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Foreword

Mathematical Morphology (MM) was created in the mid-sixties by a group
led by Georges Matheron and Jean Serra of the Paris School of Mines in
Fontainebleau, France. By the end of the seventies, its usefulness for im-
age analysis had been recognized in Europe, in particular within the area
of microscopic imaging. Starting in the eighties, with the publication in
English of Serra’s books on Image Analysis and Mathematical Morphology,
MM spread worldwide. In 1993, the MM community organized the first
International Symposium on Mathematical Morphology (ISMM), an event
that has been held approximately biennially ever since.

In Brazil, MM began to be studied at the National Institute for Space Re-
search (INPE), in the mid-eighties, through a technical cooperation program
with France. From the beginning, MM was considered a useful alternative
to the linear approach to image processing. In 1987, the first master’s thesis
devoted to MM and its applications to Remote Sensing was presented at the
INPE graduate program. Early in the nineties, MM spread over Brazil, in
particular at University of São Paulo (USP), University of Campinas (Uni-
camp), Federal University of Minas Gerais (UFMG) and the Federal Center
of Technological Education of Paraná (CEFET-PR). At that time, the first
two books on MM “Bases da morfologia matemática para a análise de im-
agens binárias” by G. Banon and J. Barrera, and “Morfologia matemática:
Teoria e exemplos” by J. Facon, were published in Brazil, in Portuguese.
Since then, MM has been a very active area of research in Brazil.

In July 2005, the ISMM steering committee chose Rio de Janeiro, Brazil,
among 4 four other candidates, as the site for the next ISMM edition, to
be held in October 10-13, 2007. The 38 articles in this book were selected
among a total of 53 submitted to the this 8th edition of ISMM. Each submit-
ted article was reviewed by at least 2 out of 45 reviewers. The first authors
of theses articles are from 11 different countries: Brazil (8), Bulgaria (1),
France (15), Greece (3), Israel (1), Mexico (1), Netherlands (2), Spain (3),
Switzerland (1), Sweden (2), and USA (1).

Brazil is proud to receive the MM community at ISMM’2007. The event
will surely be very important in order to strengthen research in signal and
image proccessing in Brazil and Latin America.

Gerald Banon, Junior Barrera, and Ulisses Braga-Neto





Preface

This edited book on Mathematical Morphology and its Applications to Sig-
nal and Image Processing is divided into eight parts containing the full
papers accepted for oral presentation to the 8th International Symposium
on Mathematical Morphology, held in Rio de Janeiro from October 10th to
13th, 2007.

Each part is dedicated to a specific theme of interest. The distribution
of the 38 articles along these themes gives an idea of the current trends in
Mathematical Morphology (MM).

In the footnote of the title page of each contribution, the reader can find
the URL of the online version of that article. It may be useful to open the
online version of an article when its figures contain color images, since they
are all reproduced monochrome in this book.

Lattice theory

Coincidently, MM and Fuzzy Sets were both born in 1965 and during the
first few decades, both communities independently made important contri-
butions. Nowadays, we observe some convergence between them.

Bloch extends the traditional skeleton by influence zones (SKIZ) to fuzzy
sets and shows a possible method of interpolation between fuzzy sets. Hi-
rata et al. present algorithms for the computation of the basis of binary and
gray-scale translation-invariant and locally-defined operators in the pres-
ence of incomplete information about the kernel. Kiselman introduces up-
per and lower inverses of mappings between complete lattices, analyzes their
properties and links with Galois connections, and gives a thorough charac-
terization of them, as well as an extension to upper and lower quotient of
two mappings. Based on the concept of adjoint conjunctor-implicator pairs,
Popov discusses fuzzy dilation-erosion adjunctions on fuzzy sets, interval
arithmetic with fuzzy numbers, and a fuzzy hit-or-miss transform. From
a partial-order relation defined on tree representations of images, which
provide a complete inf-semilattice structure, Vichik et al. derive self-dual
morphological operators that can be used as filters for noise reduction.

Geometry and topology

Despite the fact that discrete geometry is a separate field of research, it has
a large intersection with MM whenever one considers the applications of
MM to digital image processing.

After recalling the definitions and properties of smallest-neighborhood
spaces and the Khalimsky topology on Zn, Melin introduces a binary op-
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eration on topological spaces called join, and shows that under local finite-
ness theses spaces can be uniquely decomposed as a join of indecomposable
spaces. Serra investigates the conditions for generating granulometries on
Zn using Steiner sets, as well as conditions on these sets for them to be
convex or connected. In a second article, Serra proposes a new random
closed set model, combining the generation of random germs and random
sets, and applies this model to the analysis of data on fires that occurred in
Malaysia.

Signal processing

MM based on lattice theory is a powerful approach to solve nonlinear prob-
lems in signal processing. At the heart of this approach are the nonlinear
operators of dilation and erosion as illustrated in a few of the contributions
below.

Dorini and Leite introduce a scale-space toggle operator, prove some of
its properties, and illustrate its usefulness for image segmentation. Karantza-
los compares the construction of nonlinear scale space image representa-
tions derived from multiscale levelings constrained by four different mark-
ers. Maragos and Evangelopoulos introduce alternative approaches based
on levelings and texture energy for decomposing an image into cartoon and
texture components.

Image processing

The main application of MM is Image Processing. The success of MM in this
field comes from the fact that, diferently from the linear approach, it is able
to manage the finiteness of the digital image range. The contributions below
include content-based image indexing and retrieval, texture classification,
image simplification, crest line regularization, and image interpolation for
computer-aided animations.

Andaló et al. introduce a new shape descriptor based on tensor scale,
show how it can improve content-based image retrieval and provide a faster
computation of tensor scale by exploiting the Euclidean Image-Foresting
Transform. Aptoula and Lefèvre combine the complementary information
extracted by morphological covariance and granulometry in order to improve
texture classification, and propose an extension to color data introducing an
ordering based on luminance and saturation. Meyer and Angulo introduce
the so-called bilevelings of an image defined on an hexagonal grid, prove that
they can be characterized in term of so-called micro-viscous operators that
appear to form adjunctions between set of functions defined on vertices and
edges, and verify that they lead to higher levels of simplification than with
ordinary levelings. Retornaz and Marcotegui present a robust technique
using morphological numerical residues for automatic localization of tex-
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tual information in general image database through connected component
extraction. Vachier and Meyer enlarge the concept of viscous transform to
increasing operator, introduce three viscous dilations and show how dotted
thin crest lines in gray-tone images may be reconnected and smoothed using
these transformations. Vidal et al. extend to mosaic images their previous
work on an interpolation technique for binary images based on morphologi-
cal median sets, by processing all the levels of the hierarchical region-based
tree that represents the region structure of the mosaic image.

Connectivity

Among the major developments in MM in the last two decades are the
interrelated subjects of connectivity classes and connected operators. Con-
nectivity classes, in their general lattice-theoretical formulation, not only
unify in a single axiomatic framework useful but disparate notions of con-
nectivity, but also include new interesting definitions of connectivity not
previously possible. Connected operators, on the other hand, have become
very popular in image analysis applications due to the fact that these op-
erators can preserve edge information by working at the level of the image
flat zones, which are defined using connectivity criteria.

Crespo examines in detail the equivalence between two important classes
of connected operators, namely, set levelings and adjacency-stable operators.
Dimiccoli and Salembier propose the use of image inpainting to improve
the appearance of images processed by connected operators. Naegel et al.
propose a general definition of vector-attribute filters for gray-level images
and describe its application in detection and segmentation tasks.

Watershed segmentation

The watershed method represents a powerful paradigm in image segmen-
tation. Ever since its introduction three decades ago, it has attracted the
interest of many investigators and practitioners, and research activity in
this area continues unabated today.

Alléne et al. study the links that exist between the watershed and min-
imum cuts, minimum spanning forests, and shortest-path forests. Angulo
and Jeulin propose a watershed-based stochastic segmentation methodology.
Audigier and Lotufo use the Image Foresting Transform and the Tie-Zone
concept to establish the relationship between several discrete watershed
transforms. Ten Caat et al. address the visualization of electroencephalogra-
phy (EEG) data by means of a watershed-based clustering method. Cousty
et al. study several properties of watersheds in edge-waited graphs. Papa et
al. present a classification method based on optimum-path forests. Stawiaski
et al. present a technique to compute approximate geodesics and minimal
surfaces.
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Texture and geometrical segmentation

The articles in this part further examine the segmentation problem, by using
geometric and texture criteria, within or without a watershed framework.

Angulo presents a method to calculate texture gradients and use them
for joint color and texture segmentation. Consularo et al. present an ef-
ficient method for interactive image segmentation based on inexact graph
matching. Cord et al. propose morphological and linear approaches to the
characterization and segmentation of random textures. Noyel et al. intro-
duce new connectivity classes that are able to improve flat-zone segmen-
tation of hyperspectral images. Sofou and Maragos investigate problem of
image segmentation via PDEs, focusing on a generalized flooding procedure
using geometric and textural information.

Algorithms and architectures

The last, but not by any means least, part of the book is devoted to an
aspect of MM that allowed it to become widespread and popular in both
research and practice, namely, efficient algorithms and architectures for im-
plementation of MM operators.

Bergo and Falcão introduce an algorithm that expresses any Imaging
Foresting Transform operator as a series of independent computations, fa-
cilitating thus parallel implementations of such operators. Menotti et al.
present a linear time and space algorithm to compute the component tree of
one-dimensional signals, from which they derive an efficient gray-level image
multithresholding method. Ouzounis and Wilkinson present a concurrent
implementation of a previously developed Max-Tree algorithm, which im-
plements anti-extensive attribute filters based on second-generation connec-
tivity. Vaz et al. describe an efficient method to implement MM operators
using convex and symmetric structuring elements, including Euclidean discs
and spheres.

Gerald Banon, Junior Barrera, and Ulisses Braga-Neto
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Neucimar Leite Roberto Lotufo
Petros Maragos David Menotti
Paulo Miranda Laurent Najman
Nicolas Passat Pedro Pina
Jean-F. Rivest Jos Roerdink

Christian Ronse Guilherme Ruppert
Philippe Salembier João Soares

Pierre Soille Hugues Talbot
Iván Terol Villalobos Marc Van Droogenbroeck

Joachim Weickert

Gerald Banon, Junior Barrera, and Ulisses Braga-Neto





I

LATTICE THEORY





An extension of skeleton by influence
zones and morphological interpolation to
fuzzy sets

Isabelle Bloch

Ecole Nationale Supérieure des Télécommunications (GET - Télécom Paris),
CNRS UMR 5141 LTCI, Paris, France
Isabelle.Bloch@enst.fr

Abstract While the notions of influence zones and skeleton by influence zones
(SKIZ) have many important applications, they have not been ex-
tended to fuzzy sets until now. The aim of this paper is to fill this
gap and to show the potential usefulness of such an extension. The
proposed definitions are based on fuzzy dilations and their inter-
pretations in terms of distances. As another contribution, we show
how this notion can be used to define a fuzzy median set, and a
series of fuzzy sets interpolating between two fuzzy sets.

Keywords: fuzzy sets, fuzzy skeleton by influence zones, fuzzy median set, in-
terpolation between fuzzy sets.

1. Introduction

Despite the interest of notions of influence zones and skeleton by influence
zones (SKIZ), surprisingly enough they have not really been exploited in
a fuzzy context until now. If knowledge or information is modeled using
fuzzy sets, it is natural to see the influence zones of these sets as fuzzy sets
too. The extension of these notions to the fuzzy case is therefore important,
for applications such as partioning the space where fuzzy sets are defined,
implementing the notion of separation, reasoning on fuzzy sets (fusion, in-
terpolation, negotiations, spatial reasoning on fuzzy regions of space, etc.),
motivating the work presented in this paper.

The first contribution is to propose definitions of notions of influence
zones and skeleton by influence zones for fuzzy sets. Both influence zones
and the SKIZ are then fuzzy sets, defined on the same space. The proposed
definitions rely on formal expressions of the SKIZ in terms of distances and
morphological dilations. Let S be the underlying space, endowed with a
distance d, and X be a subset of S composed of several connected compo-
nents: X =

⋃
iXi, with Xi ∩Xj = ∅ for i 6= j. The influence zone of Xi,

denoted as IZ(Xi), is defined as [15,18]:

IZ(Xi) = {x ∈ S / d(x,Xi) < d(x,X \Xi)}. (1)

The SKIZ of X, denoted as SKIZ(X), is then given by:

3
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4 MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS

SKIZ(X) = (
⋃
i IZ(Xi))

c.

Let us denote by δλ the dilation by a ball of radius λ, and ελ the erosion by
a ball of radius λ. Then the influence zones can be expressed as:

IZ(Xi) =
⋃
λ

(δλ(Xi) ∩ ελ((∪j 6=iXj)
c)) =

⋃
λ

(δλ(Xi) \ δλ(∪j 6=iXj)) . (2)

These two expressions of influence zones, in terms of morphological dilations
on the one hand and in terms of distances on the other hand, constitute the
basis for the proposed definitions in the fuzzy case (Section 2).

The second contribution (Section 3) is to exploit the notion of fuzzy
SKIZ to define the median fuzzy set of two intersecting fuzzy sets. The
iterative application of the median set computation leads to the construction
of a series of interpolating sets from one fuzzy set to another one. To our
knowledge, this idea of interpolation between fuzzy sets is also novel.

2. Fuzzy influence zones and fuzzy SKIZ

While several notions involved in the SKIZ definition have been generalized
to fuzzy sets (such as distances, dilations, erosions) influence zones and
SKIZ have, to the best of our knowledge, never been defined in the case
of fuzzy sets. This is the aim of this section. We consider two fuzzy sets,
with membership functions µ1 and µ2 defined on S. The extension to an
arbitrary number of fuzzy sets is then straightforward.

2.1 Fuzzy structuring element and fuzzy dilation and
erosion

The morphological operations involved in the crisp case are performed using
a structuring element which is a ball of a distance. In Rn, the Euclidean
distance is generally considered. In a digital space, such as Zn, a discrete
distance is defined, based on an underlying discrete connectivity. The ball
of radius 1 of this distance is then constituted by the center point and its
neighbors according to the choice of the connectivity. More generally, the
structuring element can be defined from a binary relation on S, that is
assumed to be symmetrical in this paper (which is consistent if it is a ball
of a distance). In the fuzzy case, the same crisp structuring elements can be
used. We can also base the operations on a fuzzy structuring element, which
can represent local imprecision or a fuzzy binary relation. We denote the
structuring element by its membership function ν. All what follows applies
for crisp and for fuzzy structuring elements. In Rn or Zn, ν(x) represents
the degree to which x belongs to ν and ν(y − x) the degree to which y
belongs to the translation of ν at point x. If ν is derived from a fuzzy
binary relation, ν(y − x) denotes the degree to which y is in relation to x.

Let us denote by δν(µ) and εν(µ) the dilation and erosion of the fuzzy set
µ by the structuring element ν. Here, dual definitions of these operations are
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chosen [5], i.e. verifying εν(µc) = (δν(µ))c, since this property is important,
as seen in Equation 2. They are expressed as:

∀x ∈ S, δν(µ)(x) = sup
y∈S
>[µ(y), ν(y − x)], (3)

∀x ∈ S, εν(µ)(x) = inf
y∈S
⊥[µ(y), c(ν(y − x))], (4)

where > is a t-norm and ⊥ the t-conorm dual of > with respect to a comple-
mentation c (which automatically guarantees the duality between δ and ε).
Examples of t-norms are min, product, Lukasiewicz (max(0, a+ b−1)), and
they generalize intersection to fuzzy sets, while t-conorms generalize union
(examples are max, algebraic sum and Lukasiewicz min(1, a+b)). In this pa-
per, the following classical complementation is used: ∀t ∈ [0, 1], c(t) = 1− t.
Other definitions of fuzzy mathematical morphology have been proposed
(e.g. [7, 8, 14]), based on different operators. Links with the ones used here
are developed in [3, 5].

Important properties of the definitions given in Equations 3 and 4, that
will be intensively used in the following, are: (i) fuzzy dilation and erosion
are equivalent to the classical dilation and erosion in case both µ and ν
are crisp; (ii) ν(0) = 1 ⇒ µ ≤ δν(µ) and εν(µ) ≤ µ, where 0 denotes the
origin of S (if ν represents a binary relation, it means that this relation is
reflexive); (iii) fuzzy dilation and erosion are increasing with respect to µ,
dilation is increasing with respect to ν while erosion is decreasing; (iv) fuzzy
dilation commutes with the supremum and fuzzy erosion with the infimum;
(v) duality: εν(µc) = (δν(µ))c; (vi) iterativity property: successive dilations
(respectively erosions) are equivalent to one dilation (respectively erosion)
with a structuring element equal to the dilation of all structuring elements.

2.2 Definition based on fuzzy dilations

Let us first consider the expression of influence zone using morphological
dilations (Equation 2). This expression can be extended to fuzzy sets by
using fuzzy intersection and union, and fuzzy mathematical morphology.

Definition 1. For a given structuring element ν, we define the influence
zone of µ1 as:

IZdil(µ1) =
⋃
λ

(δλν(µ1) ∩ ελν(µc2)) =
⋃
λ

(δλν(µ1) \ δλν(µ2)) . (5)

The dilation by λν is obtained by λ iterations of a dilation by ν in the
discrete case. The influence zone for µ2 is defined in a similar way. The
extension to any number of fuzzy sets µi is straightforward: IZdil(µi) =⋃
λ (δλν(µi) ∩ ελν((∪j 6=iµj)c)).

In these equations, intersection and union of fuzzy sets are implemented
as t-norms > and t-conorms ⊥ (min and max for instance). Equation 5
then reads: IZdil(µ1) = supλ>[δλν(µ1), 1− δλν(µ2)].
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Note that the number of dilations to be performed to compute influence
zones in a digital bounded space S is always finite (and bounded by the
length of the largest diagonal of S).

Definition 2. The fuzzy SKIZ is then defined as:

SKIZ(∪iµi) = (
⋃
i IZ(µi))

c.

This expression also defines a fuzzy (generalized) Voronöı diagram. Al-
though the notion of Voronöı diagram has already been used in fuzzy sys-
tems, to our knowledge, no fuzzy version of it was defined until now.

2.3 Definitions based on distances

Another approach consists in extending the definition in terms of distances
(Equation 1) and defining a degree to which the distance to one of the sets is
lower than the distance to the other sets. Several definitions of the distance
of a point to a fuzzy set have been proposed in the literature. Some of them
provide real numbers and Equation 1 can then be applied directly. But then
the imprecision in the object definition is lost. Definitions providing fuzzy
numbers are therefore more interesting, since if the sets are imprecise, it
may be expected that distances are imprecise too, as also underlined e.g.
in [2, 10]. In particular, as will be seen next, it may be interesting to use
the distance proposed in [2], based on fuzzy dilation:

d(x, µ)(n) = >[δnν(µ)(x), 1− δ(n−1)ν(µ)(x)]. (6)

It expresses, in the digital case, the degree to which x is at a distance
n of µ (> is a t-norm, and n ∈ N∗). For n = 0, the degree becomes
d(x, µ)(0) = µ(x). This expression can be generalized to the continuous
case as:

d(x, µ)(λ) = inf
λ′<λ

>[δλν(µ)(x), 1− δλ′ν(µ)(x)], (7)

where λ ∈ R+∗, and d(x, µ)(0) = µ(x).

First method: comparing fuzzy numbers

When distances are fuzzy numbers, the fact that d(x, µ1) is lower than
d(x, µ2) becomes a matter of degree. The degree to which this relation is
satisfied can be performed using methods for comparing fuzzy numbers. Let
us consider the definition in [9], which expresses the degree µ(d1 < d2) to
which d1 < d2, d1 and d2 being two fuzzy numbers, using the extension
principle:

µ(d1 < d2) = sup
a<b

min(d1(a), d2(b)). (8)
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Definition 3. The influence zone of µ1 based on the comparison of fuzzy
numbers (using Equation 8) is defined as:

IZdist1(µ1)(x) = µ(d(x, µ1) < d(x, µ2))

= sup
n<n′

min[d(x, µ1)(n), d(x, µ2)(n′)]. (9)

Note that this approach can be applied whatever the chosen definition
of fuzzy distances.

Second method: direct approach

When distances are more specifically derived from a dilation, as the ones
in Equations 6 and 7, a more direct approach can be proposed, taking into
account explicitly this link between distances and dilations. Indeed, in the
binary case, the following equivalences hold:

(d(x,X1) ≤ d(x,X2))⇔ (∀λ, x ∈ δλ(X2)⇒ x ∈ δλ(X1))

⇔ (∀λ, x ∈ δλ(X1) ∨ x /∈ δλ(X2)). (10)

This expression extends to the fuzzy case as follows.

Definition 4. The degree µ(d(x, µ1) ≤ d(x, µ2)) to which d(x, µ1) is less
than d(x, µ2) is defined as:

µ(d(x, µ1) ≤ d(x, µ2)) = inf
λ
⊥(δλν(µ1)(x), 1− δλν(µ2)(x)), (11)

where ⊥ is a t-conorm.

This equation defines a new way to compare fuzzy numbers representing
distances.

The comparison of fuzzy numbers representing distances, as given by
Equation 11 is reflexive (µ(d(x, µ1) ≤ d(x, µ1)) = 1) if and only if ⊥ is
a t-conorm verifying the excluded middle law (Lukasiewicz t-conorm for
instance). Moreover, in case the fuzzy numbers are usual numbers, the
comparison reduces to the classical comparison between numbers.

Defining influence zones requires a strict inequality between distances,
which is deduced by complementation:

µ(d(x, µ1) < d(x, µ2)) = 1− µ(d(x, µ2) ≤ d(x, µ1)). (12)

Definition 5. The influence zone of µ1 using the comparison introduced in
Definition 4 is defined as:

IZdist2(µ1)(x) = 1− inf
λ
⊥(δλν(µ2)(x), 1− δλν(µ1)(x)). (13)

Whatever the chosen definition of IZ, the SKIZ is always defined as in
Definition 2.
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2.4 Comparison and properties

Proposition 1. Definitions 1 and 5 are equivalent: IZdil(µ1) = IZdist2(µ1).

Although this result is not surprising, both interpretations in terms of
dilation and distance remain interesting.

However, the two distance based approaches are not equivalent, since
they rely on different orderings between fuzzy sets. Actually the direct
approach always provides a larger result.

Proposition 2. ∀x ∈ S, IZdist1(µ1)(x) ≤ IZdist2(µ1)(x).

Proposition 3. For N being the size of S in each dimension, the complexity
of computation of IZdist1 is in O(N5) in 3D and O(N4) in 2D. The com-
plexity of computation of IZdist2 or IZdil is at least one order of magnitude
less.

Proposition 4. Definitions 1, 2, 3 and 5 are equivalent to the classical
definitions in case of crisp sets and crisp structuring elements.

Finally, the SKIZ is symmetrical with respect to the µi, hence indepen-
dent of their order.

2.5 Illustrative example

The notion of fuzzy SKIZ is illustrated on the three objects of Figure 1.
The structuring element ν is a crisp 3 × 3 square in Figure 2 and a fuzzy
set of paraboloid shape in Figure 3. The influence zones of each object are
displayed, as well as the SKIZ. These results are obtained with the dilation
based definition. Each influence zone is characterized by high membership
values close to the corresponding object, and decreasing when the distance
to this object increases. The use of a fuzzy structuring element results in
more fuzziness in the influence zones and SKIZ.

Figure 1. Three fuzzy objects and their union. Membership degrees range from 0
(white) to 1 (black).

Figure 2. Influence zones of the three fuzzy objects of Figure 1 and resulting fuzzy
SKIZ, obtained using a binary structuring element (3× 3 square).
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Figure 3. Influence zones of the three fuzzy objects of Figure 1 and resulting fuzzy
SKIZ, obtained using a fuzzy structuring element (paraboloid shaped).

(a) (b) (c)

Figure 4. Binary decision using watershed for ν crisp (a) and fuzzy (b). Lines
with a very low membership degree in the SKIZ of (b) have been suppressed in
(c).

A binary decision can be made in order to obtain a crisp SKIZ of fuzzy
objects. An appropriate approach consists in computing the watershed lines
of the fuzzy SKIZ. It is appropriate in the sense that it provides spatially
consistent lines, without holes, and going through the crest lines of the
membership function of the SKIZ. A result is provided in Figure 4. For
a fuzzy structuring element ν, the lines can go through the objects (Fig-
ure 4(b)). While this is impossible in the binary case, in the fuzzy case this
is explained by the fact that an object can, to some degree, be built of sev-
eral connected components, linked together by points with low membership
degrees. The values of the SKIZ at those points are low too. This is the
case for the third object in Figure 1. The low values of the SKIZ along the
line traversing this object are in accordance with the fact that the object
has only one connected component with some degree, and two components
with some degree. The line separating the third object can be suppressed
by eliminating the parts of the watersheds having a very low degree in the
fuzzy SKIZ (Figure 4(c)). This requires to set a threshold value.

3. Fuzzy median set and interpolation between fuzzy
sets

In the mathematical morphology community, two types of approaches have
been considered to define the median set of two crisp sets, or to interpolate
between two sets. The first one relies on the SKIZ [1, 19], while the second
one relies on the notion of geodesics of some distance [11, 16, 17]. Here, we
propose to extend the first approach to the case of fuzzy sets, based on the
definitions of the fuzzy SKIZ proposed in Section 2. The median set of two
intersecting sets X and Y is defined as the influence zone of X1 = X ∩ Y
with respect to X2 = (X ∪ Y )c.
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3.1 Definitions

Let us consider two fuzzy objects with membership functions µ1 and µ2

and with intersecting supports. Two definitions can be given for the fuzzy
median set, depending on the chosen definition for the influence zones.

Definition 6. Based on the definition of influence zones from dilations, or
equivalently the direct approach from distances, the median fuzzy set of µ1

and µ2 is defined as the influence zone of µ1 ∩µ2 with respect to (µ1 ∪µ2)c

(intersection is still defined by a t-norm and union by a t-conorm):

∀x ∈ S,M(µ1, µ2)(x) = sup
λ
>[δλν(µ1 ∩ µ2)(x), 1− δλν((µ1 ∪ µ2)c)(x)]

= sup
λ
>[δλν(µ1 ∩ µ2)(x), ελν(µ1 ∪ µ2)(x)]. (14)

Definition 7. By using the definition of influence zones based on compar-
ison of fuzzy distances, the median set is defined as:

M ′(µ1, µ2)(x) = sup
n<n′

min[d(x, µ1 ∩ µ2)(n), d(x, (µ1 ∪ µ2)c)(n′)]. (15)

Proposition 5. For any two fuzzy sets µ1 and µ2, we always have:

∀x ∈ S,M ′(µ1, µ2)(x) ≤M(µ1, µ2)(x). (16)

This notion of median set can be exploited to derive a series of interpolat-
ing sets between µ1 and µ2, by applying recursively the median computation
in a dichotomic process.

Definition 8. Let µ1 and µ2 be two fuzzy sets. A series of interpolating
sets is defined by recursive application of the median computation:

Interp0 = µ1 Interp1 = µ2

Interp i+j
2

= M(Interpi, Interpj) for 0 ≤ i ≤ 1, 0 ≤ j ≤ 1.

This sequence allows transforming progressively µ1 into µ2. These two
fuzzy sets can represent spatial objects, different situations, sets of con-
straints or preferences, etc. For instance the sequence allows building inter-
mediate estimates between distant observations or pieces of information.

3.2 Examples

On various examples, it can be actually observed that M ′ leads to lower
membership values than M (Proposition 5). The result provided by M is
visually more satisfactory and is moreover faster to compute. Therefore, in
the following the chosen definition is the one given by Equation 14. Figure 5
illustrates an example of interpolation between two fuzzy sets. The series
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of interpolating fuzzy sets is computed recursively from the median set (the
fourth set in the sequence displayed in the figure). It is clear on this example
that the shape of interpolating sets evolves progressively from the one of
the first object towards the one of the second object. This evolution is in
accordance with the expected interpolation notion.

µ1 Interp(µ1,µ2)1/8 Interp(µ1,µ2)1/4 Interp(µ1,µ2)3/8

Interp(µ1,µ2)1/2 Interp(µ1,µ2)5/8 Interp(µ1,µ2)3/4 µ2

Figure 5. Interpolation between two fuzzy sets µ1 and µ2 (Interp(µ1, µ2)1/2 =
M(µ1, µ2)).

Let us now consider real objects, from medical images. We consider the
putamen (a brain structure) in different subjects, obtained from the IBSR
database1. The images are registered, which guarantees a good correspon-
dence between the different instances. Fuzziness at the boundary of the
objects is introduced to represent spatial imprecision due to partial volume
effect or imprecise segmentation, using a fuzzy dilation. Four examples of
the resulting fuzzy objects are illustrated in Figure 6. The fuzzy median set
has been computed between the two first instances, then between this result
and the third instance, etc. Results are displayed in Figure 6. Using this
iterative approach, the fuzzy median set between the 18 instances of this
structure has been computed (corresponding to the 18 normal subjects of
the IBSR database). Such results could be used for instance for representing
the inter-individual variability, or to build anatomical atlases.

Let us now consider another example, in the domain of preference mod-
eling, as in [13], on which morphological operators can be defined [4]. We
consider a propositional language based on a finite set of propositional sym-
bols, on which formulas are defined. We denote by Ω the set of all inter-
pretations. The models of a formula are considered as a fuzzy subset of Ω.
To illustrate the application of the median operator, we consider a simple
example, with three propositional symbols a, b, c, and two formulas ϕ1 and
ϕ2, expressing respectively preferences for ¬ab¬c with a degree 0.2, and
preferences for anything except abc with degrees as given in Table 1. For
defining the morphological operators, we use the Hamming distance (i.e.
two models are at a distance equal to the number of symbols instantiated

1http://www.cma.mgh.harvard.edu/ibsr/
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Figure 6. Four instances of a brain structure from four difference subjects, and
median set between two, three, four instances and between the 18 instances of the
IBSR database.

differently), and the structuring elements are the balls of this distance. The
conjunction of ϕ1 and ϕ2 is equal to ϕ1 and their disjunction is equal to ϕ2.

Table 1. Fuzzy sets of Ω representing the preferences expressed by ϕ1 and ϕ2, and
derivation of M(ϕ1, ϕ2).

Models abc ¬abc a¬bc ab¬c ¬a¬bc ¬ab¬c a¬b¬c ¬a¬b¬c
ϕ1 0 0 0 0 0 0.2 0 0

ϕ2 0 0.5 0.5 0.5 0.5 0.8 0.5 0.7

δ1(ϕ1) 0 0.2 0 0.2 0 0.2 0 0

ε1(ϕ2) 0 0 0 0 0.5 0.5 0.5 0.5

δ2(ϕ1) 0.2 0.2 0 0.2 0.2 0.2 0.2 0.2

ε2(ϕ2) 0 0 0 0 0 0 0 0.5

M(ϕ1, ϕ2) 0 0 0 0 0 0.2 0 0.2

The successive steps of the computation of the median set are illustrated
in Table 1. The models of the median set also constitute a fuzzy set of
Ω. On this example, the classical fusion, according to [12] would lead to
the intersection of the sets of models, i.e. ϕ1. The result of the median is
somewhat larger, since it includes also a model of ϕ2 that was not a model of
ϕ1 (¬a¬b¬c), and gives a more fair point of view expressing an intermediate
solution between both sets of preferences. This can be interpreted as follows:
if an individual as a set of preferences described by ϕ1, which is very strict
and constraining, he will be tempted to extend his preferences to obtain
a better agreement with the preferences of the second individual. On the
other hand, the second individual is ready to restrict his choices to achieve a
consensus with the first one, and will be more satisfied if a fair account of all
his preferences is obtained. Note that the fact that the median is included
in the disjunction (see Proposition 6) guarantees that it does not contain a
solution that nobody wants to accept. The resulting membership degrees
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reflect the low consistency that exists between both sets of preferences on
this example.

3.3 Some properties

Proposition 6. If ν(0) = 1 (or if ν represents a reflexive relation), then the
median set is included in the union of the two objects: ∀x ∈ S,M(µ1, µ2)(x) ≤
(µ1 ∪ µ2)(x).

Proposition 7. Under the same condition (ν(0) = 1), the cores verify
the following inclusion relations: Core(µ1 ∩ µ2) ⊆ Core(M(µ1, µ2)) ⊆
Core(µ1 ∪ µ2).

The core of a fuzzy set is the set of points having a membership value
equal to 1. Note that the core of the median set can be empty.

Proposition 8. If additionally the origin is the only modal value of ν
(ν(0) = 1 and ∀x ∈ S \ {0}, ν(x) < 1), then the median set and the union
of the two sets have the same support and the cores of the median set and
of the intersection are equal.

In particular, in the case where the structuring element is crisp (for
instance a square of size 3× 3), this property does not hold, while it holds
for the paraboloid shaped structuring element used in the presented results.

Figure 5 illustrates that the median set and the union have the same
support. It should be noticed that in a large part of the support, the
membership values are very low (0.1 in this example), and that it would
be very easy to eliminate these low values if a more reduced support is
desired, as could be intuitively preferable.

4. Conclusion

In this paper, novel notions of fuzzy SKIZ, median and interpolation were
introduced, based on mathematical morphology concepts. The proposed
definitions are applicable whatever the dimension of the underlying space S
and whatever the semantics attached to the fuzzy sets. The only hypothesis
is that it should be possible to define a structuring element, either from a
distance on S, or from a binary symmetrical relation.

The definitions of median set and interpolation can be extended to non
intersecting fuzzy sets if a translation on S can be defined. The cases where
S does not have an affine structure are planned for future work.

Another approach for defining median sets in the crisp case is based on
geodesic distances [16]. Extension of this approach to the fuzzy case could
be another interesting research direction. Extensions to a logical framework
for mediation applications was proposed in [6], but not to the fuzzy sets
framework until now.

Extensions of the median set to more than two fuzzy sets could be inter-
esting too, for instance for deriving generic models from different instances.
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In the brain structure example, the median has been computed iteratively,
a process which depends on the order. A direct method involving all objects
simultaneously deserves to be developed.

Finally, applications of the propositions of this paper could be further
explored, for instance for fusion, with a comparison to other operators also
based on distance [12,13], for the definition of compromises or negotiations,
for smoothing fuzzy sets representing preferences, observations, etc., or for
finding the fuzzy sets in between two sets.
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Abstract Algorithms for the computation of the basis (maximal intervals of
the kernel) of binary and gray-scale translation-invariant and lo-
cally defined morphological operators are presented. Some exam-
ples that illustrate the dynamics of the algorithms as well as their
use as learning algorithms are also presented.
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1. Introduction

One interesting aspect of morphological operators is the existence of canon-
ical representations [1, 2, 9–11]. According to the canonical decomposition
theorem, any translation-invariant morphological operator can be expressed
as a supremum of sup-generating (also known as interval) operators. Al-
though this theorem holds for any translation-invariant mapping between
two complete lattices, in this work we restrict the scope to binary and gray-
level image operators. If we also impose local definition by a neighborhood
W , it can be shown that all kernel elements can be restricted to W [5].
Such operators are called W -operators. A W -operator can be characterized
by a function whose domain is restricted to sub-images in W and its value
to gray-scales of the image. This fact is important if our concern is the
computational representation of image operators.

In the binary case, a W -operator Ψ : P(E)→ P(E), where E = Z2 de-
notes the image domain, is characterized by a binary function ψ : P(W )→
{0, 1}. Its kernel is defined as

K(Ψ) = {X ∈ P(W ) : ψ(X) = 1}, (1)

and its basis, denoted B(Ψ), consists of the set of maximal intervals in the
kernel.

Interval operators are parameterized by a pair of structuring elements
that form intervals. The kernel induces a canonical decomposition while the
basis induces a minimal decomposition as a supremum of interval operators.
In terms of its kernel and basis, ψ can be expressed respectively as follows:

ψ(X) = max{λ[A,A](X) : [A,A] ⊆ K(ψ)} , (2)
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and
ψ(X) = max{λ[A,B](X) : [A,B] ∈ B(ψ)} , (3)

where the interval operator λ[A,B] is defined as

λ[A,B](X) = 1⇐⇒ X ∈ [A,B] . (4)

Similar definitions exist for gray-scale W -operators [3].
In this work we are particularly concerned with a specific problem. Sup-

pose we have knowledge of some elements that are and that are not elements
of a kernel. How do we compute a set of intervals that are consistent with
this set of elements? In other words, elements known to be in the kernel
must belong to at least one of the intervals and those known not to be in
the kernel must not belong to any of the intervals. By representing the set
of elements by intervals, our goal is to have a compact representation of the
operator. In particular, we are interested in the representation of functions
of the following types:

a) ψ : {0, 1}n → {0, 1}, n > 0 an integer,

b) ψ : {0, 1}n → {0, 1, 2, . . . , k}, n, k > 0 integers, and

c) ψ : {0, 1, 2, . . . , k1}n → {0, 1, . . . , k2}, n, k1, k2 > 0 integers.

These functions characterize, respectively, W -operators (a) between binary
images, (b) between binary and gray-level images, and (c) between gray-
level images.

In the following three sections we present algorithms for the computation
of a set of maximal intervals covering the elements that are known to be in
the kernel and not covering the ones that are known not to be in the kernel,
for the three cases above. In the last section we present the conclusions of
this work.

2. Binary input and output

Finding maximal intervals of the kernel of a binary W -operator is equiv-
alent to finding the minimal sum of products form of a Boolean function.
Classical algorithms such as the one due to Quine and McCluskey are well
known in the fields of switching theory and logic design [6]. It is known that
this problem is NP (computationally intractable). Therefore many imple-
mentations use heuristics to circumvent computational difficulties. One of
such implementations is the Berkeley Espresso [4].

While Quine-McCluskey’s approach follows a bottom-up strategy of join-
ing smaller intervals in the kernel in order to generate a larger one, until no
more joining are possible, another alternative option we have proposed is
based on a top-down approach [8]. The approach, called ISI (Incremental
Splitting of Intervals), starts the process with the whole interval [∅,W ] and
then removes from this interval the elements that are not in the kernel. The
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result of the removing operation can be expressed by means of a set of sub-
intervals of the initial interval. Thus, subsequent removing have the effect of
sequentially breaking (or splitting) one ore more of these intervals. At the
end of the process, when all elements that are not in the kernel have been
removed, only elements of the kernel will remain covered by the resulting
intervals.

2.1 Algorithm review

The removing operation or splitting rule [8] can be thought as the difference
between two intervals [A,B] and [C,D] expressed in terms of the maximal
intervals contained in [A,B] \ [C,D].

Proposition 1 (Splitting rule). Let [A,B] and [C,D] be two intervals in
[∅,W ]. Then, the set of maximal intervals contained in [A,B] \ [C,D] is
given by{

[A,B ∩ {c}c] : c ∈ C ∩Ac
}
∪
{

[A ∪ {d}, B] : d ∈ Dc ∩B
}
, (5)

where the complement ·c is with relation to W . If C = D = X, X ∈ P(W ),
the rule simplifies to

{[A,B ∩ {a}c] : a ∈ X ∩Ac} ∪ {[A ∪ {b}, B] : b ∈ B ∩Xc}. (6)

The ISI algorithm consists basically on applying the splitting rule re-
peatedly in order to remove from interval [∅,W ] all elements X such that
ψ(X) = 0 (those elements that are not in the kernel of ψ). Thus, after
the removing process finishes, the remaining intervals cover the elements X
such that ψ(X) = 1 and eventually some elements X such that ψ(X) is
unknown (don’t cares). If {X : ψ(X) = 1}∪{X : ψ(X) = 0} = P(W ), then
the resulting collection of intervals corresponds to the basis of ψ. Other-
wise, it is a basis that is consistent with ψ with respect to the elements in
{X : ψ(X) = 1} ∪ {X : ψ(X) = 0}.

The collection of maximal intervals resulting from the removing process
may contain redundant intervals. That is, it may contain an interval [A,B]
such that all its elements are contained in some other intervals of the collec-
tion (although [A,B] itself is not contained in any other interval). Hence,
in a second step of the ISI algorithm a minimum cover (sub-basis) should
be computed [6]. A minimum cover corresponds to a smallest sub-collection
of intervals that is enough to cover all elements in {X : ψ(X) = 1}.

When don’t cares are present, some heuristics can be applied to acceler-
ate the algorithm. For instance, during the removing process, intervals that
do not contain any element of {X : ψ(X) = 1} can be disregarded because
they will not be needed for the minimum cover. As an example, in Figure 1,
filled circles represent the elements of the kernel, non-filled circles are the
elements for which ψ takes value 0, and the absence of a circle indicates an
element for which the value of ψ is not defined (dont’t care). Figure 1(a)
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shows the removing of element 001 from the interval [000, 111], resulting in
three intervals, [000, 110], [100, 111] and [010, 111]. The one (enclosed by a
dashed box) does not contain any element of K(ψ) and, therefore, it can be
discarded, as illustrated in Figure 1(b).

110

010

000

100001

011

101

111

(a)

000

110

100

111

(b)

Figure 1. (a) The three intervals after the removing of 001. (b) Discarding of
interval [010, 111], which will not be needed for the minimum cover.

More details of this algorithm, as well as some interesting heuristics to
improve the processing time, can be found in [8].

2.2 Application example

The above algorithm may be used as a learning (generalization) algorithm,
as shown in the next example. Figure 2(a) shows an input-output pair of
training images (to be used to estimate a kernel). From the training images,

(a)

(b)

Figure 2. Learning binary image operators: (a) training images and (b) test
images.

the elements known to be in the kernel are
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while those known not to be in the kernel are

The resulting basis is given by the set of intervals

[[[[ ]]]] ,,,,

Figure 2(b) shows the result obtained by applying the above basis on an-
other image. The learned operator is the 8-connected internal edge extrac-
tor. Additional application examples can be found in [7].

3. Binary input and multi-level output

Operators that map binary images to gray-scale images can be characterized
by a function of the form ψ : {0, 1}n → {0, 1, . . . , k}, where k denotes the
maximum gray-level. Their kernel are defined by level, that is, the kernel
of ψ at level i, i = 0, 1, . . . , k, is the collection Ki(ψ) given by, for any
x ∈ {0, 1}n,

x ∈ Ki(ψ)⇐⇒ ψ(x) ≥ i. (7)

Notice that Kk(ψ) ⊆ Kk−1(ψ) ⊆ · · · ⊆ K1(ψ) ⊆ K0(ψ). The basis of ψ at
level i, Bi(ψ), is the collection of maximal intervals in Ki(ψ).

The sup-decomposition [3] of ψ in terms of its kernel and basis are given,
respectively, ∀x ∈ {0, 1}n, by

ψ(x) = max{i : x ∈ Ki(ψ), i = 0, 1, . . . , k}, (8)

and
ψ(x) = max{i : x ∈ [a,b], [a,b] ∈ Bi(ψ), i = 0, 1, . . . , k} . (9)

3.1 Algorithm

To compute the basis Bi(ψ), i = 0, 1, . . . , k, of ψ : {0, 1}n → {0, 1, . . . , k},
ISI is applied repeatedly, one time for each level i. Initially, all elements
with label 0 are removed from the interval [∅,W ]. In this process, all other
elements are regarded as 1s. The resulting intervals correspond to B1(ψ),
the intervals that cover all elements with label greater or equal to 1. In the
next step, the same process is repeated for all elements with label 1. This
time, the initial intervals are those in B1(ψ) and the resulting intervals
correspond to B2(ψ). This process is repeated successively for the next
labels until all elements of label k− 1 are removed, resulting in the basis at
level k.

As an example, consider ψ : P(W ) → {0, 1, 2, 3}, with |W | = 3, given
by ψ(000) = 0, ψ(010) = 1, ψ(100) = 1, ψ(101) = 2, ψ(110) = 2 and
ψ(111) = 3. The remaining elements are don’t cares. Figure 3 shows the
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dynamics of the algorithm, while Figure 4 shows the resulting basis. The
basis at level 0, B0(ψ), is the set composed by the interval [∅,W ]. To
compute B1(ψ), all elements with label 0 are removed from the interval
[∅,W ], resulting in B1(ψ) = {[001, 111], [010, 111], [100, 111]}. To compute
B2(ψ), all elements with label 1 are removed from the intervals in B1(ψ),
resulting in B2(ψ) = {[001, 111], [110, 111]}. Proceeding similarly, we obtain
B3(ψ) = {[011, 111]}. Notice that intervals X11, 11X, 1X1 and 111 are
discarded because they are contained in another intervals, while 0X1 is
discarded because it contains only don’t cares.

0X1 X11

X11

11X

11X

XXX

X1X

X11 11X

1X1

111

XX1 1XX

1XXXX1

XX1

B0(ψ)

B1(ψ)

B2(ψ)

B3(ψ)

removing of 000

removing of 010

removing of 100

removing of 101

removing of 110

Figure 3. Example of the application of multi-level output ISI.

33

2 22

11

2

33

2 2

11

0

B0(ψ) B1(ψ) B2(ψ) B3(ψ)

Figure 4. Lattice view of the intervals of Figure 3.

Given a partially defined ψ, let M = {(X, l) : ψ(X) = l, l = 0, 1, . . . , k}
(all elements whose label is known). The basis computation process is sum-
marized in Algorithm 1.

4. Gray-level input and output

Gray-scale W -operators can be characterized by functions in the form ψ :
{0, 1, . . . , k1}n → {0, 1, . . . , k2}, where k1 and k2 correspond to the input
and output maximum gray-levels. Analogous to the previous case, the kernel
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Algorithm 1 Basis computation.

1: I← {[∅,W ]}, with label 0; Ifinal ← ∅ ;
2: M1 =M ;

// Repeat for each level, except k
3: for all l ∈ {0, 1, . . . , k − 1} do
4: M0 = {(X, i) ∈M1 : i = l} ; // elements to be removed
5: M1 =M1 \M0 ; // elements to be covered

// Remove each X ∈M0 from I
6: for all (X, l) ∈M0 do
7: INew ← ∅ ;
8: IP ← {[A,B] ∈ I : X /∈ [A,B]} ;
9: Itmp ← {[A,B] ∈ I : X ∈ [A,B]} ;

// Split each interval that contains X
10: for all [A,B] ∈ Itmp do

11: Isplit ← maximal intervals in [A,B] \ {X} ;

// Discard all intervals that does not cover any element inM1 and all
those that are covered by another interval

12: for all [A′, B′] ∈ Isplit do

13: if ∃X ∈M1 such that X ∈ [A′, B′] then
14: if [A′, B′] 6⊂ [E,F ], ∀[E,F ] ∈ IP then
15: INew ← INew ∪ {[A

′, B′]} ;
16: end if
17: end if
18: end for
19: end for
20: I← IP ∪ INew ;
21: end for
22: Label all intervals in I with l + 1 ;
23: Ifinal = Ifinal ∪ I ;
24: end for
25: Return Ifinal ;

of ψ at level i, i ∈ {0, 1, . . . , k2}, is the collection Ki(ψ) given by, for any
x ∈ {0, 1, . . . , k1}n,

x ∈ Ki(ψ)⇐⇒ ψ(x) ≥ i, (10)

and the basis of ψ at level i, Bi(ψ), is the collection of maximal intervals in
Ki(ψ).

The sup-decomposition [3] of ψ in terms of kernel and basis are given,
respectively, ∀x ∈ {0, 1, . . . , k1}n, by

ψ(x) = max{i ∈ {0, 1, . . . , k2} : x ∈ Ki(ψ)} , (11)

and
ψ(x) = max{i ∈ {0, 1, . . . , k2} : x ∈ [a,b], [a,b] ∈ Bi(ψ)} . (12)

In this section we present the extension of ISI for the computation of
the basis. From the binary ISI we inherit the idea of splitting intervals, and
from the multi-level output ISI we inherit the idea of a pyramid of basis.
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4.1 Algorithm

To simplify notations, we consider k1 = k2 = k and K = {0, 1, . . . , k},
and in order to generalize the splitting rule for this case, we introduce two
auxiliary functions ξI e ξO. Let x = (x1, x2, . . . , xn) be an element in KW

and let O = (O1, O2, . . . , On) and I = (I1, I2, . . . , In) be the smallest and
the largest elements of KW , respectively. We define

ξI(x, i) = (I1, . . . , Ii−1, xi − 1, Ii+1, . . . , In) (13)

and

ξO(x, i) = (O1, . . . , Oi−1, xi + 1, Oi+1, . . . , On) . (14)

Proposition 2. Let [a,b] and [c,d] be two intervals in KW , such that
[c,d] ∧ [a,b] 6= ∅. Let a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn), c =
(c1, c2, . . . , cn) and d = (d1, d2, . . . , dn), where ai, bi, ci, di ∈ K,∀i ∈ [1, n].
The set of maximal intervals resulting from the subtraction of [c,d] from
[a,b] is given by{

[a,b ∧ ξI(c, i)] : i ∈ [1, n]
}
∪
{

[a ∨ ξO(d, i),b] : i ∈ [1, n]
}
. (15)

Similarly to the binary case, when c = d = x, where x = (x1, x2, . . . , xn),
the above formula simplifies to{

[a,b ∧ ξI(x, i)] : i ∈ [1, n]
}
∪
{

[a ∨ ξO(x, i),b] : i ∈ [1, n]
}
. (16)

After a removing operation, the number of resulting intervals as well as
their dimension depend on the localization of the interval being removed.
For an interval of dimension n, the number of resulting intervals may vary
from n to 2n. Figure 5 shows the three possibilities for the removing from
an interval of dimension 2.

Figure 5. Three possible localizations of an element in an interval of dimension
2 and the intervals resulting from the splitting by that element.

Let [A1, B1] and [A2, B2] be two intervals such that there is a third
interval [C,D] that intercepts both (that is, [C,D] ∩ [A1, B1] 6= ∅ and
[C,D] ∩ [A2, B2] 6= ∅). For the binary and multi-level output ISI, if we
split both [A1, B1] and [A2, B2] by [C,D], it is possible to show that no
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interval resulting from the splitting of [A1, B1] is contained in any interval
resulting from the splitting of [A2, B2], and vice-versa [8].

However, for the gray-level ISI, the same is not true. For example, in
Figure 6, two intervals [10, 44] and [04, 44] are given, and the element to be
removed is 24. From the splitting of [10, 44] there results three intervals,
[30, 44], [10, 43] and [10, 14]. From the splitting of the second interval there
results [04, 14] and [34, 44]. Analyzing the resulting intervals, we observe
that [34, 44] ≤ [30, 44]. This implies that the algorithm must, besides veri-
fying whether the resulting intervals of a splitting by [c,d] are not contained
in intervals of IP (those that do not intercept [c,d]), also verify if they are
not contained in an interval resulting from the splitting of another interval
by [c,d].

44

04
40

10

24

[10, 44]

[04, 44]

[34, 44]

[04, 14]

[30, 44]

[10, 43]

[10, 14]

Figure 6. An interval resulting from the splitting of an interval may be contained
in an interval resulting from the splitting of another interval by the same element.

As for the algorithm, the only modification needed with respect to the
previously presented one is in Line 14, in order to include the verification
discussed above. Of course, the splitting rule of Line 11 must be substituted
by its equivalent for the gray-level case. Below follows Lines 14 to 16 of the
modified algorithm, in order to compute the basis of a gray-level function.

if [a′,b′] 6⊂ [e, f ], ∀[e, f ] ∈ IP ∪ INew then
INew ← INew ∪ {[a

′,b′]} ;
end if

Figure 7 shows an example of the application of the gray-level ISI algo-
rithm, step by step. The intervals obtained after removing each element are
shown step by step in Figure 8. A minimum cover is computed each time
all elements with a same label are removed.

Figures 8(b) to 8(e) show the intervals that result after removing ele-
ments with label 1, while Figures 8(f) to 8(h) show the intervals that result
after removing elements with label 2. Intervals that do not cover any labeled
elements are also removed and are not shown. Removing all elements with
label 1 results in intervals that do not cover any element with label 1, but
cover all elements of label greater than 1. Similarly, removing afterwards all
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B0 = B1

B2

B3 = B4

removing of 00

removing of 03

removing of 24

removing of 14

removing of 40

removing of 31

removing of 10

[00, 44]

[10, 44]

[10, 44] [01, 44]

[11, 44]

[01, 42]

[01, 42]

[01, 42][04, 44]

[30, 44]

[30, 44]

[10, 14]

[10, 43]

[10, 43] [04, 14] [34, 44]

[10, 13]

[31, 44] [30, 34] [10, 33] [11, 43]

[32, 44]

[32, 44]

[41, 44]

[41, 44] [10, 30] [10, 23] [12, 33] [11, 23]

[12, 43]

[12, 43] [41, 43]

[20, 23] [11, 23]

Minimum cover computation

Covered by another interval

Does not cover any element with greater label

Figure 7. Example of the application of gray-level ISI.

elements with label 2 results in intervals that cover all elements with label
greater than 2, but do not cover any element with label 1 or 2.

The basis at level 0 (B0) is the initial interval and since there are no
elements with label 0, it is also the basis at level 1 (B1). Four and three
splitting operations, respectively, were performed to remove elements with
label 1 from B1 and elements with label 2 from B2. Since there are no
elements with label 3, the basis at level 4 is the same at level 3. The
resulting basis is depicted in Figure 9.

5. Conclusion

We have reviewed and presented algorithms for the computation of maxi-
mal intervals contained in the kernel of binary and gray-level morphological
operators. They are based on operations that remove non-kernel elements
from intervals and express the resulting elements of the interval by means
of a set of subintervals. Implementation of these algorithms must take into
consideration the fact that kernels are not always entirely known. Our al-
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Figure 8. Maximal intervals after removing elements with label 1 (removing of (a)
00, (b) 03, (c) 24, and (d) 14) followed by minimum cover computation, and after
removing elements with label 2 (removing of (e) 40, (f) 31, and (g) 10) followed
by minimum cover computation, for the example of Figure 8.

gorithms deal with cases in which some elements are known to be or not to
be in the kernel, while nothing is known about the others. In the binary
case, the algorithm corresponds to incompletely specified Boolean function
minimization. Since these algorithms demand high computational cost, the
use of smart data structures and good heuristics need to be considered. A
simple example was given to illustrate the use of these algorithms as learning
(or generalization) algorithms.

Further issues to be investigated include efficient implementation of the
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B0 = B1 = {[00, 44]} B2 = {[10, 43], [30, 44]} B3 = B4 = {[41, 44], [12, 43]}

Figure 9. Resulting basis for the example depicted in Figure 8.

algorithm for the gray-scale case, conversion of an arbitrary representation
of the kernel of image operators (such as decision trees, neural networks,
support vector machines) to the basis representation, and efficient represen-
tation of the basis (aiming fast computation).

Acknowledgments

N. S. T. Hirata thanks FAPESP (Grant 04/11586-7) and CNPq (Grant
312482/2006-0). R. Hirata Jr. and J. Barrera thank CNPq.

References

[1] G. J. F. Banon and J. Barrera, Minimal Representations for Translation-Invariant
Set Mappings by Mathematical Morphology, SIAM J. Applied Mathematics 51 (1991),
no. 6, 1782-1798.

[2] , Decomposition of Mappings between Complete Lattices by Mathematical
Morphology, Part I. General Lattices, Signal Processing 30 (1993), 299-327.

[3] J. Barrera, R. Terada, R. Hirata Jr, and N. S. T. Hirata, Automatic Programming
of Morphological Machines by PAC Learning, Fundamenta Informaticae 41 (2000),
no. 1-2, 229-258.

[4] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli,
Logic Minimization Algorithms for VLSI Synthesis, Kluwer Academic Publishers,
1984.

[5] H. J. A. M. Heijmans, Morphological image operators, Academic, Boston, 1994.

[6] F. J. Hill and G. R. Peterson, Introduction to Switching Theory and Logical Design,
3rd, John Wiley, 1981.

[7] N. S. T. Hirata, Document Processing via Trained Morphological Operators, To appear
in Proceedings of ICDAR 2007, 2007.

[8] N. S. T. Hirata, J. Barrera, R. Terada, and E. R. Dougherty, The Incremental Split-
ting of Intervals Algorithm for the Design of Binary Image Operators, 6th Interna-
tional Symposium on Mathematical Morphology (H. Talbot and R. Beare, ed.), 2002,
Proceedings of the 6th International Symposium: ISMM 2002, pp. 219-228.

[9] P. Maragos, A Unified Theory of Translation-invariant Systems with Applications to
Morphological Analysis and Coding of Images, School of Elect. Eng. - Georgia Inst.
Tech., 1985.

[10] , A Representation Theory for Morphological Image and Signal Processing,
IEEE Transaction on Pattern Analysis and Machine Intelligence 11 (1989), no. 6,
586-599.

[11] G. Matheron, Random Sets and Integral Geometry, John Wiley, 1975.



Division of mappings between complete

lattices

Christer O. Kiselman

Uppsala University, Sweden
kiselman@math.uu.se

Abstract The importance for image processing of a good theory for mor-
phological operators in complete lattices is now well understood.
In this paper we introduce inverses and quotients of mappings be-
tween complete lattices which are analogous to inverses and quo-
tients of positive numbers. These concepts are then used to create
a convenient formalism for dilations and erosions as well as for
cleistomorphisms (closure operators) and anoiktomorphisms (ker-
nel operators).

Keywords: complete lattice, generalized inverse of a mapping, division of map-
pings, epigraph, hypograph, dilation, erosion, ethmomorphism,
morphological filter, cleistomorphism, closure operator, anoikto-
morphism, kernel operator, residuated mapping, Galois connection.

1. Introduction

Lattice theory is a mature mathematical theory thanks to the pioneering
work by Garrett Birkhoff, Øystein Ore and others in the first half of the
twentieth century. A standard reference is still Birkhoff’s book (1995) [1],
first published in 1940. The importance for image processing of a good the-
ory for morphological operators in complete lattices is now well understood.
See for instance the books by Matheron (1975) [9], Serra (1982, 1988) [13],
[14] and Heijmans (1994) [6], and the articles by Heijmans and Ronse (1990)
[7], Ronse (1990) [11], Ronse and Heijmans (1991) [12], and Serra (2006)
[15].

In this paper we shall introduce inverses and quotients of mappings be-
tween complete lattices which are analogous to inverses 1/y and quotients
x/y of positive numbers. These concepts are then used to create a conve-
nient formalism for a unified treatment of dilations δ : L→M and erosions
ε : L→M as well as of cleistomorphisms (closure operators) κ : L→ L and
anoiktomorphisms (kernel operators) α : L→ L. The theory for inverses in
Section 3 generalizes the theory of Galois connections, which is equivalent
to residuation theory.

To define an inverse of a general mapping seems to be a hopeless task.
However, if the mapping is between preordered sets, there is some hope of
constructing mappings that can serve in certain contexts just like inverses
do.
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2. Definitions

Definition 1. A preorder in a set X is a binary relation which is reflexive
(for all x ∈ X, x 6 x) and transitive (for all x, y, z ∈ X, x 6 y and
y 6 z imply x 6 z). An order is a preorder which is antisymmetric (for all
x, y ∈ X, x 6 y and y 6 x imply x = y).

To any preorder 6 we introduce an equivalence relation x ∼ y defined as
x 6 y and y 6 x. If 6 is an order, this equivalence relation is just equality.
If we have two preorders, we say that 61 is stronger than or finer than 62

if for all x and y, x 61 y implies x 62 y We also say that 62 is weaker than
or coarser than 61. The finest preorder is the discrete preorder, defined as
equality; the coarsest preorder is the chaotic preorder given by x 6 y for all
x and y.

Definition 2. A complete lattice is an ordered set such that any family
(xj)j∈J of elements possesses a smallest majorant and a largest minorant.
We denote them by

∨
j∈J xj and

∧
j∈J xj , respectively.

Definition 3. If f : X → Y is a mapping of a set into another, we define
its graph as the set

graph f = {(x, y) ∈ X × Y ; y = f(x)}.
If Y is preordered, we define also its epigraph and its hypograph as

epi f = {(x, y) ∈ X×Y ; f(x) 6 y}, hypo f = {(x, y) ∈ X×Y ; y 6 f(x)}.

If X and Y are given, any mapping X → Y is determined by its graph,
and, if Y is a complete lattice, also by its epigraph and by its hypograph.
It is often convenient to express properties of mappings in terms of their
epigraphs or hypographs.

Definition 4. If two preordered sets X and Y and a mapping f : X → Y
are given, we shall say that f is increasing if

for all x, x′ ∈ X, x 6X x′ ⇒ f(x) 6Y f(x′),

and that f is coincreasing if

for all x, x′ ∈ X, f(x) 6Y f(x′) ⇒ x 6X x′.

Blyth and Janowitz (1972:6) [3] and Blyth (2005:5) [2] call an increas-
ing mapping isotone. The term coincreasing appears in my lecture notes
(2002:12) [8].

To emphasize the symmetry between the two notions, we define, given
any mapping f : X → Y , a preorder 6f in X by the requirement that
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x 6f x′ if and only if f(x) 6Y f(x′). Then f is increasing if and only if 6X
is finer than 6f , and f is coincreasing if and only if 6f is finer than 6X .

A comparison with topology is in order here. If f : X → Y is a mapping
of a topological space X into a topological space Y with topologies τX
and τY , we can define a new topology τf in X as the family of all sets
{x ∈ X; f(x) ∈ V }, V ∈ τY . Then f is continuous if and only if τX is finer
than τf .

Definition 5. A mapping f : L → M of a complete lattice L into a com-

plete lattice M is said to be a dilation if f
(∨

j∈J xj

)
=
∨
j∈J f(xj) for all

families (xj)j∈J of elements in L. The mapping is said to be an erosion if

f
(∧

j∈J xj

)
=
∧
j∈J f(xj) for all families (xj)j∈J .

Singer (1997:172) [16] calls a mapping f : L→M a duality if f
(∧

j∈J xj

)
=
∨
j∈J f(xj) for all families (xj)j∈J of elements in L. Thus a duality in-

duces a dilation Lop →M and an erosion L→Mop if we change the order
in L or M to the opposite order; the study of dualities in the sense of Singer
is equivalent to that of dilations or erosions.

