting @ with © and U with N yields the equations for erosion.
Gray-level image dilation and erosion

I& SE =Supremum((I & P1),[® P),I®Ps)...) (3)
I5 SE =Infimum((Ie P),I[e R),(IePs)...) (4)
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Efficient MM for the cubic factors C;

The cubic factors of each partition may be decomposed further. Logarithmic
decomposition (LD) [5] is simple and can yield efficiency through compu-
tation reuse across partitions. The logarithmic factors for the considered
example are illustrated in Figure 3. The figure shows how the dilation or
erosion for all three cubic factors can be obtained with merely 9 comparison
operations (ops) per output pixel or voxel. This can be accomplished by
using a cascaded implementation as is suggested in Equation 2c.

While we favor the cascaded implementation with LD as described above,
the HGW algorithm [18] may be used to efficiently compute the morphology
result for the cubic factors. However this algorithm is more complex and
does not gain from computation reuse that is possible due to the fact that
C; is a factor of C; ;. If the user prefers parallelization, using the proposed
decomposition in the form shown in Equation 2b with the HGW algorithm
might be a good choice.

L=l ®L,®L,

Lia Lip Ly, € =L

L:L .L .L .L

_---%

C C & L
Ly=L;®Ly,
L Ly C;=C, @ L,

Figure 8. C; is a factor of Cy and Cs is a factor of Cs; as such, we may reuse
computation across cubic factors. We use logarithmic decomposition (LD) to
simply and efficiently perform the dilation/erosion of Ci. The origin of each C;
should be in its center. This can be satisfied either by assigning the origin of each
logarithmic factor L;, accordingly, or by updating the origin on each C;. This is
possible due to translational invariance property of dilation.

2.3 Decomposing a SE using the proposed method

Figure 4 illustrates the steps for decomposing a SE. The proposed decom-
position follows the steps below.

1. Initialization: set CSE (current SE) to be equal to SE.

2. Find the largest cube with which CSE might be morphologically opened
without change. This is the cubic factor C;.
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3. Find the corresponding sparse factor S;. (See discussion below and
Figure 5). Now that C; and S; have been found we have essentially
decomposed a partition from CSE.

4. Update CSE with the subset that remains to be decomposed (RSE:

remaining SE) as shown in Figure 4.

5. Go to Step 2 and repeat until RSE is NULL.
RSE, = ({CSE, @ C,)-S,)® C

. - .
€ 5
C, S,

Note that C3 S3 = P3 = CSE3 — decomposition is complete

SS

Figure 4. Decomposing the SE. At each iteration the current SE (CSE) is updated
to reflect the subset of the SE that remains to be decomposed (RSE). C; is the
largest cube with which CSFE; can be morphologically opened without change.
We can then determine S; which completes the task of determining P; and then
determine the subset of C'SFE; that remains to be decomposed RSFE;. The next
iteration begins with updating C'SE;;1 by setting it equal to RSFE;.

1

CSE, =RSE,

RSE, = ((CSE,® C,)- 5@ C

RSE, =0

2

CSE, = RSE, €

3

Determining S;

Figure 5 illustrates the process to determine Sy for the example in Figures
1-4.
1. Once C; is available, obtain candidate sparse factors STy, STs, ST3.
2. Test each ST} for sparseness (see sub-section below).

3. Select the ST} that is sparse and has the largest number of voxels
(largest discrete mass) and assign it to S;.

Testing for sparseness

We enforce that our sparse factor is not face-connected for 3D. For 2D, it
should not be edge-connected. There are a few exceptions to this rule, such
as if there is connectivity with the central voxel (local origin) during the
first iteration of decomposition, i.e., during the process of determining ;.
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Interim steps to find S2

T CT,=C,®T, RT, =CSE, = CT, ST =(CSE@C,)- (RT &CT)

RT,=CSE, CT, ST,=(CSE,@C,)- (RT,@CT,)

T, CT,=C, 8T, RT,=CSE,® CT, ST,=(CSE,EC)- (RTECT)

Figure 5. Determining S5 for the considered 2D example. Obtain test cubic factors
CTj}, by dilating C; with Tj, where j = 1, 2, and 3 for 2D SE. As illustrated above,
we can then obtain a set of candidate RSE, RT}, and candidate sparse factors
ST;. Determine the subset of ST; that is indeed sparse and from this subset
pick the “best” one and assign it to S;. We apply a greedy criterion for “best”,
which is to pick the sparse ST; that has the largest number of pixels/voxels. The
implementation tests each ST} for sparseness. Of course, once a particular ST} is
selected, we can simply assign its corresponding RT; to RSE;.