Definition 6. A mapping f : X → X of a preordered set X into itself
is said to be an ethmomorphism if it is increasing and idempotent. If in
addition it is extensive, i.e., f(x) > x for all x ∈ X, then it is said to be a
cleistomorphism; if it is antiextensive, i.e., f(x) 6 x for all x ∈ X, then it
is called an anoiktomorphism.1

For the notions just defined many terms have been used. Other terms
for ethmomorphism are morphological filter (Serra 1988:104 [14]), projec-
tion operator and projection (Gierz et al. 2003:26 [5]). For cleistomorphism
other terms include closure mapping (Blyth and Janowitz 1972:9 [3]), clos-
ing (Matheron 1975:187 [9]; Serra 1982:56 [13]), hull operator (Singer 1997:8
[16]), closure operator (Gierz et al. 2003:26 [5]). For anoiktomorphism there
are several other terms: dual closure mapping (Blyth and Janowitz 1972:9
[3]), opening (Matheron 1975:187 [9]; Serra 1982:56 [13]), kernel operator
(Gierz et al. 2003:26 [5]).

3. Inverses of mappings

In general a mapping g : X → Y between sets does not have an inverse. If g
is injective, we may define a left inverse u : Y → X, thus with u◦g = idX . If
g is surjective, we may define a right inverse v : Y → X, thus with g◦v = idY .
We then need to define v(y) as an element of {x; g(x) = y}. In the general

1Cf. the noun ēthmós ‘strainer’ and the adjectives kleistós ‘closed’ and anoiktós ‘open’
in Classical Greek. I am grateful to Ebbe Vilborg for help with these words.
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situation this has to be done using the axiom of choice. In a complete lattice,
however, it could be interesting to define v(y) as the supremum or infimum
of all x such that g(x) = y, even though this supremum or infimum need
not belong to the set. However, for various purposes it is convenient to take
instead the infimum of all x such that g(x) > y or the supremum of all x
such that g(x) 6 y. This yields better monotonicity properties. (The case
g(x) = y is covered if we let the preorder in Y be the discrete preorder.)

Definition 7. Let L be a complete lattice, Y a preordered set, and g : L→
Y any mapping. We then define the upper inverse g[−1] : Y → L and the
lower inverse g[−1] : Y → L as the mappings

g[−1](y) =
∧
x∈L

(x; g(x) >Y y) =
∧
x∈L

(x; (x, y) ∈ hypo g), y ∈ Y ; (1)

g[−1](y) =
∨
x∈L

(x; g(x) 6Y y) =
∨
x∈L

(x; (x, y) ∈ epi g), y ∈ Y. (2)

As a first observation, let us note that these inverses are always increas-
ing. If Y possesses a smallest element 0Y , then g[−1](0Y ) = 0L. Similarly,
if there is a largest element 1Y , then g[−1](1Y ) = 1L. If Y has the chaotic

preorder, then both inverses are constant, g[−1] = 0L and g[−1] = 1L iden-
tically.

We note that we always have(
epi g[−1]

)−1 ⊃ hypo g and
(

hypo g[−1]

)−1 ⊃ epi g. (3)

Here S−1 = {(y, x) ∈ Y × L; (x, y) ∈ S} for any subset S of L × Y . In
general these inclusions are strict as we shall see below.

Note that we do not require in (2) that the set of all x such that g(x) 6Y
y shall have a largest element. In other words, the supremum in (2) is not
necessarily a maximum.

The special situation when the supremum in (2) is a maximum, in other
words when g(g[−1](y)) 6Y y for all y, has been studied for a long time, and
from various aspects. Let us mention a few examples.

1. When the supremum in (2) is a maximum, the pair (g, g[−1]) is said
to be a Galois connection (Gierz et al. 2003:22) [5], a concept which goes

back to Évariste Galois’ work on the automorphism groups of a field. Ore
(1944:495) [10] called a variant of the pair of mappings (g, g[−1]) a Galois
connexion.

2. One also says in this special case that g is residuated and that g[−1]

is its residual (Blyth and Janowitz 1972:11 [3]; Blyth 2005:7 [2]). If the
infimum in (1) is a minimum, g is said to be dually residuated and g[−1] is
called its dual residual ; the pair (g[−1], g) is a Galois connection between
Y and L. Residuation theory goes back at least to a paper by Ward and
Dilworth (1939) [17]. In an ordered groupoid one fixes an element c and
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assumes that the set of all x such that cx 6 y has a largest element, which
is denoted by y : c (we consider for simplicity only the commutative case).
We see that this is g[−1] if g : L→ L is the mapping g(x) = cx. Thus cx 6 y
if and only if x 6 y : c.

3. The pair (g, g[−1]) is also said to be an adjunction (Gierz et al. 2003:22
[5]) in this special case. This aspect probably originates in logic, and is
important in image processing.

4. Finally, there is duality in convexity theory. The Fenchel transforma-
tion (Fenchel 1949 [4]) of a function ϕ : Rn → [−∞,+∞] is defined as

ϕ̃(ξ) = sup
x∈Rn

(
ξ · x− ϕ(x)

)
, ξ ∈ Rn,

and satisfies

ϕ̃ 6 f ⇐⇒ f̃ 6 ϕ.

After a change of order on one of the sides it satisfies (3) with equality, which
means that we have a Galois connection (see condition (C) in Theorem 2).
It is also the case that (

inf
j∈J

ϕ
)̃

= sup
j∈J

ϕ̃,

so that we have a duality in the sense of Singer; i.e., after a change of the
order relation we have a dilation or erosion (see condition (A) in Theorem
2). Singer (1997) [16] studies several other dualities in convexity theory.

The results of the present section generalize residuation theory, equiv-
alently the theory of Galois connections, to a more general situation, a
situation which appears even in very simple examples as we shall see now.

It seems that this generalization of residuation theory has not been con-
sidered in the contexts of the branches of mathematics mentioned under 1,
2, and 3 above. However, Singer (1997:176) [16] defines the dual M → L of
a duality L → M , which, after a change of order in L, is the lower inverse
defined here. He notes the inclusion corresponding to the second inclusion
in (3) and proves that it is an equality when g is a dilation.

Example 1. Take Y = L in Definition 7, fix an element c of L, and define
a mapping g : L→ L by g(x) = x∨ c, x ∈ L. In this case, the supremum in
(2) is a maximum if y > c but only then. Thus g is not residuated unless
c = 0. But it is easy to determine its lower inverse: g[−1](y) = y if y > c
and g[−1](y) = 0 otherwise. We have

epi g = {(x, y) ∈ L2; y > x ∨ c},
while (

hypo g[−1]

)−1
= epi g ∪ {(0, y) ∈ L2; y 6> c},

so that (
hypo g[−1]

)−1 r epi g = {(0, y) ∈ L2; y 6> c} 6= Ø if c 6= 0.
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For the upper inverse, we can only say that g[−1] = 0 if y 6 c and that
g[−1](y) 6 y for y 66 c. Both equality and strict inequality can occur here
as we shall see.

Example 2. We let g be as in Example 1 and assume in addition that L
is totally ordered. We have already determined g[−1] in Example 1, and

we know that g[−1](y) = 0 for y 6 c. In the case of total order, we have
g[−1](y) = y for all y > c. In the notation which Singer (1997:335) [16] uses
for L = [−∞,+∞], we can write g[−1](y) = y>c, y ∈ L. Thus g[−1] and

g[−1] are equal except for y = c, where we get g[−1](c) = 0 6 c = g[−1](c).
Moreover we have(

epi g[−1]
)−1

= hypo g = {(x, y) ∈ L2; y 6 x ∨ c},
which, in view of Corollary 1 means that g[−1] is dually residuated with dual
residual g, or that (g[−1], g) is a Galois connection.

Example 3. Let now L be [0, 1]2, the Cartesian product of two intervals.
The lower inverse is already known from Example 1. The upper inverse is

g[−1](y) =


0, y 6 c;
(0, y2), y1 6 c1, y2 > c2;
(y1, 0), y1 > c1, y2 6 c2;
y, y1 > c1, y2 > c2.

Thus strict inequality in g[−1](y) 6 y can occur. We have
(

epi(g[−1])
)−1

=
hypo g.

Example 4. Let now L be {0, 1}2 with the coordinatewise order, and let
g be as in Example 1. We choose c = (1, 0) and denote (0, 1) by a so that L
consists of the four element 0 = (0, 0), a = (0, 1), c = (1, 0), and 1 = (1, 1).
From Example 1 we know that g[−1](y) = y if y > c and g(y) = 0 otherwise.
Thus

g[−1](y) =


0, y = 0;
0, y = a;
c, y = c;
1, y = 1.

We find that(
hypo g[−1]

)−1 r epi g = {(0,0), (0, a)} 6= Ø.

Thus g is not residuated.

We also find that

g[−1](y) =


0, y = 0;
a, y = a;
0, y = c;
a, y = 1.
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The infimum is in all cases a minimum, meaning that g[−1] is dually resid-
uated, in other words, (g[−1], g) is a Galois connection. We have(

epi g[−1]
)−1

= hypo g = L2 r {(0, a), (0,1), (c, a), (c,1)}.

If, given a mapping g : L → Y , we can find a mapping u : Y → L
such that epiu = (hypo g)−1 we would be content to have a kind of in-
verse to g. However, usually the best we can do is to study mappings with
epiu ⊃ (hypo g)−1 or epi v ⊂ (hypo g)−1. This we shall do in the following
proposition, which shows that the upper and lower inverses are solutions to
certain extremal problems.

Proposition 1. Let L be a complete lattice, Y a preordered set, and let
g : L → Y , u, v : Y → L be mappings. If epiu ⊃ (hypo g)−1 ⊃ epi v, then
u 6 g[−1] 6 v and

epiu ⊃ epi g[−1] ⊃ (hypo g)−1 ⊃ epi v.

Hence g[−1] is the largest mapping u such that epiu contains (hypo g)−1.
Similarly, if hypou ⊂ (epi g)−1 ⊂ hypo v, then u 6 g[−1] 6 v and

hypou ⊂ (epi g)−1 ⊂ hypo g[−1] ⊂ hypo v.

Hence g[−1] is the smallest mapping v which satisfies hypo v ⊃ (epi g)−1.

Corollary 1. With g, u and v given as in the proposition, assume that
(epiu)−1 = hypo g. Then u = g[−1]. Similarly, if (hypo v)−1 = epi g, then
v = g[−1]. If also Y is a complete lattice, then epiu = (hypo g)−1 implies

that u[−1] = g in addition to u = g[−1]. Similarly, hypo v = (epi g)−1 implies

v[−1] = g in addition to v = g[−1].

The corollary singles out the special case of adjunctions between L and
Y among all pairs

(
g, g[−1]

)
and adjunctions between Y and L among all

pairs
(
g[−1], g

)
.

An ideal inverse u would satisfy u ◦ g = idL, g ◦ u = idY , and the inverse
of u would be g. It is therefore natural to compare g[−1] ◦ g and g[−1] ◦ g
with idL; g ◦g[−1] and g ◦g[−1] with idY ; and

(
g[−1]

)[−1]
and

(
g[−1]

)
[−1]

with

g. This is what we shall do now.

Left inverses

We shall now investigate to what extent g[−1] and g[−1] can serve as left
inverses to g.

Proposition 2. Suppose that L is a complete lattice and Y a preordered
set. Then for all mappings g : L → Y one has g[−1] ◦ g 6 idL 6 g[−1] ◦ g.
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The following three conditions are equivalent:
(α) g is coincreasing;
(β) g[−1] ◦ g = idL;
(γ) g[−1] ◦ g = idL.

Corollary 2. Let L be a complete lattice and Y a preordered set. Then
g[−1](y) 6 g[−1](y) for all y ∈ im g, and also for all y majorizing or mi-

norizing im g. In particular, g[−1] 6 g[−1] if g is surjective.

Proposition 3. If u, v are increasing mappings such that u◦g 6 idL 6 v◦g,
then u 6 g[−1] and v > g[−1]. Hence, in view of Proposition 2, g[−1] is the
largest increasing mapping u such that u ◦ g 6 idL, and g[−1] is the smallest
increasing mapping v such that v ◦ g > idL.

Theorem 1. Let L be a complete lattice and Y a preordered set. Then the
following six conditions are equivalent.
(a) g is coincreasing;
(b) g[−1] ◦ g > idL;
(c) g[−1] ◦ g = idL;
(d) g[−1] ◦ g 6 idL;
(e) g[−1] ◦ g = idL;

(f) g[−1] 6 g[−1].

Right inverses

Next we compose g[−1] with g in the other order: we shall see to what extent
the inverses we have constructed can serve as right inverses. This will lead
to a characterization of dilations—and, by duality, of erosions.

Theorem 2. If L and M are complete lattices and g : L → M is any
mapping, then the following five properties are equivalent.
(A) g is a dilation;

(B)
(

hypo(g[−1])
)−1 ⊂ epi g;

(C)
(

hypo(g[−1])
)−1

= epi g;

(D) g is increasing and
(
graph(g[−1])

)−1 ⊂ epi g;
(E) g is increasing and g ◦ g[−1] 6 idM .

This theorem characterizes the special case when the supremum in (2)
is a maximum (Property (E)); equivalently, it characterizes the special case
of residuated mappings or Galois connections (Property (C)).

By duality we get a similar characterization of erosions; equivalently of
the case when the infimum defining the upper inverse is a minimum.

Singer (1997:178, Proposition 5.3) [16] proves that (A) and (E) are equi-
valent (expressed for dualities).
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Corollary 3. If L and M are complete lattices and g : L→M and u : M →
L are two mappings such that epi g = (hypou)−1, then u is a dilation and
g is an erosion, and g[−1] = u, u[−1] = g.

Inverses of inverses

Theorem 3. If L and M are complete lattices and g : L → M is any

mapping, then quite generally
(
g[−1]

)[−1]
6 g 6

(
g[−1]

)
[−1]

. Equality holds

at the first place if and only if g is a dilation; at the second place if and only
if g is an erosion.

Theorem 4. If L and M are complete lattices and δ : L→M is a dilation,
then δ[−1] : M → L is an erosion. Similarly, if ε : L → M is an erosion,

then ε[−1] is a dilation.

Corollary 4. For any dilation δ : L → M we have δ ◦ δ[−1] ◦ δ = δ and
δ[−1]◦δ◦δ[−1] = δ[−1]. In particular, δ[−1]◦δ and δ◦δ[−1] are idempotent and
therefore ethmomorphisms. The first is a cleistomorphism in L, the second
an anoiktomorphism in M . Dually ε◦ε[−1]◦ε = ε and ε[−1]◦ε◦ε[−1] = ε[−1]

for any erosion ε : L → M . Also ε[−1] ◦ ε and ε ◦ ε[−1] are idempotent; the
first an anoiktomorphism, the second a cleistomorphism.

4. Division of mappings

We shall now generalize the definitions of upper and lower inverses.

Definition 8. Let a set X, a complete lattice M , and a preordered set Y ,
as well as two mappings f : X → M and g : X → Y be given. We define
two mappings f/?g, f/? g : Y →M by

(f/?g)(y) =
∧
x∈X

(f(x); g(x) >Y y), y ∈ Y,

(f/? g)(y) =
∨
x∈X

(f(x); g(x) 6Y y), y ∈ Y.

We shall call them the upper quotient and the lower quotient of f and g.

We shall often assume that X, M and Y are all complete lattices, but
this is not necessary for the definitions to make sense.

The quotients f/?g and f/? g increase when f increases and they decrease
when g increases—just as with division of positive numbers:

If f1 6M f2 and g1 >Y g2, then f1/
?g1 6M f2/

?g2 and f1/? g1 6M f2/? g2.

The mappings f/?g and f/? g are always increasing. If g(x) >Y y, then
f(x) >M (f/?g)(y); if g(x) 6Y y, then f(x) 6M (f/? g)(y). In particular, if
g(x) = y, then (f/?g)(y) 6M f(x) 6M (f/? g)(y).
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If we specialize the definitions to the situation when X = M and f =
idX , then f/?g = idX/

?g = g[−1] and f/? g = idX/? g = g[−1]; cf. Definition 7.

We note another special case:

Proposition 4. For all mappings f : X →M we have

f/? f 6 idM 6 f/?f

and

(f/? f) ◦ f = f = (f/?f) ◦ f. (4)

Proposition 5. Let X be an arbitrary subset of a complete lattice M , let
Y = M , and g the inclusion mapping X → M . Then f/?g = f� and
f/? g = f�, where f� is the largest increasing mapping h : M →M such that
h
∣∣
X

minorizes f , i.e.,

f�(y) = sup
h

(
h(y);h is increasing and h(x) 6 f(x) for all x ∈ X

)
;

and f� is the smallest increasing mapping k such that k
∣∣
X

majorizes f , i.e.,

f�(y) = inf
k

(
k(y); k is increasing and k(x) > f(x) for all x ∈ X

)
.

If f itself is increasing, they are in fact extensions of f .

The definitions of f� and f� are taken from Matheron (1975:187) [9] and
are generalized here to any complete lattice.

If we specialize further, letting also f be the inclusion mapping X →M ,
we obtain

(f/? g)(y) = (f/? f)(y) = f�(y) =
∨
x∈X

(x;x 6 y) = y◦ ∈M,

where the last equality defines y◦. It is easy to verify that y 7→ y◦ is
an anoiktomorphism. A well-known situation is described in the following
example.

Example 5. Let M be the complete lattice [−∞,+∞]E of functions on a
vector space E with values in the extended reals, let F be a vector subspace
of its algebraic dual E? (the space of all linear forms on E), and let X be
the set of all affine functions with linear part in F , i.e., functions of the form
α(x) = ξ(x) + c for some linear form ξ ∈ F and some real constant c. A
function f such that f◦ = f is called X-convex by Singer (1997:10) [16].

We see that a function on E is X-convex in the sense of Singer if and
only if it is equal to the supremum of all its affine minorants belonging to
X.

We may ask for a characterization of the X-convex functions. A gener-
alization of Fenchel’s theorem to this setting gives the answer: this happens
if and only if the function possesses three properties:
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(a) it is convex in the usual sense;
(b) it is lower semicontinuous for the topology σ(E,F ) on E generated by
the linear forms in F ; and
(c) it does not take the value −∞ except when it is equal to the constant
−∞.

Proposition 6. If f : X →M is increasing and g : X → Y is coincreasing,
then f/? g 6 f/?g.

The upper quotient f/?g is the optimal solution to an inequality:

Proposition 7. For all mappings f : X →M and g : X → Y we have

(f/?g) ◦ g 6 f 6 (f/? g) ◦ g,
with equality if f is increasing and g is coincreasing. From this we deduce
that (f/?g)(y) 6 (f/? g)(y) for all y ∈ im g as well as for all majorants and
minorants of im g. In particular, f/?g 6 f/? g if g is surjective.

Conversely, if u, v : Y → M are two increasing functions such that
u ◦ g 6 f 6 v ◦ g, then u 6 f/?g and v > f/? g. Thus f/?g is the largest
increasing function u such that u◦g 6 f , and f/? g is the smallest increasing
function v such that f 6 v ◦ g.

In the special case X = Y and g = idX we obtain

f/?idX 6 f 6 f/? idX ,

where f/?idX is the largest increasing minorant of f and f? /idX is the small-
est increasing majorant of f ; when f itself is increasing we therefore get
equality.

We next compare the quotient f/?g and the composition f ◦g[−1] (think
of x/y = x · y−1 for positive numbers):

Proposition 8. For every increasing mapping f : X →M and every map-
ping g : X → Y we have f/?g > f ◦ g[−1] with equality if f is an erosion,
and f/? g 6 f ◦ g[−1] with equality if f is a dilation. If g is coincreasing,

then f/? g 6 f ◦ g[−1] 6 f ◦ g[−1] 6 f/?g.

Proposition 9. If P is a preordered set and h : M → P is increasing, we
have h ◦ (f/?g) 6 (h ◦ f)/?g with equality if h is an erosion. Similarly
h ◦ (f/? g) > (h ◦ f)/? g with equality if h is a dilation. A special case is
h ◦ (f/?idX) 6 (h ◦ f)/?idX (take X = Y and g = idX). Another special
case is Proposition 8 (take X = M and f = idX).

Cleistomorphisms and anoiktomorphisms

Theorem 5. Let f : X →M be any mapping from a set X into a complete
lattice M . Then α = f/? f : M → M is an anoiktomorphism. Conversely,
any anoiktomorphism in M is of this form for some mapping f : X → M
with X = M . By duality we get analogous statements for the upper quotient
and cleistomorphisms.



38 MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS

5. Conclusion

We have introduced the notions of upper and lower inverses and upper and
lower quotients for mappings between complete lattices. Their most basic
properties have been investigated, in particular how the inverses can serve
as left and right inverses to a given mapping. Important morphological
operators can be systematically treated in the calculus created. In partic-
ular, anoiktomorphisms are always lower quotients of the form f/? f , and
cleistomorphisms are always upper quotients of the form f/?f .
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Abstract This work shows how a generalized approach for constructing di-
lation-erosion adjunctions on fuzzy sets can be defined using ap-
propriate chosen complete lattice. Some applications in the field
of computation with uncertainties are given, more precisely in the
interval arithmetic and the calculations with fuzzy numbers. Ap-
plications to image segmentation such as geodesic operations and
reconstruction are given as well. Also we discuss how intuitionistic
fuzzy sets can be used as structuring elements for fuzzy morpho-
logical operations, especially in fuzzy hit-or-miss transform. The
aim is to find objects with close to given shape and size on digital
images.

Keywords: complete lattice, fuzzy sets, interval and arithmetic operation, fuzzy
arithmetic operation, hit-or-miss transform, T-invariant operation,
geodesic operation.

1. Introduction

There are several approaches for fuzzifying mathematical morphology, see
for instance [1]. In our work we step on the framework of Deng and Heijmans
(see for details [3]) based on conjunctors-implicators adjoint fuzzy logical
operators. We generalize this definition presenting a universal framework
and we define naturally fuzzy geodesic morphological operations. Also, this
model is applied to fuzzy arithmetic, built by analog to the interval arith-
metic [8] which makes possible the definition of inner addition and multi-
plication of fuzzy numbers. On the other hand, in the pioneering works of
Serra [11] and Heijmans [5] it is demonstrated that the hit-or-miss trans-
form plays an essential role in shape analysis. So, here we define general
fuzzy hit-or-miss transform for grey-scale image segmentation and we show
how it is related to the theory of intuitionistic fuzzy sets (IFS).

In this work we use the same notions and notations about complete
lattices and the morphological operations on them as in [5]. For instance,
let L be a complete lattice with a supremum generating family l, and let T
be an Abelian group of automorphisms of L acting transitively over l. The
elements of T are denoted by τx, namely for any x ∈ l, τx(o) = x, where o
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is a fixed element of l interpreted as an origin. Then also, we can consider
a symmetry in L as Ǎ =

∨
a∈l(A) τ

−1
a (o). Evidently ǎ = τ−1

a (o) = τǎ(o) for
any a ∈ l. If A is an arbitrary element of the lattice L let us denote by
l(A) = {a ∈ l | a ≤ A} the supremum-generating set of A. Following [5] we
define the operations

δA =
∨

a∈l(A)

τa (1)

and
εA =

∧
a∈l(A)

τ−1
a =

∧
a∈l(A)

τǎ, (2)

which form an adjunction. δA and εA are T -invariant operators called di-
lation and erosion by the structuring element A. Remind that a pair of
operators (ε, δ) between two lattices, ε : M 7→ L and δ : L 7→ M is called
an adjunction if for every two elements X ∈ L and Y ∈M it follows that

δ(X) ≤ Y ⇐⇒ X ≤ ε(Y ).

In [5] it is proved that if (ε, δ) is an adjunction then ε is erosion and δ is
dilation. In other hand, every dilation δ : L 7→ M has a unique adjoint
erosion ε :M 7→ L, and vice-versa.

2. Fuzzy sets and fuzzy morphological operations

Consider the set E called the universal set. A fuzzy subset A of the universal
set E can be considered as a function µA : E 7→ [0, 1], called the membership
function of A. µA(x) is called the degree of membership of the point x to
the set A. The ordinary subsets of E, sometimes called ’crisp sets’, can
be considered as a particular case of a fuzzy set with membership function
taking only the values 0 and 1.

Let 0 < α ≤ 1. An α-cut of the set X (denoted by [X]α) is the set of
points x, for which µX(x) ≥ α.

The usual set-theoretical operations can be defined naturally on fuzzy
sets: Union and intersection of a collection of fuzzy sets is defined as supre-
mum, resp. infimum of their membership functions. Also, we say that
A ⊆ B if µA(x) ≤ µB(x) for all x ∈ E. The complement of A is the set Ac

with membership function µAc(x) = 1− µA(x) for all x ∈ E. If the univer-
sal set E is linear, like the d-dimensional Euclidean vector space Rd or the
space of integer vectors with length d, then any geometrical transformation
arising from a point mapping can be generalised from sets to fuzzy sets by
taking the formula of this transformation for graphs of numerical functions,
i.e., for any transformation ψ like scaling, translation, rotation etc. we have
that ψ(µA(x)) = µA(ψ−1(x)). Therefore we can transform fuzzy sets by
transforming their α−cuts like ordinary sets. Further on, for simplicity, we
shall write simply A(x) instead of µA(x).
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Say that the function c(x, y) : [0, 1] × [0, 1] 7→ [0, 1] is conjunctor con-
junctor if c is increasing in the both arguments, c(0, 1) = c(1, 0) = 0, and
c(1, 1) = 1. We say that a conjunctor is a t-norm if it is commutative, i.e.
c(x, y) = c(y, x), associative c(c(x, y), z) = c(x, c(y, z)) and c(x, 1) = x for
every number x ∈ [0, 1], see for instance [1, 6].

Say that the function i(x, y) : [0, 1] × [0, 1] 7→ [0, 1] is implicator impli-
cator if i is increasing in y and decreasing in x, i(0, 0) = i(1, 1) = 1, and
i(1, 0) = 0.

In [3] a number of adjoint conjunctor-implicator pairs are proposed. Here
we give examples of two of them:

c(b, y) = min(b, y),

i(b, x) =

{
x x < b,
1 x ≥ b.

c(b, y) = max(0, b+ y − 1),

i(b, x) = min(1, x− b+ 1).

The first pair is known as operations of Gödel-Brouwer, while the second
pair is suggested by Lukasiewicz.

Also, a widely used conjunctor is c(b, y) = by, see [6]. Its adjoint impli-
cator is

i(b, x) =

{
min

(
1, xb

)
b 6= 0,

1 b = 0.

2.1 General definition of fuzzy morphology

There are different ways to define fuzzy morphological operations. An im-
mediate paradigm for defining fuzzy morphological operators is to lift each
binary operator to a grey-scale operator by fuzzifying its primitive compos-
ing operations. However thus we rarely obtain erosion-dilation adjunctions,
which leads to non-idempotent openings and closings. Therefore we use the
idea from [3], saying that having an adjoint conjunctor-implicator pair, we
can define a fuzzy erosion-dilation adjunction.

So let us consider the universal set E and a class of fuzzy sets {Ay, | y ∈
E}. Then for any fuzzy subset X of the universal set E, let us define fuzzy
dilation and erosion as follows:

δ(X)(x) =
∨
y∈E

c(Ax(y), X(y)), (3)

ε(X)(x) =
∧
y∈E

i(Ay(x), X(y)). (4)
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To prove that this pair of operations is an adjunction, let us consider
the case δ(X) ⊆ Z in fuzzy sense, which means that for every x, y ∈ E
c(Ax(y), X(y)) ≤ Z(x). Then X(y) ≤ i(Ax(y), Z(x)) for all x, y ∈ E.

Since ε(Z)(y) =
∧
x∈E i(Ax(y), Z(x)), then we have that X ⊆ ε(Z),

which ends the proof.

3. How to define T-invariant and geodesic fuzzy
morphological operations?

Let us consider a universal set E. Let also there exists an Abelian group of
automorphisms T in P(E) such that T acts transitevely on the supremum-
generating family l = {{e}|e ∈ E} as defined previously. In this case,
for shortness we shall say that T acts transitively on E. Then having an
arbitrary fuzzy subset B from E, we can define a family of fuzzy sets in
{ABy | y ∈ E} such as ABy (x) = B(τ−1

y (x)). Recall that for any τ ∈ T there
exists y ∈ E such that τ = τy, and for any fuzzy subset M we have that
(τ(M))(x) = M(τ−1(x)). Then having in mind Equations 3 and 4 we can
define a fuzzy adjunction by the structuring element B by:

δB(X)(x) =
∨
y∈E

c(ABx (y), X(y)), (5)

εB(X)(x) =
∧
y∈E

i(ABy (x), X(y)). (6)

We show that that the upper operations are T-invariant. To prove this
statement, following [5], it is sufficient to show that every such erosion
commutes with an arbitrary automorphism τb for any b ∈ E. Evidently

εB(τb(X))(x) =
∧
y∈E

i(B(τ−1
y (x)), X(τ−1

b (y))).

suppose that τ−1
b (y) = z, which means that τy = τz τb. Then

εB(τb(X))(x) =
∧
z∈E

i(B(τ−1
z (τ−1

b (x)), X(z)) = εB(X)(τ−1
b (x)),

which simply means that εB(τb(X)) = τb(εB(X)), which ends the proof.

Now consider that in E we have a continuous commutative operation
∗ : E × E 7→ E. Then let us define τb(x) = b ∗ x. In the case of Gödel-
Brouwer conjunctor-implicator pair the respective dilation has the form

(δB(X))(x) =
∨

y∗z=x
min(X(y), B(z)).
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Following the extension principle (see [6]) for the definition of the oper-
ation X ∗B between the fuzzy sets X and B over the universal set E, it is
evident that in this case

δB(X) = δX(B) = X ∗B.
In [6] it is proved that

[X ∗B]α = [X]α ∗ [B]α = {z ∈ E| z = a ∗ b, a ∈ [X]α, b ∈ [B]α}.

Following [10], let us say that the points x, y ∈ E are connected in the
fuzzy set A if there exists a path Γ from x to y such that

inf
z∈Γ

A(z) ≥ min(A(x), A(y)).

Let now M be a fuzzy subset of the universal set E, which is a numerical
metric space. Then if x and y are two points from E which are connected
in M, we can define the following geodesic distance between x and y [2]:

dM (x, y) =
len(x, y)

CM (x, y)
, (7)

where len(x, y) is the length of the shortest continuous path between x and
y due to the metric in E, and

CM (x, y) = sup
Γ

inf{M(z)| z ∈ Γ}.

Here Γ denotes an arbitrary path between x and y in E. Since we are
working with almost connected objects, while a point has membership 0
when it is from the background (i.e., it does not belong to any object on the
scene), we may suppose that CM is always positive. The quantity dM (x, y)
satisfies all properties of a metrics except the triangle inequality, so it is not
a real distance. However, if M is a crisp set, then it is equal to the classical
geodesic distance. Now we can define a fuzzy geodesic ball

[BM (y, r)](x) =

{
1 if dM (x, y) ≤ r,
0 otherwise.

Having in mind the expressions (3)-(4) and (5)-(6) we can define a fuzzy
geodesic adjunction (ErM ,∆r

M ) as:

∆r
M (X)(x) =

∨
y∈E

c[(BM (x, r))(y), X(y)],

ErM (X)(x) =
∧
y∈E

i[(BM (y, r))(x), X(y)].

Therefore we can define fuzzy geodesic reconstruction and idempotent fuzzy
geodesic openings and closings as in the binary case descibed in [13]. An
example of the usage of this operation is given in [9].
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4. Interval computations and computations with fuzzy
numbers

Interval computations are computations using intervals with the aim to
guarantee the result in particular in the presence of data uncertainties and
rounding errors. Since the α-cuts of the fuzzy numbers are closed intervals,
then the interval calculus is essential part of the computations with fuzzy
numbers. A fuzzy number is a fuzzy subset of R, i.e. it represents a gen-
eralization of a real number r. Any fuzzy number A satisfies the following
conditions ([6]):

� A(x) = 1 for exactly one x;

� the support of A is bounded;

� the α-cuts of A are closed intervals.

In [8] it is shown that there exists a close relation between interval and
morphological operations. Having in mind this relation and our general def-
inition of fuzzy morphological operations, we can express the known arith-
metic operations between fuzzy numbers through morphological ones and
thus we can define inner operations. As shown in [8], the outer and inner
interval operations are related to binary dilations and erosions as follows:

A+B = A⊕B = δA(B) = δB(A),

A+− B = A	 (−B) ∪B 	 (−A) = ε−B(A) ∪ ε−A(B).

Now let denote by F (R) the set of fuzzy numbers. Then we can define
following operations on them using the extension principle [6]:

(A+B)(x) =
∨

z+y=x

min(A(y), B(z));

(A×B)(x) =
∨
z.y=x

min(A(y), B(z));

(A−B)(x) =
∨

y−z=x
min(A(y), B(z)) = (A+ (−B))(x);

A

B
(x) =

∨
zx=y

min(A(y), B(z)) =

(
A× 1

B

)
(x).

Note that every real number r could be considered as fuzzy number with
membership function, which is zero on the whole real line, except in r where
it takes value 1.

The sum, the difference and the product of fuzzy numbers are also fuzzy
numbers. The division is always possible, however the result is a fuzzy
number only when 0 /∈ supp(B). In general, the quotient is a fuzzy quantity
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over the real line which support may not be bounded. Also, if A and B are
fuzzy numbers then [A+B]α = [A]α+[B]α and [A×B]α = [A]α×[B]α. Now
consider the group of automorhisms τb(x) in R and the fuzzy operations on
F (R) defined by Gödel-Brouwer conjunctor-implicator pair:

(δB(A))(x) =
∨

y∗z=x
min(A(y), B(z)),

(εB(A))(x) = inf
y∈R

(
h
(
A(y)−B(τ−1

x (y)
)

(1−A(y)) +A(y)
)
,

where h(x) = 1 when x ≥ 0 and is zero otherwise.
Now it is clear that if τb(x) = x+ b and ∗ = + then

(δB(A)) = A+B.

We can also define an inner addition operation by

A+− B = ε−B(A) ∪ ε−A(B).

If τb(x) = xb for b 6= 0 and y ∗ z = yz then

(δB(A)) = A×B.

In this case an inner multiplication exists as well:

A×− B = ε 1
B

(A) ∪ ε 1
A

(B).

Note that in this definition we can work with fuzzy numbers which do not
contain 0 in their support. It is not difficult to show directly that A+−B ⊆
A+B and A×− B ⊆ A×B.

5. Fuzzy hit- or- miss transform and intuitionistic
fuzzy sets

Remind that an intuitionistic fuzzy subset A from the universal set E is
characterised by two functions: the degree of membership µA(x) and the
degree of nonmembership νA(x). As described in [4], for every point x ∈ E
we have that µA(x) + νA(x) ≤ 1. Then one can define intersection ot two
intuitionistic sets by taking a t-norm ∆ of their membership functions for
the resulting membership function, and taking the associated s-norm ∇ of
their nonmembership functions for the resulting nonmembership functions.
Remind that the associated s-norm is defined by x∇y = 1−((1−x)∆(1−y)).
For the union of two intuitionistic sets we take s-norm for the membership
part and the respective t-norm for the nonmembership part.

It is natural to lift to the fuzzy framework the hit-or-miss morphological
operator

π̃A,B(X) = εA(X)∆ εB(Xc).
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A key difference with the binary case is that, since A and B are fuzzy
sets, we do not assume that A ∩ B = ∅. Note that here we can use any
T-invariant fuzzy operations. Further considerations are done in case of
usual translation invariance. The experiments indicate that, in the case
of noisy images, it is preferable for the structuring elements to be slightly
fuzzy, which means that the values of their membership functions have to
be close to one in their support. Note that traditional hit-or-miss operation
with crisp templates would only mark the objects in the original word but
would not in the noisy realizations. Unlike its classical counterpart, the
fuzzy hit-or-miss operation always marked the desired objects. To express
clearly in a table how a intuitionistic fuzzy set with a finite domain looks
like, let us denote by a/b the membership and nonmembership degree of a
given element. This means that if we consider an intuitionistic structuring
element, then for any pixel x we use the notation µA(x)/νA(x) to show the
respective values in the table. If both values are zero, we simply write 0 at
the appropriate place in the table. Note, that the origin is located always at
the central element of the table. An example of the usage of such “combine”
structuring element for a noisy image is given on Figure 1. The element
is described on Table 1. The task is to find a ‘c’-shaped pattern with a
given size on a grey-scale image. The marked ‘c’-shape arround the handle
(pointed by an arrow) has been detected with degree of truth 0.54. Similar
examples for using such patterns, used to detect given characters in a text,
can be found in [7].

Table 1. The hit-or-mis structuring element for finding a shape like the letter ‘c’.

0 0 0 0.6/0.2 0.6/0.2 0.6/0.2 0 0 0

0 0 0 0.6/0 1/0 0.6/0 0 0 0

0 0 0 0.6/0 0.6/0 0.6/0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0.6/0.2 0.6/0 0.6/0 0 0 0/0.8 0/0.8 0/0.8 0/0.8

0.6/0.2 1/0 0.6/0 0 0/1 0/1 0/1 0/1 0/1

0.6/0.2 0.6/0 0.6/0 0 0 0/0.8 0/0.8 0/0.8 0/0.8

0 0 0 0 0 0 1/0 0 0

0 0 0 0.8/0 0.8/0 0.8/0 0 0 0

0 0 0 0.8/0 1/0 0.8/0 0 0 0

0 0 0 0.6/0.2 0.6/0.2 0.6/0.2 0 0 0

Interesting applications of intuitionistic models in image processing are
given in [14]. Further we are going to experiment the fuzzy hit-or-miss
transform by intuitionistic elements for finding skeleta by thinning and pseu-
doconvex hulls by thickenning and to make experiments with intuitionistic
elements based on other fuzzy adjoint operations.
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Figure 1. Finding a ‘c’-shaped pattern.
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Abstract We present a new tree-based framework for producing self-dual
morphological operators. For any given tree representation of im-
ages, one can associate a complete inf-semilattice (CISL) in the
corresponding tree-representation domain, where the operators can
then be derived. We also present a particular case of this gen-
eral framework, involving a new tree representation, the Extrema-
Watershed Tree (EWT). The operators obtained by using the EWT
in the above framework behave like classical morphological opera-
tors, but in addition are self-dual. Some application examples are
provided: pre-processing for OCR and dust & scratch removal al-
gorithms, and image denoising.

Keywords: complete inf-semilattices, self-dual operators, tree representation of
images.

1. Introduction

One of the main approaches for producing self-dual1 morphological oper-
ators is by means of a tree representation. For instance, Salembier and
Garrido proposed a Binary Partition Tree for hierarchical segmentation in
[12, 15]. A tree of shapes was proposed by Monasse and Guichard [10, 11]
(see also [1, 2]). These tree representations are usually used for performing
connected filtering operations on an image; however, they do not yield non-
connected operators, such as erosions, dilations or openings by a structuring
element.

In [7] (see also [8]) a new complete inf-semilattice (CISL), called the
shape-tree semilattice, was introduced. This semilattice provides non-con-
nected morphological operations, based on the above-mentioned “tree of
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1An operator ψ is self-dual when ψ(−f) = −ψ(f) for all input f .
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shapes”. As a consequence, self-dual erosions and openings were obtained.
Similar operators had been developed earlier on the so-called Reference
Semilattices (introduced in [6], and further studied by Heijmans and Keshet
in [4]); however, they require a reference image, which somewhat limits
the usage of these operators. The self-dual operators in the shape-tree
semilattice provide erosions and openings without the need for a reference
image.

In this paper, we present a general framework for tree-based morpho-
logical image processing, which generalizes the shape-tree operators. This
framework yields a set of new morphological operators (erosion, dilation,
opening, etc.), for each given tree representation of images. The heart of
the proposed approach is a novel complete inf-semilattice of tree represen-
tations of images. Because many of the properties of the tree are inherited
by the corresponding operators, the choice of the tree representation is of
high importance. We focus mostly on self-dual trees, which represent dark
and bright elements equally.

A particular case of the proposed framework is also presented, based on
a novel tree representation, the Extrema-Watershed Tree (EWT). Following
the general framework, we derive self-dual morphological operators from the
EWT. Examples of applications discussed here are pre-processing for OCR
(Optical Character Recognition) algorithms, de-noising of images, and pre-
processing for dust and scratch removal.

2. Theoretical background

2.1 Complete inf-semilattices

A complete inf-semilattice (CISL) is a partially-ordered set S, where the
infimum operation (∧) is always well-defined (but the supremum ∨ is not
necessarily so). The theory of mathematical morphology on complete semi-
lattices was introduced in [5], and is an almost-straightforward extension
of the traditional morphology on complete lattices. It mathematically sup-
ports intuitive observations, such as the fact that erosions are naturally
extended from complete lattices to CISLs, whereas dilations are not univer-
sally well-defined on CISLs.

On the other hand, some results may not be necessarily intuitive. The
main ones are as follows: (a) it is always possible to associate an opening
γ to a given erosion ε by means of γ(x) =

∧{y | ε(y) = ε(x)}, (b) even
though the adjoint dilation δ is not universally well-defined, it is always
well defined for elements on the image of S by ε, and (c) γ = δε.

2.2 Rooted trees and their corresponding CISL

This section reviews basic graph theory notions (given in [3, chapter 1]),
including the natural partial ordering on rooted trees, which provide them
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with a CISL structure.

A graph is a pair of sets G = (V,E) satisfying E ⊆ [V ]2. A path is
a non-empty graph P = (V,E) of the form: V = {x0, x1, ..., xk}, E =
{x0x1, x1x2, ..., xk−1xk}, where the xi are all distinct. A cycle is a path
where k ≥ 2 and (x0, xk) ∈ E. A graph not containing any cycles, is called
a forest. A connected forest is called a tree (thus, a forest is a graph whose
components are trees).

Sometimes it is convenient to consider one vertex of a tree as special;
such a vertex is then called the root of this tree. A tree with a fixed root
is a rooted tree. Choosing a root r in a tree t imposes the following partial
ordering on V(t): x �t y ⇐⇒ x ∈ rty, where rty is the unique path in
t that connects y to the root. Note that (V,�t) is a CISL, where r is the
least element, and the maximal elements are the leafs of t. The infimum
between vertices is the nearest common ancestor vertex.

We say that a tree t1 is smaller than another tree t2 if t1 ⊆ t2.

3. Tree semilattices

This section presents the proposed general framework for tree-based mor-
phological image processing (introduced in [16]). This framework enables
the definition of new morphological operators that are based on tree rep-
resentations. The proposed image processing scheme is shown is Figure 1.

Figure 1. Tree-based morphology.

3.1 CISL of tree representations

The heart of the proposed approach is a novel complete inf-semilattice of
tree representations of images. Let L be an arbitrary set of “labels”, and let
t = (V,E) be a rooted tree, with root r, such that V ⊆ L. Therefore t is a
tree of labels. Moreover, let M : E 7→ V be an image of vertices, mapping
each point in E to a vertex of t. As usual, E may be an Euclidean space or
a discrete rectangular grid within the image area.

Definition 1. (Tree representation) The structure T = (t,M) shall be
called a tree representation. The set of all tree representations associated
with the label set L and with the root r shall be denoted by T Lr .
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Consider the following relation between tree representations: For all
T1 = (t1,M1) and T2 = (t2,M2) in T Lr ,

T1 ≤ T2 ⇐⇒
{
t1 ⊆ t2 and
M1(x) �t2 M2(x),∀x ∈ E, (1)

where ⊆ is the usual graph inclusion, and �t2 is the partial ordering of
vertices within the tree t2 (see Subsection 2.2).

Proposition 1. The above tree relation ≤ is a partial ordering on T Lr , and(
T Lr ,≤

)
is a CISL. The least element is T0

4
= (({r}, {}),M0(x) ≡ r)).

The proof is given in [16]. The general format of the corresponding
infimum and supremum operators are also derived in [16]. Here, however,
we focus on the particular case where all tree presentations involved in an
infimum or supremum operation have a common tree associated with them:

Proposition 2. Let {Ti = (t,Mi)} be a collection of tree representations
with a common tree t. In this case,∧

i

Ti = (t,ft {Mi}) , (2)

and ∨
i

Ti = (t,gt {Mi}) , (3)

where ft and gt are the point-wise infimum and supremum associated to
vertex order �t, respectively. Notice that gt {Mi} may not always exist.

The situation where the set of tree representations share the same tree
is what one encounters when defining flat erosions and dilations on the
complete inf-semilattice of tree representations. The flat erosion can be
defined as the operator ε given by:

εB(T )
4
=
∧
b∈B

T−b =
∧
b∈B

(t,M−b), (4)

where B is a structuring element. It is easy to verify that the above operator
is indeed an erosion on T Lr .

Using Proposition 2, one obtains that

εB(T ) = (t,ft {M−b|b ∈ B}) . (5)

As reminded in Section 2.1, on a complete inf-semilattice, one can asso-
ciate to any given erosion ε an opening γ (and, in fact, any morphological
operator that is derived from compositions of erosions and openings, such as
the internal gradient, dark top-hat transform, and skeletons). Furthermore,
the adjoint dilation δ exists, and, even though it is not well defined for all



Self-dual morphology on tree semilattices 53

complete inf-semilattice elements, it is always well-defined for elements that
are mapped by the erosion, and γ = δε.

In the case of the above tree-representation flat erosion, the adjoint
dilation is given by:

δB(T ) = (t,gt {Mb|b ∈ B}) . (6)

We also define the tree-representation reconstruction of T from a marker
T = (t,M) ≤ T as the infinite iteration of the conditional dilation

δB(T |T )
4
=
(
t,gt

{
Mb ftM |b ∈ B

})
. (7)

Notice that δB(T |T ) is always well defined, since it consists of a supre-
mum of bounded elements.

3.2 Image processing on tree semilattices

Now that morphology on the tree representation domain has been estab-
lished, we can turn to our ultimate goal, which is to process a given grayscale
image f . Let us assume that f is an integer-valued function on E, i.e.,
f ∈ Fun(E,Z). Moreover, let τ by an operator that transforms f into a pair
(T, `) , where T = (t,M) ∈ T Lr is a tree representation, and ` : L 7→ Z is a
function that maps labels into graylevels. The tree transformation τ should
be invertible, and the inversion be given by: τ−1(`,M(x)) = ` (M(x)). We
propose the following approach for processing f , using the CISL of tree
representations:

1. compute τ(f) = (T, `);

2. perform one or more morphological operations on T to obtain a pro-
cessed tree representation T̂ = (t, M̂);

3. transform (T̂ , `) back into a new image f̂ ∈ Fun(E,Z), using:

f̂(x) = τ−1(`, M̂(x)) = `
(
M̂(x)

)
. (8)

If the morphological operation in Step 2 above is the erosion εB , then
all three steps can be collapsed into the following equation:

f̂(x) = ` (ft {M−b(x)|b ∈ B}) . (9)

Proposition 3. For any vertex v in V , let R(v)
4
= {x ∈ E|M(x) �t v} and

R̂(v)
4
= {x ∈ E|M̂(x) �t v}, where M̂ is again the mapping function after

the erosion εB. Then, for all v:

R̂(v) = R(v)	B, (10)

where (.)	B is the traditional binary erosion by the s.e. B.



54 MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS

Proposition 3 (which is proven in [16]) suggests an alternative algorithm
for computing the erosion. For any v, (a) compute R(v), (b) compute
R̂(v) = R(v)	B, and (c) assign `(v) to all points within R̂(v)\⋃v≺v′ R̂(v′).

3.3 Particular cases and examples

In order for the tree transform to be invertible, τ should be such that it
assigns a common label to each flat zone of f . This is because τ−1 maps
each label to a single graylevel. This suggests that special attention should
be paid to the flat zones of f .

One way of addressing the flat zones of a given image is by considering
its Regional Adjacency Graph (RAG). The RAG is a graph, where V is the
set of all flat zones of the image, and E contains all pairs of flat zones that
are adjacent to each other.

A spanning tree is a subgraph of a RAG that should, obviously, be a
tree, and have the same vertex set V as the RAG. A spanning tree creates
a hierarchy in the RAG, defining father/son relationships between adjacent
flat zones.

The proposed morphological scheme is of particular interest when t is
a spanning tree of the RAG. In this case, the associated morphological
operators do not create new grey/color values.

One particular group of trees are the Max- and Min-Trees [13]. When a
tree vertex is always brighter (resp., darker) then its sons, as in the Max-Tree
(resp., Min-Tree), the infimum operation always changes the gray level to the
local minimum (resp., maximum), which is precisely what the traditional
grayscale erosion (resp., dilation) does. In other words, for these trees,
the proposed tree approach becomes the traditional grayscale mathematical
morphology (resp., its dual version).

More interesting particular cases are the Boundary Topographic Varia-
tion (BTV) Tree (see [16]), which is built from the RAG using a minimal
topographic distance criterion. Another one is the shape-tree defined in
[9] and the resulting semilattice defined in [7, 8]. Both provide self-dual
morphological operators, based on some inclusion criterion.

3.4 Image semilattice

What we would really like is the CISL of tree representation (using a tree τ)
to induce a CISL in the image domain. That is, we would like, for instance,
the composite operation of τ−1ετ to be an erosion in the image domain.
However, that is not guaranteed. In fact, the partial ordering in the tree-
representation domain does induce a partial ordering for images, for any τ ;
however, the infimum operation is not guaranteed to be well defined. This
issue is still under study.
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4. Extrema-watershed tree

Based on the general framework of Section 3, all that is needed in order to
obtain a new set of morphological operators is a given tree representation. In
this section, we explore a particular case of the proposed framework, using
a novel self-dual tree representation, which we call the Extrema-Watershed
Tree (EWT). The EWT is a particular case of “Binary Partitioning Tree”
[12]; in particular, the proposed representation is built using a particular
case of the iterative merging process presented by Salembier, Garrido and
Garcia in [14], as follows:

Input all the extrema of a given image (i.e., all regions associated to a
local minimum or maximum) into a list, sorted by increasing area2. Also,
initiate the EWT by setting each flat zone as a leaf vertex. The main loop
for the computation of the EWT is as follows: Take the first extremum from
the ordered list (the one with smallest area), and merge it with the adjacent
neighbor that is the closest one in terms of graylevels. Then, set the merged
region as the parent vertex of the above two regions (the extremum and
its neighbor) in the EWT. Select the graylevel of the non-extremum region
to be the graylevel of the new merged region. Finally, check whether the
newly merged region and all its neighbors are extrema, and insert those
that are into the sorted list (in their corresponding place, according to the
listing order). This loop runs until the list has just one element, which then
becomes the EWT root.

Figure 2 illustrates the computation of the EWT. Consider the image
in Figure 2(a), which contains two extrema with the same area: v1 and v3.
The first step of the procedure, shown in Figure 2(b), consists of merging
v1 with v2, since the difference in graylevel between v1 and v2 is smaller
than the one between v3 and v4. This merger produces a new flat zone –
v5, with the same graylevel as v2 – which is a new extremum in the image.
In the next step, shown in Figure 2(c), the extremum v3 is merged with v4

to create v6. The procedure continues until all extrema (old and new) are
merged. Figure 2(d) shows the final EWT.

As described in Section 3, once a tree transform is defined, morphological
operations (such as erosion and opening) in the tree-domain can be derived.
The new operators typically inherit some of the properties of the tree, such
as self-duality, for instance. Figure 3 shows the result of the EWT erosion
and EWT opening. Notice that very small features are removed, whereas
the larger ones shrunk, in a self-dual manner. The average gray level of the
picture does not change; in particular, the picture does not become darker,
which is what usually happens after a standard erosion or opening.

2If two extrema have the same area, input first the one who has the smallest grayscale
distance to its closest neighbor.
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(a) (b)

(c) (d)

Figure 2. Example of the EWT computation. (a) Input image, (b) first merging
step, (c) second merging step, (d) the final EWT.

5. Application examples

The EWT has many potential applications; in this section we list just a few.

One application that requires image simplification is pre-processing for
OCR (Optical Character Recognition). We have chosen a specific OCR al-
gorithm, used for recognition of license plate numbers, that was developed
in [17]. This algorithm uses a mask for each digit and looks for the best
correlation among these masks with an image. The algorithm also outputs
a confidence grade, which can be used for comparing algorithms. Any noise
that exists in the image degrades the correlation value and interferes with
the recognition. Consider the example license plate shown in Figure 4(a),
which has been artificially corrupted with blobs of different sizes. With-
out pre-processing the algorithm fails to read the correct number. Several
different algorithms (including linear filtering and traditional grayscale mor-
phology) has been applied to this image. In order to compensate for the
lack of duality in classical morphology, we have also compared the EWT
with the “quasi-self-dual” Opening-Closing by reconstruction operator. The
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(a) (b) (c)

Figure 3. (a) Original image, (b) EWT erosion by square SE 5 × 5, (c) EWT
opening by square SE 5× 5.

(a) (b)

(c) (d)

Figure 4. (a) Input image, artificially corrupted, (b) filtered with a median filter,
(c) filtered with regular self dual opening by reconstruction, and (d) filtered by
the EWT-based opening by reconstruction, using circle SE of radius 4.

only algorithms that cause the algorithm to correctly read the number were
the median filter, quasi-self-dual filter and the EWT opening by reconstruc-
tion (see Figure 4(b), 4(c) and 4(d), respectively). The confidence grades
associated with the EWT pre-processed image were higher than those for
the median filter and the quasi-self-dual filter. Further details on this ex-
periment can be found in [16].

Another example uses opening by reconstruction as an initial step for
an application that removes dust and scratches from images. The elements
filtered by the opening by reconstruction are completely extracted, including
their edges. This enables one to extract candidates for dust and scratch
removal, without corrupting their shapes. The proposed operation is a
EWT top-hat filter. Figure 5 shows an example. Later steps (not considered
here) can then make further analysis of the image in order to decide which
candidates should be removed. We have compared the proposed approach
to linear and median filters. Subjective and objective criteria were used.
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(a) (b)

Figure 5. Top hat, using cross SE 3 × 3, as a pre-processing stage for dust and
scratch removal. (a) Original image (b) Top hat by reconstruction based on EWT.

The subjective criterion is the overall corruption of the candidate shapes.
The objective criterion is the measured energy of the filtered images. The
EWT performed better in both criteria. On one hand, for the relevant
structuring elements, the energy of the EWT filtered image was lower than
for the linear and median filters. On the other hand, the linear and median
filters do not completely extract the artifacts, as can be seen in Figure 6 for
the “cross” structuring element.

6. Conclusion

We have presented a general framework for producing new morphological
operators that are compatible to given tree representations. Furthermore,
a useful particular case is provided, based on a new tree representation, the
Extrema Watershed Tree. The resulting morphological erosion and opening
operators were applied to a number of application examples, giving better
results in comparison to other filtering techniques, including classical mor-
phological filtering. In general, EWT-based filtering performs well in tasks
suitable for classical morphological filtering, especially when self-duality is
required.
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(a) (b)

(c) (d)

Figure 6. Zoom in. Top hat, using cross SE 3 × 3, as a pre-processing stage for
dust and scratch removal. (a) Original image (b) Top hat by reconstruction based
on EWT (c) Top hat using median (d) Top hat using an averaging filter.
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Abstract The importance of digital geometry in image processing is well doc-
umented. To understand global properties of digital spaces and
manifolds we need a solid understanding of local properties. We
shall study the join operator, which combines two topological spaces
into a new space. Under the natural assumption of local finiteness,
we show that spaces can be uniquely decomposed as a join of inde-
composable spaces.

Keywords: join operator, Alexandrov space, smallest-neighborhood space, lo-
cally finite space.

1. Introduction

Topological properties of digital images play an important role in image
processing. Much of the theoretical development has been motivated by the
needs in applications, for example digital Jordan curve theorems and the
theory of digitization. A classical survey is [11] by Kong and Rosenfeld.

Inspired by the new mathematical objects that have emerged from this
process, mathematicians have started to study digital geometry from a
more theoretical perspective, developing the theories in different directions.
Evako et al. [5, 6] considered, for example, n-dimensional digital surfaces
satisfying certain axioms. These surfaces were later considered by Daragon
et al. [4]. Khalimsky spaces as surfaces, embedded in spaces of higher di-
mension have been studied the author in [15].

We shall study, not digital spaces, but a tool that can be used in such
a study: the join operator. Evako used an operation on directed graphs
called the join to aid the analysis. We will generalize this construction and
study its properties. In particular we show how a space can be decomposed
into indecomposable pieces put together by the join operator. We will give
conditions for uniqueness of this decomposition.

2. Digital spaces and the Khalimsky topology

We present here a mathematical background. The purpose is primarily to
introduce notation and formulate some results that we will need. A reader
not familiar with these concepts is recommended to take a look at, for
example, Kiselman’s [9] lecture notes.
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2.1 Topology and smallest-neighborhood spaces

Not all topological spaces are reasonable digital spaces, but the class of finite
topological spaces is too small. It does not include Zn.

In every topological space, a finite intersection of open sets is open,
whereas an arbitrary intersection of open sets need not be open. If the
space is finite, however, there are only finitely many open sets, so finite
spaces fulfill a stronger requirement: arbitrary intersections of open sets are
open.

Alexandrov [1] considers topological spaces, finite or not, that fulfill
this stronger requirement. We shall call such spaces smallest-neighborhood
spaces. Another name that is often used is Alexandrov spaces, but this
name has one disadvantage: it has already been used for spaces appearing
in differential geometry.

Let B be a subset of a topological space X. The closure of B is the
intersection of all closed sets containing B. The closure is usually denoted
by B. We shall instead write CX(B) for the closure of B in X. This
notation allows us to specify in what space we consider the closure and is
also a notation dual to NX defined below.

Using the same B and X as above, we define NX(B) to be the intersec-
tion of all open sets containing B. In general NX(B) is not an open set, but
in a smallest-neighborhood space it is; NX(B) is the smallest neighborhood
containing B. If there is no danger of ambiguity, we will just write N (B)
and C (B) instead of NX(B) and CX(B). If x is a point in X, we define
N (x) = N ({x}) and C (x) = C ({x}). Note that y ∈ N (x) if and only if
x ∈ C (y).

We have already seen that N (x) is the smallest neighborhood of x.
Conversely, if every point of the space has a smallest neighborhood, then an
arbitrary intersection of open sets is open; hence this existence could have
been used as an alternative definition of a smallest-neighborhood space.

A point x is called open if N (x) = {x}, that is, if {x} is open. The
point is called closed if C (x) = {x}. If x is either open or closed it is called
pure, otherwise it is called mixed.

Adjacency and connectedness

A topological space X is called connected if the only sets, which are both
closed and open, are the empty set and X itself. A connectivity compo-
nent (sometimes called a “connected component”) of a topological space is
a connected subspace which is maximal with respect to inclusion.

Two distinct points x and y in X are called adjacent if the subspace
{x, y} is connected. It is easy to check that x and y are adjacent if and only
y ∈ N (x) or x ∈ N (y). Another equivalent condition is y ∈ N (x)∪C (x).
The adjacency neighborhood of a point x in X is denoted ANX(x) and is
the set NX(x)∪CX(x). It is practical also to have a notation for the set of
points adjacent to a point, but not including it. Therefore the adjacency set
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in X of a point x, denoted AX(x), is defined to be AX(x) = ANX(x)r{x}.
Often, we just write A (x) and AN(x).

A point adjacent to x is sometimes called a neighbor of x. This termi-
nology, however, is somewhat dangerous since a neighbor of x need not be
in the smallest neighborhood of x.

Separation axioms

Kolmogorov’s separation axiom, also called the T0 axiom, states that given
two distinct points x and y, there is an open set containing one of them
but not the other. An equivalent formulation is that N (x) = N (y) implies
x = y for every x and y. The T1/2 axiom states that all points are pure.
Clearly any T1/2 space is also T0.

The next separation axiom is the T1 axiom. It states that points are
closed. In a smallest-neighborhood space this implies that every set is closed
and hence that every set is open. Therefore, a smallest-neighborhood space
satisfying the T1 axiom must have the discrete topology, and thus, is not
very interesting.

Duality

Since the open and closed sets in a smallest neighborhood space X satisfy
exactly the same axioms, there is a complete symmetry. Instead of calling
the open sets open, we may call them closed, and call the closed sets open.
Then we get a new smallest-neighborhood space, called the dual of X, which
we will denote by X ′.

The Alexandrov–Birkhoff preorder

There is a correspondence between smallest-neighborhood spaces and par-
tially preordered sets. Let X be a smallest-neighborhood space and define
x 4 y to hold if y ∈ N (x). We shall call this relation the Alexandrov–
Birkhoff preorder. It was studied independently by Alexandrov [1] and by
Birkhoff [3].

The Alexandrov–Birkhoff preorder is always reflexive (for all x is x 4 x)
and transitive (for all x, y, z ∈ X, x 4 y and y 4 z imply x 4 z). A relation
satisfying these conditions is called a preorder (or quasiorder).

A preorder is an order if it in addition is anti-symmetric (for all x, y ∈ X,
x 4 y and y 4 x imply x = y). The Alexandrov–Birkhoff preorder is an
order if and only the space is T0. In conclusion, it would therefore be possible
to formulate the results of this paper in the language of orders instead of
the language of topology.
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2.2 The Khalimsky topology

We shall construct a connected topology on Z, which was introduced by
Efim Khalimsky (see Khalimsky et al. [8] and references there).

If m is an odd integer, let Pm = ]m− 1,m+ 1[, and if m is an even
integer, let Pm = {m}. The family {Pm}m∈Z forms a partition of the
Euclidean line R and thus we may consider the quotient space. If we identify
each Pm with the integer it contains, we get the Khalimsky topology on Z.
We call this space the Khalimsky line. Since R is connected, the Khalimsky
line is a connected space.

It follows readily that an even point is closed and that an odd point is
open. In terms of smallest neighborhoods, we have N (m) = {m} if m is
odd and N (n) = {n− 1, n, n+ 1} if n is even.

Perhaps this topology should instead be called the Alexandrov–Hopf–
Khalimsky topology, since it appeared in an exercise [2, I:Paragraph 1:Ex-
ercice 4]. However, it was Khalimsky who realized that this topology was
useful in connection with digital geometry and studied it systematically.
Since this topology is also called the Khalimsky topology in the literature,
we will keep this name.

A different approach to digital spaces, using cellular complexes, was in-
troduced independently by Herman and Webster [7] and by Kovalevsky [13].
The results of this article apply to such spaces, since they are topologically
equivalent to spaces of the type introduced in this article. See, for example,
Klette [10].

Khalimsky intervals and arcs

Let a and b, a 6 b, be integers. A Khalimsky interval is an interval [a, b]∩Z of
integers with the topology induced from the Khalimsky line. We will denote
such an interval by [a, b]Z and call a and b its endpoints. A Khalimsky arc in
a topological space X is a subspace that is homeomorphic to a Khalimsky
interval. If any two points in X are the endpoints of a Khalimsky arc, we
say that X is Khalimsky arc-connected.

Theorem 1. A T0 smallest-neighborhood space is connected if and only if
it is Khalimsky arc-connected.

A proof can be found in [14, Theorem 11]. Slightly weaker is [8, Theo-
rem 3.2c]. The theorem also follows from Lemma 20(b) in [12].

Let us define the length of a Khalimsky arc, A, to be the number of
points in A minus one, L(A) = cardA−1. If a smallest-neighborhood space
X is T0 and connected, Theorem 1 guarantees that length of the shortest
arc connecting x and y in X is a finite number. This observation allows us
to define a metric ρX on X, which we call the arc metric.

ρX(x, y) = min(L(A); A ⊂ X is a Khalimsky arc containing x and y).
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The arc metric is defined on X, but it is important to bear in mind that
the topology of X is not the metric topology defined by ρX . The metric
topology is of course the discrete topology.

Examples of smallest-neighborhood spaces

We conclude this section with a few examples to indicate that the class of
smallest-neighborhood spaces and spaces based on the Khalimsky topology
is sufficiently rich to be worth studying.

Example 1. The Khalimsky plane is the Cartesian product of two Khalim-
sky lines and in general, Khalimsky n-space is Zn with the product topology.
Points with all coordinates even are closed and points with all coordinates
odd are open. Points with both even and odd coordinates are mixed. It is
easy to check that A (p) = {x ∈ Zn; ‖p− x‖∞ = 1} if p is pure.

Example 2. We may consider a quotient space Zm = Z/mZ for some even
integer m > 2. Such a space is called a Khalimsky circle. If m > 4, Zm is
a compact space that is locally homeomorphic to the Khalimsky line. (If
m were odd, we would identify open and closed points, resulting in a space
with the indiscrete or chaotic topology, i.e., where the only open sets are
the empty set and the space itself.)

3. Locally finite and locally countable spaces

A topological space actually stored in a computer is finite. Nevertheless, it
is of theoretical importance to be able to treat infinite spaces, like Z2, since
the existence of a boundary often tends to complicate matters.

On the other hand, spaces where a points can have an infinite number
of neighbors seems less likely to appear in computer applications. In this
situation, not even the local information can be stored.

Definition 1. A smallest-neighborhood space is called locally finite if ev-
ery point in it has a finite adjacency neighborhood. If every point has a
countable adjacency neighborhood, it is called locally countable.

We need to assume the axiom of choice (in fact the countable axiom of
choice, which states that from a countable collection of nonempty sets we
can select one element from each set, is sufficient) to prove the following.

Proposition 1. Let X be a locally finite space. If X is connected, then X
is countable.

Proof. If X is not T0, we consider the quotient space X̃, where points with
identical neighborhoods have been identified. X̃ is T0 and X is countable if
X̃ is countable. It is therefore sufficient to prove the result for T0 spaces.
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Let x be any point in X. By induction based on local finiteness, the
ball Bn(x) = {y;∈ X; ρX(x, y) 6 n}, where ρX is the arc-metric on X
(here we use that the space is T0), is finite for every n ∈ N. Since X =⋃∞
n=0Bn(x), the result is true, since the countable axiom of choice implies

that a countable union of finite sets is countable.

In a similar way, we can also characterize countable smallest-neighbor-
hood spaces.

Proposition 2. A smallest-neighborhood space X is countable if and only
if it is locally countable and has countably many connectivity components.

Proof. It is clear that a countable space is locally countable and has count-
ably many components. The countable axiom of choice implies that count-
able unions of countable sets are countable. So if X is connected and locally
countable, a slightly modified version of the proof of Proposition 1 shows
that X is countable. If X has countably many connectivity components and
each component is countable, then X is countable.

The following proposition states that the set of open points is dense in
a locally finite space (and by duality a corresponding result holds for the
closed points). It is obvious that the open points form the smallest dense
set.

Proposition 3. Let X be a smallest-neighborhood space and let S ⊂ X be
the set of open points in X and T be the set of closed points. If X is T0 and
locally finite, then X = C (S) = N (T ).

Proof. We will prove the fist equality, the other follows by duality. Let y0

be any point in X. Let Y0 = N (y0). If Y0 is a singleton set, then y0 ∈ S.
Otherwise, for k > 0, choose yk+1 ∈ Yk r {yk} and let Yk+1 = N (yk+1).
Clearly Yk+1 ⊂ Yk and since X is T0, it follows that yk 6∈ Yk+1. Repeat the
construction above recursively until Yk is a singleton set, at most card(Y0)−1
steps are needed. Note that yk is an open point and that y0 ∈ C (yk). Since
y0 was arbitrarily chosen, we are done.

The relation in the proposition need not hold if the space is not locally
finite. Consider the space Z where the (non-trivial) open sets are given by
intervals ]−∞,m]Z, m ∈ Z. This space contains no open point.

On the other hand, if we add the point −∞ and declare the open sets to
be intervals [−∞,m]Z, where m ∈ Z ∪ {−∞}, then the point −∞ is open
and the whole space equals C (−∞). Thus, finite neighborhoods are not
necessary for the conclusion of the proposition.
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4. The join operator

A well-known way to combine two topological spaces, X and Y is to take
the coproduct (disjoint union), X

∐
Y . The pieces, X and Y , are com-

pletely independent in this construction. We shall introduce another way of
combining two spaces, namely the join operator.

Definition 2. Let X and Y be two topological spaces. The join of X and
Y , denoted X ∨ Y , is a topological space over the disjoint set union of X
and Y , where a subset A ⊂ X∪̇Y is declared to be open if either

(i) A ∩X is open in X and A ∩ Y = ∅, or

(ii) A ∩X = X and A ∩ Y is open in Y .

Note that a set B ⊂ X ∨ Y is closed if and only if

(i) B ∩X is closed in X and B ∩ Y = Y , or

(ii) B ∩X = ∅ and B ∩ Y is closed in Y .

While this definition makes sense for any topological space, it is a strange
operation on large spaces. For example, the join of the real line and the
circle, R ∨ S1, is a compact space, which is T0 but not T1. In fact, X ∨ Y
cannot be T1 unless X or Y is empty.

From now on, we shall only consider the join of smallest-neighborhood
spaces. In this case, the definition boils down to the following. If X and Y
are smallest-neighborhood spaces, then the topology of X ∨ Y is given by
NX∨Y (x) = NX(x) if x ∈ X and NX∨Y (y) = NY (y) ∪ X if y ∈ Y . Ap-
parently, the join of two smallest-neighborhood spaces is a smallest-neigh-
borhood space. This definition of the join is compatible with the join of
directed graphs, see [6, p. 111]. In terms of the Alexandrov–Birkhoff pre-
order, every element of X is declared to be larger than any element of Y ;
X is placed on top of Y in X ∨ Y . This motivates also our notation X ∨ Y .
Formally, the order, i.e., pairs (x, y) satisfying x < y, on X ∨ Y , which we
here denote Ord(X ∨ Y ) is

Ord(X ∨ Y ) = Ord(X) ∪Ord(Y ) ∪X × Y.

The join of two connected locally finite spaces need not be locally finite.
In fact, the join of two spaces is locally finite if and only if the spaces are
finite and locally countable if and only if both are countable. In view of
Proposition 2, the join of two connected and locally countable spaces is
locally countable. When p is a point, we write p ∨ X instead of {p} ∨ X.
Here {p} is the topological space with one point.

4.1 Basic properties

The following three properties in the next proposition are straightforward
to prove.
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Proposition 4. The join operator has the following properties for all
smallest-neighborhood spaces X,Y and Z.

(i) X = ∅ ∨X = X ∨ ∅ (has a unity).

(ii) (X ∨ Y ) ∨ Z = X ∨ (Y ∨ Z) (is associative).

(iii) (X ∨ Y )′ = Y ′ ∨X ′.

The following proposition lists some topological properties.

Proposition 5. Let X and Y be smallest-neighborhood spaces.

(i) X ∨ Y is T0 if and only if X and Y are T0.

(ii) X ∨ Y is compact if and only if Y is compact.

(iii) If X 6= ∅ and Y 6= ∅ then X ∨ Y is connected.

Proof. To prove (i), note that X is open in X ∨ Y . If x ∈ X and y ∈ Y ,
then X is an open set containing x but not y. It follows that X ∨Y can fail
to be T0 only for a pair of points in X or a pair of points in Y . But in this
case the equivalence is obvious.

Next we prove (ii). Assume first that Y is not compact and that {Ai}i∈I
is an open cover of Y without a finite subcover. Let Bi = Ai ∪X for each
i ∈ I. Then {Bi}i∈I is an open cover of X ∨ Y without a finite subcover.
For the other direction, assume that Y is compact and take an open cover,
{Bi}i∈I , of X ∨ Y . By restriction, it induces an open cover of Y with
elements Bi ∩ Y . But this cover has a finite subcover, {Bi ∩ Y }ni=1, since Y
is compact. It follows that {Bi}ni=1 is finite subcover of X ∨ Y since any Bi
where Bi ∩ Y 6= ∅ covers X.

To prove (iii), assume that x ∈ X and y ∈ Y . Since x ∈ N (y), it is
clear that x and y are adjacent. If a, b ∈ X, then {a, y, b} a connected set
for the same reason. In the same way {c, x, d} is connected if c, d ∈ Y .

In fact all properties of the two proceeding propositions, except (iii) of
Proposition 4, are true for general topological spaces, not only for smallest-
neighborhood spaces.

4.2 Decomposable spaces

If Z = X∨Y implies X = ∅ or Y = ∅, then the smallest-neighborhood space
Z is called indecomposable, otherwise Z is called decomposable. Note that a
locally finite decomposable smallest-neighborhood space is in fact finite.

Proposition 6. If a smallest-neighborhood space Z is decomposable, then
for every x, y ∈ Z there is a point z ∈ Z such that x, y ∈ AN(z). (If Z is
T0, an equivalent and more comprehensible condition is that ρZ(x, y) 6 2.)

Proof. The result is given by the proof of Proposition 5, Part (iii).

The converse implication is not true, as the following example shows.
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Example 3. Let X = {a1, a2, b, c1, c2} be a set with 5 points, and equip it
with a topology as follows: N (a1) = {a1}, N (a2) = {a2}, N (b) = {a1, b},
N (c1) = {a1, a2, b, c1}, and N (c2) = {a1, a2, c2}. It is easy to see that
ρ(x, y) 6 2 for any x, y ∈ X.

Suppose that X were decomposable, X = A ∨ C. We would necessarily
have a1, a2 ∈ A since these points are open, and c1, c2 ∈ C since these points
are closed. But b cannot be in A since b 6∈ N (c2) and b cannot be in C
since a2 6∈ N (b). Therefore, X is indecomposable.

We have the following uniqueness result for the decomposition.

Theorem 2. Let X be a smallest-neighborhood space. If X = Y ∨ Z and
X = Ỹ ∨Z̃, where Y and Ỹ are indecomposable and non-empty, then Y = Ỹ
and Z = Z̃.

Proof. It is sufficient to prove that Y = Ỹ . If Y 6= Ỹ , we may suppose that
Y r Ỹ is not empty and let p ∈ Y r Ỹ . Then Ỹ ⊂ Y , for if there were a
point q in Ỹ r Y , then q ∈ Z so that CX(q) ⊂ Z, since X = Y ∨ Z. But
by assumption p 6∈ Ỹ , so therefore p ∈ Z̃. As q ∈ Ỹ and X = Ỹ ∨ Z̃, this
implies p ∈ CX(q) ⊂ Z, which is a contradiction since p ∈ Y .

Define B = Y r Ỹ , which is non-empty by assumption. Take two ar-
bitrary points a ∈ Ỹ and b ∈ B. Note that b ∈ Z̃. Hence a ∈ NX(b)
and thus also a ∈ NY (b). It follows that NY (b) = NB(b) ∪ Ỹ . If Ỹ and
B are equipped with the relative topology, we have Y = Ỹ ∨ B, so Y is
decomposable contrary to the assumption.

If a smallest-neighborhood space X is locally finite, then repeated use
of Theorem 2 together with associativity gives the following.

Corollary 1. If X is a locally finite smallest-neighborhood space, then X
can be written in a unique way as X = Y1 ∨ · · · ∨ Yn where each Yi is
indecomposable and non-empty.

Note that if X is decomposable so that n > 1, then X is necessarily
finite. While Theorem 2 is quite general, there is no universal cancellation
law; if A∨X = B∨X we cannot conclude that A and B are homeomorphic
(which we will denote by A ' B), as the following example shows.

Example 4. Let N denote the set of natural numbers equipped with the
topology given by N (n) = {i ∈ N; i > n}. For a positive integer m, let
Nm = N ∩ [0,m], with the induced topology. It follows that N = Nm ∨N
for every m, but Nm is homeomorphic to Nk only if m = k.

On the other hand, if X is locally finite, the unique decomposition of
Corollary 1 implies that both a right and a left cancellation law hold. In
fact, we may weaken the hypothesis slightly.

Theorem 3. Let X be a smallest-neighborhood space. Suppose there are
finitely many locally finite spaces Y1, . . . , Yn so that X = Y1∨· · ·∨Yn. Then
for all smallest-neighborhood spaces A and B we have



72 MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS

(i) X ∨A ' X ∨B implies A ' B,

(ii) A ∨X ' B ∨X implies A ' B.

Note that X is locally finite only if n = 1 or if every Yi (and hence X
itself) is finite.

Proof. We shall prove (i). The second claim follows by duality. Let Y be
any smallest-neighborhood space. Define an opening chain in Y to be a
finite sequence of pairwise distinct points (y0, . . . , yn) in Y such that yi+1 ∈
NY (yi) for 0 6 i 6 n. The number n is the called the length of the open
chain. We say that the chain starts in y0. Let hY : Y → N∪{∞} be defined
by

hY (y) = sup(n; there is an opening chain in Y of length n starting in y).

From the construction of X, it is straightforward to check that hA∨X(x) is
a finite number for any x ∈ X. Furthermore, for any a ∈ A we have

hX∨A(a) > 1 + sup
x∈X

hX∨A(x) (1)

since every x ∈ X belongs to NX∨A(a). Furthermore,

sup
x∈X

hX∨A(x) = sup
x∈X

hX∨B(x), (2)

since hX(x) = hX∨Y (x) for any space Y and any x ∈ X.
Let ϕ : X ∨ A → X ∨ B be a homeomorphism. A chain is mapped to

a chain by ϕ, so we have the identity hX∨A(x) = hX∨B(ϕ(x)) for every
x ∈ X ∨A. In view of (1) and (2) this implies that

hX∨B(ϕ(a)) > 1 + sup
x∈X

hX∨B(x),

for every a ∈ A. Hence ϕ(X) = X and ϕ(A) = B, which proves (i).

5. Applications

We shall demonstrate how the tools we have developed can be used to give
a simple proof of a known result in digital topology, namely the character-
ization of neighborhoods in Khalimsky spaces (Evako et al. [6]). We start
with a consequence of Proposition 6.

Corollary 2. Let p ∈ Zn be pure. Then A (p) is indecomposable. If p is
closed, AN(p) = A (p) ∨ p and if p is open, AN(p) = p ∨A (p).

Proof. For the first property, notice that if q ∈ A (p) then r = 2p − q
(as vectors in Zn ⊂ Rn) also belongs to A (p). It is readily checked that
ρA (p)(q, r) = 4 if n > 2 (if n = 1, AZ(p) is not connected and the re-
sult immediate). Proposition 6 shows that A (p) is indecomposable. The
decomposition of AN(p) is straightforward.
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If p is pure, it is easy to explicitly describe AN(p). We have

AN(p) = {x ∈ Zn; ‖x− p‖∞ 6 1},
so that p is adjacent to 3n − 1 points.

More generally, let q ∈ Z be any point with j even coordinates and k odd
coordinates. To simplify our notation, we note that there is a homeomor-
phism of Zn, build from a translation q 7→ q+v, where v ∈ 2Zn, and permu-
tation of coordinates, which takes q to the point q̃ = (0, . . . , 0, 1, . . . 1) ∈ Zn,
where there are j zeros and k ones (and j + k = n).

It follows that
N (q̃) = [−1, 1]j × {1}k

and that
C (q̃) = {0}j × [0, 2]k.

Since AN(q̃) = N (q̃)∪C (q̃), we see that q is adjacent to 3j + 3k− 2 points.
Let 0j denote the point (0, . . . , 0) ∈ Zj and let 1k = (1, . . . , 1) ∈ Zk.

It is easy to see that N (q̃) ' NZj (0j) and it follows that N (q̃) r {q̃} is
homeomorphic to AZj (0j), which is indecomposable by Corollary 2. By
a similar argument, C (q) r {q̃} is homeomorphic to AZk(1k). Note that
A (00) = A (10) = ∅.

It is straightforward to check that in any smallest-neighborhood space
X and for any x ∈ X we have

A (x) ' (N (x) r {x}) ∨ (C (x) r {x})
and we obtain the following.

Proposition 7. Let q ∈ Zn. Then

AZn(q) ' AZj (0j) ∨AZk(1k),

where j is the number of even coordinates in q and k is the number of odd
coordinates.

As stated from the outset, this result is known, and serves only as an
illustration of the formalism introduced.

6. Conclusion

We have studied the join operator, which takes two topological spaces and
combines them into a new space. This operation is interesting primarily
for small spaces, viz. adjacency neighborhoods. We have seen that if we
assume local finiteness of the spaces involved, we can show that a space is
decomposed in a unique way into indecomposable spaces, and we have given
a criterion to recognize indecomposable spaces.

The machinery can be used to systematically investigate local properties
of digital topological spaces. Hopefully, this will lead to new insights into
the nature of such spaces.
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Abstract The Euclidean hirerachies of openings satisfy Matheron semi-groups
law γλγµ = γmax(λ,µ), where λ is a size factor. One finds this law
when the γλ are adjunction openings by Steiner convex sets, i.e.
by Minkowski sums of segments. The conditions under which, in
Zn, the law remains valid, and the Steiner sets are convex, and
connected, are established.

Keywords: Matheron semi-group, granulometry, digital, convexity, Steiner,
connection, connectivity.

1. Matheron semi-groups and convexity

In the practice of morphological image processing, one often uses families of
mappings that depend on a positive factor λ which expresses a size. When
the mappings are idempotent, a convenient model for these hierarchies is
the semi-group introduced by G. Matheron [6] Ch. 7, as a Euclidean gran-
ulometry, where the γλ’s are openings such that

γλγµ = γmax(λ,µ) λ ≥ µ ≥ 0. (1)

As a matter of fact, this law is associated with many other idempotent
operators, such as the alternating sequential filters [13], or with the levelings
[14]. Now all these filters derive from the two basic types of the opening
by adjunction and the connected opening.

We propose to study here the discrete version of Matheron semi-groups
(1) for the openings by adjunction. It is known that in the Euclidean case,
these operators lie on convex structuring elements [6], which are the more
often obtained by Minkowski sum of segments in different directions. They
are then called Steiner compact sets (see Definition 1), and coincide in
R2 with the compact convex sets with a center of symmetry. Now in Zn

the Minkowski sum of two segments may be not convex, and symmetrical
convex sets may not be Steiner (Figure 4(a)). Must we renounce discrete
granulometries by adjunction, or deduce that convexity plays no role in
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digital Matheron semi-groups? Here is the first question we have to clear
up.

But it is not the only one. In vector spaces, compact convex sets are
equivalently defined by barycentres, or by intersection of half-spaces. This
is no longer true in Zn (Figure 4(a)). But what can mean “a straight
line segment”, or “a half-space”, in Zn? Must we choose among several
definitions? Are they definitions for which both convexities are the same?
If so, do they lead to nice hierarchies? On the other hand, what about
connectivity? In Rn, but not in Zn, convex sets are always connected
(Figure 4(a)). Is it a handicap?

In digital geometry, one may either consider the module Zn as a part of
the vector space Rn, or the latter as a possible generalization of module Zn.
In our case, since we deal with structuring elements, i.e., with (necessarily
discrete) actions on the objects and not with the objects themselves, the
Zn framework turns out to be the convenient one.

2. Reminders

Symbol L indicates a complete lattice, whose elements are denoted by cap-
ital letters. When L is of P(E) type, the elements of E are given by lower
case letters. Let L admit a class S of sup-generators, and let {δλ} , λ ≥ 0 be
a family of dilations on L, of adjoint erosions {ελ}. It is known [13,20] that
the family of the openings by adjunction {γλ = δλελ} , λ ≥ 0, then forms a
granulometry if and only if we have for all b ∈ S that

λ ≥ µ ⇒ δλ(b) = γµδλ(b). (2)

In case of P(Rn), the families of homothetic convex sets are essential [6],
because

1. the homothetic version λB of the compact set B is open by µB for all
λ ≥ µ if and only if B is convex;

2. a family {Bλ, λ ≥ 0}, forms a continuous additive semi-group if and
only if Bλ is homothetic of ratio λ of the compact convex set B

Bλ ⊕Bµ = Bλ+µ , λ, µ ≥ 0 ⇔ Bλ = λB, Bµ = µB, B convex.
(3)

The link between convexity and granulometry by adjunction becomes
clear, as applying Equation 2 to Euclidean granulometries, and demanding,
in addition, homothetic structuring elements, i.e., Bλ = λB, yields neces-
sarily to compact convex B′s. In other words, for a Euclidean granulometry,
the convexity assumption and that of homothetics are equivalent. However,
if we relax the magnification assumption, then the δλ(b) do not need to be
convex, nor even connected.

Among all Euclidean convex sets, the most attractive class turns out to
be the Steiner one ([6], sect.4.5).
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Definition 1. A compact set K ∈ K(Rn) is said to be Steiner if there
exists in K a sequence {Kn} ∈ K with K = LimKn and if for all n > 0, Kn

is Minkowski sum of segments centered at a same point. The Steiner class
is denoted by ST (Rn).

In R2, Steiner sets are nothing but the symmetrical convex compact ones
(rectangle, octagon, etc.) and their limits (discs, ellipses, etc.). In Rn, all
2D faces must be symmetrical convex [15]. The datum of a Steiner set K
is equivalent to that of a measure sK = sK(dα) on the unit sphere Ω, since

K = ⊕{sK(dα), α ∈ Ω}. (4)

For example, if K is a rectangle, then sK(dα) reduces to two Dirac measures
of orthogonal directions. Equation 4 has for an obvious corollary that the
directional measure exchanges arithmetic addition and Minkowski one, i.e.,
sK⊕K′ = sK + sK′ , hence

sK′ ≤ sK ⇒ sK	K′ = sK − sK′ ⇒ K is open by K ′. (5)

Consequently, every family of Steiner sets whose directional measures
increase generates a granulometry by adjunction.

3. The Zn module

Which ones of the previous results do remain when Rn is replaced by Zn?
The poorer structure of Zn is that of a module, where (integer) translation is
still defined, hence giving access to Minkowski operations. The homothetic
factors can only magnify, as they must be integer. Unlike integer translation,
which does not pose particular problems, linear equations become a true
stumbling block. However, a classical result, due to Bezout, makes precise
the existence conditions of solutions.

Proposition 1. Let (x1, x2..xn) be the coordinates of point x ∈ Zn. The
so called Bezout equation

∑n
1 aixi = 1 admits solutions in Znif and only if

the ai coefficients relatively prime.

The point of coordinates (a1, a2...an) is usually called Bezout vector.
When one solution −→u 0 Bezout equation −→a −→u = 1 is known, then the solu-
tions for an arbitrary second member c are given by

−→x = c−→u 0 + k1
−→w 1 + ...kn−1

−→w n−1 (6)

where the −→w 1, ...
−→w n−1 generate the sub-module A := { −→a −→x = 0} of dimen-

sion n− 1. Geometrically, Equation 6 defines a straight line in Z2, a plane
in Z3, etc. This geometric structure has the advantage of well scanning Zn.
One goes form the solutions of equation −→a −→x = c to those of −→a −→x = c + 1
by replacing −→x by −→x+ −→u , where −→u is an arbitrary solution of Bezout
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Figure 1. This is a Steiner polyhedron (a), but not that (b).

Figure 2. An example of digital plane spanning by Bezout straight lines. Vector
(2,1) is a solution of Bezout equation 2x − 3y = 1, therefore the shifts of this
straight line by all multiples of vector (2,1) span integrally the plane.

equation (see Figure 2) so that, as c spans Z, every point of the space Zn

is met once and only once. This nice property is not an exclusivity of the
Bezout Straight lines: H. Talbot proved in his Phd thesis that the spanning
property is also satisfied by the Bresenham lines [19].

The hyperplanes of the family {∑n
1 aixi = c, c ∈ Z} generate Bezout

half-spaces E(A, c) =
∑n

1 aixi ≤ c = ∪{H(A, r), r ≤ c}, which are nested
in each other as c increases.

4. Bezout straight lines and discrete Steiner sets

Since Rosenfeld’s pioneer paper [11], digital lines are the matter of an abun-
dant literature, as well as digital convexity. The reader is referred to the
survey by Eckardt [2], where at least five different ways for defining digital
convexity are distinguished. Most approaches aim to provide digital repre-
sentations of a Euclidean background, e.g., Rosenfeld for segments [11] or
Bresenham for straight lines. Other definitions, such as Reveillès straight
lines [10] are introduced in a purely digital framework. More recently, Melin
proposed a digital definition in the framework of Khalimsky topology [8].

Kiselman [5] starts from Reveillès digital Equation 11, but immediately
reorientates it toward the Euclidian world by making real the integers ai.
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However, the simplest, and above all the narrowest digital straight lines are
given by the multiples of Bezout vectors[12, 16]. They will be our starting
point.

Definition 2 (Bezout straight lines and segments). Each Bezout vector
ω = (ω1, .., ωn) defines the direction ω in Zn, the opposite direction −ω
having parameters (−ω1, ..,−ωn). We call a Bezout straight line D(ω), of
direction ω and going through the origin, the union of all integer multiples
of vector ω, namely D(ω) = {kω, k ∈ Z}. Similarly,the Bezout line of
direction ω going through point x is written

Dx(ω) = D(ω)⊕ x = {x+ kω, k ∈ Z}. (7)

Every segment Lx(k, ω) of Dx(ω), of origin x and extremity x+ kω, k ≥ 0,
consists in the sequence of the points

Lx(k, ω) = x ∪ {x+ pω, p ∈ [0, k]}, (8)

its length is the number k + 1 of its points.

In the following, the Bezout line segments are just called “segment”. The
set Ω of all directions coincides with Bezout vectors, and corresponds to the
unit sphere of the Euclidean case. Note also that, from Equation 7, there
exists one and only one Bezout line going through a given point and with a
given direction. Minkowski operations for Bezout segments are character-
ized by the following theorem

Theorem 1. In P(Zn), for all segments Lx(k, ω) and Lx′(k
′, ω), ω ∈ Ω,

x, x′ ∈ Zn, k, k′ ∈ N , we have that

1. the Minkowski sum Lx(k, ω) and Lx′(k
′, ω) is the segment

Lx(k, ω)⊕ Lx′(k′, ω) = Lx+x′(k + k′, ω), (9)

2. the Minkowski difference Lx(k, ω) 	 Lx′(k′, ω) is Lx−x′(k − k′, ω) if
k > k′, {x− x′} if k = k′ and = ∅ if k < k′,

3. the opening of Lx(k, ω) by Lx′(k
′, ω) is Segment Lx(k, ω) itself when

k ≥ k′ or the empty set when not.

Conversely, the first property is only satisfied by the Bezout segments,
and their periodic sub-sets, to the exclusion of the segments of any other
straight line with a finite thickness.

Proof. The three properties derive from Definition 2 in the same manner.
For the first one, for example, it suffices to write the Minkowski addition

Lx(k, ω)⊕Lx′(k′, ω) = {x+x′}∪{x+x′+(p+p′)ω, p ∈ [1, k], p ∈ [1, k′]}
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Figure 3. Decomposition of the naive Réveillès straight line D = {0 ≤ 3x−5y < 5}
into five Bezout lines.

to find Equation 9.

Conversely, suppose Equation 9 satisfied, and consider a set ∆∗ that

contains point x. If, as y and y′ span ∆∗ vector
−→
yy′ always keeps the

same direction, the latter can only be a multiple of a Bezout direction
ω, so that y and y′ describe a periodic sub-set ∆∗ of the Bezout line
∆x(ω). If not, put the origin x in a point of ∆∗ where both length direction
ω and thickness direction ω′ coexist. One can always find two segments
L0(k, ω) and L0(k′, ω′) in ∆∗. By dilating each of them by itself, and
iterating according to Equation 9, we see that ∆∗ is both indefinitely long
and thick.

In [10], Jean-Pierre Reveillès introduces a class of digital straight lines
of Z2 of variable thicknesses, by putting

D = {(x, y) : t0 ≤ ax+ by < t+ t0} a, b ∈ Z, (10)

where a and b are relatively prime. The term t0 corresponds to a shift
that can be taken equal to zero, and the term t to the thickness of D. In
particular, when t = max(| a |, | b |), line D is said to be “naive”. The
extension to hyperplanes of Zn is straightforward, one just has to replace
ax+ by by

∑
aixi in Equation 10. We draw from the equivalence

0 ≤
∑

aixi < t ⇔ {
∑

aixi = s, 0 ≤ s < t}, (11)

that the hyperplanes of Equation 10 represent, for every sub-module A of
dimension n − 1, space slices Π(A, c, c′) = E(A, c′)\E(A, c), c′ ≥ c, which
are parallel to A. For example, Figure 3 depicts the decomposition of a
naive Reveillès line into a union of Bezout lines.

Definition 3 (Digital Steiner set). A set K ∈ K(Zn) is said to be digital
Steiner if it can be decomposed into a finite Minkowski sum of Bezout
segments centred at a same point.



Digital Steiner sets and Matheron semi-groups 81

Denote by ST (Zn) the digital Steiner class. Theorem 1 implies that
the Euclidean properties Equations 4 and (5) remain true in Zn. Therefore
every family of Steiner sets of increasing directional measures generates a
granulometry by adjunction.

Clearly, the possible convexity of the Steiner sets did not play any role
in the above analysis, and this point answers the first question set in intro-
duction. We can however wonder how to link together convexity and digital
Steiner sets, what we will do now.

5. Digital convexity and Steiner class

5.1 Digital convexity

The two definitions of convexity, by barycentre or by intersection of half-
spaces, are no longer equivalent in Zn as they were in Rn (see Figure 4(c)):
we must choose between them. Indeed, the property of spanning of the space
leads us to start from the second definition [12], p.171, [17], p.100-101.

Definition 4 (Digital Convexity). A set X ⊆ Zn is said to be convex when
it is equal to the intersection of all Bezout half-spaces that contain it, i.e.,
when

X = ∩{E(A, c), c ∈ Z, A ∈ A}
where A is the set of all sub-modules of dimension n− 1 in Zn.

Given sub-module A, the smallest space slice Π(A, c, c′) parallel to A
and which contains X is called the supporting slice Π(X,A). We see that
X is convex if and only if it is obtained by intersecting its supporting slices.
This definition of the convexity implies the barycentre property since

Proposition 2. Every Bezout segment in Zn is convex. Moreover, if x, y
are two points of a digital convex set X, then every point z of the Bezout
segment [x, y] belongs to X.

Proof. We begin by the second part of the proposition. Let {H(ω, c), c ∈ Z}
be a family of hyperplanes that span the space, and let cx and cy be the
labels of the planes of two points x and y. The supporting slice Π(ω, x, y)
generated by the hyperplanes {H(A, c), c ∈ [ cx, cy]} contains point z [15].
As set X is the intersection of its supporting half-spaces, and as for each A
this intersection C(X/A) contains the slice Π(X, cx, cy), we can write

z ∈ ∩{Π(X, cx, cy)} ⊆ ∩{C(X/A), A ∈ A} = X.

On the other hand, the intersection of all Π(X, cx, cy) is nothing but
the segment [x, y]. Indeed, suppose that a point t ∈ ∩Π(X, cx, cy) does not
belong to [x, y]. For any family {H(A, c)} of hyperplanes {H(A, c)} parallel
to [x, y], there exists a sense of ordering such that the labels c satisfy the
conditions cx = cy < ct, i.e., [x, y] ∈ H(A, cx). But t /∈ H(A, cx), which
implies that t /∈ ∩Π(X, cx, cy), i.e., that t must belong to segment [x, y].
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Figure 4. (a) This Steiner polygon is not convex, and, if we complete by the
center of the cross, it becomes convex but is no longer Steiner; (b) convexity and
connectivity are two independent notions; (c) for each pair (x, y) among the trois
points, segment [x, y] lies in the set, though the latter is not convex.

5.2 Convexity of the digital Steiner sets

Unlike in the Euclidean case, in Zn the Minkowski sum of two segments of
different directions is not necessarily convex (see Figure 4(a)). As the Steiner
sets are built by means of such sums, the question arises to find under which
conditions a directional measure {kiωi, 1 ≤ i ≤ p} in Zn corresponds to a
convex Steiner set. We start from the following lemma:

Lemma 1. The Minkowski dilate of Reveillès hyper-plane Π = {0 ≤∑ aixi
< t} by Bezout vector u = {ui} is itself a Reveillès hyper-plane if and only
if |∑ aiui |≤ t+ 1. Then it has for equation one of the two forms

Πu ∪Π = {0 ≤
∑

aixi <
∑

aiui + t} or {
∑

aiui ≤
∑

aixi < t}. (12)

Proof. The translate Πu of Π has for equation 0 ≤∑ ai(xi − ui) < t, thus
it is the hyper-plane

∑
aiui ≤

∑
aixi < t +

∑
aiui. The union Πu ∪ Π

is still an hyper-plane if and only if the two sequences of integers [0, t] and
[
∑
aiui, t+

∑
aiui] are consecutive, i.e., when

∑
aiui ≤ t+1 or

∑
aiui+t ≥

−1, or again when|∑ aiui |≤ t+ 1, which result in Equation 12.

Proposition 3. The Steiner set X ⊆ Zn of directional measure {kiωi, 1 ≤
i ≤ p} is convex if and only if for all directions ωi the dilate Πi = X ⊕Di,
where Di is the Bezout straight line supporting Li, is an intersection of
Reveillès hyperplanes, or again if the sequence of dilations that generates X
is also a sequence of contiguous translations of Di.

The proof of Proposition 3 is given in [15].

Figure 5 illustrates the criterion by both an example and a counter-
example. Take for Lp vector (3, 2). In case (a), the translations of the line
2x−3y = 0 by vectors L1 and L2 of horizontal and vertical directions lead to
the lines 2x−3y = c, with c = {−3,−1, 0, 1, 2, 4}, which is not a contiguous
series, and also X is not convex. In case (b), segment L3 à 45 has been
added, which implies −4 ≤ c ≤ 4, and also that X becomes convex.
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Figure 5. (a) Non convex but connected Steiner set. (b) Convex and connected
Steiner set.

5.3 Connectivity of the digital Steiner sets

In Zn, convexity does not imply connectivity (see Figure 4), even for convex
Steiner sets (Figure 6(b)). However, in case of the usual arcwise connectiv-
ity, the conditions for the connectedness of a Steiner set can be found. With
all point x ∈ Zn associate the unit cube B(x) of centre x and whose points
of the boundary define the extremities of the elementary arcs of origin x
(e.g., the 8-connectivity in Z2). As every cube B(x), x ∈ Zn contains the
points which are just before and just after x in each direction of the axes,
the parallelepipeds parallel to the axes are connected. Then we can state
the following criterion

Proposition 4. Let C be the arcwise connection on P(Zn) generated by
the unit cubes B(x), x ∈ Zn. Consider a digital Steiner set X ⊆ Zn of
directional measures {ki} in the directions {ωi}, 1 ≤ i ≤ p, with n ≤ p, and
whose the n first directions are those of the axes of Zn. The set X is then
connected according to C if and only if for each j such that n < j ≤ p the
component ωji of direction ωj w.r.t. to axis ωi satisfies the inequality

kjω
j
i ≤ ki, 1 ≤ i ≤ n+ 1, n < j ≤ p. (13)

Proof. Set X is written

X = L1(k1ω1)⊕ ..⊕ Li(kiωi)..⊕ Lp(kpωp) (14)

where Li is the vector of length ki in direction ωi. The dilate of origin

O by the n vectors
−−→
kiωi, 1 ≤ i ≤ n, along the directions of the axes is a

connected parallelepiped Π0. Consider one of the supplementary directions
ωj , n < j ≤ p. The inequality in (13) means that the extremity zj of the
segment of length ki in direction ωj belongs to the dilate Π0⊕B. As O ∈ Π0,
we have that zj ∈ Πzj therefore if zj ∈ Π0 then zj ∈ Π0∩Πzj and the union
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Figure 6. (a) The left set is open by the unit cross, but not by the right set, though
smaller than the unit cross. (b) An example of non connected convex Steiner set.

Π0 ∪Πzj is connected. If zj ∈ (Π0 ⊕B)\Π0, then Π0 and Πzj are adjacent,
and their union is still connected. By iterating the proof for all directions
ωj , n < j ≤ p we conclude that the Steiner set X is connected .

Conversely, suppose that X has several connected components, or
“grains”. As Π0 is connected, it is included in one of the grains X0 de
X. Then Equation 14 implies that in one of the supplementary directions
at least, j say, with n < j ≤ p, the translate of the origin by vector kjωj
belongs to a grain of X disjoint form X0, (if not, X would be a unique
grain), hence disjoint from Π0. Therefore, for label j, the inequalities (13)
are not satisfied.

6. Perpective vision and structuring function

There are various ways to relax digital translation invariance. The one we
develop in this section aims to describe the perspective mapping. We firstly
observe that in Z1 all Steiner openings are trivial on segments (i.e., suppress
them or leave them unchanged), and we want to preserve this property
under perspective changes. We shall proceed by reducing Z1 by elementary
removals. Start from an opening γ = δε, of extensive primitive δ, and which
is trivial on segments. Remove one arbitrary point from Z1, taken as the
origin, and and join together the two reduced half axes. The structuring
elements {δ(x), x ∈ Z1}, once modified, generate a new function δ∗, still
extensive and made of segments, according to the rules expressed in Figure 7,
namely:

Location of the
extremities of
δ(x) δ(x) δ∗(x∗) x∗

xn ≤ 0 {x1, ..., xn} {x1, ..., xn} x
x1 ≤ 0 < xn {x1, .., 0}{1, .., xn} {x1, .., 0}{0, ..xn−1} 0
0 < x1 {x1, ..., xn} {x1 − 1, ..., xn − 1} x− 1

(15)
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Figure 7. Bending of a structuring function δ by removal of the origin.

Consider now the action of opening γ∗ = δ∗ε∗ on a segment L ⊆ Z1 of
extremities y1, yp :

- when yp ≤ 0, then γ∗(L) = γ(L),
- when y1 ≤ 0 < yp, then, we have γ∗(L) = [γ(L ⊕ D)] 	 D, where D

stands for doublet {0, 1} centered at the origin,
- finally, when 0 < y1, then γ∗(L) = γ(L⊕ {1}).
In all cases, γ∗ leaves L unchanged, or removes it, so that we can state

the next proposition.

Proposition 5. Let δ : Z1 → P(Z1) an extensive structuring function δ,
with δ(x) ∈ ST (Z1), x ∈ Z1. The structuring function δ∗ defined by system
(15) is in turn extensive, with δ∗(x) ∈ ST (Z1), x ∈ Z1. Moreover, if the
opening by adjunction γ = δε is trivial for segments, then γ∗ = δ∗ε∗is also
trivial for segments.

The construction can be iterated, and serves when the deformations are
due to an oblique perspective (e.g., T.V camera watching an a road). The
space Z2 being indicated by two axes Ox and Oy (depth), one removes all
the more parallel lines to Ox since their y-ordinates increase. At the same
time, in the lines which are left, the translation invariant δ are reduced as
y increases.

7. Conclusion

It was shown that, in Zn, a Steiner class can be obtained uniquely when one
starts from Bezout straight lines (i.e., the narrowest digital lines), and that
the resulting sets generate granulometries but may be neither convex not
connected. However these two properties are reached when the Steiner class
satisfies Propositions 3 and 4. Most of the results proved for Zn extend to
the sphere and to the boundary of the discrete torus. The main new results
of the developed approach are given by Theorem 1, Propositions 3 and 4,
and by Propositions 2 and 5.
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Abstract The paper proposes the new stochastic model of a Random Spread
for describing the spatial propagation of sequential events such as
forest fires. A Random Spread is double Markov chain, whose each
step is a (random) set operator β combining a Cox process with
a Boolean random closed set. Under iteration, operator β pro-
vides the time evolution of the Random Spread, which turns out to
be a birth-and-death process. Average sizes, and the probabilities
of extinction are derived. The random spread model was applied
to the analysis of the fires that occurred in the State of Selangor
(Malaysia) from 2000 to 2004. It was able to predict all places
where burnt scars actually occurred, which is a strongly significant
verification.

Keywords: Random Spread, Boolean RACS, Markov chain, birth-and-death,
random closed sets, forest fires, simulation, mathematical morphol-
ogy.

1. Introduction

In a large number of wild forests, such as typically in South East Asia,
forest fires propagate less under the action of the wind, as in Mediterrenan
countries, than under almost isotropic causes. For instance, the fires that
occurred in the state of Selangor (Malaysia, see Figure 1) from 2000 to 2004
seem to evolve randomly: the initial seats vanish sometimes, but may also
give birth to new seats at some distance. The foresters use to describe the
fire progress by means two key maps [16], namely the daily spread rate of
the fire, i.e., the radius r of the daily circular propagation of the fire, and
the fuel consumption fw, (a weighted version of the vegetation map). Both
are depicted in Figure 1. Clearly, a straightforward use of such key maps
does lead to a pertinent description. By starting from any point seat, one
always arrives to burn the whole country in a finite time, under iteration, as
both maps are positive. Indeed, one must use the rate information in some
restrictive way, to be able to reach actual events. It is exactly the purpose
of the present paper.

2. Stochastic models for growth

One can classify the proposed model as a discrete branching process which
generalises the Galton-Watson process, since it involves a location of the new
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Figure 1. (a) State of Selangor in Malaysia. (b) Map of the spread rate, i.e., of
the radius r of the daily circular propagation of the fire. (c) Map fw of the fuel
consumption.

generation in space. Since C. J. Preston’s pioneer work on spatial birth-and-
death [10], one finds in the literature several point stochastic processes for
describing joint evolutions in space and time. Their characteristic function-
als Q(K) are generally inaccessible, but they yield significant simulations.
A second class is the concern of ”thick” structures, i.e., which do not reduce
to isolated points. A particular case can be found in [11], p.562, under the
name of hierarchical RACS, with several variants such as the following: the
RACS at time t is Xt, and Xt+dt is generated by adding to Xt any boolean
grain which occurs during [t, t + dt] and whose center hits Xt. In spite of
its outward simplicity, this variant is not tractable, i.e., one cannot express
the functional Qt of Xt by means of the initial conditions, as proved by D.
Jeulin in [5].

However, a number of phenomena, including forest fires, follows the
same type of behavior. Each time that in the mineral, vegetal or animal
worlds, seeds move and then develop a new colony, they involve some random
sequential growth. But how to model it by tractable random closed set
(RACS)? The trouble with the hierarchical RACS comes from that their
evolution between steps n and n + 1 refers to the whole past, from 0 to n.
If we relax this condition, can we reach more tractable growth RACS? In
addition, we must take into account that the space parameters which govern
the evolution laws (e.g. the fuel amount for forest fires) usually vary from
place to place, so that the new model should not be a priori translation
invariant, but accept some imposed heterogeneity.

That are the questions we consider in this paper, by proposing the Ran-
dom Spread RACS.
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3. Reminders

The random spread model in presented in the framework of the Euclidean
space Rd of dimension d. Denote by the P = P(Rd) (resp. F , K) the family
of all sets (resp. closed sets, compact sets) of Rd. Symbol S stands for the
singletons of P(Rd) and the same symbol, e.g. x, is used for the points of
Rd and for the elements of S.

Set dilation A structuring function is an arbitrary mapping x 7−→ δ(x)
from S(Rd) into P(Rd). It extends into the dilation δ from P(Rd) into itself
[4, 7, 12] by the relation

δ(X) =
⋃ {δ(x) , x ∈ S} X ∈ P(Rd). (1)

In the following, all structuring functions are supposed to be compact, i.e.,

Definition 1. A structuring function δ : S(Rd) 7−→ P(Rd) is said to be
compact when

i) it is upper semi continuous from S into K,
ii) the union

⋃{δ−x(x), x ∈ Rd} has a compact closure δ

δ0 =
⋃{δ−x(x), x ∈ Rd}. (2)

By extension, the associated dilation δ : P 7−→ P is also said to be
compact.

The reciprocal duality between dilations plays an important role below.
With each structuring function δ, associate the reciprocal structuring func-
tion ζ by writing

y ∈ ζ(x) if and only if x ∈ δ(y) x, y ∈ E. (3)

The algorithm that expresses ζ in function of δ is therefore

ζ(x) =
⋃{y : x ∈ δ(y)}. (4)

Random Closed Sets (Euclidean case) The results which follow, on
RACS and Boolean RACS, are basically due to G. Matheron [8]. Instructive
introductions to RACS may be found in [9], or [15]. Given an element
K ∈ K, consider the class

FK = {F : F ∈ F , F ∩K = ∅}

of all closed sets that miss K.
As K spans the family K, the classes

{
FK , K ∈ K

}
are sufficient to

generate the σ-algebra. Moreover, as set F is compact for the hit-or-miss
topology, there exist probabilities, Pr say, on σf , and each triplet (F , σf ,Pr)
defines a RACS.
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Theorem 1. The distribution of a RACS X is uniquely defined by the
datum of the probabilities

Q(K) = Pr {K ⊆ Xc} (5)

as K spans the class K of the compact sets of Rd. Conversely, a family
{Q(K), K ∈ K} defines a (necessarily unique) RACS if and only if 1 −
Q(K) = T (K) is an alternating Choquet capacity of infinite order such that
0 ≤ T ≤ 1 and T (∅) = 0.

The mapping Q : K →[0, 1] is called the characteristic functional of the
RACS.

The characteristic functional Q plays w.r.t. a random closed set X the
same role as the distribution function for a random variable x. If {Xi, i ∈ I}
stands for all possible realizations of the RACS X, and if ψ : F 7−→ F is
semi-continuous, hence measurable, then the family {ψ(Xi), i ∈ I} charac-
terizes in turn all realizations of a RACS, denoted by ψ(X). This basic
result allows us to play with RACS just as with deterministic sets, to inter-
sect them, to dilate them, etc.

Boolean RACS The Boolean RACS, is very popular and led to many
variants (e.g., [1, 6, 11, 15]). In the present study, we specify it as follows.
Consider the two primitives of

i/ a Poisson process J (θ), whose intensity measure θ is upperbounded,
i.e., θ(dx) ≤ θ.dx with θ <∞

ii/ a compact, and deterministic, structuring function δ : S(Rd) →
K(Rd) called “primary grain”.

The Boolean RACS X is constructed in two steps. First, take a real-
ization J of Poisson points, which provides the set of points xj , xj ∈ J .
Second, take the union X of all primary grains whose centers belong to the
Poisson realization, i.e.,

X =
⋃{δxj , xj ∈ J}.

This union generates a realization of the Boolean RACS X. The char-
acteristic functional Q of RACS X derives easily form the above definition
[8], and equals

Q(K) = exp−
∫
θ(dz)1δ(z)∩K = exp−

∫
θ(dz)1z∩ζ(K) = exp−θ[ζ(K)].

(6)
where ζ is the dilation reciprocal of δ. If we restrict the previous Poisson
points to those which occur in a given compact set X0, then this comes
back to change the intensity θ(dx) into θ∗(dx) = θ(dx).1X0

(x), the Boolean
structure being preserved, so that

Pr{K ⊆ Xc
1} = Q1(K) = e−θ

∗[ζ(K)] = e−θ[ζ(K)∩X0]. (7)
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4. Random Spreads

4.1 Definition

The Random Spread model generalizes Matheron’s Boolean RACS by intro-
ducing a genetic dimension, namely the successive steps, according to which
the (n+ 1)th Boolean RACS depends on the realization of the nth one.

Consider an initial random seat I0 made of an a.s. locally finite number
of initial point seats in Rd. The fire evolution from I0 is the concern, on the
one hand, of the fire the initial seats provoke, or fire spread X1 = δ(I0), and
on the other hand of the generation of subsequent seats spread I1 = β(I0).
These secondary seats will develop new fires in turn. Both aspects refer
to some compact dilation δ. We propose to model the seats spread β(I0)
by picking out, randomly, a few points in each dilate δ(xi), for all points
xi ∈ I0. The double spread process is then written for the spread of

the fire X1(I0) = δ(I0) =
⋃{δ(xi), xi ∈ I0}, (8)

the seats I1(I0) = β(I0) =
⋃{(δ(xi) ∩ Ji) , xi ∈ I0, Ji ∈ J (θ)}, (9)

where a different realization Ji of the Poisson points process J (θ) is asso-
ciated with each point xi. Therefore, each point xi of the set I0 induces a
bunch of seats δ(xi) ∩ Ji independent of the others. These two equations
mean that though the fire from a seat x does burn the zone δ(x) around x,
only a few points of the scar δ(x) remain active seats for the next step.

Under iteration, Equations 8 and 9 become

X2(I0) = δ(I1) =
⋃{δ(yk), yk ∈ I1} =

⋃{δ(yk), yk ∈ δ(xi)∩ Ji ; xi ∈ I0},

I2(I0) = β(I1) = β[β(I0)] =
⋃
i{
⋃
k[δ (δ(xi) ∩ Ji)] ∩ Jk}, xi ∈ I0}.

Figure 2 depicts the first three steps of a random spread, for which:

� the initial seat I0 is the point x0, and the first spread, or front, the
dark grey disk X1(I0) = δ(x0);

� then two Poisson points, namely y1 and y2, fall in δ(x0). They generate

X2(x0) = δ(y1) ∪ δ(y2) = δ(I1), in medium grey,

and I1(x0) = {y1} ∪ {y2};

� then again a new Poisson realization generates one point, z1 in δ(y1),
and another Poisson realization the three points z2,1, z2,2, and z2,3 in
δ(y2), hence

X3(x0) = δ(z1)∪[δ(z2,1) ∪ δ(z2,2) ∪ δ(z2,3)] = δ(I2), in light grey,

and I2(x0) = {z1}∪[{z2,1} ∪ {z2,2} ∪ {z2,3}].
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Figure 2. Three generations of fires stemming from point x0 = I0. Note the
generation of new fires in already burnt areas.

The doublet spread (Xn, In) of order n, is the nth element of the chain
depicted in Figure 3, which is of Markov type: as soon as In is known,
the previous links do not serve in the creation of link (Xn+1, In+1). This
Markov type assumption means that the fire of tomorrow can only be caused
by points seats stemming from the zone which burns today. What burnt
yesterday, before yesterday, etc., has no longer importance. In this space-
time process, the successive sets X1, X2...Xn are at least as descriptive as
the seats I1, I2...In themselves, because they show the extension of the fire
front through the time steps. The (n + 1) step is obtained by the two
induction relations

Xn+1(I0) = δ[In(I0)] (10)

In+1(I0) = β[In(I0)]

In+1(I0) =
⋃{(δ(xi,n) ∩ Ji,n) , xi,n ∈ In, Ji,n ∈ J (θ)}. (11)

We observe that, in Equation 9, and the ulterior ones, each small zone
dz intervenes as many times as dz belongs to different δ(xi). Therefore, the
measure

τn+1(dz) = θ(dz)
∑
{1δ(xi,n)(z), xi,n ∈ In} (12)

turns out to be a realization of the Cox process of intensity τn+1, if In+1 is
finite. Now, are we sure that all these handlings and derivations really lead
to a RACS, in Matheron-Kendall’s sense, i.e., to something we can charac-
terize by a functional Q(K)? Are we sure, for example, that the intensity
τn+1 is always a.s.finite? The answer is positive, as soon as the structuring
function δ is compact, in the sense of Definition 1. Then one can state the
following proposition [13].
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Figure 3. The Markov chain of the spreads.

Proposition 1. Let I0 be a a.s. locally finite set of points, let θ be a Poisson
intensity, and δ : Rd → K(Rd) be a structuring function. If function δ is
compact, then both families {Xn(I0), n > 0} and {In(I0), n > 0} of fire
spreads and seats spreads are RACS.

Since the two spreads In and Xn are RACS, we shall characterize them
by their functionals Qn(K). In the “Boolean-Cox RACS”Xn, the primary
grain only is independent of step n, since at each time n, the intensity τn
is a new one. This circumstance simplifies the theoretical study of the time
evolution. Also, it suggests to find induction relations between Qn(K) and
Qn+1(K) that reflect the two definitions by induction of Equations 10 and
11.

4.2 Characteristic functional

The additivity property of the random spread allows us to take for I0 a point
initial seat, x0 say, of dilate X1 = δ(x0), and whose intersection of the dilate
with Poisson points J provides the first random set I1 = δ(x0) ∩ J . The
functional Qn(K | x0) of the random fire spread Xn(x0), i.e., the probability
that set K misses the nth spread Xn(x0) of initial seat x0, satisfies an
induction relation between steps n and n+1. The compact set K lies in the
pores of the (n+ 1)th spread if and only if none of the points y ∈ δ(x0) can
develop a nth spread that hits K. For a given y ∈ δ(x0), this elementary
probability is

dQn+1(K | x0 | y) = 1− θ(dy) + θ(dy)Qn(K | y), dy ∈ δ(x0). (13)

As the events occurring in disjoint dy are independent, we obtain Qn+1(K |
x0) by taking the infinite product inside δ(x0), i.e.,

Qn+1(K | x0) = exp−
∫
δ(x0)

θ(dy)[1−Qn(K | y)]. (14)

Each step involves an exponentiation more than the previous one. We find
for example for the first steps that
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Q2(K) = exp−θ[ζ(K) ∩ δ(x0)], (15)

Q3(K) = exp−
∫
δ(x0)

θ(dy)[1−e−θ[ζ(K)∩δ(y)]],

Q4(K) = exp−
∫
δ(x0)

θ(dy)[1− exp{−
∫
δ(y)

θ(dz)[1− e−
∫
δ(z)

θ(dw)1ζ(K)(w)]}].

where Q2, but neither Q3 nor Q4, is equivalent to the Boolean RACS func-
tional of Equation 7. The seat spread In+1 satisfies the same induction
relation 14 as the fire spread Xn+1. The only change holds on the first
term, for which it suffices to replace ζ(K) by K in Equation 15. We can
summarize the main results on the characteristic functional by stating:

Theorem 2. Let
- β be the random spread of parameters (θ, δ),
- I1 = β(x0) be the random seat spread stemming from point x0 of dilate

X1 = δ(x0),
- I2 = β(I1) and X2 = δ(I1) be the iterated seat spread and its fire

spread,
- In+1 = β(In) be nth iteration of β, and Xn+1 = δ(In) the associated

fire spread,
then the characteristic functionals of both RACS In+1 and Xn+1 satisfy

the induction relation

Qn+1(K | x0) = exp−
∫
δ(x0)

θ(dy)[1−Qn(K | y)],

with initial terms

Q1(K) = exp−θ[K ∩ δ(x0)] for the seat spread I1 and

Q2(K) = exp−θ[ζ(K) ∩ δ(x0)] for the fire spread X2.

4.3 Discussion

A Markov type assumption of order one underlies the random spread model,
since it suffices to know the nthseats for constructing the (n+1)th ones. This
assumption just allowed us to achieve the formal calculus of the functionals
Qn and Rn. But it does not prevent us from the comeback of new seats
on already burnt areas, after a few steps. The successive spreads may turn
around δ(x0), as depicted in Figure 2.

The trouble can partly be overcome by a Markov assumption of order
two, i.e., by making depend the (n + 2)th seats of both the (n + 1)th and
nth steps. We can impose for example to keep the second seats if they fall
in the δ(xi), xi ∈ I1 but not in δ(x0), and so on. The new version of the
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induction relation 14 must now involve two successive terms. Given the two
points y and z the equation 13 of the elementary functional becomes

dQn+1(K | x0 | y | z) = 1−θ(dz)1δ(y)\δ(x0)(z)+θ(dz)1δ(y)\δ(x0)(z)Qn(K | z),

which gives, by integration in z

Qn+1(K | x0 | y) = exp

{
−
∫
δ(y)\δ(x0)

θ(dz)[1−Qn(K | z)]
}

and finally

Qn+2(K | x0) = exp

{
−
∫
δ(x0)

θ(dy)[1−Qn+1(K | x0 | y)]

}

= exp

{
−
∫
δ(x0)

θ(dy)[1− exp{−
∫
δ(y)\δ(x0)

θ(dz)[1−Qn(K | z)]}]
}
.

More generally, if the random spread of order n satisfies a Markov as-
sumption of order n, one then obtains a new representation of the hierar-
chical RACS ([11], p.562, [5], Ch. 6), probably more tractable.

4.4 Spontaneous extinction

The fire which stems from the point seat x0 may go out, spontaneously,
after one, two, or more steps. The description of this phenomenon does not
involve any particular compact set K. Denote by g(n | x0) the probability
that the fire extinguishes after step n. This event occurs after the first step
when no Poisson point falls inside set δ(x0), i.e., with the probability

g(1 | x0) = 1− exp−θ[δ(x0)].

The proof by induction that allowed us to link Qn+1 with Qn in Equa-
tion 14 applies again, and gives, for a spontaneous extinction after step
n+ 1, the probability

g(n+ 1 | x0) = 1− exp { −
∫
δ(x0)

θ(dy)g(n | y)}. (16)

For example, the probability g(3 | x0) of an extinction after the third
step is:

1− exp−
∫
δ(x0)

θ(dy)[1− exp { −
∫
δ(y)

θ(dz)[1− exp{−
∫
δ(z)

θ(dw)}]}].

Suppose for the moment that θ and δ are translation invariant. The
extinction probabilities no longer depend on x0, y, etc., and reduce to g(n+
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Figure 4. (a) The weight []u < 1, then g(n) → 0, as n → ∞. (b) The weight
[]u ≥ 1, then g(n)→ p, as n→∞.

1 | x0) = g(n + 1), g(n | y) = g(n), etc. Similarly, the integral []u =∫
δ(z)

θ(dx) is independent of z ∈ Rd, so that

g(n+ 1) = 1− exp−[]ug(n). (17)

As n → ∞, the behavior of g depends on []u. If []u < 1, which cor-
responds to Figure 4(a), then g(n) → 0, i.e., the fire extinguishes sponta-
neously, almost surely, in a finite time. When []u ≥ 1, then the two curves of
Figure 4(b) intersect at point (p, p), where p > 0 is solution of the equation
p = 1 − exp []up. There is a non zero probability, namely p, of an infinite
spread.

Suppose now that both functions θ and δ vary over the space, and let
Z be the set of all points where u(z) ≥ 1. If x0 ∈ Z, then there is every
chance that the fire invades the connected component of δ(Z) that contains
point x0. Such typical behaviour will be used now for predicting the scars
of forest fires in the State of Selangor.

5. Scar prediction

The forestry services call scar of the fire the cumulative process

Y (x0) =
⋃ {Xp(x0), 1 < p <∞} . (18)

We will now match the data of the actual scars with the model. Section 4.4
has shown the crucial role played by the weight u (x). In each region Z where
all u (x), x ∈ Z, are noticeably ≥ 1, any initial seat invades progressively
the whole region, whereas in the regions with u (x) < 1, the spread stops by
itself, all the sooner since u (x) is small. In Selangor’s case, the expression
of u from the two maps of Figure 1 is as follows

u (x) =

∫
θ (dz) 1ζ(x) (z) = k

∫
fw (z) 1ζ(x) (z) dz ' πkfw (x) r2 (x) .
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This expression suggests to introduce the scar function

s(x) = fw (x) r2 (x) ,

as represented in Figure 5. Scar function s is accessible from the experi-
mental data, since functions fw and r are given (see Figures 1(c) and 1(a)).
Note that map s is not obtained by simulations, but comes from a combi-
nation of the input parameters of the random spread model. By putting a
threshold on image s at level 1/ πk, one splits the plane into the two regions
where, either fires spontaneously extinguish (when s(x) < 1/ πk), or invade
the connected components that contain their initial seats (when s(x) ≥ 1/
πk).

If we take for k the value 1.61× 10−3, which derives from the hot spots
measurements [16], we get 1/ πk = 193. The two sets above thresholds
190 and 200 are reported in Figure 5(b), side by side with the burnt areas
(Figure 5(c)). In Figure 5(b), the fire locations A to E predicted by the
model point out regions of actual burnt scares. Such a remarkable result
could not be obtained from the maps fw and r taken separately: the scare
function s = fwr

2 means something more, which corroborates the random
spread assumption. Region F is the only one which seems to invalidate the
model. As a matter of fact this zone is occupied by peat swamp forest, or
rather, was occupied. It is today the subject of a fast urbanization, linking
the international airport of Kuala Lumpur to the administrative city of
Putra Jaya. Finally, on the whole, the random spread model turns out to
be realistic.