2.4 Method for 3D SE

e Once the decomposition is available for a 3D SE, the usage is identical
to the 2D case discussed above.

e Decomposition is slightly more elaborate in the stage of selecting a
sparse factor. Whereas for the 2D case we have three ST} sparse
factor candidates to consider, for the 3D case we have seven. This is
a consequence of now having 7T, where j = 1,2,...7. These 7T} are
the bar-3 and the square-3, each in the horizontal, vertical and axial
orientations as well as the cube-3 (cube with discrete diameter 3).

3D sphere example

Figures 6, 7 and 8 illustrate the cascaded implementation of the proposed
method for a radius-5.5 Euclidean sphere obtained under isotropic unit
quantization. The method decomposes this SE into 3 partitions, as illus-
trated in the figures. Only the upper half of the SE is illustrated without
loss of generality due to symmetry. The cubic factors C1, Cs, C5 are equal
to cube-3, cube-5, cube-9 respectively. The origin is marked in dark gray
(center of slice 6 of 11) in each of the figures and is not part of Sy or Ss,
which are depicted in medium gray; Ss, however, is just the single voxel at
the origin. The medium and light gray voxels together depict a particular
partition. The gray and white voxels together in Figure 7 illustrate the
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slice 10f 11 slice 2 of 11 slice 2 of 11
Iteration 1

sliced of 11 slice 5 of 11 slice 6 of 11

Figure 6. Upper half of P; for a radius-5.5 Euclidean sphere at unit quantization.

The origin is the dark gray voxel in the center of slice 6, P; is the union of the
light and medium gray voxels, S; is medium gray. C is cube-3.

slice 1 of 11 slice 2 of 11 slice 3 of 11
Iteration 2
slice 4 of 11 slice 5 of 11 slice 6 of 11

Figure 7. Foreground is Py U P> for the radius-5.5 sphere (only upper half of the
sphere is shown). The origin is dark gray, P> is the union of light and medium
gray voxels, S2 is medium gray, the region of P; that does not overlap with P is
white. Cs is cube-5.

union of P; and P,, where the white pixels indicate the portion of the SE
that is exclusively covered by P;. The union of the gray and white voxels in
Figure 8 depicts the union of P, P, and P5 and is thus the SE itself. The

white voxels in Figure 8 indicate the region that is covered exclusively by
PLUP;.

3. Results and analysis

The proposed method was implemented and compared to the commercially
available SDC morphology toolbox [14]. Dilation on a gray-level chest CT
image, sized 512 x 512 x 418, was performed using various spherical SE. The
standard “brute-force” direct implementation was also compared. Timing
results were obtained for spherical SE with discrete radii 1-12. A dual-
CPU Intel 2.0 GHz Xeon™ computer with 2 GB of RAM was used. The
proposed method was implemented as a single-threaded executable. As is
evident in Figure 9, the processing time for our own implementation of the
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slice 10f 11 slice 2 of 11 slice 3 of 11
Iteration 3

slice 4 of 11 slice 5 of 11 slice 6 of 11

Figure 8. The origin coincides with S3 and is dark gray, Ps is the union of light
gray and the origin. C's is cube-7, which coincides with P;. The region of P, U P>
that does not overlap with Ps is white. The union of all foreground voxels is the
union of all three partitions and is the radius-5.5 Euclidean isotropic sphere.

T T T T T
2500 —8B— direct implementation H
o —&— SDC Morphology Toolbox {C++)
S 2000 —&— proposed method H
5 y
&,
o 15001 E
£
o 00 .
=
=
= s00f L
D 1 1
0 2 4 B 10 12

5
radius of sphere SE

Figure 9. Processing times for gray-level dilation (binary SE) using sphere SE for
a 512 x 512 x 418 chest CT image. Results obtained on and Intel Pentium IV
Xeon Dual CPU 2.00 GHz platform with 2.00 GB of RAM.

direct method becomes prohibitive for larger SE. The algorithmic advantage
of the proposed method facilitates gains over the SDC Morphology Toolbox
that increase as SE size increases.