Figure 5. (a) Scar function s = fw × r2 = u/πk whose thresholds estimate the
burnt scar zones. (b) Two thresholds of function s for 1/πk = 190, in dark grey,
and 1/πk = 200, in black (the simulations suggest value 193). (c) Map of the
actual burnt areas. Note the similarity of the sets, and of their locations.
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6. Conclusion

This paper proposes a new RACS model, the random spread, which com-
bines the three theoretical lines of Boolean random sets, Markov chains,
and birth-and-death processes. Its characteristic functional was established.
More than classical spatial birth-and-death processes, spread RACS depends
strongly on the heterogeneity of the space, which appears via two functions
of intensity (θ) and extension (δ). As a result, the process no longer de-
scribes a global birth-and-death, but regional expansions and shrinkages of
the sets under study, namely the front, the seats and the scar of the spread
RACS.

The time evolution was introduced in a discrete manner, by the Markov
assumption that the fire front of tomorrow can only be caused by points
seats stemming from the zone which burns today.

We draw from the model and a precise predictor of scars that actually
occurred in the State of Selangor during the period 2000–2004.
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Abstract The analysis of different representation levels has been largely used
to handle the multiscale nature of image data. Here, we explore
the scale-space properties of a toggle operator defined on a scaled
morphological framework. These properties conduce to a well-
controlled image extrema simplification, yielding sound segmen-
tation and filtering results even when the operator is used in a
binarization process. Also, the watershed transform using mark-
ers extracted from the processed image gives better segmentation
results than when using markers from the original one. To show
the robustness of our approach, we carried out tests on images of
different classes and subjected to different lighting conditions.

Keywords: scale-space, scale-dependent morphology, image segmentation.

1. Introduction

Multiscale approaches have been largely considered in several signal pro-
cessing applications, allowing the analysis of different representation levels
and, further, the choice of the ones exhibiting the interest features.

One of the basic problems that arises when using multiscale methods
originates from the difficulty to relate meaningful information of the signal
across scales. In [20], Witkin proposed a novel multiscale approach, named
scale-space, where the representation of an interest signal feature describes
a continuous path through the scales. In such a way, it is possible to relate
information obtained in different representation levels, as well as to have a
precise localization of the interest features in the original signal.

Another important characteristic is that the transformation to a coarser
level in the scale-space representation does not introduce artifacts, that
is, signal features present at a scale σ are also present at all finer scales.
This property is called monotonicity, since the number of features must
necessarily be a monotonic decreasing function of scale [20].

Since the introduction of the scale-space theory, a large number of for-
mulations have been proposed, based on different assumptions. In the linear
approach, formalized by Witkin [20], a family of images is generated by con-
volving the original image with a Gaussian kernel. The signal extrema and
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its first derivative constitute the features of interest. However, any convo-
lution kernel used to obtain the scale-space introduces new extrema (the
image maxima and minima) as the scale increases and, thus, the mono-
tonicity property for linear filters and signal extrema does not hold [9]. To
avoid this problem, other linear and non-linear approaches have been intro-
duced [2].

Here, we explore the scale-space properties of a toggle-based operator in
segmentation applications. The operator is defined in a scaled morphological
framework using concave structuring functions, which was proved to have
contrast properties [14]. Furthermore, it considers local pixel information
(not only scale knowledge) to determine if each pixel should be processed
by erosion or dilation, in contrast to other multiscale approaches that take
into account mainly global information. All this characteristics conduce to
an image simplification that enables the identification of important image
structures using very simple operations, even in ill-illuminated images.

The next section presents basic multiscale morphology definitions. Sec-
tion 3 defines the scale-space toggle operator and some of its main properties.
Finally, we show some results in Section 4 and draw some conclusions and
future work perspectives in Section 5.

2. Morphological-based scale-space

The notion of scale is related to the way we observe the physical world,
where different features are made explicit at different scales. In mathemat-
ical morphology, the concept of scale (or size) dependent observations was
introduced by Matheron [11] in his work on granulometry, which captures
the size distribution of spatial observations.

To introduce the notion of scale, we can make the basic morphologi-
cal operations of erosion and dilation scale-dependent by defining a scaled
structuring function gσ : Gσ ⊂ R2 → R, such that [4]

gσ(x) = |σ|g(|σ|−1x) x ∈ Gσ,∀σ 6= 0, (1)

where Gσ = {x : ‖x‖ < R} is the support region of the function gσ.
To ensure reasonable scaling behavior, some other conditions are neces-
sary [4], requiring a monotonic decreasing structuring function along any
radial direction from the origin. In this paper, we use as structuring func-
tion g(x, y) = −max{x2, y2}, that in the scaled version is given by

gσ(x, y) = −|σ|−1 max{x2, y2}, (2)

where σ represents the scale. Observe that, for a 3× 3 structuring element
(used in this work), gσ is zero at position 0 and −|σ|−1 otherwise. Figure 1
illustrates the structuring function.

Scaled morphological operators have been frequently associated to non-
linear filters and scale-space theory. Jackway [4] introduced a scale-space
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Figure 1. The structuring function.

based on the Multiscale Morphological Dilation Erosion (MMDE) operator,
which unifies the scaled erosion and dilation transformations so that both
positive and negative scales are taken into account (the image is processed
by dilation, for positive scales, and by erosion for the negative ones). The
interest features are the watershed of the smoothed signal in a certain scale.
However, this method cannot be directly associated with image segmenta-
tion since “the watershed arcs moves spatially with varying scale” [3, 4].

In [7, 8], Leite and Teixeira explored the extrema preservation property
of MMDE by using the extrema set obtained during the filtering process
as markers in a homotopic modification of the original image, avoiding the
spatial shifting of the watershed lines. They controlled the extrema merg-
ing through the different scales, obtaining good segmentation results. The
authors also defined a new operator that explores the idempotence of the
MMDE, establishing a relation between the structuring function gσ and the
extremes that persist at a given scale σ.

Scaled morphological operators have also been applied for image sharp-
ening. Kramer [5] proposed a non-linear operator that replaces the original
gray value of a pixel by the local minimum or maximum, depending on
what value is closer to the original one. Shavemaker et al. [14] general-
ized this result by defining a new class of iterative scaled morphological
image operators. In fact, they proved that all the operators that use a
concave structuring function have interesting sharpening properties. Here,
we explore some important characteristics of these operators to introduce
a toggle transformation having interesting scale-space extrema preservation
properties, as explained next.

3. Operator definition

A toggle operator has two major points: the primitives and a given deci-
sion rule [16]. Here, we use as primitives an extensive and an anti-extensive
transformation, namely, the scale dependent dilation and erosion. The de-
cision rule involves, at a point x, the value f(x) and the primitives results.
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Formally:

(f � gσ)k(x) =

 ψk1 (x) if ψk1 (x)− f(x) < f(x)− ψk2 (x),
f(x) if ψk1 (x)− f(x) = f(x)− ψk2 (x),
ψk2 (x) otherwise,

(3)

where ψk1 = (f ⊕ gσ)k, that is, the dilation of f with the scaled structuring
function gσ, k times. In the same way, ψk2 = (f 	 gσ)k.

In the following, we analyze the operator’s behavior regarding on scale
changing and on the recursive application of the primitives.

3.1 Changing the number of iterations

To avoid undesirable effects such as halos and oscillations, idempotent toggle
operators are used [15]. Since the defined operator (Equation 3) is not
idempotent, we use an alternative solution to this problem based on the
specific knowledge of the pixels transformation. The following proposition
formalizes an important property of the operator (see proof in [6]), which
guarantees that it has a well-controlled behavior.

Proposition 1. Let x be a pixel of the image and g be a structuring function
with a single maximum at the origin, that is, g(x) is a local maximum implies
x = 0. The sequence defined by (f � gσ)k(x) is stationary and monotonic
increasing (decreasing) until a certain iteration k0, while it is monotonic
decreasing (increasing) after the iteration k0.

This property states that a pixel can initially converge to a specific local
minimum and, after a certain iteration, to converge to an image maximum,
or vice-versa [6]. Furthermore, since the sequence is stationary, we have
the guarantee that it converges to a constant value, that is, it stabilizes
after a certain number of iterations. Note that k0 can be 1, that is, a pixel
transformed value is strictly increasing or decreasing.

In Figure 2, as the number of iterations increases, the influence zone of
the deeper minimum m2 grows significantly, in such a way that the value of
f(m1) become closer to the dilated values, and stabilizes after 10 iterations.

At this step, we can conclude that, in some neighborhood of an important
minimum (maximum), the pixels values will be eroded (dilated) in such
a way that it is possible to identify the significant extrema of the image
and their influence zones. In this sense, we can define a new thresholding
operation that uses a decision rule similar of that in Equation 3:

(f � gσ)k(x) =

{
255 if ψk1 (x)− f(x) <= f(x)− ψk2 (x)
0 otherwise,

(4)

where, again, ψk1 (x) = (f ⊕ gσ)k(x), that is, the dilation of f(x) with
the scaled structuring function gσ k times. In the same way, ψk2 (x) =
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(a) After seven iterations (b) After ten iterations

Figure 2. Operator behavior through different iterations using g = [−1 0 − 1].

(f 	 gσ)k(x). This binary approach yields sound segmentation and filtering
results, as we shall illustrate in Section 4.1.

3.2 Changing the scale

By taking into account the increasing of scale, the defined transformation
(Equation 3) results in a new scale-space definition. The following proposi-
tion states that if an extrema of the signal is present at a given scale σ, it
must be found at all the intermediate scales.

Proposition 2 (Behaviour of image extrema). Let g be a structuring func-
tion with a single maximum at the origin, that is, g(x) is a local maximum
implies x = 0. To avoid level-shifting and horizontal translation effects, we
require that supt∈G{g(t)} = 0, and g(0) = 0. Thus

1. if (f�gσ)(xmax) is a local maximum, then f(xmax) is a local maximum
of f(x) and (f � g)(xmax) = (f ⊕ g)(xmax) = f(xmax),

2. if (f�gσ)(xmin) is a local minimum, then f(xmin) is a local minimum
of f(x) and (f � g)(xmin) = (f 	 g)(xmax) = f(xmin),

3. If 0 < σ1 < σ2 and (f � gσ2
)(xmax) is a local maximum, then (f �

gσ1
)(xmax) is a local maximum and (f�gσ1

)(xmax) = (f�gσ2
)(xmax),

4. If 0 < σ1 < σ2 and (f � gσ2)(xmin) is a local minimum, then (f �
gσ1

)(xmin) is a local minimum and (f�gσ1
)(xmin) = (f�gσ2

)(xmin).

These results (see proofs in Appendix) guarantee that the number of
extrema does not decrease when the scale tends to zero. This aspect con-
stitutes the morphological scale-space monotonicity property.

Theorem 1 (Monotonicity Theorem). Monotonicity property for the de-
fined scale-space. Let f : Df ⊆ Rn → R be a limited function, gσ : Gσ ⊆
Rn → R be a structuring function that satisfies the properties of Propo-
sition 1, and the following set of points Emax(f) = {x : f(x) is a local
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maximum} and Emin(f) = {x : f(x) is a local minimum} represent the
extrema points of f . Then, for any 0 < σ1 < σ2,

Emin(f � gσ2
) ⊆ Emin(f � gσ1

) ⊆ Emin(f), and

Emax(f � gσ2
) ⊆ Emax(f � gσ1

) ⊆ Emax(f).

That is, the number of local maxima (minima) decreases monotonically
with the increase of scale [4].

Finally, proposition 3 states that the operator approaches f(x) as the
scale parameter approaches zero. In other words, as σ → 0, the value of the
operator converges to the original image value (see proof in Appendix).

Proposition 3 (Convergence to the original image value). If the signal
f(x) : Df ⊆ Rn → R is continuous at some x ∈ Df , then (f�gσ)(x)→ f(x)
as σ → 0.

4. Results

First, we give some examples of the binary transformation represented by
Equation 4, where segmentation and filtering results are easily obtained.
After, we apply the h-maxima transform in the image processed by Equa-
tion 3, to further extract markers to be used in a watershed transform.

4.1 Binary results

The first example shows the segmentation of a historical document in which
the front side of the paper contains ink components from its verso side. The
results were compared against the moving averages [19] algorithm, specially
designed for segmenting text images. This method considers a threshold
based on the mean gray level of the last n pixels. Figure 3 illustrates the
better performance of our operator in the sense that it suppresses properly
the components belonging to the reverse side of the paper.

(a) (b) (c) (d) (e)

Figure 3. Segmentation example for a historical document image. (a) Original
image, and segmentation results for two select regions using the moving averages
algorithm ((c) and (e)) and the proposed operator ((b) and (d)).

The second experiment was carried out based on a set of images with
varying lighting conditions (linear, Gaussian and sine-wave) [13], and on a
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set of well-known threshold-based segmentation methods described in lit-
erature, namely, moving averages [19], regional thresholds [13], and the
Otsu’s [12] thresholding algorithm. An evaluation of these methods as well
as the set of considered images can be found in [13]. Figure 4 shows the seg-
mentation results for the mentioned algorithms and for the operator defined
by Equation 4.

(a) (b) (c) (d) (e)

Figure 4. Segmentation results for images with different illumination conditions
(linear, Gaussian and sine-wave, respectively). (a) original image, (b) moving
averages, (c) Otsu’s method, (d) regional thresholding and (e) proposed operator
((i) facel (for k = 1 and σ = 0.1), (ii) skyg (for k = 1 and σ = 0.06) and (iii)
pascals (for k = 2 and σ = 0.1).

This well-controlled behavior reflects the results of the previous proposi-
tions. The image extrema merge in an organized way, and no new maxima
or minima are created, according to the morphological scale-space theory
which constitutes the basis of our approach. Finally, note that the operator
selects one threshold per pixel based on local features, as it is the case for
dynamic thresholdings.

4.2 Gray-scale results

Image segmentation consists basically on partitioning an image into a set of
disjoint (non-overlapping) and homogeneous regions which are supposed to
correspond to image objects that are meaningful to a certain application. In
a morphological framework, this is typically done by first extracting markers
of the significant structures, and then using the watershed transform [1] to
extract the contours of these structures as accurately as possible.
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Although image extrema are frequently used as markers, they can also
correspond to insignificant structures or noise. Thus, to prevent the over-
segmentation problem, it is necessary to select image extrema according to
some criteria, such as contrast, regions area and so forth. A typical approach
consists on use the h-maxima (h-minima) transform to suppress all image
maxima (minima) whose contrast is lower than a specified value h, and use
the extended (regional) extrema as markers.

This notion is closely related to the concept of dynamics, that assigns
to each image extrema a value that characterizes the persistence of the
structure it marks when applying increasing contrast filters (in other words,
the minimal size of the contrast filter for which the extrema is eliminated).
Indeed, a regional extrema of an image f is also an extrema of its h-maxima
transform only if the structure it marks has contrast higher than h, which
also implies a dynamics higher than h [17,18].

In this paper, we apply the h-maxima transform to select the image
maxima that should be used as markers in a watershed transform. The
methodology is summarized in the Algorithm 1 below.

Algorithm 1 Segmentation procedure using h-extrema as markers.

1: given a height h and an input image I;
2: generate a transformed image, I1, applying Eq. 3 on I;
3: compute the h-maxima of I1;
4: extract the extended (regional) maxima;
5: compute the watershed transform using these maxima as markers.

Quantifying the results of a segmentation algorithm is a challenging task,
since this remains a ill-defined problem. Here, we perform a qualitative
analysis of the results based on some specific criteria, such as robustness to
badly illuminated images. We also compute steps 3 − 5 of Algorithm 1 in
the original image I, and compare the results against ours.

Figure 5 and Figure 6 show the segmentation results obtained for ill-
illuminated images used previously (the parameters are in the Figures’ cap-
tions). In the last column of each figure, we show the best results obtained
using markers from the original image. The markers extracted from the
transformed image are less sensitive to illumination problems, yielding a
segmentation that enhances the most important structures of the image
without introducing artifacts. In Figure 6, we can see that our approach
separates correctly the main regions of the figure.

Figure 7 shows the segmentation results, by considering different values
of h, for the road image transformed by the operator defined in Equation 3
using scale 60 and one iteration. Note that, as the value of h increases, less
structures are marked and, thus, less regions are segmented.

Figure 8 shows the segmentation results for the well-known cameraman
image. As in the previous cases, the quantity of segmented regions depends
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(a) (b) (c) (d)

Figure 5. Segmentation results for the skyg image. (a) original image, and using
transformed images (b) σ = 60 and k = 1, with h = 2; (c) σ = 60 and k = 1, with
h = 10, and (d) based on the original image using h = 10.

(a) (b) (c)

Figure 6. Segmentation results for the facel image. (a) original image, (b) using
transformed image σ = 10 and k = 5, with h = 45, and (c) based on the original
image using h = 45.

(a) (b) (c) (d)

Figure 7. Segmentation results for the road image, (a) original image, and using
transformed images σ = 60 and k = 1 with (b) h = 5, (c) h = 20 and (d) h = 40.

on the relationship between the σ and h values.

The dynamics’ principle can be applied to other families of increasing
morphological filters by reconstruction, not only to contrast filters [17]. Fig-
ure 9 shows the results obtained for the lenna image when including an
opening by reconstruction between the steps 3 and 4 of the Algorithm 1.
We also make an opening by reconstruction in the original image and further
extract the extended maxima to compare the results. Figure 9(b)-(c) show
the results for the original image and Figure 9(d)-(e) for the transformed
image. In the following, we present some overall conclusions.
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(a) (b) (c)

Figure 8. Segmentation results for the cameraman image. (a) Original image and
using transformed images (b) σ = 15 and k = 10, with h = 80 and (c) σ = 31 and
k = 2, with h = 31.

(a) (b) (c) (d) (e)

Figure 9. Segmentation results for the lenna image. (a) original image, using
original image with (b) h = 11, (c) h = 21, and using transformed images (d)
σ = 21 and k = 2, with h = 21, and (e) σ = 31 and k = 2, with h = 31.

5. Conclusions

In this paper, we explored a new scale-space toggle operator, taking into ac-
count the strong monotonicity property for regions of a 2D signal, according
to the morphological scale-space theory discussed in literature [4, 20]. The
defined operator uses concave structuring functions, which was proved to
have contrast properties [14].

In our approach, we deal with transformations of the image maxima
and minima at the same time. This aspect, together with the monotonicity
property, guarantees that we have an extrema merging simplification that
considers the relation between the image extrema along the whole transfor-
mation.

We work with an explicit notion of scale guided by the scale-space theory,
using a toggle transformation for segmentation problems, unlike the other
applications of this operator which consider mainly problems related to
image contrast enhancement.

Results comprove the robustness of our approach when dealing with
ill-illuminated images. Also, the image simplification obtained using Equa-
tion 3 allows a more effective marker extraction.

As a future work, we will deal with problems of locally controlling the
extrema merging by taking into account the height of the structuring func-
tions and the distance between the image extrema in the definition of a
parametric mapping using both these information.
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Appendix: Proof of the propositions

Proposition 2. First, we prove that the operator defined in Equation 3
performs a dilation on image maximum, that is, (f � gσ)(xmax) = (f ⊕
gσ)(xmax). To avoid level-shifting and horizontal translation effects, we
require that supt∈G{g(t)} = 0, and g(0) = 0. Assume that the sup occurs
for t = ζ.

(f ⊕ gσ)(xmax) = sup
t∈N
{f(xmax − t) + gσ(t)}

= f(xmax − ζ) + gσ(ζ)

≤ f(xmax − ζ) ≤ f(xmax).

Since at t = 0 we have f(xmax) + gσ(0) = f(xmax), it follows that
supt∈N {f(xmax − t) + gσ(t)} = f(xmax). The proof for (f � gσ)(xmin) =
(f 	 gσ)(xmin) is analogous. Based on this, the final proof of Proposition 2
can be found in [4], as well as the proof of Theorem 1.

Proposition 3. The operator defined in Equation 3 can be easily rewritten
as

(f � gσ)(x) =

 ψk1 (x) if f(x) > 1
2 (βn + αn),

f(x) if f(x) = 1
2 (βn + αn),

ψk2 (x) otherwise,

with αn = max
t∈N(x,k),t6=0

{f(x), f(x− t) + (−|σn|−1))} and βn =

min
t∈N(x,k),t6=0

{f(x), f(x− t)− (−|σn|−1)}, where σn is the n-th scale and

N(x, ε) represents the set of pixels located in a chess distance less or equal
ε from x. The sequence (αn) satisfies:

� αn ≥ f(x);

� (αn) is monotonically decreasing, i.e., αn ≥ αn+1∀n;

� (αn) is stationary, i.e., ∃n0/∀n ≥ n0, αn = f(x0).

The sequence (βk) satisfies:

� βn ≤ f(x);

� (βn) is monotonically increasing, i.e., βn ≤ βn+1∀n;

� (βn) is stationary, i.e., ∃n0/∀n ≥ n0, βn = f(x0).

Let γn = 1
2 (αn + βn). Since the sequences (αn) and (βn) are stationary

and monotone, we have that the sequence (γn) is both monotonic and sta-
tionary [10]. This yields a sequence γk that is monotonically increasing or
decreasing and converges to the original image value after a certain number
of iterations.
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Abstract Morphological levelings are powerful operators and possess a num-
ber of desired properties for the construction of nonlinear scale
space image representations. In this paper, a comparison between
levelings constrained by different multiscale markers — namely,
reconstruction openings, alternate sequential, isotropic and aniso-
tropic diffusion filters — was performed. For such a comparison a
relation between the scales of each marker was established. The
evaluation of the simplified images was performed by both qualita-
tive and quantitative measures. Results indicate the characteristics
of each scale space representation.

Keywords: filtering, simplification, scale space representations, leveling.

1. Introduction

Since objects in images belong, in the general case, not in a fixed but in
many scales, the use of scale space image representations is of fundamental
importance for a number of image analysis and computer vision tasks. The
concept of Gaussian scale space goes back to the sixties and was first intro-
duced by Iijima [18, 19]. In the western literature and following the ideas
of Witkin [20], Koenderink [3] and Lindeberg [4] many possible ways to
derive the Gaussian scale space were introduced and respectively many lin-
ear multi-scale operators were developed, all of which, though, present the
same important drawback: image edges are blurred and new non-semantic
objects may appear at coarse scales [11,12,20].

Nonlinear operators and nonlinear scale spaces have been studied and fol-
lowing the pioneering work of Perona and Malik [13] there has been a flurry
of activity in partial differential equation and anisotropic diffusion filtering
techniques [17]. Such approaches either based on diffusions during which
the average luminance value is preserved, either based on geometry-driven
diffusions, reduce the problems of isotropic filtering but do not eliminate
them completely: spurious extrema may still appear [10].
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Advanced scale space morphological representations, the levelings, which
have been introduced by Meyer [8] and further studied by Matheron [7]
and Serra [14], overcome this drawback and possess a number of desired
properties for the construction of such representations. Levelings, which
are a general class of self-dual morphological filters, are powerful, do not
displace contours through scales and are highly dominated by the structure
of the markers used for their construction [5, 6, 8–10].

In this paper, a comparison of different operators — namely, the recon-
struction openings, the alternate sequential, isotropic and anisotropic diffu-
sion filters — was performed aiming to study the resulting simplified images
and describe the characteristics of the each scale space representation. The
comparison was based on both qualitative and quantitative evaluation. The
later was focused on measurements about the extent of intensity variation
and the structural similarity between the reference image and the leveling.

2. Morphological levelings

Following the definitions from [9], one can consider as fx and fy the values
of a function f at the two pixels x and y and then define the relations:
fy < fx (fy is lower than fx), fy ≥ fx (fy is greater or equal than fx) and
fy ≡ fx (the similarity between fx and fy, which are at level). Based on
these relations the zones in an image without inside contours (isophotes,
i.e., contour lines with constant brightness values) will be called smooth flat
zones.

Two pixels x, y are smoothly linked (fx � fy) and may belong to the
same R-flat zone of a function f if and only if there exists a series of pix-
els {x0 = x, x1, x2, ..., xn = y} such that they satisfy a symmetrical relation
fxi ≡ fxi+1 . For equality fxi = fxi+1 the quasi-flat zones are flat. For the
symmetrical relation between two neighboring pixels p and q, fp ≈ fq with
|fp − fq| ≤ λ, the quasi-flat zones are defined within a maximum difference
(slope). Thus, a set X is a smooth zone of an image f if and only if the two
values fx and fy are smoothly linked (fx � fy) for any two pixels x and y in
X .

Being able to compare the values of ‘neighbouring pixels’, the more gen-
eral and powerful class of morphological filters the levelling can be defined.
In general they are a particular class of images with fewer contours than a
given image f . A function g is a leveling of a function f if and only if

f ∧ δg ≤ g ≤ f ∨ εg,
where δ is an extensive operator (δg ≥ g) and ε an anti-extensive one
(εg ≤ g).

For the construction of levelings a class Inter(g, f) of functions h is
defined, which separates function g and the reference function f . For the
function h we have that h ∈ Inter(g, f) and so g ∧ f ≤ h ≤ g ∨ f . Algo-
rithmically and with the use of h, one can ‘interpreter’ above equation and
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construct levelings with the following pseudo-code: in cases where {h < f},
replace the values of h with f ∧ δh and in cases where {h > f}, replace the
values of h with f ∨ εh. Equally and in a unique parallel step we have that

h = (f ∧ δh) ∨ εh.

The algorithm is repeated until the above equation has been satisfied
everywhere. This convergence is certain, since the replacements on the
values of h are pointwise monotonic. Hence, levelings can be considered as
transformations Λ(f, h) where a marker h is transformed to a function g,
which is a leveling of the reference signal f . Where {h < f}, h is increased as
little as possible until a flat zone is created or function g reach the reference
function f and where {h > f}, h is decreased as little as possible until a
flat zone is created or function g reach the reference function f . This makes
function g be flat on {g < f} and {g > f} and the procedure continues
until convergence.

2.1 Scale space representations with morphological lev-
elings

Levelings, which are a general class of morphological operators, are powerful
and characterized by a number of desirable properties for the construction of
nonlinear scale space representations. They satisfy the following properties
[8–10]:

(i) the invariance by spatial translation,

(ii) the isotropy, invariance by rotation,

(iii) the invariance to a change of illumination,

(iv) the causality principle,

(v) the maximum principle, excluding the extreme case where g is com-
pletely flat.
In addition levelings:

(vi) do not produce new extrema at larger scales,

(vii) enlarge smooth zones,

(viii) they, also, create new smooth zones,

(ix) are particularly robust (strong morphological filters),

(x) do not displace edges.

Above properties make them a very useful simplification tool for a num-
ber of low level computer vision applications.

Different types of levelings can be constructed based on different types
of extensive δ and anti-extensive ε operators. Based on a family of exten-
sive dilations δi and the corresponding family of adjunct erosions εi, where
δi < δj and εi > εj for i > j, multiscale levelings (a hierarchy of level-
ings) can be constructed [10]. Multiscale levelings can be, also, constructed
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when the reference function f is associated to a series of marker functions
{h1, h2, ..., hn}. The constructed levelings are respectively

g1 = f, g2 = Λ(f, h1), g3 = Λ(f, h2), ..., gn+1 = Λ(f, hn).

Thus, a series of simpler and simpler images, with fewer and fewer smooth
zones are produced. Levelings can be associated to an arbitrary or an al-
ternating family of marker functions. Examples with openings, closings,
alternate sequential filters and isotropic markers can be found in [6, 9, 10]
and two examples with anisotropic in [15] and [2]. Furthermore, for specific
tasks one may take advantage of the knowledge of the scene and design
accordingly the family of markers.

3. Comparing different markers for morphological
levelings

In this paper, levelings constrained by four different families of markers are
compared for the construction of nonlinear scale space representation. The
marker functions are constructed by

1. a morphological reconstruction opening (RO) with a flat disk-shaped
structuring element of radius r (scale parameter), which is the distance
from the structuring element origin to the perimeter of the disk,

2. a morphological alternate sequential filter (ASF) with reconstruction
openings and closings with the same structure element and scale pa-
rameter r, as above,

3. an isotropic Gaussian function (ISO) with scale parameter σ (standard
deviation),

4. an anisotropic diffusion filtering (ADF) proposed by Alvarez et al. [1]:

ϑI(x, y)/ϑt = w(|Gσ ∗ ∇I|)|∇I|div(∇I/|∇I|),

where I(x, y) is the original image and t the scale parameter (itera-
tions of the partial differential equation). The term |∇I|div(∇I/|∇I|)
diffuses the image I(x, y) in the direction orthogonal to its gradient
|∇I| and does not diffuse it at all, in the direction of |∇I|. w is
an ‘edge-stopping’ smooth and non-increasing function like: w(k) =
1/(1 + k2/K2) with K a constant. In all cases in this paper, K = 10.

3.1 Relation between scales

All the above families of markers are controlled by a scale parameter. For
the morphological operators, since scale refers to the same parameter, the
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comparison can be straight forward, but this is not the case for the levelings
that are associated with the isotropic and the anisotropic families of markers.

Towards the establishment of such a scale relation, we have performed
extensive experiments by applying these four operators to various scales,
attempting first to understand the extent of their filtering effect and relate
their result. Observing the extension of their smoothing result and looking
forward, in general, to an approximate equivalence, the proposed relation
values between the parameters of all four operators were chosen and are
shown in Table 1. For example, when four different levelings of scale one
are constructed, constrained by the four different families of markers, this
means that a disk-shaped structure element with radius r = 1 will be used
for the two morphological operators, a standard deviation of σ = 1 will be
used for the Gaussian function (in a 5 × 5 kernel) and 100 iterations t will
take place for the computation of the anisotropic marker.

Table 1. Establishing a relation between the scales of the different markers. Pro-
posed values for scales: 1 to 7. The scale parameter for the morphological oper-
ators is the size (radius) of the disk-shaped structure element, for the isotropic
marker the value of the standard deviation and for the anisotropic the number of
the iterations of the partial differential equation.

Leveling’s
Scale

Values for the scale relation of the four different type of markers

Structure
element’s size r
for RO and ASF

Isotropic diffusion Anisotropic
diffusion

iterations t
Standard

deviation σ
Kernel

size

1 1 0.5 5× 5 100

2 2 1 7× 7 200

3 3 1.5 11× 11 300

4 4 2 13× 13 400

5 5 2.5 17× 17 500

6 6 3 19× 19 600

7 7 3.5 23× 23 700

4. Results and discussion

Levelings (fixed levelings associated to an extensive dilation δ and the ad-
junct erosion ε) which were associated to RO, ASF, ISO and ADF families of
markers, were compared. Two reference images were used for this compar-
ison: an artificial test image and the cameraman test image. The artificial
test image was a binary ‘chessboard type’ one, which was contaminated
with both additive and salt and pepper noise. Half was black and half was
white, forming a horizontal straight separation/ edge Figure 1.

In addition, for the comparison apart from the qualitative evaluation,
a quantitative one also took place, based on three quantitative measures
(RMS, NRMS, SSIM and NCD), which are described in Appendix.
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Figure 1. The artificial test image (left), its contours-isophotes, lines of constant
brightness (middle) and its 3D representation, in which brightness values are pro-
portional to surface’s height.

4.1 Test image

In Figure 2, the resulting levelings (of scale 2) constrained by the four dis-
tinct families of markers (RO, ASF, ISO and ADF) are shown. The ASF
lead to the most intensive filtering result producing large smooth zones. The
RO simplified and at the same time enhanced abrupt brightness changes in
a number of small regions. The ADF simplified the image and at the same
time preserved regions with strong intensity changes, contrary to ISO. The
above qualitative evaluation can be confirmed by the quantitative measures
in Table 2. With the ASF, the resulting leveling yielded to the larger RMSE,
NMSE values (its brightness values differ much from the original image) and
to the smallest SSIM value, that confirms its lower structural similarity with
the reference image. The leveling that was constrained by the ADF sim-
plified the image but kept the closest relation with the reference image,
regarding both i) the extent of variation in intensity values (RMSE and
NMSE measures) and ii) their structural similarity (SSIM measure).

Furthermore, in order to compare, the resulting, from the different lev-
elings simplification (scale 2), cross-sections along the y axis, are shown in
Figure 2 (bottom right). First of all one can observe that all methods do
not displace edges and in particular the ‘black to white region’ edge. The
constrained by the ASF leveling differed most from the reference image in-
tensities and the leveling constrained by the ISO simplified but at the same
time smoothed the brightness values between the different image’s zones.
Moreover, the leveling constrained by the RO did enhanced the difference
in intensities between image zones and those constrained by the ADF sim-
plified and at the same time followed, more constantly, the changes in image
intensity values.

4.2 Cameraman image

In Figure 3 (left five images), the resulting levelings (scale 4) constrained
by the four (RO, ASF, ISO and ADF) families of markers, are shown which
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Figure 2. Top Left : Resulting levelings of scale 2 constrained by the four families
of markers (RO: top left, ASF: top right, ISO: bottom left and ADF: bottom
right). Top Right: The contours of the resulting levelings. Bottom Left: 3D
representations, in which brightness values are proportional to surface height.
Bottom Right: Line plot with the cross-sections along the y image axis of the
compared levelings.

were applied to the cameraman test image. ASF lead to the most intensive
filtering result producing large smooth zones. In particular, it suppressed
regional extrema in regions with proportional size to the structure element
(like the top of the two buildings, in the right center of the image). Similarly,
the RO marker was robust in flattening bright regions with proportional size
with the structure element (like the bright values in the top of the two build-
ings in the right center of the image). The ADF marker lead to a simplified
image, that is characterized by the preserved level of contrast between the
different image flattened zones, contrary to ISO and the other morpholog-
ical markers. The above qualitative evaluation can be confirmed by the
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Table 2. Quantitative evaluation of the resulting levelings by RO, ADF, ISO and
ADF markers. Results for the artificial test image (scale 2) and the cameraman
test image (scale 4 and scale 7) are presented. In general, the leveling that was
constrained by the ADF, did simplified the images and at the same time scored
better in all quantitative measures, indicating that it preserves effectively changes
in intensities and respects more efficiently the structural similarity with the refer-
ence image.

Quantitative
measures

Markers

RO ASF ISO ADF

Test image
scale 2

RMSE 0.126 0.187 0.118 0.103

NMSE 0.046 0.101 0.040 0.031

SSIM 0.9981 0.9956 0.9984 0.9989

Cameraman
scale 4

RMSE 13.748 15.649 10.132 4.325

NMSE 0.011 0.014 0.006 0.001

SSIM 0.923 0.847 0.904 0.933

Cameraman
scale 7

RMSE 20.963 22.652 13.108 4.650

NMSE 0.024 0.029 0.010 0.001

SSIM 0.851 0.757 0.866 0.925

Crop of
cameraman

scale 7

RMSE 30.914 31.943 17.831 2.870

NMSE 0.053 0.057 0.018 0.001

SSIM 0.831 0.772 0.891 0.983

quantitative measures in Table 2 (cameraman image, scale 4). Constrained
by the RO and ASF, the resulting levelings yielded to the broadest intensity
variations, since their brightness values differ much from the original image
(RMSE and NMSE measures). In addition, the ASF and the ISO markers
produced levelings with the smallest structural similarity with the original
image (SSIM). The leveling that was constrained by the ADF, simplified the
cameraman image and scored better in all quantitative measures, indicating
that it preserves effectively changes in intensities and at the same time in
the structural similarity with the reference image.

Furthermore, in Figure 4 (left plot), the cross-sections along a part of
the y axis, are shown, from the levelings (scale 4), which were constrained
by the RO (red line), the ASF (turquoise line), the ISO (green line) and
the ADF (purple line) families of markers. All methods did not displace
image edges. The ASF and RO markers resulted into the most extended
simplification and drew most away from the reference image intensities. The
ADF markers simplified the reference image and at the same time followed
more constantly, than all the other markers, intensity changes between the
different image zones, due to its edge preserving nature.

In addition, in Figure 3 (five images on the right), the resulting levelings
of scale 7, are shown for a crop of the cameraman image. ASF lead to the
most intensive filtering result producing large smooth zones and in partic-
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Figure 3. Left five images: The reference cameraman test image (top) and the
levelings (scale 4) constrained by the four families of markers (RO: top left, ASF:
top right), ISO: bottom left and ADF: bottom right). Right five images: A crop
of the cameraman test image and the resulting levelings of scale 7.

ular, eliminated objects with a size proportional to the structure element.
Similarly, the RO marker was robust in flattening and in eliminating bright
objects with a size proportional to the structure element. The ADF marker
lead to a simplified image, that is characterized by the preserved level of con-
trast between the different image flattened zones, opposite to ISO and the
other morphological markers. The resulting leveling from the ADF marker
is a simplified version of the reference image on which the edges and the
contrast have been preserved.

Quantitative measures in Table 2 (crop of cameraman image, scale 7),
indicate that the RO and the ASF levelings resulted into the broadest in-
tensity variations (RMSE and NMSE measures). The ASF, the RO and
the ISO markers produced levelings with the smallest structural similarity
with the original image (SSIM). The leveling that was constrained by the
ADF, scored by far better in all the quantitative measures, indicating that
it preserves effectively changes in intensities and at the same time in the
structural similarity with the reference image. Finally, in Figure 4 (right),
cross-sections along the y axis of the crop of the cameraman image, are
shown, from the levelings (scale 7). The ADF marker was the only one
which did preserve small changes between the different image zones, due to
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Figure 4. Line plot with the cross-sections of the different levelings for the cam-
eraman image (scale 4, left) and for a crop of the same image (scale 7, right). The
simplified brightness values of the different levelings-along a part of the y axis- are
shown, which were constrained by RO (red line), ASF (turquoise line), ISO (green
line) and ADF (purple line). All methods did not displace image edges. The ASF
and RO markers resulted into the most extended simplification and drew most
away from the reference image intensities. The ADF markers simplified less and
at the same time followed more constantly, than all the other markers, the image
intensity changes between the different zones, due to its edge preserving nature.

its edge preserving nature.

5. Conclusions and future perspectives

In this paper, a framework for the comparison of levelings that were con-
strained by different markers was developed, through the introduction of a
relation between the scale parameters of all markers. Four different families
of markers were evaluated both by a qualitative and a quantitative compar-
ison of their resulting simplification. The evaluation of the different families
of markers concluded to the following points:

� The ASF and RO markers resulted into the most extended simplifica-
tion and differed most from the reference image intensities.

� The ADF markers yielded to a simplified version of the reference image
which followed more constantly, than all the other cases, the intensity
changes between the different image zones, due to its edge preserving
nature.

� The leveling that was constrained by the ADF, scored by far better (in
terms of keeping small the extent of intensity variations and high the
structural similarity with the reference image) in all the quantitative
measures.

� ASF (and resp. RO) levelings eliminated objects (resp. bright ob-
jects) with a size proportional to their structure element. Similarly,
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the ISO leveling eliminated — with an isotropic diffusion procedure
which, contrary to ADF, blurs image edges — objects according to
the standard deviation value.

� The ADF marker lead to a simplified image, which is characterized by
the preserved level of contrast between the different image flattened
zones, contrary to ISO and the other morphological markers.

Subjects for further research are the establishment of an axiomatic rela-
tion between the scales of different markers and their evaluation for specific
computer vision tasks like the segmentation and the extraction of specific
objects.
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Appendix

Objective methods for assessing perceptual image quality traditionally at-
tempted to quantify the visibility of errors (differences) between a processed
image and a reference image using a variety of known properties of the hu-
man visual system. In this regard the simplest and most widely used quality
metrics are the root mean squared error (RMSE) and the normalized mean
square error (NMSE). RMSE is computed by averaging the squared intensity
differences of the processed and reference image pixels and NMSE normal-
ized to a range between 0 and 1. Both measures give a quantitative sense
for the extent of variation between the intensity values of the two compared
images forming a kind of a generalized standard deviation measure. RMSE
and NMSE are appealing because they are simple to calculate, have clear
physical meanings, and are mathematically convenient in the context of op-
timization. But they are not very well matched to perceived visual quality
[16]. Hence, it has been also adopted a recently proposed alternative comple-
mentary quality measure of the structural similarity (SSIM) between two
images, which compares local patterns of pixel intensities that have been
normalized for luminance and contrast [16]. The above three quality mea-
sures (RMSE, NMSE and SSIM) are aiming to an objective image quality
assessment of the achieved results.
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Abstract The variational u+ v model for image decomposition aims at sep-
arating the image into a ‘cartoon component’ u, which consists of
relatively flat plateaus for the object regions surrounded by abrupt
edges, and a ‘texture component’ v, which contains smaller-scale
oscillations plus possibly noise. Exploiting this model leads to im-
proved performance in several image analysis and computer vision
problems. In this paper we propose alternative approaches for u+v
decomposition based on levelings and texture energy. First, we pro-
pose an efficient method for obtaining a multiscale cartoon compo-
nent using hierarchies of levelings based on Gaussian scale-space
markers. We show that this corresponds to a constrained mini-
mization driven by PDEs and link the leveling cartoons with total
variation minimization. Second, we extract the texture component
from levelings of the residuals between the image and its multiscale
levelings. Further, we employ instantaneous nonlinear operators to
estimate the spatial modulation energy in the most active texture
frequency bands and use this as a new type of texture markers that
yield an improved texture component from the leveling residuals.
Finally, we provide experimental results that demonstrate the effi-
cacy of the proposed image decomposition methods.

Keywords: leveling, texture, energy, image decomposition.

1. Introduction

Decomposing an image f into its structural part (objects or geometric fea-
tures at various scales represented by their regions, boundaries, and mean
intensities) and its texture part is both an interesting problem as well as an
approach useful for many image analysis and vision applications, such as
enhancement, inpainting, segmentation, texture and shape analysis, object
description.

A recently proposed method for image decomposition is the f = u + v
model, where the u part is called the “cartoon component” and consists
of relatively smooth or flat plateaus for the object regions surrounded by
abrupt intensity walls, whereas the small-amplitude oscillatory v part is
called the “texture”. If there is also noise or some other type of insignificant
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residual w, then a refined model f = u+ v+w may be used. Next we sum-
marize some previous works in this area and outline our new contributions.

Background on image decomposition: Many of the nonlinear edge-
preserving image smoothing schemes can create cartoon approximations of
an image. Examples include the anisotropic diffusion and image selective
smoothing. Several of these schemes have been shown in [11] to be special
cases or closely related to the Mumford-Shah energy functional [12]

EMS(u,C) =

∫∫
R\C

(||∇u||2 + λ(u− u0)2)dxdy + µLen(C). (1)

Actually, one way of obtaining a piecewise-smooth cartoon u from an
initial image u0 is via minimization of the above functional by searching
for those u that are piecewise-constant on the regions R. This has been
used both for denoising and boundary detection. Another approach is via
the total variation (TV) image denoising method [14] which finds a cartoon
u by minimizing the TV norm

∫∫
R
||∇u|| subject to

∫∫
R

(u − u0) = 0 and∫∫
R

(u− u0)2 = σ2, or equivalently by minimizing the functional

EROF (u) =

∫∫
R

||∇u||dxdy + λ

∫∫
R

(u− u0)2dxdy, (2)

on some image domain R. This minimization is done via a PDE (gradient-
descent) solver that finds a local minimum of the TV functional. While the
TV approach performs well for edge-preserving image denoising, it may not
preserve texture for small λ. Y. Meyer [10] changed the TV optimization
problem (2) by using instead of the L2 norm other norms that are more
appropriate to preserve texture. Thus, Meyer introduced the decomposition
of an image f into a model u+v = f where u and v result from the modified
optimization problem, u is some type of cartoon while v contains the texture
(plus possibly noise).

Vese & Osher [16, 17] developed a PDE-based iterative numerical algo-
rithm to estimate the u and v components by approximating Meyer’s weaker
norms. Texture is assumed to be an oscillating function

v = div(~g) = ∂xg1 + ∂yg2, (3)

where the vector ~g captures variation in the vertical and horizontal image
directions. The component v may exhibit large oscillations, but yields a
small metric as measured by the norms ||~g||Lp = (

∫∫
|~g|p)1/p For p → ∞,

norm Lp approximates L∞ and thus the norm of Meyer’s space of oscillating
functions [10]. A three-component f = u+ v+w decomposition model was
formulated with the (u, v) components derived by minimizing

EV O(u,~g) =

∫∫
R

|∇u|dxdy + λ

∫∫
R

|f − (u+ div(~g))|2dxdy + µ||~g||Lp , (4)
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and the residual f − u− v giving image noise w. By letting λ, p→∞, this
scheme approximates the initial decomposition proposed by Meyer.

The above ideas and algorithms for u + v image decomposition have
been used for improving image restoration [16] and image inpainting by
simultaneous filling-in texture and structure in missing image parts [1].

New contributions: Some open research areas in this interesting u + v
decomposition space are: (i) Alternative schemes for estimation of a car-
toon u and/or texture v component. (ii) Analysis of the information in the
u and/or v components. (iii) Exploitation of this decomposition for improv-
ing performance in several image analysis and computer vision problems. In
this paper we contribute advances in the first two directions inspired by and
further utilizing the u + v idea. First, we propose an efficient method for
obtaining a cartoon component, possibly at multiple scales, using nonlinear
object-oriented smoothing of the leveling type that is driven by PDEs with
global scale-space markers obtained from Gaussian diffusion of the image.
We also show optimality of this method via a nonlinear constrained mini-
mization. The residuals among consecutive scales of this leveling pyramid
provide us with the texture component. Second, we analyze textural in-
formation by using instantaneous nonlinear energy-tracking operators that
estimate the spatial modulation energy. This energy tracking focuses on the
most active texture frequency bands. Third, we propose an alternative new
type of markers for the levelings extracting the texture part which are based
on texture modulation energy. Finally, we provide experimental results that
demonstrate the efficacy of the proposed methods for u+ v decomposition.

2. Levelings: Variational problems

Proofs of the following variational formulations can be found in Maragos
[7].

Let u0(x, y) some smooth initial image and u(x, y, t) some scale-space
analysis over some compact image domain R with u(x, y, 0) = u0(x, y).
Maximizing the volume functional by keeping invariant the global supremum

max

∫ ∫
R

u dxdy s.t.
∨
u =

∨
u0, (5)

has a gradient flow governed by the PDE generating flat dilation by disks:

ut = ||∇u||, u(x, y, 0) = u0(x, y). (6)

Similarly, minimizing the volume functional by fixing the global infimum

min

∫ ∫
R

u dxdy s.t.
∧
u =

∧
u0, (7)
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has a gradient flow governed by the isotropic flat erosion PDE:

ut = −||∇u||, u(x, y, 0) = u0(x, y). (8)

Imagine now creating a new type of cartoon by starting from a reference
image f(x, y) consisting of several parts and a marker image M = u0(x, y)
(initial seed) intersecting some of these parts and by evolving M toward
f in a monotone way such that all evolutions u(x, y, t), t ≥ 0, satisfy the
following partial ordering, ∀x, y ∈ R

t1 < t2 =⇒ f(x, y) �f u(x, y, t2) �f u(x, y, t1) �f u0(x, y). (9)

The partial order u �f g means that f ∧ g ≤ f ∧ u and f ∨ g ≥ f ∨ u.
Further, if we partition the following regions R− and R+ formed by the
zero-crossings of f − u0

R− = {(x, y) : f(x, y) ≥ u0(x, y)} =
⊔
iR
−
i ,

R+ = {(x, y) : f(x, y) < u0(x, y)} =
⊔
iR

+
i ,

(10)

into connected subregions, then the evolution of u is done by maintaining
all local maxima and local minima of u0 inside these subregions R−i and
R+
i , respectively:∨

R−i

u =
∨
R−i

u0 and
∧
R+
i

u =
∧
R+
i

u0, R = (
⊔
i

R−i ) t (
⊔
i

R+
i ), (11)

where
⊔

denotes disjoint union. Since the order constraint f �f u �f u0

implies that |f − u| ≤ |f − u0|, the above problem is equivalent to the
following constrained minimization

min

∫ ∫
R

|u− f |dxdy s.t.
∨
R−i

u =
∨
R−i

u0,
∧
R+
i

u =
∧
R+
i

u0. (12)

Theorem 1. A gradient flow for the problem (12) is given by the PDE

∂u(x, y, t)/∂t = −sign(u− f)||∇u||,
u(x, y, 0) = u0(x, y).

(13)

The PDE (13) was introduced in [9]. It was studied systematically in
[6] where it was proved that it has a steady-state u∞(x) = limt→∞ u(x, t)
which is a leveling of f with respect to u0, denoted by u∞ = Λ(u0|f).

A leveling g of some image f was defined geometrically in [9] via the
property that, the variation of g between any two close neighbor pixels p, q
is bracketed by a larger same-sign variation in the reference image f :

g(p) > g(q) =⇒ f(p) ≥ g(p) > g(q) ≥ f(q). (14)
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In [6] levelings were defined algebraically as fixed points of triphase operators
λ(M |f) that switch among three phases, an expansion, a contraction, and
the reference f . Further, the leveling of f w.r.t. M = u0 can be obtained
as the limit of iterations of λ:

u∞ = Λ(M |f) , lim
n→∞

λn(M |f) �f · · ·λ(M |f) �f M = u0. (15)

The simplest choise for λ is λ(M |f) = [f ∧ δ(M)] ∨ ε(M), where δ and
ε are disk dilations and erosions.

3. Leveling-based multiscale cartoons

Levelings have many interesting scale-space properties [9]. Due to (9) and
(14), they preserve the coupling and sense of variation in neighbor image
values, which is good for edge preservation. Further, due to (11) the lev-
elings do not create any new regional maxima or minima. Also, they are
increasing and idempotent filters. In practice, they can reconstruct whole
image objects with exact preservation of their boundaries and edges. In this
reconstruction process they simplify the original image by completely elim-
inating smaller objects inside which the marker cannot fit. The reference
image plays the role of a global constraint.

Motivated by all their above attractive properties, we propose an alter-
native method for u, v decomposition of an original image where we use the
leveling as the cartoon approximation

u = Λ(M |f), (16)

and its residual r = f − u as containing the texture component v. For u,
the marker M plays an important role. Its choice gives us a great flexibility
for the final leveling and we could define it based on a multiscale analy-
sis. Specifically, given a reference image f , suppose we can produce various
markers Mi, i = 1, 2, 3, ... that are related to some increasing scale param-
eter i. Then, if we construct the levelings ui = Λ(Mi|ui−1), i = 1, 2, 3, ...,
with u0 = f the cartoon images ui constitute a hierarchy of multiscale lev-
elings possessing the causality property that uj is a leveling of ui for j > i.
One way to construct such multiscale leveling cartoons is to use a sequence
Mi = f ∗ Gσi of multiscale markers obtained from sampling a Gaussian
scale-space, where Gσ denotes an isotropic 2D Gaussian function of stan-
dard deviation σ. As shown in Figure 1, the image edges and boundaries
which have been blurred and shifted by the Gaussian scale-space are better
preserved across scales by the multiscale levelings. The corresponding resid-
uals texture components ri = f−ui contain a hierarchy of multiscale texture
components, whose extraction will be detailed in the following sections.

As an alternative to the linear scale-space marker selection, one can
consider the use of anisotropic diffusion [13]. At each sequence step the lev-
eling marker is obtained by a version of the image with blurred regions but
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(a) f (b) M1 = Gσ1 ∗ f (c) u1 = Λ(M1|f) (d) r1 = f − u1

(e) u1 − u2 (f) M2 = Gσ2 ∗ f (g) u2 = Λ(M2|u1) (h) r2 = f − u2

Figure 1. Multiscale leveling cartoons and u+v decomposition. (a) Reference f .
(b) Gaus. Marker 1 (σ1 = 4). (c) Leveling 1 (u1). (d) Residual 1 (r1 + 100).
(e) Levelings difference u1 − u2. (f) Gaus. Marker 2 (σ2 = 8). (g) Leveling
2 (u2). (h) Residual 2 (r2 + 100).

adequately preserved boundaries, caused by the constrained diffusion pro-
cess. Levelings obtained using anisotropic diffusion markers tend to retain
information about edges in smaller scales on the cartoon component.

Proposition 1. Levelings decrease the TV norm:
(a) If u = Λ(M |f), then

∫∫
||∇u|| ≤

∫∫
||∇f ||.

(b) If ui = Λ(Mi|ui−1) with u0 = f , then for all i∫ ∫
||∇ui+1|| ≤

∫ ∫
||∇ui|| ≤

∫ ∫
||∇f ||. (17)

Proof. (a) The levelings create flat plateaus on which the gradient becomes
zero. The remaining slopes are the same as for the function. (b) results
from (a).

We can compare our proposed leveling cartoons with the ones derived as
the solutions of the TV minimization problem (2) along several directions:
(i) The levelings preserve the regional maxima and minima and do not
create new ones, while the TV cartoons preserve the global mean value.
(ii) The levelings couple and preserve the sense of variation between neighbor
pixels (14) whereas the TV cartoons preserve the global variance. (iii) By
Proposition 1, the levelings are related to a TV minimization. Further,
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the TV norm of the leveling cartoon decreases monotonically if we use a
hierarchy of multiscale levelings. (iv) The presence of the marker image
M gives a leveling cartoon far greater flexibility and multiscale capabilities
than the simple regularization constants which control the scale of the TV
cartoon.

4. Texture modulation energy

4.1 AM-FM Texture model and energy

Locally narrowband image textures can be modeled as 2D spatial AM-FM
signals

f(x, y) = a(x, y) cos[ϕ(x, y)], ~ω(x, y) = ∇ϕ(x, y), (18)

that are 2D nonstationary sines with a spatially varying amplitude a(x, y)
and a spatially-varying instantaneous frequency vector ~ω(x, y). In par-
ticular, the amplitude is used to model local image contrast and the fre-
quency vector contains rich information about the locally emergent spatial
frequencies. Thus, it is reasonable to assume that the amplitude a(x, y)
and frequency vector ~ω(x, y) are locally narrowband signals and hence lo-
cally smooth. Such modulation models have been proposed by Bovik et
al. [2] and Havlicek et al. [4] and have been applied to a variety of image
processing and vision problems.

An important problem in modeling image textures with spatial AM-FM
signals is to estimate the 2D amplitude and frequency signals using compu-
tational vision algorithms that have low complexity and small estimation
error. Such an efficient approach was developed in [5] based on an energy
operator Ψ(f) , ||∇f ||2 − f∇2f , which is a multidimensional exten-
sion of the 1D Teager energy operator. Applying Ψ to a 2D AM-FM signal
f(x, y) = a(x, y) cos[ϕ(x, y)] modeling a texture component yields

Ψ[a cos(ϕ)] ≈ a2||~ω||2, (19)

which equals the product of the instantaneous amplitude and frequency
magnitude squared and may be called the texture modulation energy. The
above approximation error is negligible assuming that the instantaneous
amplitude and frequency do not vary too fast in space or too greatly in
value compared with the carriers. Further, if we also apply the energy
operator on the image derivatives ∂f/∂x and ∂f/∂y, then it is possible
to separate the energy into its amplitude and frequency components via a
nonlinear algorithm called Energy Separation Algorithm (ESA) [5].

4.2 Multiband texture energy tracking

In Bovik et al. [2] the AM-FM models are not applied directly to the whole
(possibly wideband) image. Instead they are used on its bandpass filtered
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versions that are outputs from a filterbank consisting of 2D Gabor filters.
Bandpass filtering isolates highly active texture modulations and has some
useful consequences like an increased noise tolerance and the enforcement of
some smoothness on the amplitude and frequency signals. The motivation
in using Gabor filters is their inherent property to be smooth, compact and
attain the lower limit of joint space-frequency resolution uncertainty and
model early filtering stages of human vision. The concept of using multiple
frequency bands from a bank of bandpass filters for purposes of texture
analysis or segmentation has been used with success in previous works, e.g.
[2, 4, 5].

The oscillating functions, indicated by Meyer [10] to model and extract
the v component, can be sought via AM-FM image modeling that reveals
modulations and the existence of contrast and spatial frequency oscillations.
Motivated by the analogies between the modulation models and Meyer’s
indications we aim to capture oscillatory textural energy by a modified
energy operator, through a multiband filtering-modulation based process.

In our work the extracted textured part is filtered through a bank of
2D Gabor filters , which are characterized by impulse response of the form
hk (x, y) = e−α

2x2−β2y2 cos (Ωk1x+ Ωk2y), where α/2π, β/2π are the rms
bandwidths in each dimension and (Ωk1,Ωk2) is the k -th filter’s central
frequency pair. The filters are uniformly arranged in the spatial frequency
domain, in a polar wavelet-like tessellation, with equal and directional sym-
metric bandwidths and cover densely the frequency domain.

The filtered texture components from each filter output are then aver-
aged by a local averaging filter ha and the 2D Energy Operator Ψ is applied.
We keep the value of the filter with the Maximum Average Teager (MAT)
Energy per pixel, given by

Ψmat(v(x, y)) = arg max
k

Ψ[((v ∗ hk) ∗ ha)(x, y)]

(∗ denotes convolution), as a means of tracking the most active texture com-
ponent. The derived Ψmat is a slowly-varying indication of texture modu-
lation energy, which can classify among different energy levels. It provides
both local and global texture information and applied to the level-free v
component, Ψmat(v) is tracking the most active texture components along
multiple modulation bands. Efficient discrete schemes exist for the numeri-
cal implementation of the 2D energy operator [3, 5].

The above ideas for texture modeling have been used for geometric active
contour-based texture segmentation in Evangelopoulos et al [3]. In addition,
the u+v image decomposition using levelings for u and texture energy from
v was used in a coupled watershed plus texture PDE-based segmentation
scheme [15].

In Figure 2 we explore the efficacy of finding dominant components via
the MAT Energy for detecting texture areas. This procedure can provide
us with texture energy markers. We observe that the square root of MAT
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energy (or even better its higher roots) successfully mark texture areas. Fur-
ther, notice the lack of image structure and structure features (e.g. edges,
blobs) in the markers extracted from the leveling residual r1.

(a) f (b) Ψmat(f) (c)
√

Ψmat(f) (d) (Ψmat(f))1/4

(e) r1 = f − u1 (f) Ψmat(r1) (g)
√

Ψmat(r1) (h) (Ψmat(r1))1/4

Figure 2. Texture energy markers and texture detection. Application of the Ψmat

operator and its variants on initial f and the first leveling residual r1 = f − u1,
where u1 = Λ(f ∗ Gσ1|f) with σ1 = 2. For display, images in (b),(c) and (f),(g)
are shown by upper thresholding the energy range at its average value and then
linearly stretching onto [0,1].

5. Experiments on image decomposition

Motivated by the ability of the levelings to yield the cartoon component u,
either at the first or at the second marker scale, we experimentally investi-
gate in this section two possible schemes to extract the texture component
v from the residual r between the image and its leveling.

The first approach uses Gaussian markers both on the original image f
to yield the cartoon u (at second scale) as well as on the first residual to
yield the texture component according to the algorithm

u1 = Λ(M1|f), M1 = f ∗Gσ1,
u = u2 = Λ(M2|u1), M2 = f ∗Gσ2,
r1 = f − u1,
ur = Λ(M3|r1), M3 = r1 ∗Gσ3, σ3 = σ1/2,
v = r1 − ur.

(20)



134 MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS

(a) Image f (b) u1 = Λ(M1|f) (c) u = Λ(M2|u1) (d) u1 − u2

(e) r1 = f − u1 (f) ur = Λ(M3|r1) (g) v = r1 − ur (h) u+ v

Figure 3. Multiscale leveling cartoon and u+ v decomposition. Top row: (a) Im-
age f , (b) Leveling 1 (u1) with Gauss marker f ∗ Gσ1 (σ1 = 5), (c) Cartoon/
Leveling 2 (u2) with (σ2 = 10), (d) Leveling difference (u2 − u1). Bottom row:
(e) Residual r1 = f1 − u1, (f) Leveling of r1 with Gauss marker (σ3 = σ1/2),
(g) Texture / residual (v = r1 − ur), (h) Reconstruction (u+ v).

Figure 3 shows the results of the above algorithm. Figure 4 compares
them with the Vese-Osher approach. In this comparison, we note the fol-
lowing.

(i) Decompositions may not be comparable, are not optimum, only made
with same L2 norms on estimated v. (This equality of norms on the
two texture components was enforced for purposes of comparison).

(ii) Leveling uΛ is sharper, yields clearer figure and large scale boundaries,
uVO is somehow smoother with smeared less-sharp edges.

(iii) The previous advantage of the leveling cartoon has a tradeoff with the
structure kept and evident in wΛ.

(iv) Smaller-scale structural details (e.g., facial characteristics) are pre-
served in uΛ.

(v) Texture components seem similar.

(vi) More texture remains in wVO than on wΛ, though the latter has kept
more structure.

(vii) The reconstruction uΛ + vΛ from levelings tends to ‘quantize’ the in-
tensity values.
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(viii) What kind of residual is this ‘noise’ wVO? Is it really modeling image
noise or something else? There is actually a mathematic formula for
it, since three levelings are required in total to produce it:

wΛ = f − u− v = Λ(M1|f)− Λ[M2|Λ(M1|f)] + Λ[M3|f − Λ(M1|f)]. (21)

(a) uVO (b) vVO (c) wVO = f−uVO−vVO (d) uVO + vVO

(e) uΛ (f) vΛ (g) wΛ = f − uΛ − vΛ (h) uΛ + vΛ

Figure 4. Comparisons with Vese-Osher u+ v, left to right cartoon u, texture v,
residual noise w = f −u− v and image reconstruction from the model u+ v. Top
row: Vese-Osher algorithm with parameters (λVO, µVO) = (5, 0.1). Bottom row:
Leveling decomposition with Gaussian markers (σ1, σ2) = (10, 16). Parameters
for both schemes were chosen so that the texture components have almost equal
L2 norms, i.e ||vVO||2 = ||vΛ||2. All image values are stretched at full grayscale for
display

Next we propose an alternative approach that uses the same algorithm
for the cartoon u but derives the texture v by applying a leveling on the
cartoon residual based on some type of texture energy markers:

v = r1 − Λ(±Ψmat(r1)|r1). (22)

Figure 5 shows several choices for such energy markers. In our experi-
ments, the best results visually were achieved by using as marker a signed
version of the MAT energy of the residual (or possibly its square root). This
can be observed both in the resulting texture image component v and its
profiles (no slow variation is left on v and the result seems zero-mean).
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(a) f (b) r = f − Λ(M |f)

50 100 150 200 250

0.2

0.4

0.6

0.8

(c) u, row 240

(d) T1 = Ψmat(r) (e) T2 = sign(r)T1 (f) T3 =
√
T1 (g) T4 = sign(r)

√
T1

(h) v = r − Λ(T1|r) (i) v = r − Λ(T2|r) (j) v = r − Λ(T3|r) (k) v = r − Λ(T4|r)

Figure 5. Markers T based on texture energy and leveling Λ(T |r) of cartoon
residual r = f −Λ(M |f), where M = f ∗Gσ. Top row: image f , cartoon residual
r and profile of row 240 (black: f , red: r, blue: u, green: marker). Middle row:
Texture markers extracted from residual. Bottom row: Final texture components.

6. Conclusions

For the purpose of u+ v image decomposition, we have proposed hierarchi-
cal levelings based on Gaussian scale-space markers as a candidate model
for image cartoons u. This was theoretically and experimentally supported.
Further, we provided a viable approach to extract the texture part v based
on levelings of the cartoon residuals. An improved version of the texture
estimation resulted by performing energy-based dominant component anal-
ysis among multiple frequency bands and using this to create as texture
detection markers for the levelings of the residuals.

There are numerous applications of the above ideas and algorithms.
An ongoing research involves the restoration of ancient wallpaintings from
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cracks and missing parts by performing the previous u + v decomposition,
from which the resulting u part achieves a significant degree of inpainting
of the wide cracks and holes in these images, whereas the texture part con-
tains the thin crack lines to be exploited by some further processing. An
example of this application is illustrated in Figure 6. There we see that the
leveling-based cartoon u is sharper and its corresponding texture v (based
on energy markers) contains less structure than previous approaches.

(a) Image f (b) u1 = Λ(M1|u1) (c) u = u2 (d) u2 − u1

(e) r = f − u1 (f) |T2| (g) v = r − Λ(T2|r) (h) u+ v

(i) f − u− v (j) uVO (k) vVO (l) f − uVO − vVO

Figure 6. Leveling u+v decomposition for image restoration. Top row: (a) Image
f , 300×330 pixels from (6:1) subsampled “Potnia” wallpainting (prehistoric Thira
Acrotiri), (b) Leveling 1 (u1) with marker f∗Gσ, where Gσ1 Gaussian (σ1 = 4), (c)
Cartoon/ Leveling 2 (u2), with (σ2 = 8), (d) Residual of levelings (u2−u1). Middle
row: (e) Residual r=f−u1, (f) Texture energy (T = Ψmat(r)) used for marker T2 =
sign(r)

√
T , (g) Texture (v = r−Λ(T2|r)), (h) Reconstruction (v+u), (i) Modeling

error/fidelity, (j),(k),(l) Vese-Osher (uVO, vVO) and fidelity (f − uVO − vVO) with
(λVO, µVO) = (5, 0.1).
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Abstract Tensor scale is a morphometric parameter that unifies the repre-
sentation of local structure thickness, orientation, and anisotropy,
which can be used in several computer vision and image process-
ing tasks. In this paper, we exploit this concept for binary images
and propose a shape descriptor that encodes region and contour
properties in a very efficient way. Experimental results are pro-
vided, showing the effectiveness of the proposed descriptor, when
compared to other relevant shape descriptors, with regard to their
use in content-based image retrieval systems.

Keywords: image processing, shape description, image retrieval.

1. Introduction

The recent growth of the World Wide Web and the new technologies that
became available for image acquisition and storage have increased the de-
mand for image retrieval systems based on image properties.

In content-based image retrieval (CBIR) systems, image processing tech-
niques are used to describe the image content, encoding image properties
that are relevant to the query. Usually, these properties are represented by
shape, color, and texture descriptors of objects or regions within the image.
A descriptor can be characterized by two functions: a feature vector extrac-
tion function and a similarity function. The feature vector represents the
properties extracted from the image and the similarity function computes
the similarity between images based on their feature vectors [10].

The shape of an object is an important and basic visual feature for de-
scribing image content [14]. Shape representation generally aims at effective
and perceptually important shape features based on boundary information
– contour-based methods – and/or on interior content – region-based meth-
ods. Each class can be further broken into structural and global approaches,
depending on whether the shape is represented as a whole or by segments
or sections [14].
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In this work, we propose a new descriptor based on tensor scale that
exploits region and contour information. Tensor scale [9] is a morphomet-
ric parameter yielding a unique representation of local structure thickness,
orientation, and anisotropy. That is, at any image point, its tensor scale is
represented by the largest ellipse (2D), or ellipsoid (3D), centered at that
point and within the same homogeneous region.

We exploit the tensor scale concept for objects and, for sake of simplicity,
we only consider objects with a single contour. The descriptor computes the
tensor scale ellipse for every object point, divides the object’s contour into a
predefined number of segments, computes the influence zone of each segment
and assigns, to each segment, the weighted angular mean orientation [5]
of the ellipses within its influence zone. The influence zone of a segment
consists of the object pixels that are closest to pixels of that segment than
to any other pixel along the contour.

By dividing the contour into a small number of ordered segments, we are
aiming at efficiency in encoding contour information. By mapping tensor
scale orientation onto the segments, we are exploiting region information.
As we will show, this makes the proposed descriptor compact, efficient, and
effective for CBIR.

A previous shape descriptor based on tensor scale – Tensor Scale De-
scriptor [6] (TSD) – was proposed based on the histogram of the tensor
scale orientation of the ellipses. Our descriptor introduces a totally new
way of exploiting tensor scale orientation, which includes spatial informa-
tion. We also present a much faster computation of the ellipses by exploiting
the Image Foresting Transform (IFT) [2].

2. Background

In [9], Punam introduced a local method for gray-scale images – tensor scale
– represented by the largest ellipse within the same homogeneous region,
centered at a given pixel p. This method defines the ellipse by three factors:

� Orientation(p) = angle between t1(p) and the horizontal axis;

� Anisotropy(p) =

√
1− |t2(p)|2
|t1(p)|2 ;

� Thickness(p) = |t2(p)|;

where |t1(p)| and |t2(p)|, with |t1(p)| ≥ |t2(p)|, denote the length of the two
semi-axis of the ellipse centered at p.

A tensor scale ellipse is calculated from sample lines that are traced
around a given pixel, from 0 to 179 degrees (Figure 1(a)). The axes of the
ellipse are determined by computing the image intensities along each of the
sample lines and the location of two opposite edge points on these lines
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(a) (b) (c) (d)

Figure 1. Tensor scale computation.

(Figure 1(b)). The next step consists of repositioning the edge locations
to points equidistant to that given pixel, following the axial symmetry of
the ellipse (Figure 1(c)). The computation of the best-fit ellipse to the
repositioned edge locations is done by Principal Component Analysis (PCA)
(Figure 1(d)).

These computations are performed for every pixel of the image. A crit-
ical drawback of Punam’s approach is that the computational cost of the
algorithm makes his method quite prohibitive for CBIR systems. For this
reason, Miranda et al. [6] proposed an efficient implementation of the orig-
inal method, which differs in the following aspects.

The first change was in the edge location phase, in which Miranda’s
approach is to go along each pair of opposite segments, alternately and
at the same time, instead of going along one entire segment by turn. By
doing this, the reposition phase is no longer necessary. The second change
was the use of two connected thresholds to improve and simplify the original
method of detecting edges. The third and final change was the improvement
of the ellipse computation phase. Miranda et al. proposed a function g
(Equation 1) that gives the angle of the ellipse directly, instead of using
PCA. The ellipse orientation is obtained from the value of γ that minimizes
the function g below.

g(γ) =
∑

i=1,2,...,2m

[x2
iγ − y2

iγ ], (1)

where xiγ = xi cos(γ)− yi sin(γ), yiγ = xi sin(γ) + yi cos(γ), (xi, yi) are the
relative coordinates of the edge points with respect to the center pixel p =
(xp, yp) of the ellipse, and (xiγ , yiγ ) are the new coordinates after applying
a rotation by the angle γ.

Considering these optimizations, Miranda et al. [6] proposed the Tensor
Scale Descriptor (TSD) for gray-scale images. The idea of their shape de-
scriptor stemmed from the observation that distinct objects often present
different tensor scale local orientation distributions of their shape (this is
also valid for texture, i.e., their descriptor could be easily extended for col-
ored images). The TSD descriptor computes the tensor scale parameters for
the original image and then computes the local orientation histogram, used
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as feature vector. The matching of two given images by TSD is made by tak-
ing the absolute difference of the area between their orientation histograms,
after correcting the displacement by correlation (i.e., object rotations cause
shifts in the histogram).

In the next sections, we propose a new shape descriptor based on tensor
scale – Tensor Scale Descriptor with Influence Zones (TSDIZ) – and show
how it can provide considerable improvements in CBIR. We also provide a
faster computation of tensor scale, as compared to previous approaches [6,9],
by exploiting the Euclidean Image-Foresting Transform [12].

3. The TSDIZ descriptor

The key idea of the proposed descriptor is to map the tensor scale orien-
tations inside an object onto a few segments of its contour, and use this
information for shape description.

Orientation mapping is done by exploiting the discrete Voronoi regions
(influence zones) of contour segments inside the object. The discrete Voronoi
regions can be efficiently obtained by label propagation using the Image
Foresting Transform (IFT) [2].

The IFT is a graph-based approach to the design of image processing
operators based on connectivity, in which the images are represented by
graphs – the pixels are considered as nodes and the arcs are defined by an
adjacency relation between pixels. For a given seed set, each seed defines
an influence zone consisting of the pixels that are “more closely connected”
to that seed than to any other, according to a path-cost function [2]. We
use a path-cost function that assigns the closest Euclidean distance between
object pixels and contour pixels to each pixel inside the object (Euclidean
IFT – Euclidean distance transform via IFT).

The TSDIZ approach divides the contour into segments, labels each
contour segment with a distinct number, and propagates these labels inside
the object via Euclidean IFT. It is assigned to each segment, a weighted
angular mean orientation of the ellipses inside its influence zone, using their
anisotropies as weights.

In the next section, we present the Euclidean IFT that is used for tensor
scale computation and tensor scale mapping.

3.1 Euclidean IFT

The Euclidean IFT is used for two purposes in TSDIZ: faster tensor scale
computation (Section 3.2) and tensor scale orientation mapping (Section 3.3).
The advantages of calculating the Euclidean Distance Transform via IFT is
that label propagation is executed on-the-fly and in linear time.

In the Euclidean IFT (Algorithm 1), the path-cost function is such that
the cost of a path from a seed s to a pixel t in the forest is the Euclidean
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distance between s and t. The algorithm also needs an Euclidean relation
A that is defined as

q ∈ A(p)⇒ (xq − xp)2 + (yq − yp)2 ≤ ρ2, (2)

where ρ is the adjacency radius and (xi, yi) are the coordinates of a pixel i
in the image.

Our Euclidean IFT assigns three attributes to each object pixel p: the
squared Euclidean distance C(p) between p and its closest point s in the
contour (forming an optimum cost map), its closest seed R(p) = s (forming
a root map), and the label L(p) = L(s) of the segment that contains s
(forming a label map).

Algorithm 1 Euclidean Distance Transform via IFT.

Input: A binary image I, a set S of contour pixels in I (seeds), an Euclidean
adjacency relation A, and a labeling function λ(p) that assigns a
segment label to each pixel p in S.

Output: The cost map C, the root map R, and the label map L.
Auxiliary data structure: A priority queue Q.
begin

foreach p ∈ I do
C(p)← +∞; R(p)← NIL; L(p)← NIL

foreach p ∈ S do
C(p)← 0; R(p)← p; L(p)← λ(p) insert p in Q

while Q is not empty do
remove from Q a pixel p = (xp, yp) such that C(p) is minimum
foreach q = (xq, yq) such that q ∈ A(p) and C(q) > C(p) do

C ′ ← (xq − xR(p))
2 + (yq − yR(p))

2, where R(p) = (xR(p), yR(p))
is the root pixel of p if C ′ < C(q) then

if C(q) 6= +∞ then
remove q from Q

C(q)← C ′; R(q)← R(p); L(q)← L(p) insert q in Q

end

3.2 Faster tensor scale computation for binary images

A considerable speedup in the computation of the tensor scale for binary
images is possible by exploiting the following aspect: if we have the shortest
distance between a pixel p and the contour, there is no need to search for
edge points inside the circle with radius

√
C(p) (Figure 2(a)).

According to Miranda’s algorithm, edge points are searched along oppo-
site sample lines, alternately. In our approach, the algorithm jumps along
the lines and visits the pixels q and r at the same time (Figure 2(b)).
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(a) First step. (b) Second step.

(c) Third step.

Figure 2. Example of optimization made by using Euclidean IFT.

The searching for edge points continues outside the area defined by the
cost

√
C(p) in Figure 2(b), and the minimum between

√
C(r) and

√
C(q)

indicates the location for the next jump. These jumps may continue itera-
tively until the closest edge point along the sample line is found.

In the example, the edge is found at the pixel R(r) (i.e., at the contour
point r′ nearest to r). The algorithm defines that the two edge points in this
sample line are at r′ (coordinate ofR(r) relative to p) and at q′ (coordinate of
the point diametrically opposite to r′, relative to p), as shown in Figure 2(c).

By performing this procedure for all sample lines, the algorithm defines
all edge points and uses the same formula defined by Miranda et al. (Equa-
tion 1) for finding the orientation of the ellipse.

The localization of the edge points is formalized in Algorithm 2.

The next section presents orientation mapping based on Euclidean IFT.
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Algorithm 2 Edge points localization for ellipse centered at pixel p.

Input: A pixel p = (xp, yp), the number m of sample lines, and the cost
map C returned by Algorithm 1.

Output: The vector edge that contains m pairs of edge points localized at
the sample lines.

begin

for θ ← 0◦ to 179◦, with increments
180

m
do

v ←
√
C(p) p1 ← NIL; p2 ← NIL; q1 ← 0; q2 ← 0 while p1 6= 0

and p2 6= 0 do
x← v ∗ cos(θ); y ← v ∗ sin(θ) if q1 = 0 then

temp← (xp + x, yp + y); p1 ←
√
C(temp);

if q2 = 0 then

temp← (xp − x, yp − y); p2 ←
√
C(temp);

d← min(p1, p2); v ← v + d q1 ← p1 − d; q2 ← p2 − d
edge[θ] ← ((x, y), (x′, y′)), where (x′, y′) is the coordinate of the
point diametrically opposite to (x, y), relative to p

end

3.3 Feature vector of TSDIZ by orientation mapping
onto contour segments

Prior to tensor scale orientation mapping, TSDIZ approach has two stages:
tensor scale computation for all pixels inside the object and partition of the
object contour into segments.

The orientation mapping uses the label map L returned by the Euclidean
IFT (Algorithm 1). The map L groups pixels and their ellipses in the in-
fluence zone of each segment. TSDIZ uses as feature vector F the weighted
mean of the ellipses orientations in each influence zone of segment. There-
fore, F can be indexed by L. The TSDIZ feature vector is formed by the
mapped tensor scale orientations (F ) and has size equal to the number ns
of segments. Algorithm 3 shows the feature vector computation for TSDIZ.

The function WeightedAngularMean(V [i]) returns the weighted an-
gular mean of the ellipses orientations contained in influence zone i, i =
1, 2, . . . , ns, considering the anisotropies as the weights. The mean θ for
angular data [5] is calculated as

θ = arctan

(∑n
p=1Ani[p] ∗ sin(2 ∗Ori[p])∑n
p=1Ani[p] ∗ cos(2 ∗Ori[p])

)
. (3)
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Algorithm 3 Feature vector computation for TSDIZ by tensor scale ori-
entation mapping.

Input: A binary image I containing an object O, the number ns of con-
tour segments, the label map L returned by Algorithm 1, and the
vectors Ani and Ori that contain the anisotropies and the orienta-
tions of the tensor scale ellipses computed for all pixels of object O,
respectively.

Output: A feature vector F that contains the mapped orientation for each
contour segment.

Auxiliary data structure: A vector V of ns lists to store ellipse informa-
tion in each influence zone.

begin
foreach p ∈ O do

insert (Ani[p], Ori[p]) in list V [L(p)], where L(p) is the label of the
influence zone in which p is contained

foreach i ∈ [1, . . . , ns] do
F [i] = WeightedAngularMean(V [i])

end

3.4 TSDIZ similarity function

The similarity function has to determine the rotation difference of the ori-
entations between two TSDIZ vectors. This function also has to determine
the position (the segment) in which the feature vectors must be lined up to
obtain the best matching between the underlying shapes.

The exhaustive algorithm (Algorithm 4) consists of the registration be-
tween the orientation feature vectors. Considering α = 0◦, . . . , 179◦ and
j = 1, . . . , ns, where ns is the size of the vectors, the algorithm computes,
for each rotation α and for each shift j in the feature vector, the difference
between the vectors, after rotating all orientations of one vector by α and
circular shifting the same vector by j. The minimun difference obtained
corresponds to the distance between the vectors.

In Algorithm 4, the function AngularDistance(α, β) gives the smallest
angle between the orientations α and β.

The complexity of this algorithm is O(c ∗ ns2), where c is a constant (in
this case, 179). Although it is an exhaustive search, small values of ns (e.g.,
ns < 70) makes it still fast. Figure 3 illustrates the registration between
two TSDIZ vectors.

4. Experimental results

In this section, the results of the experiments in CBIR are presented.
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Algorithm 4 Similarity between two TSDIZ vectors.

Input: Two feature vectors FA and FB .
Output: Distance dist between FA and FB .
begin

dist←∞ foreach j ∈ [1, . . . , ns] do
foreach α ∈ [0, . . . , 179] do

foreach i ∈ [1, . . . , ns] do
distaux ← AngularDistance({FB [(j − i) mod ns] + α}
mod 180, FA[i]) if distaux < dist then

dist← distaux

end

4.1 Image database

Experiments were conducted using MPEG-7 CE-shape-1 part B [7] database,
which consists of 1400 images, categorized in 70 classes (20 images on each
class). It is composed by objects silhouettes, like fruits and animals.

4.2 Results

The experiments consist in comparing the TSDIZ and other shape descrip-
tors, with respect to two effectiveness measures used in CBIR – precision
versus recall [8] (PR) and multiscale separability [11] (MS separability).

In [11], Torres et al. showed that MS separability represents better than
PR curves the separation among clusters (groups of relevant images) in the
feature space. This separation is strongly related to the performance of
CBIR systems because the search methods rely on them. However, PR is
still the most popular effectiveness measure in CBIR. For this reason, we
present the results with both measures.

Precision versus recall

Precision is defined as the fraction of retrieved images that are relevant to
the query. In contrast, recall measures the proportion of relevant images
among the retrieved images. The precision versus recall curve, or PR curve,
indicates the commitment between the two measures and, generally, the
highest curve in the graph indicates better effectiveness.

In this experiment, TSDIZ is compared with the following shape descrip-
tors: Beam Angle Statistics [1] (BAS), Multiscale Fractal Dimension [13] (MS
Fractal), Moment Invariants [4] (MI), Fourier Descriptor [3] (Fourier), Ten-
sor Scale Descriptor [6] (TSD) and Segment Saliences [11] (SS).

Figure 4(a) presents the PR curves for the evaluated descriptors and
TSDIZ with 60 contour segments. The number of segments is a parameter
that is tuned for each database and can be learned by training.
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(a) (b)

(c) Orientation curve for (a). (d) Orientation curve for (b).

(e) Curve matching.

Figure 3. Examples of TSDIZ curves and registration.

TSDIZ descriptor has the second best PR curve among the tested de-
scriptors. BAS descriptor presented the best performance according to PR,
as expected for this database [1].

Multiscale separability

A good effectiveness measure should capture the concept of separability.
Separability indicates the discriminatory ability between objects that belong
to distinct classes. This concept is widely used in cluster analysis, and it
was introduced for CBIR by Torres et al. [11].

As TSDIZ has outperformed all other descriptors for MS separability
as well, we show in Figure 4(b) the MS separability curves of TSDIZ and
BAS only. TSDIZ and BAS present equivalent performance for search radii
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(a) PR curves for several descriptors. (b) Multiscale separability curves for
TSDIZ and BAS descriptors.

Figure 4. Effectiveness measures experiments conducted in MPEG-7 CE-shape-1
part B database.

less than 10% of their maximum distance. From this point on, the BAS
separability curve decreases quickly, indicating that this descriptor is neither
robust nor effective for search radii greater than 20%.

Figure 5 shows a visual CBIR example for a query image. The images
with a gray background are not in the same class of the query image and
should not be returned by the query.

Figure 5. Visual CBIR example.

5. Conclusions and future work

This paper introduced a new shape descriptor based on tensor scale (TS-
DIZ). It also provided a faster algorithm for tensor scale computation using
Image Foresting Transform (IFT).

The feature vector consists of the tensor scale orientations computed for
all pixels of a given object and mapped onto contour segments. The partition
of the contour aims at efficiency in encoding contour information and tensor
scale orientation mapping aims at storing spatial information into TSDIZ
feature vector. These TSDIZ characteristics make the descriptor compact,
fast and effective for CBIR.

The experiments done with MPEG-7 CE-shape-1 part B database indi-
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cate that TSDIZ has better PR curve than all relevant shape descriptors
(except BAS) and the best separability among them, making it the most
robust and effective, according to this metric.

The TSDIZ feature extraction function only computes tensor scale el-
lipses inside objects. Future works will be directed towards incorporating
information from ellipses outside the object as well. The TSDIZ descriptor
will also be evaluated with other shape databases.
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Abstract We investigate the combined use of multiple structuring elements
with the standard morphological texture characterization tools, namely
morphological covariance and granulometry. The resulting opera-
tor is applied to both grayscale and color images in the context of
texture classification. As to its extension to color texture data, it
is realized by means of a weighting based reduced vector ordering
in the IHLS color space, equipped with genetically optimized argu-
ments. The classification experiments based on this framework are
carried out with the publically available Outex13 texture database,
where the proposed feature extraction scheme outperforms the uni-
variable versions of the operators under consideration.

Keywords: multivariate mathematical morphology, texture, granulometry, co-
variance, color ordering.

1. Introduction

Mathematical morphology (MM) offers a variety of tools for texture char-
acterization, such as granulometry, morphological covariance, orientation
maps, etc. The first two in particular have been employed successfully in a
number of texture analysis applications [3, 7, 22,23].

More precisely, granulometry is a powerful tool based on the “sieving”
principle, implemented by means of successive openings and/or closings with
structuring elements (SE) of various sizes, hence it is capable of extracting
shape and size characteristics from textures. Morphological covariance on
the other hand, is based on erosions with pairs of points separated by vectors
of various lengths, and provides information on the coarseness, anisotropy
as well as periodicity of its input.

In this paper, we concentrate on these two operators, and specifically on
the combined exploitation of their SE variables: size, distance and direction.
Since the original size-only definition of pattern spectra [13], these operators
have been extended in various ways (e.g., color, multivariate, attribute based
versions, etc.). Relatively recent applications have explored for instance
the combination of SE shape and size as far as granulometry is concerned
[24,25], hence leading to a feature matrix rather than a vector, that describes
the combined size and shape distribution of its input. As to covariance, the
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coupled use of SE pair distance and direction makes it possible to exploit the
anisotropic properties of textures additionally to their periodicity [12,23].

Here we investigate the ways of combining the complementary infor-
mation extracted by these two operators (e.g., concatenation, dimension
reduction, etc.), and propose a hybrid of the two, where SE couples are
varied in terms of size, direction as well as distance. The proposed combi-
nation scheme is compared in terms of classification accuracy, against the
standard definitions, using the publically available Outex13 color texture
database. The so far obtained experimental results show that it leads to an
improvement over the usual concatenation of feature vectors.

Furthermore, as far as the extension of this operator to color images is
concerned, since MM is based on complete lattice theory, a vector ordering
mechanism becomes necessary. Hence, we propose a weight based reduced
vector ordering, defined on the improved HLS (IHLS) color space, designed
specifically for the purpose of color texture classification. This approach
makes it possible to optimize, for instance through genetic algorithms, the
weight of each component adaptively, according to the training set under
consideration.

The rest of the paper is organized as follows. Section 2 introduces briefly
granulometry and covariance, and then elaborates on the combination of
their variables. In Section 3, the problem of extending morphological op-
erators to multivariate images is discussed, and the proposed ordering is
detailed. Next, Section 4 presents the experimental results that have been
obtained with the Outex13 database. Finally, Section 5 is devoted to con-
cluding remarks.

2. Morphological texture characterization

In this section, we start by recalling the basic texture categories along with
their perceptual characteristics, and then the covariance and granulometry
operators are introduced. Moreover, the combination of multiple SE related
variables is discussed.

2.1 Texture properties

According to the pioneering taxonomy work of Rao [19], textures can be
classified with respect to their spatial distribution of details into the follow-
ing four categories (Figure 1).

Strongly ordered: Textures consisting of the repetitive placement of
their primitive elements according to a particular set of rules.

Weakly ordered: Textures possessing a dominant local orientation,
which can however vary at a global level.

Disordered: Textures lacking any repetitiveness and orientation, and
usually described on the basis of their roughness.
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Figure 1. Texture examples from the Brodatz album [5], from left to right, strongly
ordered, weakly ordered, disordered and compositional.

Compositional: Textures that do not belong to any of the previous
categories, and exhibit a combination of their characteristics.

In an effort to determine efficient features, capable of discriminating
among the members of these categories, Rao and Lohse [20] have conducted
psycho-physical experiments, and identified regularity (or periodicity), di-
rectionality and complexity as the most important perceptual texture char-
acteristics, as far as human observers are concerned. With the subsequent
work of Chetverikov [6] and Mojsilovic et al. [16], overall color and color
purity were added to this list.

2.2 Morphological covariance

This operator was initially proposed [14,15, 22] as the equivalent in MM of
the autocorrelation operator. The morphological covariance K of an image
f , is defined as the volume Vol, i.e., sum of pixel values, of the image, eroded
by a pair of points P2,v separated by a vector ~v:

K(f ;P2,v) = Vol
(
εP2,v

(f)
)
, (1)

where ε represents the erosion operator. In practice, K is computed for
varying lengths of ~v, and most often the normalized version is used for
measurements:

Kn(f) = Vol
(
εP2,v (f)

)
/Vol (f) . (2)

In the light of the aforementioned perceptual properties of textures, given
the resulting uni-dimensional covariance series, one can gain insight into
the structure of a given image [23]. In particular, the periodic nature of
covariance is strongly related to that of its input. Furthermore, the period
of periodic textures can easily be determined by the distance between the
repeated peaks, that appear at multiples of the sought period; whereas the
size of the periodic pattern can be quantified by means of the width of
the peaks. In other words, their sharpness is directly proportional to the
thinness of the texture patterns appearing in the input. Likewise, the initial
slope at the origin provides an indication of the coarseness, with quick drop-
off corresponding to coarse textures.
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In order to obtain additional information on the directionality of f , one
can plot against not only different lengths of ~v, but orientations as well [12].

2.3 Granulometry

Granulometry [14, 15] as a term belongs to the field of materials science,
where the granularity of materials is determined by passing them through
sieves. Using the same principle, this operator consists in studying the
amount of image detail removed by applying morphological openings γλ
and/or closings ϕλ of increasing size λ. The volumes of the opened (or
closed) images are then plotted against λ, or more usually their discrete
derivative Vol(γλ− γλ+1), i.e., pattern spectrum. The normalized version of
the operator can be written as:

Gn(f) = Vol (γλ(f)) /Vol (f) . (3)

For unbiased measurements, the volume computation may be reduced
only to the area affected by the operator. As a featuring tool, granulom-
etry provides information on the shape and size of ordered textures, and
regularity of disordered textures [4, 23]. Furthermore, both operators can
be applied on a local or global level.

2.4 Proposed approach

Indeed, considering the fundamental perceptual texture properties men-
tioned in Section 2.1, morphological covariance and granulometry provide
invaluable, yet complementary information on their input. More precisely,
covariance extracts a feature vector containing information on periodicity
and directionality, whereas granulometry concentrates rather on the granu-
larity of its input. Consequently both are necessary in the general case for
an efficient texture description.

However, their combination is rather ambiguous, as it can be realized in
a variety of ways. The obvious method, is to calculate independently each
feature vector and then employ their concatenation. We propose here an
alternative way, which consists in unifying the two operators’ functionalities
by varying in parallel multiple SE properties. As previously mentioned, the
use of multivariate granulometry and covariance has already been reported,
specifically, in the form of combined SE direction and distance [9], as far as
covariance is concerned, and shape and size combination with granulometry
[24,25].

We choose to implement with this purpose a combination of SE size,
direction and distance (Figure 2). For practical purposes, we replace the
erosion (ε) operator of covariance (2) with an opening (γ). Of course, on
the contrary of granulometry it is also necessary to employ SE pairs, so
that periodicity information may be extracted. Hence the following hybrid
expression is obtained:
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size

distance & direction0 45 13590

Figure 2. Illustration of structuring element pair variations, with respect to size,
direction and distance.

GKn(f) = Vol
(
γPλ,v (f)

)
/Vol (f) , (4)

where Pλ,v denotes a pair of SEs of size λ separated by a vector ~v. However,
it should be noted that as the sieving principle of multiple morphological
openings is satisfied if, and only if the SE is a compact convex set [15],
this combination no longer qualifies as a granulometry. In practice, only
the four basic directions (0◦, 45◦, 90◦, 135◦) are of importance, thus it was
chosen to integrate directional variation with distance as shown in Figure 2.
Of course, in case directionality becomes particularly significant one can
always separate it as an additional dimension representing a finer distinction
of directions, or even add one more dimension for shape distributions, where
different SE shapes (e.g., disc approximation, square, lines, etc.) are also
employed along with direction, size and distance.
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Figure 3. Plot of the feature matrices resulting from the application of expression
(4) on the strongly ordered (left) and disordered (right) texture of Figure 1.

Figure 3 presents the plots of the resulting features matrices, as applied
to the strongly ordered and disordered textures of Figure 1. Although their
size distributions are rather similar, their directionality and periodicitiy are
clearly distinct.

Moreover, as far as classification is concerned, feature vector or matrix
size is of primary importance, since redundant information may eventually
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be present and disrupt the overall process. Even with the moderate sizes
used in practice, the resulting feature set can easily become excessively large.
That is why dimension reduction techniques, such as principal component
analysis (PCA), as it will be shown in Section 4, could become necessary.
Before testing the proposed approach, as well as the different ways of its
use, in the next section a way of extending morphological operators, along
with the proposed hybrid operator, to color images is presented.

3. Extending to color images

As previously mentioned, color is an integral part of texture description, and
several ways of extracting color features have been reported, e.g., color his-
tograms, color correlograms, etc. According to Palm [18], these techniques
can be classified into the following three categories.

Parallel approach: Color and intensity information is processed sepa-
rately. For instance a color histogram along with a co-occurrence matrix.

Sequential: Color information is first transformed into a greyscale form,
which is then processed with the tools available for intensity images.

Integrative: The color channels are processed either separately or si-
multaneously.

Here we choose to implement the third approach. The extension of
morphological operators to color and more generally to multivariate images
is still an open problem. Specifically, since the morphological framework is
based on complete lattice theory [21], it is theoretically possible to define
morphological operators on any type of image data, as long as a complete
lattice structure can be introduced on the image intensity range. In other
words, at least a partial vector ordering is required. Several approaches
have been proposed with this purpose (e.g., marginal ordering, r-orderings,
c-orderings, etc.), a comprehensive survey of which can be found in [1].

3.1 Color space

The choice of color space is of fundamental importance, as it can largely
influence the end results [11]. Here, we choose to follow the trend of the
last years in the domain of color morphology, and employ a polar color
space based on the notions of hue (h ∈ [0, 2π]), saturation (s ∈ [0, 1]) and
luminance (l ∈ [0, 1]). More precisely, although most polar color spaces are
essentially just a more intuitive description of the RGB color cube, several
implementations exist, e.g., HSV, HSB, HLS, HSI, etc. [8]. According
to Hanbury and Serra [10], the cylindrical versions of these spaces have
serious inconsistencies and are inappropriate for quantitative color image
processing. Hence we make our color space choice in favor of the improved
HLS space (IHLS) [10] using the L1 norm, which employs the original bi-
conic version of HLS.
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Figure 4. Vertical semi-slice of the cylindrical HLS (left) and bi-conic IHLS (right)
color spaces.

As illustrated in Figure 4, one of the most important drawbacks of the
cylindrical HLS space is the unintuitive definition of saturation. Specifically,
it is possible to have maximized saturation values for zero luminance. This
inconvenience, as well as the dependence of saturation on luminance are
remedied with the IHLS space, where the maximal allowed value for satura-
tion is limited in relation to luminance. Therefore, in order to benefit from
the advantages of polar spaces in the context of multivariate morphology,
the ordering of IHLS color vectors is necessary.

3.2 Ordering color vectors

For the sake of simplicity, we have omitted the hue component at this stage
of our research from the ordering process, and instead we concentrate on
the relations of luminance (l) and saturation (s) (color purity). Luminance
is well known to account for the intensity variations and consequently, it
is often sufficient for the recognition of most objects, whereas color has a
rather auxiliary contribution. These two components may be ordered in a
variety of ways, for instance marginally, lexicographically, etc. A marginal
ordering strategy in this case:

∀ c, c′ ∈ [0, 1]
2
, c ≤ c′ ⇔ c1 ≤ c′1 ∧ c2 ≤ c′2, (5)

is rather inappropriate as it does not take into account inter-channel rela-
tions. A lexicographical approach on the other hand, with luminance at top
position:

∀ c, c′ ∈ [0, 1]
2
, c ≤ c′ ⇔ c1 ≤ c′1 ∨ (c1 = c′1 ∧ c2 ≤ c′2), (6)

prioritizes excessively the first component, since the second dimension (i.e.,
saturation) does not contribute to the outcome of vector comparisons unless
an equality takes place at the first.

We choose to use a reduced or R-ordering where color vectors are first
reduced into scalar values and then ranked according to their natural scalar
order:

∀ c, c′ ∈ [0, 1]
2
, c ≤ c′ ⇔ g(c) ≤ g(c′). (7)

Obviously the main issue at this point is the choice of the scalarization
function g : [0, 1]

2 → R. In order to efficiently combine the information
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contained in saturation and luminance channels, their relations need to be
taken into account. Specifically, given the bi-conic form of IHLS, saturation
can reach its maximal value for medium luminance levels, whereas it is of
minimal importance for extreme levels (i.e., either too dark or too bright).
In order to model this relation we choose to use the sigmoid based transition
proposed in [2]:

l ∈ [0, 1], h(l) =

{
1

1+exp(−kL(l−ll)) if l ≤ 0.5,
1

1+exp(kL(l−lu)) if l ≥ 0.5,
(8)

where the slope kL = 10, and the lower and upper offsets are respectively
ll = 0.25 and lu = 0.75. Its plot is given in Figure 5. The arguments of
h(l) were set empirically, and divide the luminance range roughly in three
regions, with the middle corresponding to important saturation levels.

 0
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Figure 5. Plot of the weighting function h(l) for the importance of color purity in
relation to luminance.

Furthermore, the main problem consists in determining the influence of
each component. In other words, in what amount are we to use luminance
and saturation when comparing vectors? In the ideal case, one would follow
an image or vector specific approach, for example by increasing the contri-
bution of saturation if the image or vectors under consideration are highly
saturated. However, this method is in our opinion suitable for intra-image
problems such as filtering, but ill suited for inter-image problems, such as
texture classification. It results in using different weights for each compo-
nent depending on the vectors or processed image, hence leading to a highly
adaptive approach, which undermines the comparability of the calculated
feature sets.

Therefore, we propose to follow a strategy where the contribution of each
component is dependent on the image database under consideration. More
precisely, g is defined as:

wl, ws ∈ R, ∀(l, s) ∈ [0, 1]
2
, g(l, s) = wl × l + ws × h(l)× s, (9)

where wl+ws = 1 are the weights of luminance and saturation respectively.
These weights are to be determined by means of a genetic algorithm, or any
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other means of unsupervised optimization. Specifically, given the training
set of textures, the values of wl and ws are to be set to their values mini-
mizing the cost function w of features, that in turn minimizes the distance
of features among textures of the same class, and maximizes the distance of
textures belonging to distinct classes:

w = distintra−class + (1− distinter−class). (10)

Consequently, the color ordering becomes specific to the image database
under consideration. Of course this principle is by no means limited to
textures and can be applied in a likewise fashion for optimizing for instance
the ordering of multispectral vectors in remote sensing images. Application
results are given in the next section.

4. Results

In this section, we present the results that have been obtained using the
color textures of Outex13 (Figure 6) [17]. This set consists of 68 textures,
where every image has been divided into 20 non-overlapping sub-images,
each of size 128× 128 pixels, thus producing a total of 1360 images, which
are evenly divided as training and test sets. We compare four different fea-
ture extraction schemes with both grayscale and color images. Specifically,
we test features computed using a granulometry (Granulometry) (3), mor-
phological covariance (Covariance) (2), their concatenation (Concatenated)
and finally their proposed combined form (Combined).

Figure 6. Examples of the 68 textures of Outex13 [11].

More precisely, for granulometry square shaped SEs have been employed,
where a SE of size k has a side of 2k + 1 pixels, and k varied from 1 to 30
in steps of size 2. As to covariance, the four basic directions have been
used (0◦, 45◦, 90◦, 135◦) in combination with distances varying from 1 to
20. For their concatenated as well as proposed combined form (4) the same
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arguments were in place. The 80x25 feature matrix that has resulted from
the combination option, was reduced into a matrix of size 2x80 by means of a
PCA transform and preserving only the first two dimensions. For grayscale
computations the luminance component of IHLS has been used, while for
the processing of color information the vectorial versions of operators were
implemented, based on the ordering (7), the weights of which have been
set in two ways. Besides using fixed values (Color: wl = ws = 0.5), the
optimization described in Section 3.2 has been also implemented (Color-
optimized). The image set has been classified using a kNN classifier with
k = 1 and the Euclidean distance as a similarity metric.

The classification accuracies, computed as the fraction formed by the
number of successful classifications divided by the total number of sub-
jects, are given in table Table 1. Globally, one can immediately remark
the positive, though comparably to intensity, small effect of using color
information. A result which asserts the auxiliary role of color in texture
recognition. Moreover, covariance systematically outperforms granulome-
try, hence showing the higher pertinence of periodicity and directionality
with this database, compared to granularity. The combination of the two
operators by means of a concatenation improves the accuracy levels, while
the proposed hybrid operator provides the overall best results, both with
color as well as grayscale images. Additionally, according to the obtained
values, the optimization scheme appears to result in database specific fea-
ture vectors, hence improving the overall performance.

Table 1. Classification accuracies (%) for the Outex 13 textures.

Features Grayscale Color Color optimized

Granulometry 67.53 68.78 72.03

Covariance 73.82 76.92 80.46

Concatenated 77.75 79.93 83.74

Combined 83.53 85.53 88.13

5. Conclusion

As a fundamental problem of computer vision, several approaches have been
developed for texture description. Their extension to color images however is
still an open issue. In this paper, we have proposed a method for combining
the complementary information provided by the two basic texture featuring
tools offered by mathematical morphology. This combination by means
of varying multiple SE variables has the advantage of better capturing,
with respect to a mere concatenation, the three essential texture properties:
periodicity, directionality and complexity. Its extension to color data has
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been realized using a reduced ordering in the IHLS space. The use of weights
results in a flexible solution that makes it possible for each image channel to
contribute to the vector comparison outcome. Furthermore, optimization
methods may be employed for rendering this ordering data specific.

The experiments that have been carried out on the Outex13 database,
have provided indications on the proposed methods’ practical interest. Fu-
ture work will concentrate on the additional exploitation of shape informa-
tion. Moreover, the use of the hue component holds further potential of
improving the efficiency for the computed feature vectors.
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[14] G. Matheron, Eléments pour une Théorie des Milieux Poreux, Masson, Paris, 1967.

[15] , Random Sets and Integral Geometry, J. Wiley, New York, 1975.
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Micro-viscous morphological operators
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Abstract In most operators of mathematical morphology source and destina-
tion are the same: from pixels to pixels. In this paper we present
adjunctions where source and destination are not the same. In ad-
dition to the pixels of a grid, we also consider the centers of edges
linking neighboring pixels. Interesting filters may be constructed
using such operators, in particular bi-levelings, where the introduc-
tion of some degree of viscosity permits to obtain higher levels of
simplifications as with ordinary levelings.

Keywords: adjunction, hexagonal grid, micro-viscous operators, bi-levelings,
morphological filtering.

1. Introduction

Connected filters, and in particular levelings have nice and interesting fea-
tures: they simplify images without blurring the contours. For this reason
they are often used as a simplification step before segmentation. Generally,
one constructs a strongly simplified version g of the image f to segment,
where the contours may be blurred, as is the case after Gaussian filter-
ing, or displaced as is the case for morphological alternate sequential filters.
This simplified image is called marker image. The leveling takes as input
both functions f and g. It modifies g in order to restore the contours of f ,
by extending the regional maxima of g under f and the regional minima
over f. This extension is obtained by creating flat zones. However, the re-
sult is sometimes disappointing, as the reconstruction of f reconstructs far
more details as expected, if one takes into consideration the initial degree
of simplification of g. For this reason one may want leveling types which re-
constructs less details. Various directions have been explored. One consists
in extending the regional minima and maxima of g by creating pseudo-flat
zones, with a higher extension than strict flat zones [3]. Another consists
in introducing some viscosity in the reconstruction process [3, 6]. This last
method gives good results, but has the disadvantage to need a large sup-
port of information for processing each pixel; this slows down the processing
speed and complicates the design of hardware implementations.

In the present paper, we introduce a kind of micro-viscosity in levelings
which give good results without extending the window necessary for pro-
cessing each pixel. It appears that the operators which are needed can be
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described in terms of adjunctions between the nodes and edges of the raster
grid. They exhibit also nice filtering properties for detail simplification or
for computing the gradient of noisy images.

2. Levelings and bilevelings

Reminder on levelings

Levelings [1,2] are particular connected operators: they enlarge the existing
flat zones and produce new ones [4,5]. A connected operator transforms an
image f into an image g in such a way that ∀ (p, q) neighbors: gp 6= gq ⇒
fp 6= fq (0).

The relation (0) expresses that any contour between the pixels p and q
in the destination image g corresponds to a contour in the initial image f at
the same place. Levelings are obtained through a specialisation of Relation
(0). The basic levelings are characterized by:
∀ (p, q) neighbors: gp > gq ⇒ fp ≥ gp and gq ≥ fq (1) meaning that any
transition in the destination image g is bracketed by a larger variation in the
source image. Other types of transitions between neighboring pixels may
be considered. For instance a minimal jump between the pixels p and q may
be requested: gp > gq + λ ⇒ fp ≥ gp and gq ≥ fq, leading to the so called
λ-levelings. On the other hand g is a viscosity leveling f iff gp < (γg)q ⇒
fp ≤ gp and (ϕg)p < gq ⇒ gq ≤ fq. To each type of leveling is associated a
type of quasi flat-zone: two pixels x and y belong to the same quasi-flat zone
of a function f , if there exists a series of pixels {x0 = x, x1, x2, ..., xn = y}
such that there is no transition between gxi and gxi+1

. If transitions are
of the type gp > gq, their non existence means {gp ≤ gq and gp ≥ gq} , i.e.,
gp = gq. Similarly, the quasi-flatzones of the other leveling types are also
obtained by expressing the non existence of transitions between adjacent
pixels. For instance the λ-flat zones are characterized by |gp − gq| < λ. If
g is a leveling of f, then g is identical to f except in the zones where g is
quasi-flat.

The relation gp > gq ⇒ gq ≥ fq may be interpreted as [gp ≤ gq or gq ≥ fq]
⇔ [gq ≥ fq ∧ gp]. As p may be any element of the neighborhood Nq of the
central point q, we obtain gq ≥ fq ∧

∨
x∈Nq

gx (2). Since it is always true

that gq ≥ fq ∨ gq, Relation (2) is equivalent to gq ≥ fq ∧
(
gq ∨

∨
x∈Nq

gx

)
=

fq ∧ δgq, where δ represents the elementary morphological dilation with a
flat structuring element containing the central point and all its neighbors.
Taking into account the complete relation (1) yields the following criterion
for the basic levelings: f ∧δg ≤ g ≤ f ∨εg (3). Similarly f ∧ [g ∨ (δg − λ)] ≤
g ≤ f ∨ [g ∧ (εg + λ)] characterizes λ-levelings and f ∧ δγg ≤ g ≤ f ∨ εϕg
characterizes viscous levelings (ε is the adjunct erosion of δ, γ and ϕ are the
associated openings and closings).
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Starting with any type of simplified version g of the image f , one may
transform it into a leveling of f by extending the regional maxima of g under
f and the regional minima over f. This extension is obtained by creating
flat zones [2]. For instance, in the case of flat levelings, one replaces g by
f ∨ εg for all pixels where g > f ∨ εg and by f ∧ δg for all pixels where
f ∧ δg > g, until the inequalities (3) are everywhere satisfied.

Figure 2 compares the three levelings for the same noisy image; the
marker is obtained by an alternate sequential filter of size 4, giving a rough
approximation of structures to be preserved. It appears that the amount
of simplification is higher for λ and viscous levelings than for flat levelings.
In smooth regions, the λ-levelings seem to produce too large flat zones. λ-
levelings seem to do a better job for filtering images before segmentation.
Their drawback is to necessitate neighborhoods of size 3 for constructing
the operators δγ and ϕg. Our aim in the next section is to introduce some
degree of viscosity into levelings and obtain similar results, but by using
only neighborhoods of size 1; like that we accelerate the construction of
viscous levelings and ease their hardware implementation.

2.1 Bilevelings

An image g is a bileveling of the image f iff ∀ (p, q, s) being the summits of
an elementary triangle of the hexagonal grid:

gp > gq and gp > gs ⇒ fp ≥ gp, (4a)

gp < gq and gp < gs ⇒ fp ≤ gp. (4b)

A morphological characterization

Interesting characterizations may be derived from both relations. As an
example consider the implication [gp > gq and gp > gs ⇒ fp ≥ gp]. It may
be interpreted as [gp ≤ gq or gp ≤ gs or gp ≤ fp]⇔ [gp ≤ fp ∨ (gq ∨ gs)].

As p and s may be any couple of neighboring pixels of p, we obtain

gp ≤ fp ∨
∧

(q,s,p)=triangle

(gq ∨ gs) , (5)

where (q, s, p) = triangle means that (q, s, p) represent the elementary tri-
angle of the hexagonal grid.

On the other hand, it is always true that g ≤ f ∨ g, which together with

Inequality (5) is equivalent with gp ≤ fp ∨
(
gp ∧

∧
(q,s,p)=triangle

(gq ∨ gs)
)

.

Completing with Relation (4b), we obtain the complete characterisation
of bilevelings: g is a bileveling of f iff

fp ∧

(
gp ∨

∨
(q,s,p)=triangle

(gq ∧ gs)

)
≤ gp ≤ fp ∨

(
gp ∧

∧
(q,s,p)=triangle

(gq ∨ gs)

)
,

(6a)
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or equivalently
fp ∧

∨
(q,s,p)=triangle

(gq ∧ gs) ≤ gp ≤ fp ∨
∧

(q,s,p)=triangle

(gq ∨ gs). (6b)

If g is not a bileveling of f , then the relation (6a) does not hold. So we
modify g until this relation becomes satisfied:

� on {gp > fp}, we replace gp by fp ∨
(
gp ∧

∧
(q,s,p)=triangle

(gq ∨ gs)
)
,

� on {gp < fp}, we replace gp by fp ∧
(
gp ∨

∨
(q,s,p)=triangle

(gq ∧ gs)
)
.

In contrast to ordinary levelings, the relation ∀ (p, q) neighbors: gp >
gq ⇒ fp ≥ gp and gq ≥ fq is not true. However if (q, s, p) = triangle, then
gp > gq > gs ⇒ fp ≥ gp and gs ≥ fs. On the other hand, if for the same 3
pixels (q, s, p) forming a triangle we have fp > gp, fs > gs and fq > gq,then
it is not necessarily true that gp = gq = gs, but it is granted that the two
lowest values are the same.

The operators of Relations (6a) and (6b) will be reinterpret below in
terms of adjunctions between the nodes and the edges of the hexagonal
grid.

3. A few adjunctions on the hexagonal grid

3.1 Reminder on adjunctions

Let f be a function of Fun(D,T ) and g be a function of Fun(E ,T ). The two
operators α : Fun(D,T ) → Fun(E ,T ) and β : Fun(E ,T ) → Fun(D,T ) form
an adjunction if and only if: for any f in Fun(D,T ) and g in Fun(E ,T ):
αf < g ⇔ f < βg. Then α is a dilation (it commutes with the supremum of
functions in Fun(D,T )) and β is an erosion (it commutes with the infimum
of functions in Fun(E ,T )). βα is a closing in Fun(D,T ) and αβ is an opening
in Fun(E ,T ).

3.2 Neighborhood relations on the hexagonal grid

Let us consider a regular hexagonal grid, illustrated in Figure 1. Its basic
constitutive elements are the pixels ν appearing as big (red) disks and the
edges ν linking adjacent pixels (appearing in bold -green- lines). Given f ,
a function taking its values on any of these grids, the values taken by f
on respectively ν and η are f(ν) and f(η). As we will define a number of
operators on these grids, we will consider the elements of the grid itself as
operators. The operator ν applied on the function f is the value taken by f
on ν : νf = f(ν). Similarly we define ηf = f(η). Let ν be the set of nodes
or pixels of the initial grid and η the set of edges.
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Figure 1. Hexagonal grid: the big disks are the vertices; the other dots are the
centres of the vertices.

Supremum, infimum, complementation of these operators are classically
defined as (we illustrate the case for η, the definition for ν being similar):

� [η1 ∨ η2] (f) = η1 (f) ∨ η2 (f) = f (η1) ∨ f (η2);

� [η1 ∧ ∨η2] (f) = η1 (f) ∧ η2 (f) = f (η1) ∧ f (η2);

� −η1 (f) = η1 (−f).

Neighborhood relations Each pixel ν is extremity of 6 edges; in Fig-
ure 1, the neighboring edges η of the central pixel appear as small (blue)
dots; this neighboring relation is written η/ν, meaning that ν is an extrem-
ity of the edge η. Symmetrically, each edge has two extremities; this relation
is written ν/η.

Each pixel ν is also summit to 6 adjacent triangles; the edges situated
opposite to the central vertex ν are illustrated as (blue) squares. So each
node has 6 opposing edges as neighbors; the corresponding neighborhood
relation is written η\ν. Symmetrically, each edge is common to two adjacent
triangles of the grid (consider in Figure 1, one of the edges marked by a
small blue dot). So each edge η has as neighbors two opposing summits of
triangles. This relation is written ν\η.

We now associate to each of these neighborhood relation an erosion and
its dual dilation.

Relation between vertices and adjacent edges Let f be a function of
Fun(ν,T ) and g be a function of Fun(η,T ) . The erosion εη/ν : Fun(ν,T )→
Fun(η,T ) applied to function f is defined by its value at the edge ηi :
ηiεη/νf =

∧
ηi/νj

f(νj) =
∧

ηi/νj

νjf .

Its dual operator, δη/ν : Fun(ν,T )→ Fun(η,T ) is the dilation: ηiδη/ν =∨
ηi/νj

νj . They are indeed dual as −ηiδη/ν = − ∨
ηi/νj

νj =
∧

ηi/νj

(−νj).

Its adjunct operator maps Fun(η,T ) into Fun(ν,T ) and uses the symmetrical
neighborhood relation ν/η:

νjδν/ηg =
∨

νj/ηi

g(ηi) =
∨

νj/ηi

ηig.
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νjεν/η and ηiδη/ν are indeed adjunct operators as
∀i : ηiδη/νf < ηig ⇔ ∀i :

∨
ηi/νj

νjf < ηig ⇔

∀i, j : νjf < ηig ⇔ ∀j : νjf <
∧

νj/ηi

ηig ⇔ ∀j : νjf < νjεν/ηg.

These four operators may be summarized in the following table, in which
each row represents 2 dual operators and each column two adjunct operators:

Fun(ν,T )→ Fun(η,T ) ηiεη/ν =
∧

ηi/νj

νj ηiδη/ν =
∨

ηi/νj

νj

Fun(η,T )→ Fun(ν,T ) νjδν/η =
∨

νj/ηi

ηi νjεν/η =
∧

νj/ηi

ηi

In addition we define as previously a dilation and its dual erosion, by
taking into account not only the adjacent edges for computing the value at
a node but also the node itself:

Fun(η ∪ ν,T )→ Fun(ν,T ) νj
︷︸︸︷
δν/η = νj ∨ νjδν/η νj

︷︸︸︷
εν/η = νj ∧ νjεν/η

The adjunct operators are defined as follows:

Fun(ν,T )→ Fun(η ∪ ν, T )
νj
︷︸︸︷
εη/ν = νj

ηi
︷︸︸︷
εη/ν = ηiεη/ν

νj
︷︸︸︷
δη/ν = νj

ηi
︷︸︸︷
δη/ν = ηiδη/ν

Relation between vertices and opposing edges Similar operators
may be based on the neighborhood relations between the nodes and the
edges which are in opposition to them, i.e., the neighborhood relations η\ν
and ν\η. These four operators may be summarized in the following table,
in which each row represents 2 dual operators and each column two adjunct
operators:

Fun(ν,T )→ Fun(η,T ) ηiεη\ν =
∧

ηi\νj
νj ηiδη\ν =

∨
ηi\νj

νj

Fun(η,T )→ Fun(ν,T ) νjδν\η =
∨

νj\ηi
ηi νjεν\η =

∧
νj\ηi

ηi

In addition we define as previously a dilation and its dual erosion, by
taking into account not only the opposing edges for computing the value at
a node but also the node itself:

Fun(η ∪ ν,T )→ Fun(ν,T ) νj
︷︸︸︷
δν\η = νj ∨ νjδν\η νj

︷︸︸︷
εν\η = νj ∧ νjεν\η

The corresponding adjunct operators are defined as follows:

Fun(ν,T )→ Fun(η ∪ ν, T )
νj
︷︸︸︷
εη\ν = νj

ηi
︷︸︸︷
εη\ν = ηiεη\ν

νj
︷︸︸︷
δη\ν = νj

ηi
︷︸︸︷
δη\ν = ηiδη\ν
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3.3 Reinterpretation of the micro-viscous operators
used in the bilevelings

The four operators used to characterize and to build the bilevelings can
be now reinterpreted in terms of adjunctions between the nodes and the
edges of the hexagonal grid:
�

∧
(q,s,p)=triangle

(gq ∨ gs) =
∧

νp\ηi
ηiδη/νg = νpεν\ηδη/νg;

�
∨

(q,s,p)=triangle

(gq ∧ gs) =
∨

νp\ηi
ηiεη/νg = νpδν\ηεη/νg;

� gp ∧
∧

(q,s,p)=triangle

(gq ∨ gs) = gp ∧
∧

νp\ηi
ηiδη/νg = νpg ∧ νpεν\ηδη/νg =

νp
︷︸︸︷
εν\η δη/νg;

� gp ∨
∨

(q,s,p)=triangle

(gq ∧ gs) = gp ∨
∨

νp\ηi
ηiεη/νg = νpg ∨ νpδν\ηεη/νg =

νp
︷︸︸︷
δν\η εη/νg.

Figure 2 presents a detail for a noisy version of the image “Barbara”
(Gaussian noise σ = 20, SNR(dB) = 20, 13). The marker function for
all the examples is an alternate sequential filter of size 4, giving a rough
approximation of structures to be preserved. We compare the results of 5
levelings: the standard flat leveling, the lambda leveling (λ = 1), the viscous
leveling (based on δγ and εϕ), a bileveling based on the micro-viscous op-

erators
︷︸︸︷
δν\η εη/ν and

︷︸︸︷
εν\η δη/ν , and finally a lambda bileveling (defined by

the microviscous-operators g∧
(
εν\ηδη/νg + λ

)
and g∨

(
δν\ηεη/νg − λ

)
). In

addition, the corresponding flat zones are given for each leveled image. It is
evident that viscous levelings and bilevelings lead to stronger detail simplifi-
cation and enlargement of (quasi-)flat zones, especially in noisy and texture
images like this example. It seems also that the micro-viscous bilevelings
preserve the localisation of the original contours better than the viscous
leveling. The micro-operations between vertices and edges, and edges and
vertices seem interesting to introduce the viscosity in levelings despite their
small size.

4. Micro-viscous pseudo-erosions and dilations,
derived operators

4.1 Pseudo-erosions and dilations

For an image f of Fun(ν,T ) the hexagonal unitary erosion εf : Fun(ν,T )→
Fun(ν,T ) (resp. dilation δf) is based on computing the infimum (resp.
supremum) of 6 nodes together with the center node in the hexagonal
neighborhood, i.e., νiεf =

∧
νj

f(νj) =
∧
νj

νjf . The unitary operation can
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Initial and Marker Images Standard Lev.

λ-Lev. Viscos. Lev. Micro-viscos. λ-Micro-viscos.

Bilev. Bilev.

Figure 2. Comparison of standard vs. viscous levelings and bilevelings and their
associated λ-flat zones (λ = 1).

be iterated n-times to build an operator of size n, i.e., [εf ]n. Similarly to
the bilevelings, the micro-viscous operators associated to the adjunctions
between the nodes and the edges can be used to introduce other morpho-
logical operators.

We propose two uncentered pseudo-erosions for the image f :

� ξν\η/νf = εν\ηδη/νf ,

� ξν/η\νf = εν/ηδη\νf ,

where ξν\η/ν , ξν/η\ν : Fun(ν,T ) → Fun(ν,T ). The corresponding uncen-
tered pseudo-dilations τν\η/νf and τν/η\νf are obtained by taking the dual
micro-operators. We denote by [ξν\η/νf ]n the pseudo-erosion of size n
obtained by iteration of n unitary operators. These operators are called
pseudo-erosions (resp. pseudo-dilations) in Fun(ν) because they are in-
creasing (as product of increasing operators) but they do not commute with
the infimum (resp. supremum) and the antiextensivity (resp. extensivitiy)
in ν is not guaranteed.

Using the micro-viscous operators which take into account the center
node during the operation between edges and nodes, it is also possible to
define two centered pseudo-erosions:

�
︷ ︸︸ ︷
ξν\η/ν f =

︷︸︸︷
εν\η δη/νf ,
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�
︷ ︸︸ ︷
ξν/η\ν f =

︷︸︸︷
εν/η δη\νf ,

and by duality are obtained the two respective centered pseudo-dilations:︷ ︸︸ ︷
τν\η/ν f and

︷ ︸︸ ︷
τν/η\ν f . The centered pseudo-erosions (resp. pseudo-dilations)

have the same properties as the uncentered pseudo-erosions (resp. pseudo-
dilations) but in addition they are antiextensive (resp. extensive) in ν. In

addition, both operators
︷ ︸︸ ︷
ξν\η/ν f and

︷ ︸︸ ︷
ξν/η\ν f are ≥ εf : centered pseudo-

erosions are weaker than standard erosions.

4.2 Pseudo-inverses and other evolved operators

To each operator defined above, one may associate its pseudo-inverse oper-
ator, obtained by concatenating in reverse order the adjunct operators:

� εν\ηδη/ν → εν/ηδη\ν ;

� δν\ηεη/ν → δν/ηεη\ν ;

�
︷︸︸︷
εν\η δη/ν → εν/η

︷︸︸︷
δη\ν = εν/ηδη\ν ;

�
︷︸︸︷
δν\η εη/ν → δν/η

︷︸︸︷
εη\ν = δν/ηεη\ν .

Concatenating such an operator with its pseudo-inverse produces for
instance εν/ηδη\νεν\ηδη/ν : its construction introduces the opening δη\νεν\η
within the closing εν/ηδη/ν .

This operator is increasing, being the product of increasing operators,
but it is not a filter as it is not idempotent. However it is an underfilter:

εν/ηδη\νεν\ηδη/νεν/ηδη\νεν\ηδη/ν ≤ εν/ηδη\νεν\ηδη\νεν\ηδη/ν
= εν/ηδη\νεν\ηδη/ν ,

since δη/νεν/η is antiextensive and δη\νεν\η is idempotent.

Similarly
︷︸︸︷
εν\η δη/νεν/ηδη\ν is an underfilter whereas δν\ηεη/νδν/ηεη\ν

and
︷︸︸︷
εν\η δη/νεν/ηδη\ν are overfilters.