In [13], the four factors on the right of Figure 10 are offered as an optimal
decomposition for the convex/symmetric SE shown to their left (“Iteration
2”). The proposed method will decompose the SE into 2 partitions whose
cubic factors are square-3 and square-7 and obtain the MM result in 13 ops
per output pixel (4 ops for Ci, 4 ops for Ly, and 5 ops for the sparse factors
and the union), while the 4 factor decomposition requires 16 ops.

The number of comparison ops required per output voxel for dilation
or erosion using discrete Euclidean sphere SE of radii 1-40 was calculated
for the direct implementation, the proposed method, and two variations of
the proposed method as shown in Figure 11. The op count for the direct
implementation is one less than the number of voxels in the SE. One flavor
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Proposed method Park & Chen [13]

4 factor decompaosition

iteration 1 iteration 2 H H

Figure 10. [Left] 2-partition decomposition of a 2D SE using the proposed method.
Cubic factors are square-3 and square-7. Dark gray - origin (center): not part of
S1, however S> is the pixel at the origin. Light and medium gray together - the
partition, medium gray (only in iteration 1) - S1, white - region of P; that does not
overlap with P. [Right] 4-factor decomposition for the same SE from Example 1
in [13]. The proposed method is more efficient.

of the proposed method was to consider the sphere SE as the collection of
its 2D slices, implement the MM for each of the unique slices separately
using the proposed method and combine the results. This implementation
is less efficient and requires more memory. It illustrates that a true 3D
method is superior to a 2D method directly applied to 3D SE, as would be
required in order to make use of most of the applicable methods available
in the literature.

The majority of comparison ops of the proposed method occur by way of
the sparse factors of the partitions: for a radius-20 sphere SE, the proposed
2-canvas implementation (Equation 2c¢) would incur 600 comparisons per
output voxel, 36 of which would be due to the cubic factors while the re-
maining 564 would be due to the sparse factors. By decomposing the sparse
factors, this could be reduced to 292, thus reducing the total number to 328
ops per output voxel. While this could be considered an optimization, it
comes at the expense of a third copy of the image volume for interim work,
which may be undesirable for computation platforms with memory capacity
constraints.

4. Discussion and conclusion

An efficient method for MM using Euclidean disk and sphere SE has been
presented. These SE do not lend themselves well to factorization methods
that can usually be used for convex/symmetric SE. The proposed method
can be applied to all 2D/3D convex/symmetric flat (binary) SE. The method
may be used for binary as well as gray-scale images and does not require
any prior analysis or encoding of the image: its gain is not based on image
content. The low memory overhead and efficient looping as well as vector-
ized implementations promote the utility of the method for development
(scripting) as well as application platforms.

We believe the challenge of decomposing SE into partitions to be an
instance of an NP-complete problem. The proposed method uses locally
optimal (greedy) criteria to select a sparse factor during each iteration of
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— —direct implementation
— - —-sphere as a collection of 2D slices
proposed method .
------- possible optimization to method 3

comparison ops per output woxel

1 1 | 1 1
0 5 10 15 20 25 30 35 40
Euclidian sphere radius

Figure 11. Number of comparison ops required per output voxel for MM using
sphere SE. Note, op count presented on a log scale. Data obtained analytically.
Proposed implementation follows Equation 2c and implements the sparse factors
directly. A possible optimization would be to decompose the sparse factors, but
this would require another interim copy of the image volume.

the decomposition. As such, it is not guaranteed to be optimal. We are in-
vestigating optimality relevant to the proposed method and expect to report
on how the proposed greedy method compares to an optimal decomposition.
This will of course require a clear definition of optimality.

The method is robust to scale: it works for iso/anisotropic SE. As such,
it facilitates the development of scale-robust applications/algorithms. For
medical image segmentation, SE may be defined in the context of anatomy
instead of using discrete parameters. The chest CT image used to obtain the
results shown in Figure 5 was quantized to a mm scale of 0.67 x 0.67 x 0.80.
With the proposed method, an algorithm could define a 3 mm sphere SE
and this SE would be discretized according to the quantization scale of the
CT image at run-time.

A comparison of the proposed method with others is underway. An em-
pirical assessment of the gains of the method in the context of real medical
applications will be performed. Since the method lends itself to vectoriza-
tion, even hardware acceleration by means of a graphics processing unit
(GPU) implementation would be possible.
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