Note that other operators can be defined as a product of unit pseudo-
erosions/dilations. For instance, a pseudo-opening can be defined as

τν\η/νξν\η/ν = δν\ηεη/νεν\ηδη/ν ,

the corresponding pseudo-closing is obtained as ξν\η/ντν\η/ν , and mutatis
mutandis other pseudo-openings and closings are obtained with the other
unitary micro-operations. Then, the product of pseudo-openings and clos-
ings leads to more evolved operators such as the pseudo-alternate sequential
filters (pseudo-ASF). A detailed study of the properties of these operators is
out of the scope of this paper but we would like to show a few examples. In
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Original image ε4 ASF 2 = ϕ2γ2ϕ1γ1

[ξν\η/ν ]4 [ξν/η\ν ]4 [

︷ ︸︸ ︷
ξν\η/ν ]4 [

︷ ︸︸ ︷
ξν/η\ν ]4

ASF2ξν\η/ν, τν\η/ν ASF2ξν/η\ν, τν/η\ν ASF2
︷ ︸︸ ︷
ξν\η/ν,

︷ ︸︸ ︷
τν\η/ν ASF2

︷ ︸︸ ︷
ξν/η\ν,

︷ ︸︸ ︷
τν/η\ν

Figure 3. Comparison of micro-viscous operators: uncentered and centered
pseudo-erosions of size 4 (second row) and uncentered and centered pseudo-
alternate sequential filters of size 2 (third row) using a detail of the image “Greek
Mosaic” (the original image, the standard hexagonal erosion of size 4 and the
standard hexagonal alternate sequential filter of size 4, are given in the first row).
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Figure 3 is given a comparison of the different micro-viscous pseudo-erosions
and pseudo-alternate sequential filters presented above on a detail of image
“Greek Mosaic”. These results of filtering are compared with correspond-
ing standard hexagonal operators. Both kinds of micro-viscous operators
ξν\η/ν and ξν/η\ν , and the derived pseudo-ASF, have more selective effects
than the standard hexagonal counterpart operators, and they result in a
regularization of contours. The effects of operators starting from opposing
edges η/ν are stronger than starting from adjacent edges η\ν: this is due
to the distance between the pair of nodes used to compute the edge value.
Moreover, note that the uncentered pseudo-erosions (and the derived oper-
ators) which are nor antiextensive neither extensive, perform very well for
detail simplification; in contrast the centered pseudo-erosions propagate the
isolated dark details.

f f ′

[δf ]4 − [εf ]4 [
︷ ︸︸ ︷
τν\η/ν f ]4 − [

︷ ︸︸ ︷
ξν/η\ν f ]4 [

︷ ︸︸ ︷
τν/η\ν f ]4 − [

︷ ︸︸ ︷
ξν/η\ν f ]4

[δf ′]4 − [εf ′]4 [
︷ ︸︸ ︷
τν\η/ν f

′]4 − [
︷ ︸︸ ︷
ξν/η\ν f

′]4 [
︷ ︸︸ ︷
τν/η\ν f

′]4 − [
︷ ︸︸ ︷
ξν/η\ν f

′]4

Figure 4. Comparison of standard vs. micro-viscous centered thick-gradient of
size 4 (negative of gradients are shown): Top, “Shuttle” original and corrupted
image (gaussian noise σ = 20, SNR(dB) = 19, 37); middle, thick gradients for
original image and down, thick gradients for noisy image.
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The properties of micro-viscous pseudo-erosions/dilations make them in-
teresting for instance to define gradients which are robust to noise. Figure 4
depicts a comparison of standard vs. micro-viscous centered thick-gradient
of size 4 for the image “Shuttle” and its corrupted version with gaussian
noise. The thick-gradient is defined as the difference between the (pseudo-)
dilation and the (pseudo-)erosion of size 4. As we can observe, the gradients
based on micro-viscous operators are much more robust to noise than the
standard ones. Moreover, the thickness of contours depends strongly on the
chosen couple of operations between the nodes and the edges.

5. Conclusions and perspectives

The hexagonal grid offers the highest degree of rotational symmetry and a
dense packing of pixels. The implementation of microviscous operators on
this grid is simple and elegant. However, it is not complicated to implement
similar operators on the square grid, and more generally on weighted graphs:
it is sufficient to define erosions and dilations between nodes, adjacent edges
and adjacent faces.

The extensions of this work will be in three directions: (i) explore
more completely all adjunctions between sub-elements of the hexagonal and
square grid, (ii) extend the method to various grids in 3D, (iii) extend the
method to arbitrary weighted neighborhood graphs.
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Abstract Database indexing and retrieval tools can enormously benefit from
the automatic detection and processing of textual data in images.
We present a new connected-component based method using mor-
phological numerical residues for automatic localization of text in
general image database. This technique tends to be robust to font,
scale and slant changes and detects superimposed as well as scene
text. The robustness of our approach is proven by the results in
ImagEval evaluation campaign, which database included old post-
cards, graphic schemes, stamps, indoor and outdoor scene images
and also images without any textual data. In spite of the wide va-
riety of texts and images our approach obtains interesting results
without parameter tuning for each image class.

Keywords: scene-text localization, connected component approach, ultimate
opening, ImagEval, indexing.

1. Introduction

Multimedia databases, both personal and professional, are developing at a
high rate and the need for automated management tools is now impera-
tive. The effort devoted by the research community to content-based image
indexing is also huge, but bridging the semantic gap is difficult: the low
level descriptors used for indexing (e.g., interest points, texture descriptors)
are not enough for an ergonomic manipulation of big and generic image
databases. The text present in a scene is usually linked to the semantic
context of the image and constitutes a relevant descriptor for content-based
image indexing.

Many algorithms focusing on scene text detection have been designed
in the past few years. The reader may refer to [8] and [10] for a complete
survey of text detection applications and systems. Basically, text localiza-
tion approaches can be sorted into two main categories. The first cate-
gory is texture based (which includes derivative and frequency approaches).
Jung [7] use as features the pixel values in a star-like pattern. Clark [3]
propose five localized features and combine them to get candidate text re-
gions, and claim that their approach is invariant to scale and orientation.
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The frequency domain is also used: Fourier transform [15], discrete cosine
transform [4], wavelet [17], multi-resolution edge detector [2]. These meth-
ods perform quite well for small characters, because small texts produce
strong texture response. Their extension to generic text imposes impor-
tant constraints on character alignment and/or color distribution together
with the introduction of a multiscale strategy. The second category is the
connected component (CC) approach. Some authors use color quantization
process [16], morphological operations [5] or split-and-merge algorithm [11]
to obtain candidate CCs. These methods could effectively deal with differ-
ent types of text but require too many heuristic rules such as aspect ratio
of characters, horizontal constraint.

Our work focuses on a very generic image database, as illustrated in Fig-
ure 7. It contains a wide variety of texts in terms of size, color, font (even
manuscript), complex background and also typical scene text deformations
due for example to perspective or non planar support. We will build our
system on the three following hypotheses: the text should be readable (con-
trasted), it should be composed of group of characters, and characters of
the same text zone should have similar geometric features.

Our system consists in 5 steps that will be described in corresponding
sections hereafter. In Section 2, the non linear scale-space approach based
on morphological numerical residues is presented. It allows us to extract
candidate CCs using contrast information. Section 3 introduces a two-step
filter which removes CCs that are certainly non text, detected on basic and
easily computed features. Section 4 gives features for discriminating text
CCs from non text ones. Then the Section 5 presents the learning strategy.
Finally an alignment and merging analysis to filter out the last remaining
non-text CCs is introduced in Section 6. Section 7 describes evaluation
issues and overall results in the ImagEval evaluation campaign. Section 8
is devoted to our conclusions and perspectives.

2. Ultimate opening

Beucher [1] has recently introduced a non linear scale-space based on mor-
phological numerical residues. It enables us to select CCs by trying to avoid
at least a priori on size information. Here is an overview of ultimate open-
ings.

2.1 Reminder on attribute opening and closing

Binary connected opening We define a 2D binary image as a subset of
Z2. A binary image X can be decomposed into its connected components
Ci ∈ C, where C is a connectivity class and i some index set I. We can
extract a connected component CC to which belongs an element x ∈ X by
using a binary connected opening Γx (see [14] for theoretical background).
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Criterion and trivial opening A trivial opening Γκ uses an increasing
criterion κ to accept or reject a connected set (that κ is increasing means
A satisfies κ which implies B satisfies κ for all B ⊇ A). Usually κ is in the
form

κ(CC) = (AttributeV alue(CC) ≥ λ), (1)

with AttributeValue(CC) some real-valued attribute of CCs (such as area,
height,. . . ) and λ the attribute threshold. The trivial opening Γκ on a CC
simply means that if κ(CC) = True, we keep CC otherwise we discard it.

Binary attribute opening A binary attribute opening in X consists in
a trivial opening of each CC. We can define it as follows:

Γκ(X) =
⋃
x∈X

Γκ(Γx(X)). (2)

Gray-scale case To apply the definitions to gray scale case we can use
the basic threshold decomposition process. Fast implementations can be
found in [13].

The top-hat associated with attribute opening or closing is a powerful
operator to select image structures but a priori knowledge of size of these
structures is required. Next we show the interest of some residual operators,
in particular ultimate opening/closing.

2.2 Definition of ultimate opening/closing

The ultimate opening θ was introduced by Beucher [1]. This residual oper-
ator analyses the evolution of each pixel x of a grayscale image I subject to
a family of openings of increasing sizes (with size parameter λ). The differ-
ence between two consecutive openings (named residue) is considered and
two significant pieces of information are kept for each pixel. Rθ(I) registers
the value of the maximal residue (contrast information) and qθ(I) registers
the size of the opening that produced the maximal residue (i.e., the size of
the structure that contains the considered pixel). Note that this maximum
may not be unique. In that case, as proposed by Beucher, we keep the
greatest λ value for which this maximum occurs.

The ultimate opening is then defined as follows:

Rθ(I) = sup(rλ(I)),∀λ ≥ 1 : with rλ(I) = γλ − γλ+1,
qθ(x) = max(λ) : λ ≥ 1, rλ(x) = Rθ(x) and > 0.

(3)

Now we denote νγ an ultimate opening linked with a family of morpho-
logical openings and υγ the ultimate closing defined by duality.

Figure 1 illustrates the action of υγ on a profile, here we have used
closings with a family of linear structuring elements of increasing size.
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Figure 1. Operator υγ . From left to right: profile I, Rθ and qθ.

2.3 Ultimate opening/closing and attribute

The definitions of νγ/ υγ using morphological opening (respectively closing)
could be extended by using attribute opening (respectively closing). We
denote νκ/ υκ these operators and the new definitions of Rθ and qθ are
obtained replacing γ by Γκ in Equation 3. We can re-use the Figure 1 to
illustrate the action of υκ, we just replace morphological closings by area
closings of increasing size.

2.4 Extracting CC using ultimate attribute closing

Different attributes may be considered for the ultimate opening. For text
detection, the height of the bounding box containing CCs is the most suited
one. The largest opening considered is λ equal to 1/3 of the image height
because 1) characters are rarely larger and 2) we avoid artifacts that usually
occur at the late steps of the ultimate opening.

The CCs are computed by thresholding the residual image Rθ. First a
global low threshold (value fixed at 8) is applied in order to remove really
low contrasted structures. Then, a local adaptive threshold is applied on
each CC. The aim is to separate CCs possibly merged due to the extremely
low threshold previously used. This local threshold is based on the mode of
Rθ in each CC. Since ultimate opening tends to give the same Rθ valuation
to all the pixels of a contrasted structure, it makes sense to use the Rθ mode.
A threshold of mode/2 is applied in each CC. See Figure 2 for an example.

Note that only dark CCs have been extracted. In order to detect also
light CCs, the same procedure should be applied to the inverse of the image.

Finally, note also that we only use luma information. ν may be applied
to some ”color gradient” in order to partially integrate colorimetric infor-
mation. Due too a significant number of very thin letters in the database
(particularly in the old postcard subset), we decide to stop going further.
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Figure 2. CCs extraction: From left to right and up to down: Original Image I,
Rθ(I) (Gamma Corrected γ = 3) and qθ(I) (randomized), detected CCs.

3. Coarse filtering

In the previous step a lot of CCs were obtained. Most of them do not corre-
spond to characters and can be removed by simple tests as those proposed
in this section.

Textured regions typically produce a lot of CCs. They deserve particular
attention or a lot of false positives may appear. Therefore we observed
the answer of texture to ultimate opening and developed a simple module
for texture removal. This module consists in counting the number of CCs
grouped by a unitary dilation of the initial CC set. If this number is high
(used value 500), the grouped CCs are removed.

A second simple consideration also leads to remove a great number of
CCs. Characters are supposed to be made of strokes of constant thickness.
We estimate the line thickness of each CC and we remove any CC whose
height is smaller than two times its thickness. The thickness is estimated
using the distance function in horizontal and vertical directions.

Figure 3 shows that most of non text CCs were successfully discarded
at the end of the two-step process.

4. Features to discriminate characters

The number of CCs was considerably reduced in the previous step. We
will now characterize the remaining ones in more details. We will classify
components in text/non text categories based on the following features.
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Figure 3. Coarse filtering. Left: result after removing grouped CCs. Right: result
after the second step.

Geometric features The simplest features we can consider for a CC
is the height (Hbb) and width (Wbb) of its bounding box, the area of the
CC (Acc), and the area of the bounding box (Abb). The inverse values of
(Hbb), (Wbb) and (Acc) are also introduced, allowing us to compute aspect
ratios. Some systems commonly use these features and their combinations
to discard non text CCs (especially for superimposed characters). In the
context of scene text their characterizing performances fall down. We will
combine these features, which assess the scale of the character, with more
discriminant features. 7 geometrical features are considered.

Stroke thickness estimation A character is supposed to be composed
of lines of constant thickness. This seems to be a key characteristic for
text CC discrimination. However its estimation is not so easy, this is why
several estimators are considered. We propose first to compute the max of
distance function inside CCs (Maxcc), which generally leads to thickness
overestimation because of stroke intersections. We also use run-length dis-
tribution inside CCs (as Ashida System in [12]), more precisely we compute
the distributions (line per line and column per column) of run-length inside
CC. Several parameters are selected from these distributions: mean, median
and variance of the RLE distribution (RLEMedX , RLEMedY , RLEMoyX ,
RLEMoyY , RLEV arX , RLEV arY ). RLE is generally sensitive to text defor-
mations.

Moreover, we consider the coherence of the stroke thickness. We com-
pute the distributions of differences (between consecutive lines or columns)
of run-length inside CCs. We keep the mean and variance of these distri-
butions (∆RLEMoyX , ∆RLEMoyY , ∆RLEV arX , ∆RLEV arY ). 11 features
estimating the stroke thickness and consistency are used altogether.

Shape regularity features Text CCs have more regular shapes than ar-
bitrary CCs. We propose to compute some shape parameters which express
this regularity. For example text CCs have a limited number of holes, rather
regular contours and important compactness. So to assess these character-



Scene text localization based on the ultimate opening 183

Table 1. Confusion table of our learning system.

GT
Detected

Characters No Characters

Characters 89.1 10.9

No Characters 9.7 90.3

istics, we propose the following features: Euler Number E, perimeter P ,
compacity (Acc/P

2) and complexity (P/Acc) (as [9]). The last three char-
acteristics are also computed after filling the holes of CCs because we think
that this transformation could be relevant to discriminate text from non
text CCs (which makes 7 shape regularity features).

Contrast We estimate the contrast of a CC as the Maximum Inter Class
Variance (M.V.I) in its bounding box. We include this feature because the
text is supposed to be contrasted in order to be readable. We also include
(M.V.I/Overall Variance) which is a normalized feature.

5. Machine learning

We use machine learning techniques in order to achieve the classification of
text/non text CCs base on the 27 features presented above. To this purpose
we use quadratic Linear Discriminant Analysis (LDA) [6], which attempts
to predict the classification as a linear combination of the selected features
and cross products.

The classifier was trained on 177000 CCs extracted from 350 images and
labeled by hand as text or no text. The classical cross-validation technique
has been used to compute the cost function and to evaluate the performances
of the designed classifier. The confusion table is shown in Table 1. A
misclassification rate of about 10 % is obtained for both text and no text
CCs.

Figure 4 presents typical classification results of the designed classifier.
CCs of Figure 3 (right) classified as text are shown in Figure 4 (top). Fig-
ure 4 (down) shows the result of coarse filtering (left) and the CCs classified
as text leading to false positives in the church image (see Figure 7).

6. Grouping characters in text zones

Text zones are rarely composed of a single character. This remark is often
used to reduce the number of false positives at the cost of a few false nega-
tives. A commonly accepted constraint is to impose at least 3 characters in
order to accept a text zone. We develop a two step alignment and merging
analysis.
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Figure 4. Machine Learning. Top: CCs of Figure 3 (right) classified as text.
Bottom left: result of the coarse filtering. Right: CCs classified as text.

Strong layout We start from the CCs classified as text by the learn-
ing stage and we merge CCs if they verify the following constraints (see
Figure 5):

� the difference of corresponding bounding boxes heights is smaller than
the smallest bounding box height (|H1 −H2| < min(H1, H2));

� the distance of the bounding boxes centers in the vertical direction is
less than 70% of the smallest bounding box height (∆Cy < 0.7min(H1,
H2));

� the distance of the bounding boxes centers in the horizontal direction
is less than the smallest bounding box height (∆X < min(H1, H2)).

Only groups of at least 3 characters are preserved.

Figure 5. Parameters used in the merging process.
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Relaxation of merging strategy The text zones detected in the pre-
vious step are considered as seeds and extended in the horizontal direction
(see Figure 6 (left)) by a certain amount (here 200 pixels). A new merging
process is applied in these extended areas with the following constraints:
1) the merging criteria are the same that those used for seed creation, 2)
groups of at least 2 CCs are accepted and 3) CCs classified as no text by
the learning approach take part in the process. If groups of at least 2 CCs
are found, they are added to the final detected box (see the ‘17’ string in
Figure 6 (right)). Thus groups of only 2 CCs can be detected, but only if
they are in the neighborhood of a seed. Since CCs classified as no text are
considered, some misclassification of the learning step are recovered.

Figure 6. Grouping strategy. Left: resulting seeds after the application of the
strong layout with extended boxes for the relaxation step. Right: result after
relaxation step.

Final Grouping The ImagEval committee established some rules in order
to define the ground truth (see www.imageval.org for details). We merge all
the boxes verifying the merging criterion defined by the committee. Finally,
given that we detect clear and dark text separately, we merge boxes if they
intersect.

7. Experimental results

7.1 Evaluation issues

The global database contains 500 images including old postcards, graphic
schemes, stamps, indoor and outdoor scene images and also images with-
out any textual data. Furthermore images can be grayscale or color. The
ground truth database was created by the evaluation committee and was
not known by the participants. The committee used the ICDAR1 metric for
performance evaluation (see [12]). This metric is based on the intersection
ratio between detected text zones and ground truth. If no text is detected

1International Conference on Document Analysis and Recognition

www.imageval.org
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for an image without textual information, both precision and recall are set
to 1. The results are given in Section 7.3.

7.2 Parameters of the system

Along the paper several parameters have been introduced. Given that the
ground truth was unknown, systematic optimization was not possible. All
these parameters have been empirically tuned in order to cope with the
huge variability of the blind test database. A second database with similar
characteristics has been provided for the official test. The robustness of our
method is proven by the results we have obtained (see section below).

Note that we provide simply an overall result. In fact it is difficult to
quantify the effects of each steps separately because our approach finds CCs,
then the ground truth is known at the bounding box level. Even if we have
CCs tagged as text, there is still a gap (known as the character restoration
step) before we could submit our CCs to an Optical Character Recognition
system.

7.3 Overall results

The results were given to the participants by the ImagEval evaluation com-
mittee. The database contains 500 images (190 old postcards, 206 color
images and 104 black and white images). Table 2 gives the precision, recall
and F-mean computed with the ICDAR performance metric [12].

Table 2. Overall Performance.

Precision Recall F-Mean

0.48 0.65 0.55

Table 3. Overall Performance ICDAR
dataset.

Precision Recall F-Mean

0.41 0.57 0.48

In Figure 7 the variability of the database and the visual quality of the
results can be observed. In general the results are satisfactory and the
proposed method seems to cope with the variability of text zones in scale
(Figures 7(e), 7(h)), font (Figure 7(d)), and slant (Figure 7(f)). Some false
positives are detected, for example in structured zones (such as barriers or
balcony handrails). Some false negatives are also present: the merging rules
do not take into account vertical text and therefore it is discarded. If the
characters are not correctly defined, as it is the case in the postal card, the
CC extraction step fails.

We also provide in Table 3, results from free ICDAR database2. Note
that we merge results on TrailTrain and TrialTest subset. All system param-

2Aviable at http://algoval.essex.ac.uk/icdar/Datasets.html sec: Robust Read-
ing and Text Locating

http://algoval.essex.ac.uk/icdar/Datasets.html
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Examples of detected text zones.

eters remain, except for the last merging step (i.e., Final Grouping). We
replace the merging criterion defined by ImagEval committee by a simple in-
clusion criterion due to a huge difference on annotation strategy (ImagEval
committee annotates at the sentence level whereas ICDAR committee an-
notates at the word level). No additional efforts were made to improve the
results.

8. Conclusions

The whole system has been empirically tuned for the extremely diverse Im-
agEval database without ground truth information. In spite of the wide
variety of text and images, a promising score is obtained for the whole
database. The ground truth is now available, and we are considering pa-
rameter optimization in a probabilistic framework. The strong point of our
system is the relative robustness against changes in scale, fonts, complex
backgrounds and typical deformations of scene text (perspective, non pla-
nar support). The system may be significantly improved for a restricted
application by modifying specifically the learning step. In future work we
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plan to integrate the qθ (the second piece of information provided by the
ultimate opening operator), an important source of information not used
yet, in the CC extraction step.
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Abstract Viscous closings have been presented at ISMM’02 as an efficient
tool for regularizing the watershed lines in gray-scale images. We
consider now the problem of reconnecting several edge portions of
a same object. In the binary case, this is very nicely solved via the
computation of the distance function to the grains: the downstream
of the saddle points reconnects the grains, and is known as the per-
ceptual graph. As a particular case, overlapping particles may be
separated by computing the watershed line of the inverse distance
function. This paper extends the approach to grey-tone images us-
ing the concept of viscous dilations. Finally, combinations of both
viscous dilations and viscous closings are proposed for segmenting
objects with dotted and irregular contours.

Keywords: morphological filtering, viscous closing, viscous dilation, crest line.

1. Introduction

Crest lines of numerical functions play a fundamental role in many image
analysis applications. In segmentation for example crest lines of gradient
images coincide with shapes edges. And there are many other situations
where crest lines are meaningful: road detection in air images, vessel ex-
traction in medical images or writing analysis... (see Figure 1).

There are two major difficulties when trying to detect crest lines in gray-
tone images. First, crest lines are generally not iso-level lines: the luminance
varies, the lines are dotted; a prior reconnection of the lines sections is
required before engaging their extraction. Second, when images are noisy
or fuzzy, crest lines are often irregular and a geometrical regularization is
necessary.

The problem of regularizing thin crest lines in gray-tone images has been
addressed in previous works [4–6, 8] and has led to the powerful concept of
viscous transformation.

What is the fundamental idea of the viscous transformations ? Basically,
morphological filtering is based on openings or closings. The shapes in im-
ages are simplified according to a structuring element having a predefined
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(a) (b) (c) (d)

Figure 1. Some applications where crest lines have to be detected on gray-tone
images. (a) Original gray-scale image. (b) its gradient. Crest lines of the gradient
image correspond to the shapes edges. (c) A problem of road detection in a
gray-tone air image. (d) A hand writing example (in a binary image).

shape and size. The filtering activity increases with the size of the structur-
ing element. In classical gray-tone morphology, the same transformation is
applied on all level sets of the function.

For different reasons, it is often necessary to adapt the regularization
to the local luminance information available in the images: structures of
high luminance are supposed to be perfectly known while structures of low
luminance require a higher amount of modeling. The idea of the viscous
transformations is to combine the effects of a whole family of closings (or
openings) of decreasing activity in such a way that low luminance areas are
severely smoothed whereas points of high luminance are left unchanged.

Two different combinations where proposed in [8] inspired by the behav-
ior of viscous fluids. The first mimics the propagation by an oil type fluid,
the second by a mercury type fluid. It has been proven in [8] that the two
models are equivalent for functions which are cylinders, i.e., functions made
of thin crest lines (of one pixel thick) and of null points.

In [5] viscous closings have been extended to any family of increasing
operators of decreasing activity, as for example families of dilations. The
present paper will show how dotted thin crest lines in gray-tone images may
be reconnected and at the same time smoothed using viscous transforma-
tions. As we will see, this idea is not completely new.

The questions we mentioned are completely classical in the binary case.
However, their resolution in the case of numerical functions raises some
difficulties. A binary example is presented in Figure 2. By closing, irregu-
lar portions of the curve are enlarged while linear ones are left unchanged.
A smoothed and thin version of the original curve is very easily obtained
by extracting the median axis of the closed set. In this example, the me-
dian axis is computed by successive morphological thinning. Of course, the
structuring element used must be homotopic [1, 7].

Independently of the smoothing, the question of the connection of the
different curve portions is very easily solved by the use of the distance
function.
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(a) (b) (c)

Figure 2. Regularization of a thin line by closing. (a) Original binary image. (b)
Result of a closing by a disk. (c) Extraction of the median axis by homotopic
thinning.

(a) (b) (c) (d) (e)

Figure 3. (a) Original binary image. (b) Distance map computed on a narrow
band. (c) Homotopic numerical thinning of the distance map. (d) Crest lines of
the thinned image. (e) Crest lines remaining after pruning.

(a) (b) (c) (d) (e) (f)

Figure 4. Standard morphological algorithm for connecting binary contours. (a)
Dotted square. (b) Inverse distance function. (c) Regional minima of the negative
distance function. (d) Watershed line of the inverse distance function. (e) Imposed
markers. (f) Watershed line associated with the predefined markers.

Let X represents a thin binary structure made of several connected com-
ponents and suppose that we want to join the components of X in order to
produce a unique thin connected set while minimizing the length of the final
structure. The standard method in the binary case consists in two steps:

� first, the computation of the distance of any point x of the space to
the set X. This step issue is the formation of a distance map fd:

fd(x) = d(x,X) = inf{d(x, y), y ∈ X}. (1)

Of course, fd(x) = 0 if x belongs to X. Note that the connected
components of X are the regional minima of fd.

� second, the extraction of the minimal paths in fd connecting the set
X. Or equivalently, detecting the saddle points and their downstream,
yielding the so-called perceptual graph [3], which can also be done
by extracting the most significant crest lines of the inverted distance
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function. As a particular case, overlapping particles may be separated
by computing the watershed line of the inverted distance function.

This very classical algorithm is illustrated in Figures 3 and 4. In practice,
only interesting crest lines are selected. The watershed transform associated
with a predefined set of markers is one of the most elegant solution for this
task (see Figure 4). In the example presented in Figure 3 however, the
standard algorithm has been modified: the distance map is computed in
a narrow band (of width 20 pixels); it is then thinned by an homotopic
numerical thinning [1, 7]. The regional minima being eliminated, the final
set results from a morphological pruning of the crest lines.

The purpose of the work presented in this paper is to extend the pro-
cedure developed for binary sets to gray-tone images. This will be possible
thanks to the viscous dilations. The general framework of viscous transfor-
mations being recalled in the next section, viscous dilations are then intro-
duced and their properties studied. Several examples are then presented for
illustrating the pertinence of the proposed method.

2. Viscous transforms

Viscous transformations were firstly introduced for regularizing the water-
shed transform but their applications field largely exceeds the strict segmen-
tation framework. What we discuss here was essentially already developed
in [8]. The current presentation is however notably different. In [8], only
viscous closings were studied; in the present paper, the concept is enlarged
to any increasing operator as suggested in [5].

Let us consider a family of morphological operators of increasing ac-
tivity. By morphological, we mean increasing operators. Let (Tn)n=0:N−1

denotes the family. Tn being increasing, it preserves the order between sets
or functions: f < g ⇒ Tn(f) < Tn(g).

Tn being of increasing activity means: if n > p, Tp(f) is closer to f than
Tn(f). If, in addition, the Tn are supposed to be extensive, this leads to:
Id = T0 < Tp < Tn

Well known examples of such families are the granulometries (by open-
ing or by closing) or the pyramid of dilations or erosions (associated with
homothetic convex structuring elements). In order to simplify the presen-
tation, we restrict ourselves to extensive operators (closings or dilations for
example); the case of anti-extensive operators is dual; the case of auto-dual
operators is more delicate and will not be treated here.

Rather than computing each filter resultant one by one as is the case in
granulometric analysis, the idea of the viscous transformations is to combine
the effects of the whole family of filters in a unique formulation. The image
points are not anymore identically processed. The filtering parameter n
is adapted to the local luminance so that regions with low luminance are
strongly smoothed whereas regions of high luminance are left unchanged.
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f −→ {χh(f)}h≥0

decomposition

‖ ↓ Id∨
h≥0 h.χh(f) ←− {χh(f)}h≥0

reconstruction

Figure 5. Level set decomposition and reconstruction of an upper semi-continuous
function

f −→ {χh(f)}h≥0

decomposition

T vN ↑ ↓ TN−h∨
h≥0 h.TN−h[χh(f)] ←− {TN−h[χh(f)]}h≥0

reconstruction

Figure 6. The oil model viscous transformation: each level set is processed inde-
pendently

The first solution consists in examining the function level set by level
set and in indexing the filtering parameter n to the level h: n = N − h for
example.

Let Xh(f) and χh(f) denote the level set of the function f at level h
and the associated indicatrix function:

Xh(f) = {x ∈ E, f(x) ≥ h} and χh(f) =

{
1 if x ∈ Xh(f)
0 otherwise.

(2)

The function f is supposed to be positive so h ≥ 0, and of course upper
semi-continuous so ∀h ≥ 0, Xh+1(f) ⊂ Xh(f), and

f =
∨
h≥0

h.χh(f), (3)

which means that f can be processed level set by level set if the process is
increasing (see Figure 5). As example, Tn being supposed to be increasing,
it satisfies:

Tn(f) =
∨
h≥0

h.Tn[χh(f)]. (4)

If now n depends of h (n = N − h), the level set decomposition leads to
the following definition (see Figure 6):

T vN (f) =
∨
h≥0

h.TN−h(χh(f)). (5)

T vN corresponds to the oil model described in [8]. For illustration, let
us consider a thin line presented in Figure 7. Tn being extensive, the thin
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(a) (b) (c) (d) (e) (f)

Figure 7. Viscous transformation (oil type). Tn correspond to closings; (a) f
is a thin angular line. (b)1.TN−1[χ1(f)] (c) 2.TN−2[χ2(f)] (d) 3.TN−3[χ3(f)] (e)
4.TN−4[χ4(f)] (f) T (f) =

∨
h≥0 h.TN−h[χh(f)].

(a) (b) (c) (d) (e) (f)

Figure 8. Viscous transformation (mercury type). (a) f (b) TN [f ] (c) TN−1[f +1]
(d) TN−2[f + 2] (e) TN−3[f + 3] (f) T (f) =

∧
h≥0 TN−h[f + h].

line is enlarged by Tn; the cone’s interior is smoothed by decreasing size
openings: it grows as a viscous lake does, if one interprets the altitude h as
a temperature and the filtering parameter (N − h) as a viscosity indicator.

Rather than indexing the filtering parameter n on the luminance h, it
can be more interesting to index it on the contrast. The reasoning leading
to the second viscous transformation model is detailed in [8]. It is inspired
from the behaviour of a mercury type of fluid:

T̃ vN (f) =
∧
h≥0

TN−h(f + h).

The mercury type viscous transformation behavior is illustrated on Fig-
ures 8 and 9. In both oil and mercury cases, the results of filters Tn when
n varies, are stacked. It has been proved in [8] that these two models are
equivalent in the case where the function is a set of cylinders on top of a
background of value 0.

3. Viscous openings and closings

As said previously, operators Tn may be any extensive morphological trans-
formation whose activity decreases with n and notably closings. As example,
viscous closings are defined as follow:

ϕvR0
(f) =

∨
h≥0

h.ϕR0−h(χh(f)) and ϕ̃vR0
(f) =

∧
k≥0

ϕR0−k(f + k), (6)

where R0 − h is the size of the structuring element.
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(a)

(b)

Figure 9. Difference between oil and mercury type of viscous dilation. (a) In the
first case (the oil type), details of high luminance are preserved. (b) In the second
type (the mercury type), the filtering activity is function of the contrast and not
of the luminance. Details of low contrast are dilated.

(a) (b) (c) (d) (e) (f) (g)

Figure 10. Viscous opening. (a) Original set. (b-f) Results of openings by disk of
decreasing size. (g) Result of the viscous opening. Details of the original shape
are associated with low levels and coarse descriptions to high levels.

The viscous opening’s expressions are derived by duality. However, the
formulation is simpler in the mercury case than in the oil case. In the
mercury case, it expresses as follow:

Γ̃vR0
(f) =

∨
k≥0

γR0−k(f − k). (7)

Let us now examine what kind of images are build via viscous openings.
The Figures 10 and 11 illustrate viscous openings behavior. In the case of
the set presented in Figure 10, oil and mercury models are equivalent. The
example of Figure 11 illustrates the openings granulometric property [2]:
details and coarse shapes are represented at opposite granulometric scales.
The viscous transform gathers the entire granulometric information in a
unique formulation where coarse sets and details are stacked: due to the
size-brightness correlation, details of shapes of low luminance are lost; the
luminance of the smallest shapes is lowered. Viscous closings have a dual
effect on crest lines as illustrated in Figures 12 and 13. After a viscous or
non viscous closing, a thin line is very simply restored by thinning.
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(a) (b) (c)

Figure 11. Effect of the viscous opening. (a) Original image of bubbles. (b)
Result of a standard opening by a Euclidian disk of size 20. (c) Result of a
viscous opening of size 20. Here, the mercury model is chosen since the image is
made of catchment basins located at different altitudes.

4. The viscous dilations

We arrive now at the heart of the paper: the relation between distance
maps and viscous transforms and their use for reconnecting structures in
gray-tone images.

Let us consider a binary set X in a space E. We want to compute the
Euclidean distance from any point x ∈ E to X. When restricting ourselves
to the discrete case, the distance map (also called distance function) can
easily be computed via erosions by disks of increasing size. And conversely,
the negative distance map is computed via dilations of increasing size. Let
δn denote the dilation by an Euclidean disk of radius n. Any point belonging
to the dilated set δn(X) is at a distance lower or equal to n from X:

x ∈ δn(X)⇔ d(x,X) ≤ n. (8)

Considering functions rather than sets:

δn(χ)(x) = 1⇔ d(x,X) ≤ n, (9)

where ∀x ∈ E, χ(x) = 1 if x ∈ X and χ(x) = 0 otherwise. χ is nothing but
the numerical function of value 0 or 1 defined on the space E and associated
with the binary set X.

The computation of the distance map in a narrow band of size N − 1
around X involves the partial sum:

N−1∑
n=0

δn(χ) with

N−1∑
n=0

δn(χ)(x) =

 N if x ∈ X,
N − n if n− 1 < d(x,X) ≤ n,
0 if d(x,X) > N − 1.

(10)

The points of the set X form the crest lines of the negative distance
function. Moreover the operator

∑N−1
n=0 δn(χ) is nothing but a viscous dila-

tion. Indeed, the sets δn(X) are nested: X = δ0(X) ⊂ ... ⊂ δn(X) ⊂ ... ⊂
δN−1(X). Points belonging to δn(X) \ δn−1(X) are at distance n from X.
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(a) (b) (c) (d) (e)

Figure 12. (a) Original image. (b) Its morphological gradient. (c) The homotopic
thinning of the gradient. (d) Standard closing of the gradient. (e) Homotopic
thinning of (d)

(a) (b) (c) (d)

Figure 13. Effect of the viscous closings on the gradient image. (a) Mercury
model. (b) Oil model. (c-d) Homotopic thinning of (a-b). Note that, only the oil
model preserves the crest lines of low contrast.

Instead of summing the dilated sets, the distance function can be computed
by translating and superposing the dilated sets:

N−1∑
n=0

δn(χ) =

N∨
n=1

n.δN−n(χ) =

N∨
n=0

n.δN−n(χ), (11)

where n.χ corresponds to the set X represented with the luminance n.
Suppose now that the set X is replaced by a cylinder of high N and let

f denote this function. All level sets Xh(f) are identical if 0 ≤ h ≤ N and
empty for h > N . This example allows to rewrite the precedent formulation
for functions as follow:

∨
h≥0

h.δN−h(χh(f)). (12)

This expression as to be compared to the oil type viscous transforma-
tions:

T vN (f) =
∨
h≥0

h.TN−h(χh(f)). (13)
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Figure 14. Principle of the viscous dilation (oil type of fluid). The original function
level sets are dilated then stacked. The viscous dilation results from a supremum.

Figure 15. Viscous dilation computation (case of a mercury type of fluid). The
original function is shifted then dilated. The original dilation results from an
infimum.

Figure 16. Effect of the viscous dilations on walls of different altitudes (case of a
oil type of fluid).

The similitude is illustrated in Figure 14: dilations of decreasing activ-
ity are progressively stacked as it was the case for the oil model viscous
transformations. As a consequence, distance functions may be interpreted
as viscous transformations associated with dilations of decreasing activity.
We will call this transformation viscous dilation.

By analogy with viscous closings two viscous dilations (inspired from the
oil and the mercury models) may be defined:

δv(f) =
∨
h≥0

h.δN−h(χh(f)) and δ̃v(f) =
∧
h≥0

δN−h(f + h). (14)

These transformations are illustrated on Figures 14, 15 and 16.
Of course, these transforms are equivalent to the sum

∑N−1
n=0 δn(f) for

binary functions but the three transformations differ in the case of gray-scale
functions.

As an illustration, the viscous transformations have been tested on gray-
scale images: in Figure 17, the goal is the segmentation of the bird.

The bird is first roughly localized. Then, the gradient norm of the orig-
inal function is computed. For reference, we present the segmentation ob-
tained by computing the watershed transform directly on the original gradi-
ent image. A more robust segmentation can be obtained if a viscous dilation
is applied on the gradient before computing the watershed transform. And
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(a) (b) (c) (d) (e)

Figure 17. (a) Original image. (b) Gradient image. (c) Associated watershed
transform. (d) Viscous dilation of the gradient image. (e)Associated viscous
watershed transform (watershed computed after viscous closing of the relief).

a more regularized solution is obtained if, in addition to the viscous di-
lation, the standard watershed is replaced by the viscous watershed. We
recall that the viscous watershed is a standard watershed computed after a
viscous closing of the relief.

Another example is presented on Figure 18. The original image is
first thinned, then a viscous dilation is computed and the derived image
is thinned. So, one can observe how crest lines are connected. The re-
sult obtained via oil and mercury types of viscosity are compared. Lastly,
watersheds are computed and compared.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 18. (a) Original image. (b) Markers. (c) Thinned original image. (d)
Watershed segmentation. (e) Viscous dilation of the thinned original image (oil
model). (f) Thinning of the result of the viscous dilation. (g) Watershed segmen-
tation. (h-j) The same than (e-g) using the mercury model.

The viscous dilation allows to reconnect disconnected contours portions
while viscous closings have a regularization effect. It is possible to combine
the advantage of both dilations and closings by considering the family of
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the closing dilated sets. For the “oi” model, it expresses as:∨
h≥0

ϕr(h)δr(h)(h.χh(f)).

5. Conclusion

Viscous transformations appear to be extensions to grey-tone functions of
distance functions or opening function of binary sets (sum of dilations or
openings of increasing size). As distance functions of binary sets are useful
for connecting binary dots or separating particles, viscous dilations are use-
ful for filling missing gaps in grey-tone contours. They may be used besides
or in conjunction with viscous closings in order not only to fill in gaps but
also to regularize the contours of gray-tone images. In a next paper we will
further study the properties of these transformations.
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Abstract Image interpolation is an important operation in some image analy-
sis and processing applications. This paper describes a region-based
interpolation method for mosaic images. It is an extension of a pre-
viously presented interpolation technique based on morphological
operations for binary images. Even though the principles used in
this method are similar to those used in the technique for binary
images, there are some substantial differences, pointed out in this
paper, due the nature of images treated. Some experimental results
are provided.

Keywords: mathematical morphology, image processing, image analysis, inter-
polation, mosaic, median set.

1. Introduction

Image interpolation is necessary in some image processing applications.
Methods for image interpolation construct new images from a set of known
ones, and they permit to increase the practical resolution of data. However,
it should be stated that the interpolated images are obtained from the input
images and depend completely on them.

Mathematical morphology [5, 16, 17, 20] techniques have been used to
design several interpolation methods [1–4, 7–15, 18, 24] that deal with the
shapes of the objects to be interpolated. In this paper, we are especially
interested in morphological interpolation for mosaic images [10–12,24].

The interpolation method for mosaics described in this paper is mor-
phological as well. The principles used are similar to those used in an
interpolation technique for binary images presented in [21–23]. These basic
principles are two: an inclusion property and the utilization of the median
set as interpolator [19]. Despite such similarities, the nature of the treated
images make it necessary to treat some additional aspects, which are pointed
out in the paper.

The proposed method is region-based. In this work, the input images are
2D mosaic images, i.e., 2D gray-level segmented images that are composed
of piecewise-constant regions.
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This paper is organized as follows. Section 2 presents a brief summary of
the previously presented interpolation technique. Section 3 presents an ex-
tension of this technique in order to treat the so-called border images. Char-
acteristics and technical details of this region-based interpolation method
are described in Section 4. Some experimental results are provided in Sec-
tion 5. Conclusions are commented in Section 6.

2. A brief summary of an interpolation technique for
binary images

The technique reported in this paper is based on a previous work of ours
applied to binary images [21–23]. It will be briefly described in this section.

2.1 Inclusion property

Our technique is based on an inclusion property that establishes a rela-
tionship which we think can greatly facilitate and improve the results of
interpolation methods for binary images. It establishes the recursive inter-
polation of shapes with internal structures (pores and grains).

Formally, if Ai and Bi are two sets of input slice 1, such that Bi ⊂ Ai,
and Aj and Bj are two sets of input slice 2, such that Bj ⊂ Aj , and we
want to interpolate Ai with Aj , and Bi with Bj , then the following condition
should be satisfied:

Inter(Ai \Bi, Aj \Bj) = Inter(Ai, Aj) \ Inter(Bi, Bj), (1)

“Inter” corresponds to the interpolation computation. The arguments of
Inter are the two images to be interpolated and its result is the interpolated
one. Figure 1 illustrates inclusion property: Figure 1(b) is equal to Figure
1(e) minus Figure 1(h).

2.2 Binary image interpolation algorithm

In the algorithm for interpolating binary images [21–23], we can distinguish
three main sections: (1) separation of outer CCs from each slice, (2) match-
ing of CCs (one from input slice 1 and another from input slice 2), and (3)
interpolation of matched CCs. Note that in this technique CC refers to a
connected component, and it can denote a grain or a hole.

In the first step, the outer filled CCs of the input slices are identified and
separated. The outer filled CCs are the filled CCs surrounded by the back-
ground pixels that touch the border of the image. Then, in the matching
step, the method establishes correspondences between CCs from the differ-
ent slices. Those CCs that match will be aligned in order to overlap them
and, after that, interpolated using a median set computation.

A detailed description of the algorithm pseudo-code for interpolating
binary images can be found in [22].
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(a) Input set 1 (b) Interpolated set (c) Input set 2

(d) Filled grain 1 (e) Interpolated filled grain (f) Filled grain 2

(g) Hole 1 (h) Interpolated hole (i) Hole 2

Figure 1. Inclusion property example. Part (d) is the filled grain of part (a).
Similarly, part (f) is the filled grain of part (c). Parts (g) and (i) are the holes of,
respectively, parts (a) and (c).

3. Treatment of border regions in mosaic images

In the first step of the mosaic interpolation method, regions of connected
pixels with the same gray-level are extracted from the pair of input slices
and are converted to binary images. Some of the extracted regions touch
the border of the images. These regions pose a distinctive problem that
must be treated and satisfactorily solved. Next section describes how our
technique deals with it. It should pointed out that this issue was not treated
in [21–23]).

3.1 Classification of border images

A “binary border image” is an image that has a CC that touches its border.
In formal terms, let I and X represent, respectively, a binary image and a
connected component (clearly, X ⊆ I). If ∂I denotes the set of border

(a) ∂A1 (b) ∂A2 (c) ∂A3 (d) ∂A4

Figure 2. Border test images.

points of image I (i.e., if the image is N ×M , its border pixels are those
located at row 0, row (N − 1), column 0 and column (M − 1)), then I is a
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binary border image if ∂I ∩X 6= ∅. Figure 4 illustrates several examples of
such images1.

BORDERCLASS (X:Slice):integer {
type = 0;
IF numberOfCC (XC) > 1

type = 8;
ELSE

FOR i = 1 TO 4
IF | ∂Ai ∩X |=| ∂Ai |

type = type + 2;
ELSEIF | ∂Ai ∩X |6= 0

type = type + 1;
RETURN (type);
}

Figure 3. Classification function.

Border CCs are detected and processed by defining four test images,
called ∂A1, ∂A2, ∂A3 and ∂A4. These images are illustrated in Figure 2,
and they are composed of a line located at one of the four image borders
(up, right, down or left).

The classification of border images is performed by a function described
in Figure 3. It consists in intersecting the border and test images. In the
classification function in Figure 3, the notation | Y | denotes the cardinal of
Y , i.e., the number of pixels of set Y . If X touches all the border ∂Ai, the
“type” variable is incremented by 2; if X touches partially the border ∂Ai,
“type” is incremented by 1. This is computed for each border. All types
of border images are displayed in Figure 4. Note that Type 3 and Type 5
are not possible. Also, note that Type 0 (not illustrated in Figure 4) is a
non-border image. We have arbitrarily defined as Type 8 the case in which
a border CC touches more than one of the border test images ∂Ai and has
an intersection with ∪i(∂Ai ∩X), i ∈ {1, ..., 4}, that is not a connected set.

(a) Type 1 (b) Type 2 (c) Type 4 (d) Type 6 (e) Type 7 (f) Type 8

Figure 4. Border images classification.

1Images are surrounded by a gray-frame in order to distinguish the boundaries of the
border CCs. Sets and CCs appear in white in this paper.
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3.2 Interpolation of border images

Border CCs detected according to the procedure described in the last section
should be interpolated. The interpolation of border CCs is described in the
following. Several cases are distinguished. (Note: the region border type is
used in case 4.) Let X1 and X2 be CCs in two different slices:

1. If X1 and X2 are border CCs, such that X1 ∩X2 6= ∅ then interpolate
with X1 and X2 in their original location (without alignment). Fig-
ure 5 illustrates an example of this situation. Input images are the
first and the last one.

Figure 5. Interpolation between border images with non-empty intersection.

2. If just X1 or X2 is a border CC and if X1 ∩X2 6= ∅ then interpolate
with X1 and X2 in their original location. In Figure 6 is illustrated
an example of this situation.

Figure 6. Interpolation between a border image and non-border image with non-
empty intersection.

3. If eitherX1 orX2 is a border CC andX1∩X2 = ∅ but δλ1
(X1)∩X2 6= ∅

or X1∩δλ2
(X2) 6= ∅ (i.e., these CCs satisfies a proximity test (see later

Section 4.2) and are considered a matched pair), then interpolate X1

and X2 normally. Figure 7 illustrates an example of this case.

Figure 7. Interpolation between a border image and non border image with empty
intersection.

4. In this case, either X1 or X2 is the empty set (i.e., it is non-existent).
Let us suppose that X2 is the empty set, so that X1 vanishes from slide
1 to slide 2. This is dealt in [21–23] with the so-called “artificial” CCs,
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so that an interpolation is performed between X1 and an artificial
point or line in slide 2. Figure 8 displays several cases of artificial
CCs for different types of border CCs. (That is, in this case, the
border region classification described in Section 3.1 is employed.) For
example, in Figure 8, the Type 2 case uses as artificial CC a point
(Figure 8(b)), and the Type 1 case employs a line at the bottom
(Figure 8(a)).

(a) Type 1 (b) Type 2

(c) Type 4 (d) Type 6

(e) Type 7 (f) Type 8

Figure 8. Artificial CCs to interpolate isolated border CCs: (a) X ∩ (
⋃4
k=1 ∂Ak),

(b) X ∩ ((∂A1∩∂A2)∪ (∂A2∩∂A3)∪ (∂A3∩∂A4)∪ (∂A4∩∂A1)), (c), (d) and (e)⋃4
k=1 X ∩ ∂Ak, if X ∩ ∂Ak = ∂Ak, (f) Thinning(A). In each case, the left image

is X1, the middle image is the artificial CC, and the right image is the interpolated
result.

4. Interpolation of mosaic images

Mosaics are the gray-level images better suited to be treated by a region-
based interpolation technique. Morphological interpolation for mosaic im-
ages is a recent subject. In the literature, the treatment of shapes in region-
based interpolation problems have been frequently involved a conversion to
binary images as strategy to treat shapes. In particular, binary morpho-
logical skeletons are used in [24] to interpolate shapes of regions. On the
other hand, [11,12] describes a morphological mosaic interpolation based on
the distance function calculation. This technique incorporates affine trans-
formations in order to align matched regions (distance functions should be
applied to non-empty intersected regions).

The general algorithm of ours region-based interpolation method is dis-
played in Figure 9. The algorithm is divided in 3 main parts: (1) detection
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and separation of regions in each slice, (2) matching and interpolation be-
tween regions, and (3) final adjustment. Note that these three steps are
not exactly identical to the three steps of the binary image interpolation
outlined in Section 2; the matching and interpolation stages have been in-
tegrated, and the final adjustment step is new (it was not necessary for the
binary image case). The next sections describe these parts of the algorithm.

4.1 Region separation

In mosaics, a region corresponds to a set of connected pixels with the same
gray-value. In the first step of our algorithm, step (1) in Figure 9, regions
are extracted and stored as binary images. The gray-level value for each
region is also stored, as well as the hierarchical level that corresponds to
the region in a tree structure that is built. A simple mosaic and its regions
structure is displayed in Figure 10. Figure 10(a) is the input mosaic, Fig-
ures 10(d) and 10(e) are two regions with gray-level value equal to 27, and
Figures 10(f) to 10(h) are regions with gray-level values equal to 193, 130
and 93, respectively. Figures 10(b) and 10(c) illustrate the structure of the
mosaic and the hierarchical region-based tree of the input image [6].

The first level is composed by all the regions which are directly or indi-
rectly adjacent to the border of the image; the next level includes regions
that belong to the internal structures of the regions in the first level in such
a way that they are directly or indirectly adjacent to these regions, and so
on.

This tree-based information was not necessary in binary images, because
the only structure inside a CC that could exist would be a hole or grain inside
(and not many regions).

4.2 Matching and interpolation

The objective of the matching step is to establish correspondences between
(a) each region in slice 1 and (b) zero or more regions in slice 2. Such a
number can be zero if no correspondence occurs. Regions to be matched
must have an identical gray-level value as a prerequisite. The matching step
corresponds to step (2) in the region-based interpolation algorithm shown
in Figure 9.

The criteria used in the matching step are the proximity test and the
minimal distances between their MSP2 points. The proximity test consists
in the computation of the proximity zone. The proximity zone of X is a
dilation of X with a disk-shaped structuring element of radius λX . X’s

2A filled CC, representing a filled region is reduced to a point using the Minimal
Skeleton by Pruning [20], i.e., its skeleton is reduced by pruning until a final point is
reached. For a filled CC definition see Section 2.2.
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INTERPOLATOR (S1, S2:Slice):Slice {
// (1) Detection and separation of regions in each slice
For each slice Si

Store region j from slice Si into vector element RSji
Compute and store the hierarchical level of RSji

// (2) Matching and Interpolation (Regions are processed by hierarchical level)
For each level k of the hierarchical region tree

For each region i in slice S1

For each region j in slice S2

If hierarchical levels of RSi1 and RSj2 are k
// Only regions with the same gray-level are processed

If graylevel of both RSi1 and RSj2 are equal

If RSi1 and RSj2 pass the proximity test
Establish matching between region i and region j

// If region i from slice 1 does not match any region in slice 2 or if region j from
// slice 2 does not match any region in slice 1, the next level is searched
For each region i in slice S1

For each region j in slice S2

If hierarchical level of RSi1 = k and hierarchical level of RSj2 = k + 1

or hierarchical level of RSi1 = k + 1 and hierarchical level of RSj2 = k

If graylevel of both RSi1 and RSj2 are equal

If RSi1 and RSj2 pass the proximity test
Establish matching between region i and region j

// If there exists multiple matching, only regions with minimal distance
// between them are kept
For each region i in slice S1

If multiple matching is detected for region i
Choose to match region k from slice S2 with minimal MSP-distance from region i

For each region j in slice S2

If multiple matching is detected for region j
Choose to match region k from slice S1 with minimal MSP-distance from region j

// Interpolation between matched regions is performed computing median sets.
For each region i in slice S1

For each region j in slice S2

If region RSi1 match with region RSj2
Compute the interpolated region Sp between RSi1 and RSj2 using median set

// Isolated regions are interpolated with artificial regions (see Figure 8)
For each region i in slice S1

If region RSi1 is isolated

Choose to match corresponding artificial region for region RSi1
Calculate interpolated region Sp between RSi1 and its artificial region

For each region j in slice S2

If region RSj2 is isolated

Choose to match corresponding artificial region for region RSj2
Calculate interpolated region Sp between RSj2 and its artificial region

// (3) Final adjustment

Compute overlapped regions ∪i=1,p−1 ∪j=i+1,p (Si ∩ Sj) and empty regions [∪i=1,pSi]
C

Flood overlapped and empty regions with a watershed procedure
}

Figure 9. General region-based interpolation algorithm.

radius is computed as λX = min{α : X ⊆ δα(MSPX)}, where MSPX is
the MSP of X.

If two regions X and Y from different slices match, i.e., δλX (X)∩Y 6= ∅
or X ∩ δλY (Y ) 6= ∅, the distance between MSPX and MSPY is stored.

Multiple matching can happen, that is, some regions can match with
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(a) Input mosaic (b) Structure (c) Region-based tree

(d) Region A (e) Region A (f) Region B (g) Region C (h) Region D

Figure 10. A mosaic divided in regions.

more than one region of the other slice. Sometimes, this kind of situations
produces a merged region. This situation is solved in the following manner:
let X be a region from slice 1 that match with n regions Y1, Y2, ..., Yn from
slice 2. We must choose Yk, such that,

Yk = min
1≤i≤n

{Yi,MSP distance(X,Yi)},

where MSP distance represent the Euclidean distance between the MSP
points of each input region. The rest of matched regions are rejected.

These criteria and procedures were already used in the interpolation
method for binary images [21–23] but, in the case of mosaics, we consider
also the hierarchical level of the regions. Particularly, two regions can match
if the difference between their hierarchical level is at most one level. This
condition is verified before the proximity test in the matching step. The
hierarchical level is also used to compute the median sets, i.e., when all the
regions at a certain hierarchical level are matched, the median sets between
them are computed. After that, correspondences between regions at the
next level are analyzed and so on.

Finally, isolated regions are treated. They correspond to regions that
do not match and are therefore interpolated with an artificial region whose
shape (a point or a line) depends on the position of the region (see examples
in Figure 8).

4.3 Final adjustment

This stage is necessary for mosaic image interpolation but not for the binary
image case (in fact, this stage was not present in our previous binary image
interpolation technique [21–23]). In mosaics, after the previous steps we
have a set of interpolated regions {Ri} that pose two problems: (a) ∪iRi
does not necessarily cover the whole image support (i.e., there are empty
spaces that do not belong to any Ri); and (b) in general, interpolated regions
can overlap (i.e., pixels can belong to more than one interpolated region).
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These problems are solved at step (3) of the general region-based inter-
polation algorithm shown in Figure 9. Pixels that belong to empty spaces
or to overlapped spaces must be assigned to one region. This is performed
by using a simple watershed procedure in this last part of the algorithm.
Particularly, the image to be flooded is the complement of the image consti-
tuted by the interior of ∪iRi minus the overlapping regions. Note also that
appropriate gray-level values must be used to label the interpolated regions.

5. Experimental results

This section discusses some experimental results of our method. We have
used synthetic images that permit to emphasize some relevant aspects of
our method.

Figure 11 illustrates a simple case with a human-like mosaic. Input slices
are the first and the last one. The body and the two background regions
of the images are treated as border regions. Note that the body is Type
8, the big background is Type 6 and the small background is Type 2. The
face, eyes and mouth regions are treated as CCs with inclusion relationships
using the hierarchical region-based tree.

Figure 11. Example of mosaic interpolation.

The example in Figure 12 shows a situation where there exist an isolated
region, e.g., the dark region situated at the bottom right of the image, which
vanishes through from the first to the last input image. A border region
(the white one at the upper left) that moves to the upper-left corner of the
image is also displayed in this sequence.

Figure 12. Example of mosaic interpolation.
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6. Conclusions

In this paper, we have presented a region-based interpolation method for
mosaic images. It is based on a previous interpolation technique of ours for
binary images. As is shown in the paper, even though the basic principles in
both techniques are similar, there exist some substantial differences between
both cases. For example, the matching and interpolation operations are
performed level by level of the hierarchical region-based tree that represents
the region structure of the image. The overall interpolation is achieved when
all levels have been processed.

Another important difference is that it is necessary a new final adjust-
ment step for mosaic interpolation. After regions have been interpolated,
there are generally pixels in the interpolated slice that do not belong to
any region. In addition, there can be overlapping between interpolated re-
gions. The last step of our interpolation algorithm for mosaics solve these
problems.
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Abstract This paper studies morphological connected operators. Particu-
larly, it focuses on an adjacency constraint, as well as on the so-
called set levelings. Two important findings are reported in this
work. First, the relationships between the so-called adjacency sta-
ble operators and set levelings are investigated, and an equivalence
is established. This is an important result about how these concepts
have been chronologically introduced, and it permits to apply some
properties to the related operator class. Second, the implications
and limits of a property about expressing certain connected oper-
ators as a sequential composition of an opening and a closing (and
vice-versa) based on markers are discussed. Then, a commutative
property for attribute alternated filters is presented.

Keywords: image processing, image analysis, mathematical morphology, con-
nected operator, adjacency stable operator, leveling.

1. Introduction

This paper investigates some aspects of morphological connected operators,
which preserve well shapes and do not introduce discontinuities.

It happens that usual morphological connected operators (such as those
composed by openings and closings) impose certain adjacency constraints
between the input and the output. This was previously researched, and the
so-called adjacency stable connected operator concept [6, 10, 11] was estab-
lished in the set or binary framework.

In addition, the so-called levelings [20–23] were defined in the non-binary
framework in such a way that constrain the output variations depending on
the input variations. Those levelings within the set or binary framework are
called set or binary levelings [22].

A question that naturally arises is whether there are relationships be-
tween adjacency stable connected operators and set levelings. As will be
shown later, this is one of the results that will be established in this work.
In scientific research, it is key being able to indicate how and when research
concepts have been developed and introduced. Besides, in the case where
such relationships exist, properties that are valid for one type of operators
could perhaps apply to the other related operator class.
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A second aspect researched in this paper is the possibility of expressing
certain connected operators as the sequential composition of an opening
and a closing (and vice-versa). Some clarifications about the implications,
and limits, of a previously presented result are provided. Furthermore, a
commutative property for attribute alternated filters will be presented.

Section 2 provides some general background. The adjacency stability
and leveling concepts are recalled in, respectively, Sections 3 and 4. The
relationships between adjacency stable connected operators and set levelings
are established in Section 5. The expression of certain connected operators
as sequential compositions of an opening and a closing is treated in Section 6.
Finally, a conclusion section ends the paper.

2. Background

2.1 General definitions
Mathematical morphology deals with the application of set theory concepts
to image processing and analysis, and it considers that images are composed
of geometrical shapes with intensity or multi-band profiles [25]. Some gen-
eral references are [1, 13,15,16,19,29–31,35].

A basic set of notions on morphological filtering can be the following.

� Mathematical morphology focuses on increasing mappings defined on
a complete lattice [31]. In a complete lattice there exists an order-
ing relation, and two basic operations called infimum and supremum
(denoted by

∧
and

∨
, respectively).

� A transformation ψ is increasing if and only if it preserves ordering.

� A transformation ψ is idempotent if and only if ψψ = ψ.

� A transformation ψ is a morphological filter if and only if it is increas-
ing and idempotent.

� An opening (denoted by γ) is an anti-extensive morphological filter.
Since γ is anti-extensive, we can say that γ ≤ id, where id symbolizes
the identity operator that leaves the input unchanged.

� A closing (denoted by ϕ) is an extensive morphological filter. Since ϕ
is extensive, we can say that ϕ ≥ id.

In the theoretical expressions in this paper, we will be working on the
lattice P(E), where E is a given set of points (the space) and P(E) denotes
the set of all subsets of E (i.e., P(E) = {A : A ⊆ E}). In other words, inputs
and outputs are supposed to be sets or, equivalently, binary functions. In
this lattice, the sup

∨
and the inf

∧
operations are, respectively, the set

union
⋃

and set intersection
⋂

operations, while the order relation is the
set inclusion relation ⊆. Even though we will work on the lattice P(E),
results are extendable to gray-level functions by means of the so called flat
operators [30,35].

Two morphological operators ψ1 and ψ2 are dual if ψ1 = {ψ2{, where {
symbolizes the complement operator.
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2.2 Some background on connectivity and connected
operators

Some references to the topic of connectivity and connected filtering are:
[2–5,7, 9–12,14,17,18,20–24,26–28,32–38].

Connectivity is established in [31, (pp. 51–57)] by means of the connected
class concept. A connected class C in P(E) is a subset of P(E) such that (a)
∅ ∈ C and for all x ∈ E, {x} ∈ C; and (b) for each family Ci in C, ∧i Ci 6= ∅
implies

∨
i Ci ∈ C. The subclass Cx that has all members of C that contain

x (i.e., Cx = {C ∈ C : x ∈ C}) leads to the definition of an opening γx called
point opening [31]. For all x ∈ E, A ∈ P (E),

γx(A) =
∨
{C : C ∈ Cx, C ≤ A}. (1)

The dual operation of γx is the closing ϕx that is equal to {γx{. If a
point x does not belong to a set A, i.e., it belongs to a pore of A, then we
can obtain such a pore with γx{ (or, equivalently, with {ϕx).

In sets (or, equivalently, binary images), the flat zone of a point (or
pixel) x is the grain or the pore (whichever is not empty) which x belongs
to. I.e., the flat zone of x in a set A is equal to: Fx(A) = γx(A)

∨
γx{(A).

(Note that either the grain or the pore of a point x is empty.) In the non-
binary case, the flat zones of a function are its piecewise-constant regions,
i.e., the set of connected sets with the same function value.

An operator ψ is connected [28, 34] if, for all A ∈ P (E), each flat zone
(grain or pore) of A is included in a flat zone (grain or pore) of ψ(A).

2.3 Connectivity requirement

A general requirement for the space connectivity is assumed in this work.
Particularly, the space connectivity is supposed to be a strong connectivity
(see [17,24]). The usual four- and eight-connectivities in connected subsets
of Z2 are cases of strong connectivities.

3. Adjacency stability

This section discusses and summarizes the adjacency stability concept for
connected operators, which appeared first in [11], and was further studied
in [6, 10]. A closely related concept was later discussed in [17].

Let us define the concept of adjacency between flat zones, which formal-
izes the intuitive notion of contiguity.

Definition 1. Two (disjoint) flat zones Fx(A) and Fy(A) in a space E
(endowed with γx, x ∈ E) are said to be adjacent if Fx(A)

∨
Fy(A) is a

connected set, i.e., if Fx(A)
∨

Fy(A) = γx(Fx(A)
∨

Fy(A)).

(Note that Fx(A) = γx(A)
∨
γx{(A).) The relationship of Definition 1 is

symmetric (and not reflexive). Definition 1 can be extended to sets: two
sets A and B are adjacent if some flat zone of A is adjacent to some flat
zone of B.
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(a) Input set (in dark) (b) AU Output (c) AS Output (d) AS Output

Figure 1. Adjacency stability example. Part (a) shows an input set A, and
parts (b), (c) and (d) display three possible outputs of connected operators.
Part (b) would be adjacency unstable: note that a pore of the input set A is
in a grain in (b) but is not surrounded by grains of A. This situation does not
happen in cases (c) and (d). (Note: “AU” refers to adjacency unstable, and “AS”
denotes adjacency stable.) (Note: the space is endowed with a usual four- or
eight-connectivity.)

The adjacent flat zones of a point x in an input set A, symbolized by
Dx(A), are the pores (if x ∈ A) or the grains (if x 6∈ A) that are adjacent
to Fx(A), i.e.,

Dx(A) =
∨
y{Fy(A) : y ∈ E,Fy(A)

∨
Fx(A) = γx(Fy(A)

∨
Fx(A)}.

The important concept of adjacency stability [6, 10, 11] is established
next. This requirement concerns how adjacent grains and pores are treated
by an operation.

Definition 2. Let E be a space endowed with γx, x ∈ E. An operator
ψ : P(E)⇒ P(E) is adjacency stable if, for all x ∈ E:

γx(id
∨
ψ) = γx

∨
γxψ. (2)

Note that γx commutes under the inf (γx(
∧
i ψi) =

∧
i γxψi) but not in

general under the sup.
The adjacency stability equation 2 treats grains and pores symmetrically.

The reason is that what matters is the switch from grain to pore and vice-
versa. We can state as well that the dual of an adjacency stable operator is
adjacency stable.

The grain-pore relationship is illustrated in Figure 1. The consequences
of adjacency stability on the relationships between the grains of an input
set A and the output ψ(A) are the following: the grains of ψ(A) are a union
of (a) grains of A, and (b) pores of A surrounded by grains in (a). For the
particular case in Figure 1(b), Figure 2 shows that the adjacency stability
equation does not hold for the point marked as x (this point is not the only
one). The adjacency stability equation must hold for all A ∈ P(E) and for
all x ∈ E.

Lemma 1 is useful to relate the input and the output.

Lemma 1. Let E be a space endowed with γx, x ∈ E. A connected operator
ψ : P(E)⇒ P(E) is adjacency stable if and only if, for all A ∈ P(E), ψ(A)
and A \ ψ(A) are not connected to each other (i.e., are not adjacent).
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x x

(a) Input set A (in dark) (b) ψ(A) (ψ is adjacency unstable)

x x

(c) γx(A)
∨
γxψ(A) (d) γx(id

∨
γxψ)(A)

Figure 2. Adjacency stability equation. Parts (a) and (b) display, respectively,
an input set A and the output ψ(A), where ψ is an adjacency unstable connected
operator. The adjacency stability equation does not hold: for the point x sig-
naled (among others), γx(A)

∨
γxψ(A) (part (c)) is not equal to γx(id

∨
γxψ)(A)

(part (d)).

Property 1. Extensive and anti-extensive mappings are adjacency stable.

Property 2. The class of adjacency stable connected operators is closed
under the sup, the inf and the sequential composition operations.

If ψ is an adjacency stable connected operator, then, for all A ∈ P(E):
(a) x 6∈ A, x ∈ ψ(A) ⇒ Dx(A) ≤ ψ(A); (b) x ∈ A, x 6∈ ψ(A) ⇒ Dx(A) ≤
{ψ(A).

4. Levelings and set levelings

A leveling [20–23] is defined next.

Definition 3. An image g is a leveling of an input image f if and only if:

∀ (p, q) neighboring pixels : gp > gq ⇒ fp ≥ gp and gq ≥ fq. (3)

The previous definition of leveling is that in [20, Definition 4 (p. 193)] [23,
Definition 2.2 (p. 4)]. A more general and complex definition is introduced
in [22, Definition 10 (p. 62)], but a leveling as established by Expression 3 is
also a leveling as defined in [22, Definition 10 (p. 62)]. Moreover, we focus
on set operators.

Set levelings are those defined in the set or binary framework. Expres-
sion 3 will be particularized for the set or binary case in Section 5.2.
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5. Relationships between adjacency stable connected
operators and set levelings

Both adjacency stable connected operators and levelings impose certain con-
straints on the input and output variations, which will analyzed next. Then,
the relationships between these types of operators will be discussed.

5.1 Adjacency stable connected operators: input/out-
put variations restriction

First, we will formalize the neighborhood relationship between two pixels
using γx. As in Section 4 (Definition 3), we will use the symbols p and q to
refer to a pair of pixels that are neighbors. Two pixels p and q are neighbors
to each other if and only if they satisfy

γp({p, q}) = γq({p, q}) = {p, q}. (4)

The next proposition, which states the restrictions imposed on the values
of neighboring pixels between an input I and the output I ′ of an adjacency
stable connected operator, follows directly from Definition 2.

Property 3. Let A be an input set. Let ψ : P(E)⇒ P(E) be an adjacency
stable connected operator. If p and q are neighbors to each other (i.e., p and
q satisfy equation 4), or if they belong to adjacent flat zones, the adjacency
stability of ψ implies the following restrictions between the input A and
output ψ(A) sets:

(a) γp(A) = γq(A) ⇒ γpψ(A) = γqψ(A),

(b) p ∈ A, q 6∈ A ⇒

 p ∈ ψ(A), q 6∈ ψ(A)
or

γpψ(A) = γqψ(A).

(5)

There is a case symmetric to (b) above (interchanging p and q in (b))
not shown.

The cases not covered in Expression 5 are: (i) p ∈ A, q 6∈ A and p 6∈
ψ(A), q ∈ ψ(A)); and (ii) p 6∈ A, q ∈ A and p ∈ ψ(A), q 6∈ ψ(A). (Cases (i)
and (ii) are symmetric to each other, interchanging p and q.) Clearly, these
cases do not satisfy Equation 2 of Definition 2. Let us prove that for one
case. We can prove that the case p 6∈ A, q ∈ A and p ∈ ψ(A), q 6∈ ψ(A))
does not satisfy Equation 2 . We have that:

� γp(id
∨
ψ)(A) = γp(A

∨
ψ(A)) = γpψ(A)

∨
γq(A),

� γp(A)
∨
γpψ(A) = γpψ(A),

and γpψ(A)
∨
γq(A) > γpψ(A), since q ∈ A, γq(A) 6= ∅, and γq(A) 6≤

γpψ(A).
We can straightforwardly extend Property 3 to binary functions (which

can be considered as equivalent to sets). Let us assume that the binary
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values are 0 and 1. Let I and I ′ be, respectively, an input image and the
output of an adjacency stable connected operator ψ (i.e., I ′ = ψ(I)).

Binary functions case: If p and q are neighbors to each other (or if
they belong to adjacent flat zones), then:

(a) Ip = Iq ⇒ I ′p = I ′q,

(b) Ip = 1, Iq = 0 ⇒


I ′p = 1, I ′q = 0

or
I ′p = I ′q.

(6)

Note: the case symmetric to (b) (interchanging p and q in (b)) is not
shown.

The cases ruled out are: (i) Ip = 1, Iq = 0, and I ′p = 0, I ′q = 1;
and (ii) Ip = 0, Iq = 1, and I ′p = 1, I ′q = 0. (Cases (i) and (ii) are
symmetric to each other, interchanging p and q.)

5.2 Set levelings: input/output variation restriction

Definition 3 can of course be applied to binary images (or, equivalently,
sets). If we particularize for binary images then we have the following,
concerning Expression 3. Similarly as in Section 5.1, I and I ′ denote the
input and output images (i.e., I and I ′ have been substituted for f and g,
respectively, in Expression 3). An inequality such as I ′p > I ′q can only occur
when there is a discontinuity where I ′p and I ′q are 1 and 0, respectively.
Then, Expression 3 can only be:

1 > 0 ⇒ 1 ≥ 1 and 0 ≥ 0, (7)

i.e., Ip has to be 1, and Iq must be 0.
Therefore, if I ′p = 1 and I ′q = 0, the case where Ip = 0 and Iq = 1 is

excluded.

5.3 Discussion
We can now precisely state the relationships between stable connected op-
erators and set levelings: (a) Both adjacent stable connected operators and
set levelings impose restrictions on the input/output variations. (b) The
imposed restrictions are identical in both cases: if I ′p = 1 and I ′q = 0, then
Ip and Iq must be 1 and 0, respectively.

Thus, the set leveling concept and the adjacency stable con-
nected operator concept are equivalent. The adjacency stable con-
nected operator notion [6, 10, 11] is prior in time to levelings [20, 21, 23]
[22].

A final question can arise: can the adjacency stable connected operator
concept be applied to a gray-level framework? The answer is affirmative,
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we can directly extend such input and output variation restrictions to flat
gray-level connected operators that commute with thresholding, where the
operator is level-by-level connected and where Equation 2 must hold for
all sections of the input and output gray-level functions. Let I and I ′ be,
respectively, an input image and the output of a flat gray-level adjacency
stable connected operator ψ (i.e., I ′ = ψ(I)).

Gray-level (non-binary) functions case: If p and q are neighbors to

each other (or if they belong to adjacent flat zones), then:

(a) Ip = Iq ⇒ I ′p = I ′q,

(b) Ip > Iq ⇒


I ′p > I ′q

or
I ′p = I ′q.

(8)

Note: the case symmetric to (b) is not shown.

The case ruled out is: Ip < Iq, and I ′p > I ′q (as well as the symmetric
one: Ip > Iq, and I ′p < I ′q). This case is also excluded by Expression 3
of levelings. Moreover, disregarding trivial cases (such as those where,
processing level by level, ψ(∅) = E or ψ(E) = ∅), in flat morphological
(increasing) connected operators the variation range of the output is
equal or smaller than that of the input. Otherwise, the flat zone
inclusion relationship of connected operators would not necessarily
hold between sections at same level of the input and output images.
For example, in the case where Ip > Iq and I ′p > I ′q, the next gradation
would exist : Ip ≥ I ′p > I ′q ≥ Iq.

Now that the equivalence of adjacency stable connected operators and set
levelings has been established, researchers know that the adjacency stable
connected operator properties also hold for (flat) levelings. Let us point
out that the properties included in Section 3 (Lemma 1 and Properties 1
and 2), altogether with the adjacency stability equation 2, are useful for
manipulating expressions composed of connected operators, especially when
they are also connected-component local (i.e., they treat grains or pores
independently from the rest) [6, 10, 11]. In fact, they will be employed in a
proof in the following section.

6. On commutative properties of open-close and
close-open filters for connected operators

In this section we will first comment on an interesting commutative property
that has been presented elsewhere, and on some of its implications and
limits. Afterwards, we will also present another commutative property that
is satisfied by certain alternated connected filters, particularly by attribute
alternated filters.
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6.1 Marker-based operators

Let us define the “‖” relationship presented in [33, Definition 7.3]:

Definition 4. Let A and B be, respectively, a grain (a connected set) and
a set. We say that A ‖ B if A and B have a non-empty intersection or are
adjacent.

Now, we are going to define two operators, γ and ϕ, based on makers
that are presented in [33, p. 176]. Besides one normal input set, those
operators use a second one, which is a marker set.

Definition 5. Let A and M be two sets. The connected operator γ of a
set A based on marker M , symbolized by γ(A,M), is defined as:

γ(A,M) =
⋃
{γx(A) : γx(A) ‖ M}. (9)

Note that Definition 5 does not define γ(A) but γ(A,M).

Definition 6. Let A and M be two sets. The connected operator ϕ of a
set A based on marker N , symbolized by ϕ(A,N), is defined as:

{[ϕ(A, {N)] =
⋃
{γx({A), x ∈ E : γx({A) ‖ N.} (10)

In [33], it is established that, under some connectivity considerations,
there exists a commutative property for γ and ϕ [33, Theorem 7.3]:

γ(ϕ(A, {N),M) = ϕ(γ(A,M), {N). (11)

It is indicated in [33] that γ(ϕ(A, {N),M) (or ϕ(γ(A,M), {N)) is a
leveling and that is a strong filter. Moreover, in [22,23], it is mentioned that
levelings are strong filters (see [23, Section 3.4 (p. 9)] and [22, Section 4.4.1
(p. 67)]), and the discussion refers to a commutative expression similar to
the aforementioned one. This should be clarified, because it seems there
could be some confusion about levelings (Definition 3), particularly about
whether all levelings can be formulated as sequential compositions of an
opening and a closing, and vice-versa.

There is an important remark, which concerns the main cause of pos-
sible misconceptions, to be made about Equation 11: the computation of
the markers is not considered. Thus, saying that an operation can be
expressed as in Equation 11 does not necessarily imply that such
an operation can be expressed as a sequential composition of an
opening and a closing, and vice-versa, when the marker computa-
tion is considered. For example, in γ(ϕ(A, {N),M), the marker M of γ is
not affected by the result of the previously applied ϕ; that is, the M marker
can be considered as an input. This is not how we usually think about
openings and closings. In fact, when the marker computation is adequately
considered, not all levelings (Definition 3) can be expressed as a sequential
composition of an opening and a closing, and vice-versa; and it would not be
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the case that all levelings are strong filters. (See [9] [8] for further discussion
about the strong property of connected alternated filters.)

Next section will present a commutative property for certain connected
filters that does not raise that objection but where the underlying marker
is, as usual, not considered fixed.

6.2 A commutative property

We present a commutative property for a certain type of connected alter-
nated filters, particularly for alternated attribute filters, which are strong
filters composed of an attribute opening [31, 34] [38] [35] and an attribute
closing. Area openings and closings are examples of attribute openings and
closings, respectively.

Let γ̃ and ϕ̃ denote, respectively an attribute opening and closing. In
the following, unlike in Equation 11, when we write ϕ̃γ̃ it is clear that the
criterion (and associated marker) of ϕ̃ is applied to the output computed
by the previous γ̃. We have the following property:

Property 4. An attribute alternated filter ϕ̃γ̃ can be expressed as a com-
mutative sequential composition of an opening and a closing as follows:

ϕ̃γ̃ = γ̃ (id
∨
ϕ̃γ̃) = (id

∨
ϕ̃γ̃) γ̃. (12)

Proof. There are two equalities to consider.

(a) Let A be a set. Since γ̃ is connected-component local we have γ̃ =∨
x γxγ̃ =

∨
x γ̃γx. Thus, γ̃(id

∨
ϕ̃γ̃)(A) =

∨
x γxγ̃(id

∨
ϕ̃γ̃)(A) =∨

x γ̃γx(id
∨
ϕ̃γ̃)(A). From Property 1 and Property 2, ϕ̃γ̃ is adjacency

stable, and, from Lemma 1, ϕ̃γ̃(A) and A \ ϕ̃γ̃(A) are not adjacent
[6, 10]. Then,

γ̃γx(id
∨
ϕ̃γ̃)(A) =

{
γ̃γx(A) = ∅, x ∈ A \ ϕ̃γ̃(A),
γ̃γxϕ̃γ̃(A), x ∈ ϕ̃γ̃(A).

(13)

Thus,
∨
x γ̃γxϕ̃γ̃ =

∨
x γxγ̃ϕ̃γ̃ = γ̃ϕ̃γ̃. Finally, γ̃ϕ̃γ̃ = ϕ̃γ̃ (since ϕ̃γ̃ ≤

γ̃ϕ̃ and γ̃ϕ̃γ̃ = ϕ̃γ̃ [28,34]).

(b) (id
∨
ϕ̃γ̃) γ̃ = γ̃

∨
ϕ̃γ̃γ̃ = γ̃

∨
ϕ̃γ̃ = ϕ̃γ̃.

Notes: (a) (id
∨
ϕ̃γ̃) is a closing (and different from ϕ̃). (b) Property 4

is different from [17, Proposition 10.2]. (c) This proof also provides an
example of using adjacent stable connected operators properties to manipu-
late expressions. (d) Concerning filter expressions and decompositions, see
also [7].

7. Conclusion

This paper has focused on connected morphological operators. First, the
relationship between adjacency stable connected operators and set levelings
has been investigated, and a close relationship, an equivalence, has been
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identified. This is important to establish how and when this concept has
been introduced, and to clarify its origin. In addition, properties satisfied
by one class of operators can be applied to the other equivalent one.

Second, this work has analyzed a commutative property previously pre-
sented, as well as some of its implications and limits. The paper has pre-
sented also a commutative property for attribute alternated filters, in which,
as is usually the case and unlike in the other commutative property ana-
lyzed, the underlying marker computation is taken into account.
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Abstract This paper focuses on a class of morphological filtering tools called
connected operators. These operators act by merging flat zones
that do not fulfill a given simplification criterion. This filtering
approach offers the advantage of simplifying the image, because
some flat zones are removed, as well as preserving contour infor-
mation, because the flat zones that are not removed are perfectly
preserved. However, for some applications, connected operators
present a drawback in the way they restore the areas where flat
zones have been merged. These areas may be perceptible in the fil-
tered image appearing as single flat zones inside smoothed regions
or across edges. To overcome such drawback, this paper proposes
a solution based on the use of image inpainting.

Keywords: connected operator, image inpainting.

1. Introduction

In the context of image segmentation or region-based image analysis, the
purpose of a filter is often to remove some image details that do not fulfill
a certain simplification criterion. Many classical image filtering strategies
are based on the use of a specific signal h(x), such as an impulse response
or a structuring element, which modifies the pixel values in a local window.
However, these filters introduce distortions in the output because the sig-
nal h(x) is not related at all with the input signal. A completely different
approach is taken by morphological connected operators [17]. These oper-
ators act directly on the partition of flat zones of the image by removing
and merging those flat zones that do not fulfill the simplification criterion.
Thanks to this filtering approach, connected operators cannot introduce any
contour distortion related to a specific signal and, as a consequence, they
are attractive in a large number of applications where the image has to be
simplified without loosing information about contours [5, 9, 11, 14–16, 18].
However, connected operators present a limitation in the way they restore
the areas where flat zones have been merged. These areas are always re-
stored as single flat zones that may be perceptible in the filtered image. The
basic idea presented in this paper is of removing the perceptual presence of
the areas where flat zones have been merged using image inpainting [3,10].
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Image inpainting is to restore missing or inaccessible image pixels in a plau-
sible way based upon the available information. The use of this technique
would allows to estimate the areas where flat zones have been merged as
natural extension of their surrounding.

The organization of the paper is as follows. The next section provides
an introduction to connected operators and analyzes the perceptual effect
of the restoring strategy. Section 3 is devoted to image inpainting and a
practical algorithm is described. In Section 4, the proposed technique is
presented and its structure is discussed. In Section 5, several examples are
reported and performances are evaluated. Finally, Section 6 is devoted to
the conclusions.

2. Connected operators

2.1 Construction strategies

Connected operators are morphological filtering tools that can simplify part
of the image content, while preserving the contours of the remaining parts
of the image. This property is a direct consequence of their definition: gray
level connected operators filter the image by removing and merging those flat
zones that do not fulfill a given simplification criterion. The most successful
strategies to construct connected operators rely on a reconstruction process
or on a region-tree pruning. The reconstruction process [5,11,17,18] is called
anti-extensive, extensive or self-dual, depending on the image components
it allows to simplify. Anti-extensive and extensive reconstruction processes
deal with either bright or dark image components respectively, whereas self-
dual reconstruction deals with all components in a symmetrical way. The
self-dual reconstruction [11], also called leveling, is defined as follows: if
u and v are two images (respectively called the reference and the marker
image), the self-dual reconstruction ρ of v with reference u is defined by:
ρ(v|u) = limn→∞ vn and vn = ε0(vn−1)

∨
[δ0(vn−1)

∧
u], where ε0 and δ0

represent respectively an erosion and a dilation with square or a cross of
3× 3, ∨ and ∧ the infimum and supremum and v0 = v.

An example of self-dual reconstruction is shown in Figure 1. In this
example, the marker image is constant everywhere except for two points
that mark a maximum and a minimum of the reference image. After recon-
struction, the output has only one maximum and one minimum and their
contours coincide with those of the reference signal.

In practice, useful connected operators are obtained by considering that
the marker v is a transformation Φ(u) of the input image. The trans-
formation Φ defines the simplification effect and the reconstruction process
restores the contour of the flat zones that have not been completely removed
by the simplification. As a result, most connected operators obtained by
reconstruction can be written as: ψ(u) = ρ(Φ(u) | u), where ρ represents
a generic reconstruction process. Examples of filtering effect include size
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Figure 1. Example of self-dual reconstruction.

oriented (resp. a contrast-oriented) simplification if Φ is an erosion or a
dilation with a structuring element (resp. a subtraction or an addition of a
constant gray level value).
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Figure 2. Max-tree processing of images.

Region-tree pruning [15, 16] strategies offer an alternative way to cre-
ate connected operators. The general approach involves three steps (Fig-
ure 2). The first step consists in creating the tree representation of the
image: the tree root represents the entire support of the image, the tree
nodes represent image regions and the tree branches represent the inclusion
relationships among the nodes. The second step is the filtering itself, which
analyzes each node and takes a decision on which node has to be preserved
and which has to be removed. Finally, the last step restores the filtered
image by transforming the pruned tree into a gray level image. Classical
trees suitable for connected operators are the Max-tree/Min-tree [16], the
Binary Partition Tree (BPT) [15] and the Component Tree [12]. The nodes
of a Max-tree (Min-tree) represent the connected components of level sets
an image is made of, and are obtained iteratively by thresholding the image
at all possible gray levels. The nodes of a BPT represent the regions that
can be obtained from an initial partition by merging neighboring regions fol-
lowing an homogeneity criterion until the tree root is obtained. The nodes



230 MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS

of a component tree represent connected components of upper- or lower
level sets with their holes filled, also called “shapes”, which are obtained
putting togheter bounded connected components of both upper and lower
level sets. The interest of the tree representation is in that the tree structure
is fixed and represented by the tree branches. As a consequence, sophisti-
cated pruning strategies can be designed allowing to deal in particular with
non-increasing criteria. Formally, a criterion { assessed on a region R is said
to be increasing if the following property holds: ∀R1 ⊆ R2, {(R1) ⊆ {(R2).
In the increasing case, there is a relation between the criterion value of a
node and that of its descendants in the sense that if a node has to be removed
all its descendants have also to be removed. In the case of non-increasing
criteria, this relation does not hold and this fact implies a lack of robustness
of the operator. Some practical rules have been reported in the literature to
deal with the non-increasing case. One strategy is to formulate the problem
as a dynamic programming issue and to solve it with the Viterbi algorithm
[15,16].

Summarizing, the region-tree pruning approach is conceptually more
complex than the reconstruction approach. However, it leads to a very
efficient implementation of connected operators. It allows dealing with non-
increasing criteria and provides more flexibility in the choice of the simpli-
fication criterion.

2.2 Perceptual analysis

Even if connected operators allow image simplification without introducing
distortion on the remaining contours, they may not perceptually remove the
presence of areas where flat zones have been merged. Figure 3 illustrates
this effect with a size-oriented connected operator: ψ(u) = ρ(ε(u) | u),
where ε is an erosion with a square structuring element of size 5× 5 (over a
512× 512 image). This operator is known as the opening by reconstruction
of erosion [18]. Its goal is to remove small maxima.

Flat zones corresponding to the writing
“MPEG4 WORLD” have been removed
and merged into a single one whose gray
level value depends on the surrounding flat
zones. However, the region of support, that
is the text, is still visible in the filtered im-
age. In some applications as segmentation
or editing, it is desirable to remove regions
from the original image without leaving
any perceptual information about them.

Figure 3. Drawback of con-
nected operators.

In the sequel, the use of inpainting to estimate the pixel values of areas
where flat zones have been merged is proposed and discussed.
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3. Image inpainting

3.1 A variational approach

In the field of image processing, the term inpainting refers to the task of
restoring the pixel values for a missing or consciously masked sub-region of
the image domain. The basic idea of the algorithms proposed in the lit-
erature [1–4, 6, 7, 10] is to restore the missing regions with the information
available from their surrounding. Depending on their goal and on the sur-
rounding information they use, available methods can be broadly classified
in structural or textural inpainting. Structural inpainting [2–4, 10] restores
the geometric structures of the image using contour information. Textural
inpainting [1,6,7] restores the texture of the image using patterns or texture
exemplars. Since the use of a connected operator guarantees that at least
the contour information is preserved, a structural inpainting algorithm has
been used in this work [2]. However, in principle, any state of art inpaint-
ing algorithm can be used. The authors formulate the inpainting as the
problem of restoring, in the regions of missing data, both the geometric and
the photometric information represented respectively by the level lines and
the gray level values. Let Ω be the region to be inpainted, and B a narrow
band of pixels surrounding Ω. In order to extrapolate the shape information
independently from the contrast, the image in Ω̃ = (Ω ∪ B) is decomposed
into level sets Uλ, which are inpainted individually. For each level set Uλ
the solution on Ω is obtained minimizing the following functional over Ω̃:

Eλ =

∫
Ω̃

|div(θ)|(a+ b|∇Uλ|)dx+ α

∫
Ω̃

(|∇Uλ| − θ · ∇Uλ)dx, (1)

where a, b and α are positive constants and ideally θ represents the normal
vector field to the level lines of Uλ, that is: θ = ∇Uλ

|∇Uλ| . This constraint is

expressed with the second integral term. The level set extrapolation is a
function of the geometric quantities that appear in the functional over Ω̃: the
curvature of level lines and the perimeter of the discontinuities represented
respectively by the quantities div(θ) and (a + b|∇Uλ|) in the first integral
term. Finally, the solution is obtained by stacking the extrapolated level
sets.

3.2 Optimization algorithm

Numerically, the minimization of the functional (1) is computed solving
the variational problem via an iterative algorithm based on the gradient
descent flow. Since the iteration number depends on the size of Ω and on
the homogeneity of the level lines in B, a termination criterion has to be
fixed. However, this aspect has not been addressed by the authors and is
often neglected in the literature. The solution used in this work has been
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of considering the variation of the energy as a function of the iteration
number and of fixing the termination criterion by a threshold on its slope.
In practice, when the local slope of the functional variation is sufficiently
close to 0, it is assumed that the algorithm has converged.

4. Proposed approach

In this section, a new filtering strategy allowing to overcome the drawback
of connected operators is proposed. The filtering process (Figure 4) involves
two major steps: simplification by a connected operator and restitution of
the perceptually most important removed flat zones by inpainting. The
intermediate step consists in computing the mask marking the regions to
be inpainted. The question that may arise now is to know which flat zones,
among the new ones created by the filtering process, need to be estimated
by inpainting since their are perceptible. The method used in this work is as
follows. First, the residue I3 is binarized with threshold 1. Second, the mask
obtained in this way is simplified by removing the connected components for
which the residue remains smaller than a fixed threshold. The value of this
second threshold guarantees the visibility of the simplification effect. In fact,
the intuition behind this solution is that there exists a relationship between
the perceptibility of the new flat zones and the visibility of the action of the
connected operator. Over the mask obtained after the binarization at two
levels (M1), a closing is applied to merge regions which are very closed to
each other (M2). This operation guarantees that the inpainting algorithm
could dispose of a band of at least tree pixels in order to compute geometric
features. When the boundary of a flat zone to be inpainted corresponds
to an object boundary in the original image, it is often surrounded by a
transition zone of at least one or two pixels. This transition zone may disturb
the process of capturing the geometry. To avoid this problem, before the
inpainting, the regions of the filtered image marked by the complementary
of the mask MC

2 are simplified using an opening by reconstruction of erosion
(structuring element of size 3× 3 or 5× 5), followed by its dual, the closing
by reconstruction of dilation.

After inpainting, both the simplified version of the band and the in-
painted regions marked by the mask are inserted in the image I2. In order
to copy also the simplified band, before of applying the toggle mapping, the
mask M2 is dilated of a size equal to the size of the band used by inpainting.
This strategy guarantees that inpainted areas will be perceived as a smooth
extension of the visual information contained in the band.

Figure 5 shows an example of the result obtained using the proposed
approach. First, the original image I1 is filtered using a size-oriented con-
nected operator (Figure 5(a)). Second, a mask, defining the perceptually
most important regions that have been removed by the connected operator,
is computed and the regions that are very close to each other are merged
by a closing. The resulting mask M2 is shown in Figure 5(b). Third, the
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Figure 4. Proposed filtering approach. I refers to an image.; M refers to a mask;
MC refers to the complement of M .

(a) Size operator (b) Inpainting mask (c) Proposed approach

Figure 5. Example of filtering with the size criterion.

filtered image I2 is smoothed in the areas surrounding the regions marked
by the mask using an opening by reconstruction followed by its dual, the
closing by reconstruction. Fourth, the regions of this smoothed image I4
marked by the mask M2 are inpainted. Finally, a toggle mapping copies the
regions estimated by inpainting, as well as their smooth bands in the im-
age I2. As can be noticed, the connected components marked by the mask
(Figure 5(b)), as for instance the writing and the legs of the dancer, visible
in Figure 5(a), are no longer perceived in Figure 5(c), since they have been
completely removed by inpainting.

5. Experimental results

5.1 Perceptual filtering examples

This section presents some results obtained using the proposed filtering
approach. A first example considering size simplification has been shown in
Section 4. The second example involves a contrast simplification.

The contrast simplification is obtained using a λ-max operator: ψ(u) =
ρ(u − c | u). This operator allows to remove all maxima (or minima) with
contrast inferior to λ. In this example, the effect of the contrast simplifi-
cation (with λ = 100) is specially visible in areas such as the writing “Wel-
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(a) Original image (b) Contrast simplification

(c) Inpainting mask (d) Proposed approach

Figure 6. Example of filtering with contrast criterion.

come to” and the muzzle of the fish (Figure 6(b)). However, these regions
are still perceptible. Instead, applying inpainting to the regions marked by
the mask (Figure 6(c)), the perceptual presence of these areas is removed
(Figure 6(d)).

The third example involves a motion criterion in image sequences [8].
Motion operator allows to remove from an image all objects that do not
undergo a given motion. In this example, the operator has been applied
to remove all moving objects from the image shown in Figure 7(a). In the
considered sequence, the perceptually most important moving object is the
dancer behind the two speaker. As can be observed in Figure 7(b), although
flat zones corresponding to the dancer have been removed, they appear in
the filtered image as a large flat zone inside a smoothed region. Using
inpainting to estimate pixel values in this area (Figure 7(c)), the perception
of this flat zone is completely removed (Figure 7(d)).

The last example involves an image obtained superimposing white lines
to the original image. The goal of this example is to use the original im-
age as reference to perform an objective quality assessment. Assume that
the goal is to remove the superimposed lines from the image shown in Fig-
ure 9(a). Due to their shape, the white lines are suited to be removed using
a complexity criterion [13]. This criterion is based on a measure of the ratio
between the perimeter P and the area A of the connected component. Intu-
itively, if a connected component has a small area but a very long perimeter,
it corresponds to a complex object. However, a complexity criterion alone
would remove also a large number of complex flat zones.
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(a) Original image (b) Motion simplification

(c) Inpainting mask (d) Proposed approach

Figure 7. Example of filtering with a motion criterion.

Figure 8. Connected operator used to extract the white lines.

In order to extract the white lines removing the smallest number of other
flat zones, the connected operator shown in Figure 8 has been used. This
operator is based on the observation that the white lines are complex and
highly contrasted, whereas other complex flat zones correspond to texture
which is less visible because of low contrast. First, the image shown in
Figure 9(a) is filtered using a contrast-oriented connected operator, which
removes all maxima having contrast inferior to 170. This is the maximum
value of the contrast allowing to preserve the white lines. Second, the re-
sulting image is filtered by a complexity criterion, with complexity 42, that
is the minimum value allowing to remove the white lines. Note that the
complexity criterion is not increasing because there is not a relationship of
complexity between two connected components R1, R2 such that R1 ⊂ R2.
In order to deal with this non increasing criterion the “Max” decision has
been employed. The “Max” decision is defined as follows: a node C for
which the evaluation of the criterion is lower than a given threshold is not
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removed if at least one of its descendants has to be preserved. Finally, the
difference IC between the original image IA and the image filtered using
a contrast criterion IB is added to the filtered image using a complexity
criterion ID to restore the texture.

(a) Original image (b) Simplification (c) Original image detail

(d) Inpainting mask (e) Proposed approach (f) Result image detail

Figure 9. Example of filtering with the connected operator of Figure 8.

As can be observed in Figure 9(b), flat zones corresponding to the white
lines have been removed and most of the texture preserved. However, the
perceptual presence of the superimposed lines is still strongly visible. In-
stead, applying inpainting to the perceptual more important removed re-
gions (Figure 9(d)) a much better result is obtained (Figure 9(e)).

5.2 Performances evaluation

In this section the quality performances of the proposed approach are com-
pared objectively to classical filtering strategies using two well defined cri-
teria: the peak signal-to-noise ratio (PSNR) and the Structural Similarity
Image Measure (SSIM) [19,20].

The PSNR relies on the mean square error (MSE) which is the square
of the Euclidean distance between a reference and a distorted image. This
definition does not include any perceptual features and therefore MSE and
PSNR do not really assess the perceived image quality. To evaluate the
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Table 1. PSNR and SSIM values obtained using different filtering approaches.

Type of filter PSNR value SSIM value

Low pass filter – average (11× 11) (5× 5) 19.8 0.06

Median filter (15× 15) (5× 5) 23.2 0.87

Connected operator 21.9 0.91

Proposed approach 39.2 0.99

perceived image quality, the SSIM has been used. The SSIM relies on the
assumption that human vision is highly sensitive to structural information
and, as consequence, a measure of the structural information change should
provide a good approximation of perceived image distortion. In practice, the
SSIM quantifies the differences between a distorted image and a reference
image independently from average luminance and contrast. The SSIM is
equal to 1 for two identical images. Performances have been evaluated
for the last example described in Section 5, for which the reference image
(image without the superimposed lines) is available. Table 1 shows the
PSRN values as well as the SSIM values obtained using different filtering
techniques. In the case of median and low pass filter, the table reports the
best value obtained using different sizes of window ranging from 5 × 5 to
25×25. As can be observed, the proposed scheme drastically increases both
the PSNR and the SSIM, meaning that the approach proposed in this paper
reduces the error visibility and gives results consistent with the qualitative
visual appearance.

The proposed filtering strategy is computationally more complex than
connected operators, depending its complexity on the inpainting technique
used. However, it permits to achieve a good trade-off between quality result
and computational cost.

6. Conclusions

In this paper, a new filtering technique improving connected operator per-
formances has been presented and discussed. The proposed technique in-
volves two broad steps: first, the image is simplified using connected op-
erators. Second, the perceptually most important filtered regions are esti-
mated using inpainting. The mask marking the regions to be inpainted is
automatically computed and no user interaction is required. Comparative
experiments have shown that the proposed technique outperforms classical
filtering strategies in terms of both visibility of error (PSNR) and structural
perceptual quality (SSIM). The presented approach is general in the sense
that any connected operator can be used. As a result, it is suitable for a
large set of advanced filtering applications such as objects, writing or defects
removal. The future work will be devoted to improve the current method
of selecting the regions to be inpainted.
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Abstract Attribute-based filters can be involved in analysis and processing
of images by considering attributes of various kinds (quantitative,
qualitative, structural). Despite their potential usefulness, they
are quite infrequently considered in the development of real appli-
cations. A cause of this underuse is probably the difficulty to de-
termine correct parameters for non-scalar attributes in a fast and
efficient fashion. This paper proposes a general definition of vector-
attribute filters for grey-level images and describes some solutions
to perform detection tasks using vector-attributes and parameters
determined from a learning set. Based on these elements, an in-
teractive segmentation method for dermatological application has
been developed.

Keywords: vector-attribute filters, component-tree, segmentation, dermatolog-
ical imaging.

1. Introduction

Connected operators are fundamental tools of mathematical morphology:
area filters [20, 21], contrast filters [5], or volumic filters [19] are all con-
nected operators that, given some criteria, simplify the partition of an image
without introducing new contours. Attribute openings and thinnings have
been introduced in [1] and generalise the notion of connected filters based
on arbitrary attributes.

These filters can be efficiently implemented using a tree structure known
in the literature as dendrone [2,6], component-tree [10], confinement tree [8]
or max-tree [13]. In the sequel we will employ the generic term component-
tree to denote all these tree-like structures. Their main principle consists
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in storing each connected component of the successive threshold sets of a
grey-level image in a node, and to code the inclusion relation on components
by establishing links between the corresponding nodes. To each node of
the tree can be associated a real-valued attribute, leading to an efficient
tool to design connected, anti-extensive filters [13]. Recently, multi-valued
attributes have been considered leading to vector-attribute filters [16].

Such filters seem to have an interesting potential for real application
development. However, their main drawback is that attribute parameters
are still mainly determined in an empirical fashion, as in [7] where the
classification between an object component and the background is made by
observation of the attribute signature of this component.

Until now, attribute-filters have been essentially used for removing com-
ponents presenting undesirable attributes. We wish to demonstrate here
that attribute-filters, and more especially vector-attribute filters, can also
be efficiently involved in the design of segmentation methods.

This paper is organised as follows. Section 2 presents recent works re-
lated to the development of attribute-based filters and their use for applica-
tive purpose. In Section 3 we propose a definition of vector-attribute filters
for grey-level images and propose to use them in an object-detection con-
text. Section 4 describes an applicative study of the proposed methodology
devoted to the interactive analysis and segmentation of melanocytic nevi
in 2D dermatological images. In Section 5 possible developments, improve-
ments and further works are discussed.

2. Related work

Attribute-based filtering using component-trees has been used in various
contexts, including feature extraction and retrieval [2], image coding and
compression [13], or segmentation of vessels in wood micrographs [7]. Com-
ponent-trees have also been used in the field of cerebral segmentation, for
the automatic selection of markers from 3D MRI images [3].

The notion of shape-based attributes has been considered in [16–18] as
well as the notion of shape granulometry. These concepts have been applied
to filament extraction in MR angiograms [18] and classification of diatoms
[17].

Component-tree representation of an image based on a connectivity map
(leading to a second-order connectivity) has been proposed in [11, 12] and
applied to 3D filament extraction in MR angiograms and extraction of fila-
mentous structures in images of proteins.

Vector-attribute filters have been introduced recently in [16], where their
use was illustrated on synthetic images of characters, in the context of object
filtering based on Hu’s moments invariants. Although vector-attribute based
filters seem to have a great potential, they have not been used until now in
concrete applications.
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Figure 1. Decomposition of a function into its peak components. Left: Original
function F . In grey: connected component of Xt(F ) including p. Middle: Peak
component Pp,t(F ). Right: Lobe component P ↑p,t(F ).

3. Grey-level vector-attribute filters

The connected components of all threshold sets of an image are usually
called peaks. In the context of object recognition or segmentation, it could
be interesting to detect from a grey-level image the peaks representing a
specific structure: only these peaks will be preserved, while all other peaks
will be removed.

Formally, a grey-level image is defined as a numerical function F : E →
V , where E is a space of points and V a totally ordered set of values, where
⊥ (resp. >) represents the least (resp. the greatest) element.

The threshold set of a function is defined byXt(F ) = {p ∈ E | F (p) ≥ t}.
Given a connectivity class C on E (i.e., the set of all connected sets), the
connected opening for sets is defined as [15]: γx(X) =

⋃{C | x ∈ C ⊆
X,C ∈ C}.

We define the peak function Pp,t(F ) by:

Pp,t(F )(x) =

{
t if x ∈ γp(Xt(F )),
⊥ otherwise.

Any function F is the supremum of all its peak components:

F =
∨
{Pp,t(F ) | p ∈ E, t ∈ V }.

We define the lobe (or superior peak), as:

P ↑p,t(F )(x) =

{
F (x) if x ∈ γp(Xt(F )),
⊥ otherwise.

These functions are illustrated in Figure 1.
Given a valuation function τ : V E → RN that associates to a func-

tion F a vector of real-valued attributes τ(F ), and a criterion T : RN →
{true, false} that accepts or rejects an attribute-vector depending on a
particular strategy, a grey-level vector-attribute filter ϕ can be defined by
acting separately on the peak components of an image:

ϕ(F ) =
∨
{Pp,t(F ) | p ∈ E, t ∈ V, T (τ(P ↑p,t(F ))) = true}. (1)
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The reconstruction of the lobes can be obtained in the same way:

ϕ↑(F ) =
∨
{P ↑p,t(F ) | p ∈ E, t ∈ V, T (τ(P ↑p,t(F ))) = true}. (2)

In the case where all peak functions are removed, the result of these fil-
tering operations is the least element of the complete lattice of functions V E :∨ ∅ = C⊥ (where C⊥ is the constant function defined by: ∀p ∈ E,C⊥(p) =
⊥). These filters associate to each lobes of a function a vector of attributes.
Using lobes allows to consider non-flat attributes like contrast (i.e., height),
or volume of the peak component. If one of the vector-attribute compo-
nent is non-flat, ϕ is no longer idempotent since it reconstructs only the
peak Pp,t

1. On the contrary, ϕ↑ is idempotent, since the lobes verifying the
criterion are preserved. These filters are not increasing most of the time,
since the criterion based on a vector-attribute is seldom increasing. Hence,
they are not morphological filters. They are anti-extensive, as they remove
peaks from the original function. Finally, as they act only by merging image
flat-zones, they are connected operators.

3.1 Object detection

The filters previously described can be used to perform object detection from
a grey-level image provided that objects of interest correspond to some peaks
of the image: this requires the object to be a bright structure surrounded by
dark background (at least after some kind of preprocessing). Such a strategy
requires one to have some prior knowledge about the object to segment.

A typical example of criterion (also proposed in [16]) is based on a dis-
tance d from a reference vector r:

Tr,ε(v) =

{
true if d(r,v) < ε,
false otherwise.

In this latter case, note the difference with the vector-attribute defined in
[16]: here peaks are suppressed when their attribute-vectors have a distance
superior to ε. In [16], the opposite was performed in order to remove sets
having attributes close to the reference vector.

3.2 Vector-attribute filtering using component-tree

Vector-attribute filters, as defined previously, can be efficiently implemented
using the image component-tree. Moreover, as we will see in the sequel,
the component-tree only needs to be computed once, allowing one to per-
form multiple consecutive filtering with different parameters r and ε. The

1For the same reason, h-reconstruction or volumic filters are not idempotent and hence
are not morphological filters.
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component-tree of a function F can be defined as follows. Each node of the
tree is a peak function belonging to the set: P (F ) = {Pp,t(F ) | p ∈ E, t ∈
V }. For G : E → V , we consider the function:

supp(G) =

{
{p ∈ E | G(p) > ⊥} if G 6= C⊥,
E if G = C⊥.

A node P2 is a child of P1 in the component-tree of F (P1, P2 ∈ P (F )) iff:

(i) supp(P2) ⊂ supp(P1),

(ii) ∀P3 ∈ P (F ), supp(P2) ⊂ supp(P3)⇒ supp(P1) ⊆ supp(P3).

The root of the component-tree of F is the node R ∈ P (F ) such that
supp(R) =

⋃
P∈P (F ){supp(P )} = E. In particular, R = CFmin , where

Fmin = min{F (p) | p ∈ E}.
Algorithmically, each node can be modelled as a structure : node =

(label, gl,
size, att, points, parent, children, active), where:

� label is the identifier of the node;

� gl is the grey-level of the node (gl(P ) = max{F (p) | p ∈ supp(P )});

� size is the size of the node (size(P ) = card(supp(P ));

� att is a list of attributes, representing the attribute-vector attached to
the node;

� points is the list of points belonging to the node;

� parent is a pointer to the parent;

� children is a list of pointers to the node’s children;

� active is a Boolean value indicating the status of the node.

It is desirable to exploit the redundancy of the points belonging to
the support of the peaks: each point p can be stored in only one node
(Pp,F (p)(F )). This is the principle adopted in [13], leading to the max-tree.
In this case, some nodes have no points: they can be suppressed, lead-
ing to the unique representation of the tree [8]. The construction of the
component-tree can be done using efficient algorithms [8,10,13].

Given a valuation function τ and a criterion T , an image filtered by ap-
plying Equation 1 can be processed by computing the component-tree of the
original image and reconstruct only the nodes verifying T : this is equivalent
to prune the tree using the direct decision [13], as illustrated in Figure 2.
A tree-based filtering can be decomposed into three steps: component-tree
computation; tree filtering; image restitution using the direct strategy.
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Figure 2. Left: Original image. Empty circles denote nodes that do not meet
a considered criterion. Right: Direct reconstruction of peak functions that meet
this criterion (applying equation 1).

3.3 Attributes

To each lobe of a function is attached a vector of attributes generated by the
τ function. Vector-attributes can represent any combination of photometric,
textural, or geometric attributes. The attributes most usually considered
for the design of component-tree methods are intensity, area, height (or
contrast), and volume, the last two one being defined by:

� Height (or contrast): height(P ↑) = maxp∈supp(P↑){F (p)−gl(P ↑)+1},

� Volume: volume(P ↑) =
∑
p∈supp(P↑){F (p)− gl(P ↑) + 1}.

Geometric or shape attributes have an interesting potential since they
enable to discriminate an object by considering its structural properties, by
opposition to more classical photometric properties. In [22], various shape
representation techniques are described, which could lead to the compu-
tation of such attributes. However when using the component-tree, it is
desirable (for efficiency reasons) to use attributes that can be computed
incrementally during its construction.

3.4 Attribute learning from a reference component-
tree

Using vector-attribute filters for object detection requires a preliminary
characterisation of a specific class of objects. A possible way to retrieve
some information regarding the attributes of a class is to use a set of object
samples (or learning set). This learning set can be composed, for example,
of manually delineated structures on some original images. Given images
Fi in which the structures of interest have been segmented (each structure
being a connected set Si), it is possible to extract, for each manually seg-
mented component, the most corresponding peak of Fi. This can be done
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using the component-tree of Fi: to each point of the manual segmentation
p ∈ Si is associated the corresponding node or peak function Pp,F (p)(F ).
Algorithmically, this correspondence can be carried out using a mapping
between the points and their corresponding nodes. To each component Si
is associated a set of potential peaks. A way to process this can consist
in retrieving the node associated to the peak having the closest size to the
component’s size (i.e., card(Si)).

The attribute-vector of the node can then be retrieved and associated
to the component Si. The set of attribute-vectors corresponding to the
manually segmented structures represent the learning set of the structure
of interest.

4. Application: Segmentation of melanocytic nevi
from photographs of the whole body

Early detection of skin cancer is a very important issue to prevent the mor-
tality due to this kind of affection. Computer-aided diagnosis represents
one step towards a more accurate and faster detection of suspicious moles.
Much of the research effort in this domain has been done in the field of auto-
mated diagnosis from dermatoscopy examinations [4,14]. However this kind
of methods requires the dermatologist to detect beforehand the suspicious
lesions, which is difficult due to the large number of moles in the patients
at risk.

Mole mapping from digital photographs is a relatively recent method
whose purpose is to assist the dermatologist in the detection of suspicious
moles. To this aim, a cartography of the existing moles is performed from
images of the whole body acquired at different times. Changes can be
tracked by comparing automatically the corresponding moles in the different
images.

In previous work, a mole-mapping system has been proposed [9], en-
abling the detection of the moles in several images of a patient and the
matching of the corresponding structures. Although based on empirically
evaluated parameters, the method was automatic and efficient due to the
component-tree approach. We propose here an improved method which al-
lows the dermatologist to segment interactively a class of moles of interest
(for example only the largest ones) and to use the specific parameters of this
class to infer the segmentation of the closest moles belonging to the same
one.

4.1 Definitions and notations

Photographs of the whole body are considered as functions F : E → T rgb
where T rgb = T r ×T g ×T b represents the set of colour values defined by a
triplet (r, g, b). Images are processed in the saturation space to discriminate
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moles from skin: indeed, moles and skin have similar hue, but moles ap-
pear more saturated than the skin. The saturation image is defined by the
function: S : E → T s : x 7→ max−min

max where max (resp. min) represents
the largest (resp. the smallest) value of the RGB triplet F (x) = (r, g, b).
We define S(x) = 0 for F (x) = (0, 0, 0). An original image, and a sample
visualised in the saturation space, are illustrated in Figure 3.

Figure 3. Left: Original image F (visualised in grey-levels, but defined in the RGB
colour space). Right: Enlargement of the white-bordered zone, in the saturation
image S associated to F .

4.2 Interactive segmentation algorithm

Photographs of the whole body consist in a total of 16 images of a patient
in the front, back, right and left positions. The acquisition of each image set
requires a calibration of the digital camera. Dimensions of each image are
4288× 2848 (12 megapixels). The corresponding physical size of the image
pixels obtained from the calibration step is typically contained between 0.16
and 0.17 mm. Individual images of the corresponding part of the body are
then selected by the practitioner for the examination.

Input and output The segmentation algorithm takes as input two dig-
ital photographs of similar parts of the body acquired at different times.
The practitioner can interactively contour the moles of interest, providing
a first manual segmentation. A minimum of three or four segmentations is
required to obtain sufficient data for the computation of a statistical model.
A distance parameter can be chosen interactively. As output, the algorithm
detects the moles which are the closest from the manually selected ones,
given the chosen distance parameter. The mole segmentation in each of the
image can then be used as the input of a specific point matching algorithm
(not described here) [9].
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Attributes and criterion In the saturation images, moles appear as
bright and compact structures. Cutaneous surfaces have uneven illumina-
tion: segmentation methods based on global threshold are not sufficient to
discriminate moles from other bright structures (see Figure 3 right, the um-
bra under the arm appears very bright in the saturation image). To each
lobe P ↑(S) of the saturation image can be associated a vector-attribute
composed of area, contrast, and compacity parameters:

τ(P ↑(S)) = (area(P ↑(S)), contrast(P ↑(S)), compacity(P ↑(S))).

The compacity parameter can be a measure of roundness (for example the
ratio 4πA

P 2 )), where A and P represent the area and perimeter of the compo-
nent, respectively. The perimeter can be approximated by using the number
of contour points of the component, however this attribute cannot be com-
puted incrementally (it can however easily be computed afterwards using
a mapping between the points and the nodes). Hence an alternative is to
use the first Hu’s invariant moment, that can be computed incrementally as
suggested in [17]. The two variants of compacity have been experimentally
tested with similar results.

As a criterion, we use Tr,ε, in order to suppress peaks that differ of more
than a certain quantity ε from a reference vector. The subset of manually
segmented moles is used to select, for each connected component, the closest
corresponding nodes of the component-tree, using the strategy described in
Section 3.4. The set of vector-attributes {vi} of all selected nodes is used
to compute a reference vector:

r =
1

N

N∑
i=1

vi,

and a covariance matrix:

Σ =
1

N

N∑
i=1

(vi − r)T (vi − r),

where N is the number of manually segmented moles.

Segmentation step Assuming that the distribution of the vector-attrib-
utes of the moles is Gaussian multivariate, we can consider the statistical
model computed previously to use normalised distances. Given the reference
vector r and the covariance matrix Σ, a distance is computed between r and
the vector-attributes x of all the nodes of the component-tree. This distance
expresses the probability that the node belongs to the class selected by the
practitioner. This distance can be the Mahalanobis distance:

dM (x, r) =
√

(x− r)TΣ−1(x− r).
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Hence parameter ε in the criterion Tr,ε defines the sensitivity of the
detection. Choosing ε = 1.0 ensures that the selected components are “not
farther” than one standard deviation from the reference vector.

4.3 Experiments and results

Experiments have been made on 12 image series. The computation time
of the component-tree using Salembier’s recursive algorithm2 is 8 seconds
on a Pentium IV 3.2 GHz with 2 Gb of RAM. Each filtering step is made
in constant time (0.1 s), allowing an interaction of the dermatologist in
real-time.

Some results are illustrated on Figure 4 (for representation purpose, only
an enlarged portion of the processed image is shown) for two different sets of
manually segmented moles. In the first row the largest moles are detected,
while in the second row, only the smallest ones are preserved due to the
different training sets. Segmentation is precise since the attribute filter is
a connected operator: detected contours correspond to true contours of
the detected component. The segmentation method allows a very good
discrimination between moles and other bright structures of the saturation
image: there is no false detections. This is mainly due to the chosen criteria.
Visual assessment of the detected moles by dermatologist tends to prove that
the method is very satisfying from a medical point of view. As the chosen
attributes are highly uncorrelated in this application, Mahalanobis distance
and normalised Euclidean distance give comparable results.

5. Conclusion and further works

In this paper we have proposed a general definition of vector-attribute filters
for grey-level images. This definition allows to filter the function peaks given
a vector-attribute and a criterion. We have shown that this definition can
be efficiently implemented using the component-tree and the direct pruning
strategy. Some solutions for using vector-attributes and involving them
in the development of component-tree-based filtering processes (especially
devoted — but not restricted to — segmentation) have been proposed. They
constitute an initial and partial methodological framework which will be
enriched in further works.

This framework has been used for the proposal of a segmentation method
of dermatological 2D data, allowing a real-time interaction with the practi-
tioner. The efficiency of this method is satisfying from a medical points of
view, but also from a theoretical one. Indeed, it tends to prove that it is

2According to [10], Salembier’s algorithm is quadratic in the worst case; however it is
generally twice as fast as Najman’s one in practical cases when the value of a point is
comprised between 0 and 255.
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possible to create efficient, fast and easy to use methods for object detection
purpose, based on vectorial attribute filters and component-trees.

Further work will now consist in developing this methodology, by inte-
grating more descriptive attributes (for example structural shape descrip-
tors) and extending it to classification tasks.

Figure 4. First column: 5 manually segmented moles (in white). Second column:
Moles segmented using a normalised Euclidean distance threshold of 3.0. Using
compacity as shape attribute allows to efficiently discriminate moles from other
bright structures of the saturation image (see Figure 3, right, for comparison).
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Abstract Different optimal structures: minimum cuts, minimum spanning
forests and shortest-path forests, have been used as the basis for
powerful image segmentation procedures. The well-known notion
of watershed also falls into this category. In this paper, we present
some new results about the links which exist between these differ-
ent approaches. Especially, we show that min-cuts coincide with
watersheds for some particular weight functions.

Keywords: min-cuts, spanning forests, watershed, shortest-path forest.

Introduction

Min-cuts (graph cuts) and watersheds are two popular tools for image seg-
mentation, which can both be expressed in the framework of graphs and are
well suited to computer implementations. Informally, a cut in a graph is a
set of edges which, when removed from the graph, separates it into different
connected components. Given a set of vertices or subgraphs called markers,
the goal of these operators is to find a cut for which each induced component
contains exactly one marker, and which best matches a criterion based on
the image contents. For example, the criterion is often designed in such a
way that the cut is located along the contours of the objects present in the
image. To this aim, edges of the pixel adjacency graph can be weighted for
example with the inverse of the gradient modulus. The principle of min-cut
segmentation is then to find a cut (relative to the markers) which sum of
edge weights is minimal [6].

The watershed is a well-known notion from the field of topography, intro-
duced for image segmentation purposes by S. Beucher and C. Lantuéjoul [5].
Intuitively, the watershed of a function (seen as a topographical surface) is
composed by the locations from which a drop of water could flow down
towards different minima. In a framework of edge-weighted graphs, the
watershed is defined in [9, 10] as a cut relative to the regional minima of
the weight function, and which satisfies this “drop of water” principle. In
[15], Meyer shows the link between minimum spanning forests and flooding
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algorithms, which are most often used to compute watersheds. There is in-
deed an equivalence between watersheds defined as cuts satisfying the drop
of water principle and cuts induced by minimum spanning forests (MinSF)
relative to the minima, as proved in [9, 10].

Another point of view on the watershed is studied in [13, 14]. Let us
define the “length” of a path as the maximum weight of the edges along
this path, then the watershed is defined by these authors as a cut which
separates the components of the graph induced by a shortest-path forest
rooted in the minima. This definition in terms of shortest-path forest is
also the basis for the so-called fuzzy connected image segmentation [2,16].

The goal of this paper is to clarify the links between these different
optimal structures used for image segmentation. To this aim, we first give a
set of definitions for these different paradigms in a same unifying framework
of edge-weighted graphs. Then, we show that any MinSF is a shortest-path
forest, and that the converse is, in general, not true.

At last, we prove a property which links graph cuts and watersheds,
through the notion of MinSF. It is well known that the MinSFs, and hence
the watersheds, are invariant if an increasing transformation is applied si-
multaneously to all the weights. For example, if we raise all the weights
to a same positive power n, a MinSF remains a MinSF. On the contrary,
min-cuts may be different for different values of n. We show that, for any
weighted graph, there exists a value n such that min-cuts coincide with cuts
induced by maximum spanning forests relative to the markers, furthermore,
this will also be true for any number greater than n.

Proofs of the theorems presented in this paper are in [1].

1. Basic notions on graphs

In this section we state basic notions on graphs before presenting the def-
initions of extension and cut over a graph, which will be necessary in the
sequel of the paper.

We define a graph as a pair G = (V,E) where V is a finite set and E
is composed of unordered pairs of elements of V , precisely, E is a subset of
{{x, y} ⊆ V | x 6= y}. Each element of V is called a node or a vertex (of
G), and each element of E is called an edge (of G). We denote by G∅ the
empty graph, i.e. G∅ = (∅, ∅).

Let G be a graph. If e = {x, y} is an edge of G, we say that x and y are
adjacent (for G). Let π = 〈x0, . . . , x`〉 be an ordered sequence of nodes of
G, we say that π is a path from x0 to x` in G (or in V ) if for any i ∈ [1; `],
xi is adjacent to xi−1. In this case, we say that x0 and x` are linked for G.
We say that π is a simple path from x0 to x` in G (or in V ) if π is a path
from x0 to x` and if all nodes of π are distinct. Notice that if there exists a
path from x0 to x` in G, then there exists a simple path from x0 to x`. We



Some links between min-cuts and watersheds 255

say that G is connected if any two vertices of G are linked for G. Notice
that G∅ is connected.

Let G = (V,E) and G′ = (V ′, E′) be two graphs. If V ′ ⊆ V and E′ ⊆ E
then we say that G′ is a subgraph of G and we write G′ ⊆ G. Notice that
G∅ is a subgraph of any graph.

In the sequel, G = (V,E) will denote a graph.
We say that X is a connected component of G if X is a connected sub-

graph of G which is maximal for this property, i.e. for any connected graph
X ′, X ⊆ X ′ ⊆ G implies X ′ = X. Notice that G∅ is not a connected com-
ponent of any non-empty graph, and that G∅ is the connected component
of, and only of, G∅.

Let X be a subgraph of G, we denote respectively by V (X) and E(X)
the node set and the edge set of X.

Let X and Y be two subgraphs of G. We define (X ∪ Y ) = (V (X) ∪
V (Y ), E(X) ∪ E(Y ) and (X ∩ Y ) = (V (X) ∩ V (Y ), E(X) ∩ E(Y )).

Let X be a subgraph of G. An edge {x, y} of G is adjacent to X if
{x, y} ∩ V (X) 6= ∅ and {x, y} /∈ E(X). In this case, if x ∈ V (X), either
y ∈ V (X) or y is adjacent to X.

If S is a subset of E, we denote by S the complementary set of S in E,
that is, S = E \ S.

Let S ⊆ E. The graph induced by S is the graph whose edge set is S
and whose vertex set is made of all points which belong to an edge in S. By
abuse of notation, the subgraph induced by S will also be denoted by S.

We now present the notions of extension and (graph) cut which play an
important role for optimal structures in edge-weighted graphs. The notion
of extension was introduced in [4] for the case of sets. In [9, 10] this notion
was extended to connected graphs. The following definition presents this
notion in the case of unspecified graphs.

Definition 1 (Extension, spanning extension and cut). Let G be a graph
and let G1, G2, . . . , Gn be the connected components of G. Let M and X be
two subgraphs of G. For any i ∈ [1;n], let Mi = M ∩Gi and Xi = X ∩Gi.
We say that X is an extension of M if, for all i ∈ [1;n], Mi ⊆ Xi and each
connected component of Xi contains exactly one connected component of
Mi. We say that X is a spanning extension of M (over G) if X is an
extension of M and if V (X) = V . Let C ⊆ E, we say that C is a (graph)
cut relative to M (over G) if C is an extension of M over G and if C is
minimal for this property (i.e. considering D ⊆ E, C = D whenever D ⊆ C
and D is an extension of M over G). It may be seen that, if C is a cut,
then C is necessarily a spanning extension. Moreover, if X is a spanning
extension of M , then there exists a unique cut C relative to X which is
called the cut induced by X. It may be seen that C is also a cut relative to
M .

Examples of these definitions are shown in Figure 1.
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(a) (b) (c)

(d) (e) (f)

Figure 1. Graph G, composed of three connected components (G1, G2 and G3),
with in bold: (a) a subgraph M ; (b) an extension relative to M ; (c) a spanning
extension relative to M ; (d) a cut relative to M ; (e) a forest relative to M ; (f) a
spanning forest relative to M .

2. Optimal structures

In this section we define the following structures: maximum spanning forests,
watersheds, minimum cuts and shortest-path spanning forests.

2.1 Maximum spanning forests and watersheds

In this part, we first recall the definition of Maximum Spanning Forests
(MaxSF) relative to a subgraph of G. It is shown in [10] that this notion
is equivalent to the one of maximum spanning tree, which has been studied
for many years in combinatorial optimization (see [8]). From this, we define
the MaxSF cut and then remind the notion of watershed to highlight the
link that exists between them.

Let F and M be two subgraphs of G. We say that F is a forest relative
to M if:

� F is an extension of M , and

� for any extension X ⊆ F of M , V (X) = V (F ) ⇒ X = F (i.e. we
cannot eliminate an edge of F and keep the extension property).

Let F and M be two subgraphs of G. We say that F is a spanning forest
relative to M (over G) if:

� F is a forest relative to M , and

� V (F ) = V .
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Equivalently, we say that F is a spanning forest relative to M (over G)
if there exists a spanning extension X relative to M over G such that F is
obtained by eliminating edges of X as long as it is possible to do it while
preserving the spanning extension property.

Examples of these definitions are shown in Figures 1(e) and 1(f).
It can be seen that if G is connected and M = (VM , ∅) where VM ⊆ V

(i.e. M is a subgraph without edge), then the notion of forest relative
to M corresponds exactly to the usual notion of forest. Furthermore, if
|V (M)| = 1 then we retrieve the usual notion of tree.

In the following, P will be a map from E to R+.
The pair (G,P ) is an edge-weighted graph. If e is an edge of G, P (e)

is called the altitude or the weight of e. The weight of a subgraph X of G,
denoted by P (X), is the sum of its edge weights (P (X) =

∑
x∈E(X) P (x)).

Definition 2 (Maximum spanning forest). Let F and M be two subgraphs
of G. We say that F is a Maximum Spanning Forest (MaxSF) relative to
M (for P ) if F is a spanning forest relative to M and if the weight of F is
maximum, i.e. greater than or equal to the weight of any other spanning
forest relative to M . Notice that if the weight of F is minimum instead of
maximum, then we have a Minimum Spanning Forest (MinSF).

Examples of this definition are shown in Figure 4.

Remark 1. Let M and F be two subgraphs of G, f : R+ → R+ be a strictly
increasing function and g : R+ → R+ be a strictly decreasing function.
From classical results on extremal spanning forests, we know that the three
following statements are equivalent:
� F is a MaxSF relative to M for P ;
� F is a MaxSF relative to M for (f ◦ P );
� F is a MinSF relative to M for (g ◦ P ).

LetM be a subgraph ofG and let F be a MaxSF relative toM . Since F is
a spanning forest, hence a spanning extension, there exists a unique (graph)
cut relative to M induced by F . We say that this cut is a MaxSF cut relative
to M .

We now remind the definition of watersheds for a map (see [15]) and its
equivalence with MinSF cuts relative to the minima of this map (see [9,10]).

The intuitive idea underlying the notion of watershed comes from the
field of topography: a drop of water falling down on a topographic surface
follows a descending path and reaches a regional minimum area. The water-
shed may be thought of as the separating lines of the domain of attraction
of drops of water.

The regions of a watershed, also called catchment basins, are associated
with the regional minima of the map. In other words, each catchment basin
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contains a unique regional minimum, and conversely, each regional mini-
mum is included in a unique catchment basin: the regions of the watershed
are the connected components of an extension relative to the minima. They
are separated by a set of edges from which a drop of water can flow down
towards different minima, in the sense defined below.

A subgraph X of G is a (regional) minimum of P if:

� X is connected, and

� all the edges of X have the same altitude, that we will refer to as the
altitude of X, and

� the altitude of any edge adjacent to X is strictly greater than the
altitude of X.

We denote by Min(P ) the graph whose vertex set and edge set are, respec-
tively, the union of the vertex sets and edge sets of all minima of P .

Let π = 〈x0, . . . , x`〉 be a path in G. The path π is descending (for P )
if ∀i ∈ [1, `− 1], P ({xi−1, xi}) ≥ P ({xi, xi+1}).

Definition 3 (Watershed, Def. 3 in [9]). Let C be a subset of E. We
say that C is a watershed cut (for P ), or simply a watershed (for P ), if
C is an extension of Min(P ) and if for any e = {x0, y0} ∈ C, there exist
π1 = 〈x0, . . . , xm〉 and π2 = 〈y0, . . . , yn〉 two descending paths in C such
that:

� xm and yn are nodes of two distinct minima of P , and

� P (e) ≥ P ({x0, x1}) (resp. P (e) ≥ P ({y0, y1})), whenever m > 0
(resp. n > 0).

Notice that a watershed is indeed a graph cut relative to Min(P ).

Theorem 1 (Th. 2 in [9]). Let C be a subset of E. The set C is a MinSF
cut relative to Min(P ) (for P ) if and only if C is a watershed (for P ).

Any minimum spanning tree algorithm can be employed to compute a
MinSF relative to a subgraph of G (see a survey in [8]). The best of them
does this in quasi-linear time (see [7]), but algorithms specific to watersheds
run in linear time (see [9]).

2.2 Minimum cuts (min-cuts)

In this section, we remind the notion of minimum cut.
Let M be a subgraph of G and let C ⊆ E. We say that C is a minimum

cut (min-cut) relative to M (for P ) if for any cut C ′ ⊆ E relative to M ,
P (C) ≤ P (C ′). It can be seen that a cut C relative to M is of minimum
weight if and only if C is a (spanning) extension of maximum weight relative
to M . Examples of this definition are shown in Figure 4.
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A fundamental result in combinatorial optimization states that, given
two isolated nodes of an edge-weighted graph (called source and sink), find-
ing a min-cut that separates these two nodes is equivalent to finding a max-
imum flow between them (see [12], chapter 6.2). This problem is equivalent
to finding a min-cut relative to a subgraph having exactly two connected
components (consider adding two extra nodes to G, the source and the sink,
and highly weighted edges from each one of them to all the nodes of each
of the components of M). In this case, we have polynomial-time algorithms
to compute a min-cut. On the other hand, finding a min-cut relative to a
subgraph with more than two connected components is NP-hard [11], but
there exists approximation algorithms [6].

2.3 Shortest-path spanning forests cuts (SPSF cuts)

We now present the notion of shortest-path forest which also constitutes
an optimization paradigm used for image segmentation. In particular, the
image-foresting-transform [13] and the relative fuzzy-connected image seg-
mentation [2,17] fall in the scope of shortest-path forests. Intuitively, these
methods partition the graph into connected components associated to seed
points. The component of each seed consists of the points that are “more
closely connected” to this seed than to any other. In many cases, in order to
define the relation “is more closely connected to”, we consider the length of
a path π as the maximum value of an edge along π. Then, point p is more
closely connected to seed s than to seed s′ if the length of a shortest path
from p to s is less than the length of a shortest path from p to s′. Given
a set of seed points (or a seed graph), the resulting segmentation is then
obtained as a shortest-path forest.

In this section, we assume that G is connected and that M is non-empty.

Let π = 〈x0, . . . , x`〉 be a path in the graph G. If we have l > 0, we
define P (π) = max{P ({xi−1, xi}) | i ∈ [1; `]}. If we have π = 〈x0〉, we
define P (π) = min{P (u) | x0 ∈ u, u ∈ E}; P (π) is the length of π. Let X
and Y be two subgraphs of G, we denote by Π(X,Y ) the set of all paths
from X to Y in G. The connection value between X and Y (in G and
for P ), denoted by P (X,Y ), is the length of a shortest path from X to Y ,
i.e. P (X,Y ) = min{P (π) | π ∈ Π(X,Y )}.

If x is a vertex of G, to simplify the notation, the graph ({x}, ∅) will be
also denoted by x.

Definition 4 (SPSF cut). Let M and F be two subgraphs of G. We
say that F is a shortest-path forest relative to M if F is a forest relative
to M and if, for any x ∈ V (F ), there exists, from x to M , a path π in F
such that P (π) = P (x,M). If F is a shortest-path forest relative to M
and V (F ) = V , we say that F is a shortest-path spanning forest (SPSF)
relative to M . If F is a SPSF relative to M , the (unique) cut for F is called
a SPSF cut for M .
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Figure 2. Graph G and map P with in bold: (a) a subgraph M ; (b) a MinSF
relative to M ; (c) a shortest-path spanning forest relative to M which is not a
MinSF relative to M .

Let G be the graph in Figure 2 and let P be the corresponding map.
Let M , F and F ′ be the bold graphs depicted in, respectively, Figures 2(a),
2(b) and 2(c). The two graphs F and F ′ are SPSFs relative to M . The
induced SPSF cuts for M are represented by dashed edges.

3. Some links between optimal structures

In this section, we reveal some relations existing between the different opti-
mal structures exposed above.

3.1 Min-cut and MaxSF cut

In this section, we show that min-cuts and MaxSF cuts are linked through
a modification of the map P preserving the order and emphazing the weight
difference between the edges. We denote by P [n], and say P power n, the
map from E to R+ defined by, for any e ∈ E, P [n](e) = [P (e)]n.

Theorem 2. If M is a subgraph of G, then there exists a real number m
such that, for any n ≥ m, any min-cut relative to M for P [n] is a MaxSF
cut relative to M for P [n].

Theorem 2 is illustrated in Figure 3 and Figure 4.
It has to be noticed that the converse of Theorem 2 is, in general, not

true. See Figure 6 where the MaxSF cut relative to M for P in Figure 6(b)
is not a min-cut relative to M for P , but any min-cut is a MaxSF cut.
However, an intuitive interpretation of this result is to consider the MaxSF
cut as a greedy heuristic to obtain a min-cut. The efficiency of this heuristic
becomes higher when differences between the weights increase.

From Remark 1, we know that the MaxSF cut relative to M for P [n] is
also a MaxSF cut relative to M for P and conversely since the change of
map preserves the order.

Since we know, from Remark 1 and Theorem 1, that the watersheds
are particular cases of MaxSF cuts, we deduce from Theorem 2 that the
watersheds are also particular cases of the min-cuts.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Color image segmentation using: (a) markers superimposed to the
original image; (b) watershed on P ; (c) min-cut on P ; (d) min-cut on P [1.4];
(e) min-cut on P [2]; (f) min-cut on P [3]; (g) zoom of watershed on P ; (h) zoom of
min-cut on P [2]; (i) zoom of min-cut on P [3].

Figure 3 illustrates the link between these two well known segmentation
paradigms through the evolution of the min-cut with different values of n.
Notice that the power of the map P could then be considered as a smoothing
term for the min-cut method. Indeed, when this power decreases, shortest
cuts are found whereas, when it increases, longer cuts are found. These
longer cuts can surround more details as well as noise. Therefore, releasing
this smoothing term is not always suitable. See for example Figure 5 where
the min-cut result is better than the watershed.

3.2 MinSF cuts and SPSF cuts

We now investigate the links between SPSF cuts and MinSF cuts. We show
that any MinSF cut relative to a subgraph of G is a SPSF cut relative to this
subgraph. Therefore, according to Theorem 2, there exist some particular
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(a) (b)

(c) (d)

Figure 4. Graph G and map P with: (a) in bold, a subgraph M ; (b) in bold, the
MaxSF relative to M for P and, in dashed edges, its induced cut which, according
to Remark 1 and Theorem 1, is a watershed (up to a strictly decreasing function
on P ); (c) in dashed edges, the min-cut relative to M for P ; (d) in bold, the
MaxSF relative to M for P [2] and, in dashed edges, its induced cut which is also
the min-cut relative to M for P [2].

functions for which any min-cut is a SPSF cut (up to a strictly decreasing
function over P ). Furthermore, we prove that MinSF cuts and SPSF cuts
are equivalent whenever we consider the subgraph of G which corresponds
precisely to the minima of P . Hence, according to Theorem 1, this last re-
sult establishes the equivalence between the watersheds for P and the SPSF
cuts relative to the minima of P .

In this section, we assume that G is connected and that M is non-empty.

Theorem 3 (Prop. 30 in [10]). Let M and F be two subgraphs of G. If F
is a MinSF relative to M , then F is a shortest-path forest relative to M .
Furthermore, any MinSF cut relative to M is a SPSF cut relative to M . 1

The converse of the previous theorem is, in general, not true. For in-
stance, the graph Z (Figure 2(c)), is a SPSF relative to the graph X (Fig-
ure 2(a)) whereas it is not a MinSF relative to this graph.

In fact, as stated by the following theorem, if the graph M constitutes
precisely the minima of P , the equivalence between both concepts can be
established.

Theorem 4 (Prop. 31 in [10]). Let F be a subgraph of G. The graph F is a
SPSF relative to Min(P ) if and only if F is a MinSF relative to Min(P ).

1This result was obtained independently in [3].
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(a) (b) (c)

Figure 5. Color image segmentation: (a) markers superimposed to the original
image; (b) watershed on P ; (c) min-cut on P .

(a) (b) (c)

Figure 6. Graph G and map P with: (a) in bold, a subgraph M ; (b) in bold, a
MaxSF relative to M for P and, in dashed edges, its induced cut, which is not a
min-cut; (c) in dashed edges, a min-cut relative to M for P .

Furthermore, a cut S relative to Min(P ) is a SPSF cut relative to Min(P )
if and only if S is a MinSF cut relative to Min(P ).

Conclusion

We compared three different optimal structures, namely extremal spanning
forests, min-cuts and shortest-path forests, which have been used as the
basis for popular image segmentation methods. The watershed approach,
which is strongly linked to minimum spanning forests and to shortest-path
forests, is also considered in this study. Although different in general, we
exhibited some particular cases where a strong relation exists between these
structures.
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Abstract This paper introduces a watershed-based stochastic segmentation
methodology. The approach is based on using M realizations of
N random markers to build a probability density function (pdf) of
contours which is then segmented by volumic watershed for defin-
ing the R most significant regions. It improves the standard water-
shed algorithms when the aim is to segment complex images into
a few regions. Three variants of the random germs framework are
discussed, according to the algorithm used to build the pdf: 1)
uniform random germs on the same gradient, 2) regionalised ran-
dom germs on the same gradient, and 3) uniform random germs on
levelled-based gradient. The last algorithm is more complex but it
yields the best results.

Keywords: watershed transform, leveling, Poisson points, density of contours,
random germs segmentation.

1. Introduction

Watershed transformation is one of the most powerful tools for image seg-
mentation. Starting from a gradient, the classical paradigm of watershed
segmentation consists in determining markers for each region of interest.
The markers avoid the over-segmentation (a region is associated to each
minimum of the function) and moreover, the watershed is relatively robust
to marker position [2]. The markers-based watershed is appropriate for
interactive segmentation. Several watershed-based hierarchical approaches
allow addressing fields where the markers cannot be easily defined (e.g.,
multimedia applications). Mainly, two hierarchical techniques can be dis-
tinguished: 1) non-parametric waterfalls algorithm [3] and 2) hierarchies
based on extinction values, which allows to select the minima used in the
watershed according to morphological criteria (dynamics, surface area and
volume) [10,15].

The volume-based hierarchical segmentation is particularly useful in
many applications aiming at segmenting natural images since the volume,
which combines the criteria of dynamics and area, selects the most signif-
icant regions from a visual viewpoint. However, the performance of the
approach decreases drastically when the image is segmented in very few re-
gions, which is just the goal of several applications (e.g., segmentation-based
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image indexing). Figure 1 gives four colour images segmented by volumic
watershed into R = 10, 20 and 50 regions and we can observe that many
important regions are not well determined (even when R = 50). The classi-
cal solution involves to filter out the image in order to simplify the details
and to enhance the main regions (typically using morphological filters such
as levelings [11]).

Figure 1. Examples of colour images segmented by means of volumic water-
shed into the R most significant regions. First column, original images f ; second
column, colour gradient %LS+H(f); third column, sgR−vol(%LS+H(f), 10); fourth
column sgR−vol(%LS+H(f), 20), and last column sgR−vol(%LS+H(f), 50).

In fact, the problem lies in the deterministic criterion of volume, com-
puted for each minimum of the function to flood, which depends on the
local image information; and nevertheless, the final flooding watershed is
a competition between the different minima to determine the optimal par-
tition (in fact, it is the solution of shortest path problem when the path
cost is given by the maximum of the arc weights in the path [10]). The aim
of this paper is to introduce a watershed-based probabilistic framework to
detect the contours which are robust with respect to variations in the seg-
mentation conditions. More precisely, we explore here a stochastic approach
based on using random markers to build a probability density function of
contours which is then segmented by volumic watershed for defining the
most significant regions. Keeping in mind that the goal is the unsupervised
segmentation of natural images in very few regions.
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The probabilistic segmentation has been already studied in the litera-
ture, for instance using cooccurrence probability on graphs [5], Bayesian
framework [16], Markov Random Fields [7] (combined with watershed seg-
mentation [8]), Markov Chain Monte Carlo [14]. But to our knowledge,
this is first study of probabilistic segmentation based on random markers
simulations for watershed transformation. The closest previous work to our
study is [13], where the sum of watersheds from a series of polarimetric
images was used to define a final distribution of contours.

2. Basic notions and operators

Watershed segmentation. The function used in the watershed trans-
formation is the image gradient. In this paper, the aim is to segment
colour images and hence, according to our previous works [1], we propose
to compute a colour gradient in a luminance/saturation/hue (LSH) repre-
sentation, presenting better performances that other colour gradients. But
any other colour gradient can be also used, including for instance marginal
gradients in RGB. Let f(x) = (fL(x), fS(x), fH(x)) be a colour image in
the LSH representation, the colour gradient is given by %LS+H(f(x)) =
fS(x) × %◦(fH(x)) + (1 − fS(x)) × %(fL(x)) + %(fS(x)), where %(g(x)) is
the morphological gradient of the scalar function g(x) and %◦(a(x)) is the
circular centred gradient of the angular function a(x).

Two watershed algorithms are used in this study. Let mrk(x) be the
image of markers, the binary image of segmentation contours associated to
these markers, and according the colour gradient %LS+H(f(x)), is denoted
by sgmrk(%LS+H(x)). Using the same gradient, the volumic-based segmen-
tation into R regions is named sgR−vol(%LS+H(x)).

Leveling. The leveling λ(mrk, f) of a reference function f and a marker
function mrk (f(x) and mrk(x) are two grey level images) can be computed
by means of an iterative algorithm with geodesic dilations/erosions [11].
Several extensions to colour images have been proposed for levelings. We
propose for this study to apply a marginal approach in RGB, which consists
in computing a separated leveling for each red/green/blue colour compo-
nent, i.e. the colour leveling of image f(x) = (fR(x), fG(x), fB(x)) accord-
ing to the markers mrk(x) is the colour image λ(f ,mrk) = (λ(mrk, fR),
λ(mrk, fG), λ(mrk, fG)). The marginal approach introduces false colour
but this is not critical for segmentation purposes.

Generation of random germs. The paradigm of watershed segmen-
tation lays on the appropriate choice of markers, which are the seeds to
generate basins of attraction [2, 3]. It is claimed, and known from practice,
that the most intelligent part of this technique of segmentation resides in the
development of criteria used to select the required markers. In the present
approach, we follow an opposite direction, by selecting random germs for
markers. This arbitrary choice will be balanced by the use of a given number
M of realizations, in order to filter out non significant fluctuations.
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A rather natural way to introduce random germs [9] is to generate real-
izations of a Poisson point process with a constant intensity (namely average
number of points per unit area) θ. It is well known that the random number
of points N falling in a domain D with area |D| follows a Poisson distri-
bution with parameter θ |D|. In addition, conditionally to the fact that
N = n, the n points are independently and uniformly distributed over D.
In what follows, we will fix the value N of the number of random germs
(instead of using a random number as for the Poisson point process), and
we will generate independent realizations of the location of the germs in D.
In some cases, as will be illustrated below, it may be interesting to gener-
ate a non-uniform distribution of germs, with a regionalised intensity (or
measure) θ(x). In the Poisson case, N follows a Poisson distribution with
parameter θ(D), and conditionally to the fact that N = n, the n points
are independently distributed over D with the probability density function
θ(x)/θ(D). In what follows, the intensity θ(x) will be generated from the
image, and we will use a fixed number of germs N , as for the homogeneous
case.

Parzen method to calculate a pdf. The kernel density estimation,
or Parzen window method [6], is a way of estimating the probability den-
sity function (pdf) of a random variable. Let x1,x2, · · · , xM ∈ Rn be M
samples of a random variable, the kernel density approximation of its pdf is:
f̂h(x) = 1

Nh

∑N
i=1K(x−xi

h ), where K(x) is some kernel and the bandwidth
h a smoothing parameter. Usually, K(x) is taken to be a Gaussian function
with mean zero and variance σ2, which determines the smoothing effect.

3. Uniform random germs segmentation

Let {mrki(x)}Mi=1 be a series of M realizations of N uniform random mark-
ers. Each one of these binary images of points is considered as the markers
for a watershed segmentation of colour gradient sgmrk(%LS+H(x)) and con-
sequently, a series of segmentations is obtained, i.e., {sgmrki (x)}Mi=1, see
Figure 2. Note that the number of points determines the number of re-
gions obtained (i.e., essential property of watershed transformation). As we
can observe from the example, the main contours appear regardless of the
position of germs.

Starting from the M realizations of contours, the probability density
function of contours is computed by Parzen window method. The smoothing
effect of the Gaussian kernel (typically σ = 3) is important to obtain a
function where closed contours (e.g., in textured regions or associated to
small regions) are added together. The pdf(x) could be thresholded in
order to obtain the most prominent contours, however the result are only
pieces of contours (not enclosing regions). In addition, we have studied the
histograms for several examples and there is not an optimal threshold to
separate the classes of contours.
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i = 1 i = 2 · · · i = M

· · ·

· · ·

N = 10, M = 50

pdf(x)

Figure 2. Left, M realizations of N uniform random germs, mrki(x), and corre-
sponding marker-based watershed contours, sgmrki (x). Right, probability density
function of contours computed by Parzen window method for N = 10 and M = 50.

The main drawback of using a uniform distribution of the random mark-
ers is to induce an over-segmentation of the largest watersheds, since the
average number of germs falling in a given region is proportional to its area.
This is avoided by means of a volume-watershed segmentation, or by using
a regionalised intensity of germs, as illustrated later. We propose to par-
tition the pdf(x) of contours with the volume-based watershed to obtain
the R most significant regions, i.e., sgR−vol(pdf(x), R). Each catchment
basin (each minima) of pdf(x) corresponds to one the regions of the sum (or
union) of the different sgmrki (x) and the integral of each catchment basin
corresponds to the probability to be region of the segmentation. Conse-
quently, the volumic watershed of pdf(x) yields the regions according to
their probabilities. In Figure 3 is given a comparison of segmentation into
R = 10, 20 and 50 regions for two different pdf(x). The results should be
compared with those associated to sgR−vol(%LS+H(x), R) (see Figure 1). A
property of the Gaussian filter, observed from the examples, is the regular-
isation of pdf(x) which involves relatively rounded watershed contours.

3.1 Influence of parameters N and M

From the examples of Figure 1 and other similar results, we state that the
method hardly depends on the number of realizations M , which is a good
characteristic to guarantee its robustness. In practice, we have verified that
the pdf(x) converges to a stable distribution of contours even for low values
of M (20 or 50). We propose in any case, to take a higher value, typically
M = 100 or 200 in order to obtain more regular contours.

The random points explore uniformly the image space and the choice
of N is important to fix the degree of stochastic sampling (note that the
probability depends on the ratio between N and the image size or number of
pixels). Moreover, if the value of N is low, a segmentation into large regions
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N = 50, M = 100

pdf(x) R = 10 R = 20 R = 50

N = 100, M = 200

pdf(x) R = 10 R = 20 R = 50

Figure 3. Left, probability density function of contours, pdf(x) forN unifom germs
and M realizations. Right, volumic watershed-based segmentation of pdf(x) into
the R most significant regions, sgR−vol(pdf), R).

is privileged; instead of a high value of N will produce smaller regions. If N
is too high, the over-segmentation of sgmrki leads to a very smooth pdf(x),
which loss its property for selecting the R contours. In fact, we can conclude
that the uniform germs segmentation is mainly depending on parameter N
which is related to R (number of regions to be determined) and it is logical
to take N > R. But again, the method is quite robust to the choice of N :
from the examples of images of size 256× 256 to be segmented into R = 10,
20 or 50 the choice of N = 50 or 100 produces exactly the same results.

λ = 0 λ = 0, 33 λ = 0, 50 λ = 0, 66 λ = 1

Figure 4. First row, probabilistic gradient ρ(x) (i.e., linear combination of colour
gradient and pdf) for different values of λ and second row, associated volumic
watershed-based segmentation into R = 20 regions.
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3.2 Probabilistic gradient

The function pdf(x) can be combined with the initial gradient in order
to reinforce the gradient contours which have a high probability: ρ(x) =
ω1%

LS+H(f(x)) + ω2pdf(x), considering a typical barycentric combination
(both functions defined in [0, 1]), i.e., ω1 = (1− λ) and ω2 = λ.

We have studied the behaviour of ρ(x) for volumic segmentation, i.e.,
sgR−vol(ρ(x)), with respect to the value of control λ (note that for λ = 0
the gradient is obtained and for λ = 1, exclusively the probability density
function of contours). In Figure 4 is shown an example of segmentation
into 20 regions for different λ. It is observed that, even for low values of
λ, the results of segmentation are notably improved. This is coherent with
the fact that the pdf(x), derived from the gradient, contains all the useful
information for the segmentation. In any case, we have confirmed on the
basis of many other examples that when λ = 0, 5 (averaged combination)
the results are in general more satisfactory.

4. Regionalised random germs segmentation

In the previous algorithm, the random germs are uniformly distributed in
the image domain. We have also studied how a regionalised distribution of
germs could be used to build the distribution of contours. The first question
to deal with is the choice of the regionalisation function θ(x).

i = 1 i = 2 · · · i = M

· · ·

· · ·

θ = %LS+H (x),

M = 50

pdfθ(x)

sgR−vol(pdfθ, 20)(x)

Figure 5. Left, M realizations of regionalised random germs (the function of
regionalisation is the colour gradient θ = %LS+H), mrki(x), and corresponding

marker-based watershed contours, sgmrk
θ

i (x). Right, probability density function
of contours computed by Parzen window method for M = 50, and segmentation
of pdfθ(x) into R = 20 volumic regions.
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Several alternatives are possible. We can for instance use the component
of luminance θ(x) = fL(x) (respectively, the negative of luminance θ(x) =
f cL(x)), in such a way that the bright regions (respectively, the dark regions)
will produce random germs. It is evident that this kind of regionalisation
is not very useful for segmentation. It seems more natural to work on the
colour gradient, θ(x) = %LS+H(x). In this case, the germs of mrkθi (x) are
located around the zones of high gradient value, that is the zones closed to

the contours. Once the series of M contours sgmrk
θ

i (x) is computed, the
corresponding probability density of contours pdfθ(x) is obtained by the
Parzen window method. As previously, this function is finally segmented
by volume-based watershed, see the example of Figure 5. The regionalised
segmentation depends on the properties of dynamics of colour gradient.
Moreover, the different random point realizations using the same θ(x) are
quite similar and consequently, the realizations of contours too. By this
regionalised sampling, another characteristic of the obtained pdfθ(x) is that
the distribution is very similar to the gradient, but where all the contours
are enhanced. The final results of segmentation for sgR−vol(pdfθ, R) are in
any case better than for sgR−vol(%LS+H , R). We have also evaluated the
interest of θ(x) equal to the negative of the gradient (i.e., locating germs in
low gradient zones); however in this case too many germs are introduced in
each realization and the over-segmentation involves useless pdf’s.

5. Uniform random germs leveling and segmentation

The morphological connected filters suppress details but preserve the con-
tours of the remaining objects. Levelings are a subclass of symmetric con-
nected operators which are very useful to simplify an image before segmen-
tation by watershed transformation [11]. In fact, the image marker for the
leveling is a rough simplification of original image. Pushing our approach
to the limit, the rationale behind the last variant of the proposed stochastic
segmentation is based on using the random germs as markers before for the
leveling, in order to obtain a very simplified gradient on which is computed
the watershed with the same markers.

The steps of this algorithm are summarised as follows (see Figure 6).

� To throw the M realizations of N uniform random germs:
{mrki(x)}Mi=1.

� To compute the leveling for the colour image associated to each image
of germs: levi(x) = λ(f ,mrki).

� To calculate the series of colour gradients associated to the leveled
colour image: %i(x) = %LS+H

i (levi).

� Each colour gradient %i is segmented with the markers mrki:
sglev−mrki (x) = sgmrki(%i).
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i = 1 i = 2 · · · i = M

· · ·

· · ·

· · ·

· · ·

N = 10, M = 50

pdflev(x)

sgR−vol(pdflev, 10)(x)

Figure 6. Left, M realizations of N uniform random germs, mrki(x), marginal
colour levelings using the random germs as markers, levi(x), associated colour gra-
dients, %i(x) and corresponding marker-based watershed contours, sglev−mrki (x).
Right, probability density function of contours computed by Parzen window
method for N = 10 and M = 50, and segmentation of pdf lev(x) into R = 10
volumic regions.

� To obtain the probability density function of contours: pdf lev(x) =
1
M

∑M
i=1 sg

lev−mrk
i ∗Gσ.

� Let %̂(x) = 1
M

∑M
i=1 %i(x) be the averaged colour gradient for the

M realizations, to compute the leveling-based probabilistic gradient
which is defined as follows: ρlev(x) = (1 − λ)%̂(x) + λpdf lev(x) (typ.
λ = 0.5).

� To segment by volumic watershed into R regions the function of con-
tours sgR−vol(pdf(x)) (or the probabilistic gradient sgR−vol(ρlev(x))).

Figure 7 shows a final comparison with examples of colour images seg-
mented by volumic watershed (R = 10, 20 and 50) on probabilistic gra-
dient ρ(x) and on leveling-based probabilistic gradient ρlev(x) (both with
λ = 0.5). These results should be compared with those of Figure 1. It
is evident that the stochastic algorithms proposed in this study yields to
better segmentations than the standard watershed. It is observed also that
the last method including levelings results in very good image partitions.
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f(x)
N = 100 R = 10 R = 20 R = 50

M = 200

pdf(x)

pdf lev(x)

pdf(x)

pdf lev(x)

pdf(x)

pdf lev(x)

Figure 7. Examples of colour images segmented by means of volumic watershed
into the R most significant regions (R = 10, 20 and 50) on probabilistic gradients
ρ(x) and ρlev(x) (both with λ = 0.5) and derived from pdf(x) and pdf lev(x)
respectively (both for N = 100 and M = 200).



Stochastic watershed segmentation 275

6. Implementation issues

The M realizations of uniform/regionalised random germs contours are ob-
tained from the same function (i.e., colour gradient) using different markers.
Consequently, working on the neighbourhood graph of catchment basins and
its minimum spanning tree (MST) [12], the N random markers can be con-
sidered as N random nodes of the MST instead of N image points. Two
main advantages are associated to the graph implementation: firstly, a fast
computation of M segmentations from different markers on the same MST;
and secondly, the control of watershed bias which could be associated to the
random positions of markers [4].

The algorithm using the uniform random germs as markers, first for the
levelling and then for the watershed has an upper computational load (time
of computation). Moreover, in each realization, the gradient is different (i.e.,
a different graph) and therefore the MST cannot be reused. In any case,
nowadays using the fast implementations of watershed algorithms (100 ms
for a 256× 256 images running on a current standard Laptop), the time of
execution to segment a colour image according our stochastic framework is
around 10 s.

7. Discussion and conclusions

We have introduced in this paper a new morphological stochastic segmen-
tation approach which improves the standard watershed algorithms when
the aim is to segment complex images into a few regions. The improve-
ment in the segmentation is less important for images presenting specific
objects on a homogenous background. We have illustrated three variants of
the random germs framework, according to the algorithm used to build the
probability density of contours: uniform random germs on the same gradi-
ent, regionalised random germs on the same gradient and uniform random
germs on levelled-based gradient. The last algorithm is more complex but
it yields the best results.

In ongoing research, we consider to explore other variants using evolved
random point simulations (structural grids, conditional models, etc.), work-
ing on a multi-scale framework (image pyramids and image decompositions).
We are also working on probabilistic approaches combining colour gradients
and texture information. In the last case, probabilistic rules of aggrega-
tion in the construction of the watersheds from the random seeds would
introduce a second level of randomness in the segmentation process.

From a fundamental viewpoint, the idea behind our approach is that
there are two types of contours associated to the watershed of a gradient:
1st order contours, which correspond to “significant” regions and which are
relatively independent from markers; and 2nd order contours, associated to
“small”, “low contrasted”or“textured”regions and which depend strongly on
the place of markers. Our probabilistic framework aims at enhancing the 1st
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order contours from a sampling effect, to improve the result of watershed. It
should be interesting to study if it is possible to determine by deterministic
methods the type of each contour present in an image.
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[10] F. Meyer, An Overview of Morphological Segmentation, International Journal of
Pattern Recognition and Artificial Intelligence 15 (2001), no. 7, 1089–1118.

[11] , Levelings, Image Simplification Filters for Segmentation, Journal of Math-
ematical Imaging and Vision 20 (2004), 59–72.

[12] , Grey-weighted, ultrametric and lexicographic distances, ISMM’05 (2005),
Mathematical Morphology and its Applications to Image and Signal Processing,
pp. 289–298.

[13] J. Serra and M. Mlynarczuk, Morphological merging of multidimensional data,
STERMAT’00 (2000), 6th International Conference Stereology and Image Analysis
in Materials Science, pp. 385–390.

[14] Z. Tu and S.-C. Zhu, Image Segmentation by Data-Driven Markov Chain Monte
Carlo, IEEE Trans. on Pattern Analysis and Machine Intelligence 24 (2002), 657–
673.

[15] C. Vachier and F. Meyer, Extinction value: a new measurement of persistence,
(1995), IEEE Workshop on Nonlinear Signal and Image Processing, pp. 254–257.

[16] K. L. Vincken, A. S. E. Koster, and M. A. Viergever, Probabilistic Multiscale Image
Segmentation, IEEE Trans. on Pattern Analysis and Machine Intelligence 19 (1997),
109–120.



Watershed by image foresting transform,

tie-zone, and theoretical relationships with

other watershed definitions

Romaric Audigier and Roberto de A. Lotufo

Faculdade de Engenharia Elétrica e de Computação (FEEC), Universidade Estadual de
Campinas (Unicamp), SP, Brasil
audigier@dca.fee.unicamp.br, lotufo@unicamp.br

Abstract To better understand the numerous solutions related to watershed
transform (WT), this paper shows the relationships between some
discrete definitions of the WT: the watersheds based on image
foresting transform (IFT), topographic distance (TD), local condi-
tion (LC), and minimum spanning forest (MSF). We demonstrate
that the tie-zone (TZ) concept, that unifies the multiple solutions of
a given WT, when applied to the IFT-WT, includes all the solutions
predicted by the other paradigms: the watershed line of TD-WT
is contained in the TZ of the IFT-WT, while the catchment basins
of the former contain the basins of the latter; any solution of LC-
WT or MSF-WT is also solution of the IFT-WT. Furthermore, the
TD-WT can be seen as the TZ transform of the LC-WT.

Keywords: image segmentation, watershed transform, graph theory, minimum
spanning forest, shortest-path forest.

1. Introduction

The watershed transform (WT) is a famous and powerful segmentation tool
in morphological image processing. First introduced by Beucher and Lan-
tuéjoul [7] for contour detection and applied in digital image segmentation
by Beucher and Meyer [8], it is inspired from a physical principle well-known
in geography: if a drop of water falls on a topographic surface, it follows
the greatest slope until reaching a valley. The set of points which lead to
the same valley is called a (catchment) basin. Watershed lines separate dif-
ferent basins. In the WT, an image is seen as a topographic surface where
gray level corresponds to altitude. In practice, the topography is made of a
gradient of the image to segment. In this case, it is expected that a region
with low gradient, a valley, corresponds to a rather homogeneous region
and possibly to the same object. Ideally, basins correspond to segmented
objects separated by watershed lines.

Many definitions and numerous algorithms for WT exist in literature.
Furthermore, multiple WT solutions are sometimes returned by an algo-
rithm according to its implementations or even by the theoretical definition
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itself. This disconcerting fact motivated the investigation of the relation-
ships between theoretical WT definitions.

Definitions in continuous space have been proposed [7, 18, 19, 21] and
consider the watershed as a skeleton by influence zones (SKIZ) generalized
to gray-scale images. In discrete space (of interest in this paper), there
are many definitions which can be classified in five main paradigms. The
WT based on local condition (LC-WT) mimics the intuitive drop of water
paradigm. The inclusion of a pixel to a basin is achieved by iteratively re-
specting a local condition of label continuity along a path of steepest descent
that reaches the basin minimum. It is why this definition includes algo-
rithms of “arrowing”, “rain simulation”, “downhill”, “toboggan”, “hill climb-
ing” [14, 20, 22]. The variation among them is due to processing strategy
(ordered or unordered data scanning, depth- or breadth-first, union-find)
and data structure.

The WT based on flooding has a recursive definition [23] that simulates
the immersion of a topography representing the image. At each flooding
level, growing catchment basins invade flooded regions that belong to their
respective influence zone. The watershed corresponds to the SKIZ.

The topological WT [10] cannot be viewed as a generalized SKIZ but in
fact, as the ultimate homotopic thinning that transforms the image while
preserving some topological properties as the number of connected compo-
nents of each lower cross-section and the saliency between any two (basin)
minima.

The WT based on path-cost minimization associates a pixel to a catch-
ment basin when the topographic distance is strictly minimum to the re-
spective regional minimum in the case of the WT by topographic distance
(TD-WT) [18]; or it builds a forest of minimum-path trees, each tree repre-
senting a basin, in the case of the WT by image foresting transform (IFT-
WT) [12,15].

The WT based on minimum spanning forest (MSF-WT) associates a
graph to an image and builds a MSF [17], i.e., a spanning forest minimizing
the sum of the weights of the arcs used for its construction. Trees correspond
to basins.

Table 1 summarizes some characteristics of these WT definitions. Only
flooding-WT and TD-WT definitions (not the related algorithms) return
unique solution (Figure 1(b, i)), but the concept of tie zone (TZ) can be
applied to the IFT-WT to unify the set of multiple solutions by creating
litigious zones when solutions differ.

The LC-WT, IFT-WT (Figure 1(e–h)) and MSF-WT, are sometimes
called “region”-WT because all pixels are assigned to basins, by definition.
Watershed lines are considered as located between basin pixels, but can
be visualized by ad-hoc algorithms. The other definitions are known as
“line”-WT because some pixels are labeled as watershed. Yet, except for
the topological WT definition (Figure 1(c, d)), they do not define lines that
consistently separate basins but, instead, possibly thick and disconnected
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watershed lines.

Table 1. Characteristics of the main watershed transform (WT) definitions.

Watershed Unique Watershed Separating Thin Grayscaled

definitions solution pixels lines lines lines

LC-WT no no — — —

Flooding-WT yes* yes no no no

Topological-WT no yes yes no yes

TD-WT yes* yes no no no

IFT-WT no no — — —

TZ-IFT-WT yes tie-zone no no no

MSF-WT no no — — —

* The strict definitions have a unique solution but the algorithms derived in [8, 23] do
not respect the definitions and, therefore, return multiple solutions.

Observe that among these paradigms, TD-WT, IFT-WT and MSF-WT
are based on a global optimality criterion. Both IFT-WT and MSF-WT are
only defined in discrete space. The other paradigms attempt to mimic a con-
tinuous definition, i.e., they may be defined in both discrete and continuous
spaces.

This paper shows the relationships between the discrete definitions of
IFT-WT, TD-WT, MSF-WT and LC-WT. We show that the TZ water-
shed, derived from the solutions of the IFT-WT, contains all the solutions
predicted by the other paradigms.

In Section 2, we present the IFT-WT formalism, and the TZ concept.
Section 3 recalls the definition of LC-WT and demonstrates that any solu-
tion of LC-WT is also solution of the IFT-WT. Section 4 shows that the
watershed region of TD-WT is contained in the TZ (derived from the IFT-
WT), and the basins of the former contain the basins of the latter. In
addition, the TD-WT can be seen as the TZ transform of the LC-WT. Fi-
nally, Section 5 demonstrates that any solution of MSF-WT is also solution
of the IFT-WT.

2. The image foresting transform (IFT)

The IFT is a general framework based on graph theory in which an image is
seen as a graph and pixels (or voxels) as its nodes. This transform returns
a shortest path forest (SPF) from an input image-graph. Depending on
the path-cost function utilized and other input parameters (adjacency, arc
weights), the IFT can compute different image processing operations [11,
12]: distance transforms, connected filters, interactive object delineation
(“live-wire”), segmentation by fuzzy connectedness [3] and segmentation by
watershed.
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(b) Flooding-WT
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(c) Topological-WT 1
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(d) Topological-WT 2

A A A B B

A A A B B

A A C B B

C C C C D

C C C D D

C C C D D

(e) LC-WT 1
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C C D D D

(f) LC-WT 2

A A A B B

A A C B B

C C C B B

C C C C D

C C C C D

C C C D D

(g) IFT-WT 1

A A B B B

A A D B B

D D D B B

D D D D D

C D D D D

C C D D D

(h) IFT-WT 2

A A←A B→B
↑ ↑ ↑ ↑

A←A A B→B
↑ ↑ ↑
A W→W B→B

↓
C W→W←W→D
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C← C W D→D
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C C←W→D D

(i) TD-WT and LCG

A A ←TZ→ B →B
↑ ↑ ↑ ↑

A ← A ←TZ→ B →B
↑ ↑ ↓ ↓ ↑

TZ→TZ→TZ B →B
↓ ↓ ↑

TZ→TZ→TZ←TZ→D
↓ ↑ ↓ ↑ ↓
C ←TZ→TZ←TZ→D

↓ ↓ ↓
C C ←TZ→ D D

(j) TZ-IFT-WT and MOG

Figure 1. (a): Lower-complete input grayscale image with four minima. (b)–(j):
Its WTs using 4-adjacency, according to definitions from literature. Label map is
shown (W represents watershed line and TZ tie-zone) except for topological WT
where watershed lines are valued. (c)–(h) show only two of the possible solutions.
Watershed line in (b) and (i) is not separating. Arrows (pointing to predecessors)
represent the lower complete graph (i) and multipredecessor optimal graph (j).

2.1 Watershed by image foresting transform (IFT-WT)

Under the IFT framework, an image is interpreted as a weighted graph
G = (V,A,w) consisting of a set V of nodes or vertices that represent
image pixels, a set A of arcs weighted by w, a function from A to some
nonnegative scalar domain. N(v) denotes the neighborhood of node v, i.e.,
the set of nodes adjacent to it. Nodes u and v are adjacent when the arc
〈u, v〉 belongs to A. A graph (V ′, A′) is subgraph of (V,A) if V ′ ⊆ V , A′ ⊆ A
and A′ ⊆ V ′×V ′. A forest F of G is an acyclic subgraph F of G. Trees are
connected components of the forest (any two nodes of a tree are connected
by a path). A path π(u, v) from node u to node v in graph (V,A,w) is a
sequence 〈u = v1, v2, . . . , vn = v〉 of nodes of V such that ∀i = 1 . . . n − 1,
〈vi, vi+1〉 ∈ A. A path is said simple if all its nodes are different from each
other. A path with terminal node v is denoted by πv. The path πv is trivial
when it consists of a single node 〈v〉. Otherwise, it can be defined by a path



Watershed, image foresting transform and tie-zone 281

resulting from the concatenation πu · 〈u, v〉. A path-cost function f assigns
to each path π a path cost f(π), in some totally ordered set of cost values.

Let S ⊆ V be a set of particular nodes si called seeds. For a given
weighted graph (V,A,w) and a set S of seeds, the image foresting transform
(IFT) returns a forest F of (V,A,w) such that (i) there exists for each node
v ∈ V a unique and simple path π(si, v) in F from a seed node si ∈ S to v
and (ii) each such path is optimum, i.e., has a minimum cost for linking v
to some seed of S, according to the specified path-cost function f . In other
words, the IFT returns a shortest (cheapest in fact) path forest (SPF),
also called optimal forest in this paper, where each tree is rooted to a seed.
Although path costs are uniquely defined, the IFT may return many optimal
forests because many paths of same minimum cost may exist for some nodes.

The watershed transform by IFT (IFT-WT) assumes that (i) the seeds
correspond to regional minima of the image (or to imposed minima, i.e.,
markers [8]); (ii) the max-arc path-cost function fmax is used:

fmax (〈v〉) = h(v),

fmax (πu · 〈u, v〉) = max {fmax(πu), w(u, v)} , (1)

where h(v) is a fixed but arbitrary handicap cost [16] for any paths starting
at pixel v, and w(u, v) is the weight of arc 〈u, v〉 ∈ A, ideally higher on the
object boundaries and lower inside the objects. Usual arc weight functions
are: w1(u, v) = |I(u) − I(v)|, I(u) being the intensity of pixel u (cf. the
so-called watershed by dissimilarity [15]); w2(u, v) = G(v), where G(v)
is the (morphological) gradient of image I at pixel v (cf. the IFT-WT
on gradient [12, 15]). With this arc weight function, the max-arc path-
cost function of Equation 1 can be simplified into: fmax(〈v1, v2, . . . , vn〉) =
max {G(v1), G(v2), . . . , G(vn)}. Note that the final cost map is unique and
corresponds to the morphological superior reconstruction of the gradient
image from the seeds using a flat structuring element. However, the forests
and then the labelings may be multiple. Observe that a forest can be simply
represented by a predecessor map P where P (v) is the predecessor of node v
in the minimum path. A label map L assigns to each node v the label L(v)
of the corresponding minimum-path root. The catchment basins correspond
to the (labeled) trees: CBIFT (si) = {v ∈ V,L(v) = L(si)} .

The so-called “plateau problem” is reported in WT literature for the
internal non-minimum plateau pixels, i.e., non-minimum1 pixels which have
no lower neighbor. It can be solved by lower completion (cf. Definition 3.4
of [22]): a lower complete image2 ILC is computed from I by taking into
account the geodesic distance of such internal pixels to the lower boundary
of the plateau; then WT is applied on ILC .

1Pixels which do not belong to regional minima.
2The improper term “image without plateau” is sometimes used instead.
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In IFT-WT, flex = (fmax, fd), a two-component lexicographic cost func-
tion, is used [15] to avoid a prior lower completion but has strictly the
same role [4]. The first component, of highest priority, is the max-arc func-
tion representing the flooding process. The second one corresponds to the
geodesic distance to the lower boundary of the plateau and makes different
waters propagate on plateau at a same speed rate:

fd(〈v1, . . . , vn〉) = max
k∈[0,n−1]

{k, fmax(〈v1, . . . , vn〉) = fmax(〈v1, . . . , vn−k〉)} .

2.2 Tie zone

The choice of a single IFT-WT solution when many are possible is arbitrary
and can be seen as a bias. Indeed, variations from one solution to another
are sometimes significant and even unacceptable for some applications (e.g.,
reliable measures on segmented structures). In some images, an entire region
is reached passing by a bottleneck pixel [2] and consequently included to
the basin that first invades the bottleneck (like in Figure 1(g, h)). This
problem is not related to the plateau problem and corresponds “to special
pixel configurations which are not so rare in practice” as referred by [23].

It is why the tie-zone concept was proposed [4, 5] to unify the multiple
solutions of a WT. Briefly speaking, considering all possible solutions de-
rived from a specific WT definition, parts segmented in the same manner
remain as catchment basins whereas differing parts are put in the tie zone
(TZ). So, the TZ may be thick as well as empty.

In the case of IFT-WT, the tie-zone watershed by IFT (TZ-IFT-WS),
returns a unique partition (cf. Figure 1(j)) of the image such that: A node
is included in catchment basin CBTZ−IFT (si) when it is linked by a path
to a same seed si in all the optimal forests (Φ denotes the set of the optimal
forests F ), otherwise it is included in the tie zone TZ:

CBTZ−IFT (si) = {v ∈ V, ∀F ∈ Φ, ∃π(si, v) in F} , (2)

TZIFT = V \
⋃
i

CBTZ−IFT (si).

The area of the TZs, their distribution and number and distribution
of their sources, the so-called bottlenecks, can be correlated with the ro-
bustness of a segmentation, i.e., with the degree of confidence a particular
segmentation by WT has [2].

2.3 Multipredecessor optimal graph and lower com-
plete graph

We introduce now a special graph, unique for each image, that will be used
in Section 3. Roughly speaking, the multipredecessor optimal graph (MOG)
of a weighted graph is the “union” of its optimal forests. More precisely, it
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is a directed acyclic subgraph of (V,A) such that its arc set A′′ is the union
of the (oriented) arcs of all the optimal forests F ∈ Φ (cf. Figure 1(j)):

MOG : (V,A′′) = (V,
⋃

∀F=(V,A′)∈Φ

A′).

Once we have the lexicographical cost map of the image, i.e., a lower
complete image, the following local property is valid: node p is predecessor
of node v in the MOG if and only if p is neighbor of v with optimal lexico-
graphic cost strictly lower than that of v (the superscript ∗ denotes optimal
paths).

〈v, p〉 ∈ A′′ ⇔ p ∈ P(v) ⇔ p ∈ N(v), flex(π∗v) � flex(π∗p), (3)

where P(v) denotes the set of predecessors of node v, as the number of
predecessors by node is no longer restricted to one as for the forests. Another
property of the MOG is that if we independently choose one predecessor by
non-minimum node, we obtain an optimal forest (A′ ⊆ A′′ ⊆ A).

The lower complete graph (V,A′′′) (LCG, cf. Definition 3.5 of [22]) is
analog to the MOG. Both are directed acyclic graphs built from the lower
complete image. While all the lower neighbors in the lower complete image
are predecessors of a node in the MOG, only the steepest lower neighbors
are considered for a node in LCG (cf. Figure 1(i)).

〈v, p〉 ∈ A′′′ ⇔ p ∈ Psteepest(v)⇔ p ∈ N(v), ILC(v) > ILC(p), (4)
ILC(v)−ILC(p)

d(v,p) = maxq∈N(v)
ILC(v)−ILC(q)

d(v,q) ,

d(p, q) being the distance between p and q. From Equation 3 and Equation 4,
we deduce that Psteepest(v) ⊆ P(v). Consequently, A′′′ ⊆ A′′ ⊆ A and the
LCG (V,A′′′) of an image-graph (V,A) is a subgraph of its MOG (V,A′′).

3. Watershed based on a local condition

As we said in Section 1, the watershed transform based on a local condition
(LC-WT) is of “region” type because it has no watershed pixels [6, 9]. It
may have multiple solutions (cf. Figure 1(e, f)). It assigns to each pixel the
label of some minimum mi, so as to form a partition of the image whose
disjoint sets are the basins CBLC(mi) = {v ∈ V,L(v) = L(mi)}.

As observed in refs. [6,22], this WT definition is particularly well-suited
for parallel implementations because it is based on a local condition. How-
ever, the overall WT computation is still a global operation. The meaning
of locality in this definition is that one may subdivide an image in blocks,
do a labeling of basins in each block independently, and make the results
globally consistent in a final merging step.
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Definition 1 (Watershed based on local condition). For any lower complete
image ILC , a function L assigning a label to each pixel is called a watershed
segmentation if:

1. L(mi) 6= L(mj) ∀i 6= j, with {mk} the set of minima of ILC ;

2. for each pixel v with Psteepest(v) 6= {},∃p ∈ Psteepest(v), L(v) = L(p).

The condition Psteepest(v) 6= {} means that v has at least one lower
neighbor.

In other words, we can obtain a LC-WT by independently choosing one
predecessor by non-minimum node in the precomputed LCG, and assigning
a different basin label to each tree of the disjoint-set forest we obtained.

As the LCG (V,A′′′) generating such forests is a subgraph of the MOG
(V,A′′) generating any optimal forest, we conclude straightaway that these
forests are optimal forests. Therefore: any LC-WT is also an IFT-WT.

4. Watershed based on topographic distance

We recall here the definition of WT by topographic distance (TD-WT) and
some propositions from [18] for completeness.

Definition 2 (Watershed transform by topographic distance). Let I be a
gray-scale image, ILC its lower completion, and {mi} the set of minima of
I. Basin of I for minimum mi and watershed are respectively:

CBTD(mi) =
{
v ∈ V, ∀j 6= i, ILC(mi) + TILC (v,mi) < ILC(mj) + TILC (v,mj)

}
WTD = V \

⋃
i

CBTD(mi) (5)

TILC (p, q) being the topographic distance [18] between p and q:

TILC (p, q) = min
∀π(p,q)

T
π(p,q)
ILC

(p, q); T
π(p,q)
ILC

(p = p1, q = pn) =

n−1∑
i=1

cost(pi, pi+1);

cost(pi, pi+1) =


LS(pi)d(pi, pi+1), if ILC(pi) > ILC(pi+1),
LS(pi+1)d(pi, pi+1), if ILC(pi) < ILC(pi+1),
1
2

[LS(pi) + LS(pi+1)] d(pi, pi+1), if ILC(pi) = ILC(pi+1).

The lower slope LS(p) of ILC at a pixel p is defined as the maximal slope
linking p to any of its neighbors of lower altitude.

We call (p1, p2, . . . , pn) a path of steepest descent from p1 = p to pn = q
if pi+1 ∈ Psteepest(pi) for i = 1, . . . , n−1. A pixel p belongs to the upstream
of q if there exists a path of steepest descent from p to q.
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Proposition 1 (from [18]). Let ILC(p) > ILC(q). A path π from p to q is
of steepest descent if and only if TπILC (p, q) = ILC(p)− ILC(q). If a path π
from p to q is not of steepest descent, TπILC (p, q) > ILC(p)− ILC(q).

This proposition implies that paths of steepest descent are the geodesics
(shortest paths) of the topographical distance function. Consequently, from
Definition 2 CBTD(mi) is the set of points in the upstream of a single
minimum mi, i.e., there is (at least) one path of steepest descent to mi and
no path of steepest descent to any other minimum. The watershed consists
of the points p which are in the upstream of at least two minima, i.e., there
are at least two paths of steepest descent starting from p which lead to
different minima.

4.1 Relationship with local-condition watershed

The forests representing the possible LC-WT generated from the LCG (Sec-
tion 3) are made of paths of steepest descent. By strict analogy with Equa-
tion 2, we can conclude that: TD-WT is the tie-zone transform of
LC-WT.

Proof. A node is included in catchment basin CBTD(mi) when it is linked by
a path to a same minimum mi in all the forests made of steepest paths (the
set of solutions for LC-WT, e.g., Figure 1(e, f)), otherwise it is included
in the tie zone WTD (cf. Figure 1(i)). As a consequence, we have also
CBTD(mi) ⊆ CBLC(mi) (cf. Figure 1(i)), as demonstrated in Theorem 2
of [6].

4.2 Relationship with tie-zone watershed by IFT

We saw in Section 3 that the set of LC-WT solutions is a subset of the
set of IFT-WT solutions, so the tie zone derived from the LC-WT
solutions, i.e., WTD, is a subset of TZIFT : WTD ⊆ TZIFT .

Proof. If pixel p ∈ WTD, there are at least two paths of steepest descent
from p to different minima. These paths belong to the LCG and to the
MOG too (LCG is subgraph of MOG). So, there exist at least two optimal
forests containing these paths leading to different minima. Consequently,
p ∈ TZIFT .

Besides, the catchment basins defined by TZ-IFT-WT are sub-
sets of the corresponding basins defined by TD-WT:
∀mi, CBTZ−IFT (mi) ⊆ CBTD(mi).

Proof. If pixel p ∈ CBTZ−IFT (mi), all the paths from p in the MOG lead to
minimum mi. So do the paths from p in the LCG (because LCG is subgraph
of MOG, Psteepest(v) ⊆ P(v),∀v). So, p ∈ CBTD(mi).
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Input graph:
[0] [2] [2] [0]

◦ 2←→• 1←→• 2←→◦
[max-arc path-cost]

arc weights

A ←− A ←− A B

(a) MSF 1 and SPF 1

A B −→ B −→ B

(b) MSF 2 and SPF 2

A ←− A B −→ B

(c) SPF 3 is not a MSF

Figure 2. A weighted graph with two markers (◦) and its 3 possible SPF-max and
2 MSF (total weight = 3). SPF 3 is not a MSF (total weight = 4).

5. Watershed based on a minimum spanning forest

The WT introduced in [17] is in fact a WT from markers (some signifi-
cant minima are selected to avoid oversegmentation). It uses a weighted
neighborhood graph whose nodes are the primitive catchment basins corre-
sponding to regional minima of the image. Arcs are placed between neighbor
catchment basins and weighted by the altitude of the pass between them.
A watershed based on minimum spanning forest (MSF-WT) is defined on
this weighted graph: the many possible MSFs on the graph define parti-
tions that are considered solutions of this WT. Each tree of the MSF is a
catchment basin of the MSF-WT.

A tree (V, T ) is a minimum spanning tree (MST) of graph (V,A,w) if
its total weight

∑
t∈T w(t) (sum of the weight of its arcs) is minimum. It

is unique when all the arc weights of the graph are different. A minimum
spanning forest (MSF) is a forest whose total weight (sum of the weight of
its arcs) is minimum and where each node is linked to a seed si ∈ S by a
unique simple path. The MSF problem for weighted graph (V,A,w) can be
solved by constructing the MST of (V ∗, A∗, w∗) where a ficticious root node
z and arcs of weight −1 linking z to each seed were added. In a final step,
these negative arcs will be removed to obtain a MSF.

Theorem 1 (Minimum spanning tree [13]). (V, T ) is a tree of minimum
weight for graph (V,A,w) if and only if for every arc u ∈ A − T the cycle
µu (such that µu ⊂ T + {u}) satisfies: w(u) ≥ w(v), ∀v ∈ µu (v 6= u).

Now, we demonstrate3 that the set of MSF solutions is a subset of the
set of IFT-WT solutions defined by the same weighted graph using the same
seed set with seed handicaps h(si) = 0 and the max-arc path cost4.

Theorem 2 (Shortest-path forest and minimum spanning forest).
Given a weighted graph and a seed set, any minimum spanning forest (MSF)
is also a shortest-path forest (SPF-max) using max-arc path cost fmax.

F is a MSF⇒ F is a SPF-max (or IFT-WT).

3This result was obtained independently in [1].
4Until now, lexicographic path-cost flex = (fmax, fd) was used for IFT-WT.
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Reciprocal is false (cf. examples and counter-example in Figure 2).

Proof. Suppose that F is a MSF and T the corresponding MST using a
ficticious root z. Suppose that there exists a path π from p to z, π belongs
to T and π is non optimal in the SPF-max sense (i.e., using fmax). Suppose
that there exists another path π′ from p to z such that fmax(π′) < fmax(π).
Then for every arc v in π′, its weight w(v) ≤ fmax(π′) < fmax(π). Now,
there exists an arc u in π′, u not in T (because T has no cycle: p and z
are linked by only one simple path). Therefore, w(u) < fmax(π). Now,
T is a MST. Therefore, from Theorem 1, w(u) ≥ fmax(π · π′) ≥ fmax(π),
π · π′ being the cycle µu formed by concatenation of the two paths. That
is a contradiction with the previous conclusion. So, any MSF is necessarily
SPF-max.

6. Conclusion and future works

In this paper, we used the IFT-WT and the TZ concept (that unifies the
set of multiple solutions of a given WT) to relate some discrete WT defini-
tions and, thereby, better understand the differences between the multiple
solutions given by such definitions. We demonstrate that (i) the TD-WT
corresponds to the tie-zone transform of the LC-WT; (ii) the possibly thick
and not separating watershed line of TD-WT is contained in the TZ of the
TZ-IFT-WT (with lexicographic cost function), while (iii) the catchment
basins of the former contain the basins of the latter; (iv) any solution of
LC-WT is also solution of the IFT-WT; (v) any solution of MSF-WT is
also solution of the IFT-WT (with max-arc path-cost function).

We are preparing an extended version of this paper which will also in-
clude the comparative analysis of flooding-WT definition with IFT-WT and
TZ, as well as some issues on related algorithms.
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Abstract Synchronous electrical activity in different brain regions is generally
assumed to imply functional relationships between these regions. A
measure for this synchrony is electroencephalography (EEG) coher-
ence. Recently, we developed a new method for data-driven visual-
ization of high-density EEG coherence, avoiding the visual clutter
of conventional data-driven methods. It uses the concept of max-
imal clique detection, having time complexity O(3n/3) with n the
number of vertices. Here, a more efficient clustering method is used
with time complexity O(n2 logn), based on a watershed algorithm
which is modified to detect cliques in a greedy way. Here, it obtains
a speedup of factor 400 while results are similar, making interactive
visualization of high-density EEG coherence feasible.

Keywords: EEG, coherence, graph, watershed transform, medical data.

1. Introduction

Electroencephalography (EEG) measures the electrical activity of the brain
using electrodes attached to the scalp at multiple locations. Synchronous
electrical activity in different brain regions is generally assumed to imply
functional relationships between these regions. A measure for this synchrony
is EEG coherence [6,9]. Visualization of high-density EEG (at least 64 elec-
trodes) is not always managed well [12–14]. For the analysis of high-density
EEG coherence, EEG researchers often employ a hypothesis-driven defini-
tion of certain regions of interest (ROIs). In these ROIs, all electrodes are
assumed to record similar signals, because of volume conduction effects [8].
As an alternative to the hypothesis-driven approach, we previously intro-
duced a data-driven visualization of ROIs which shows less clutter than
conventional data-driven methods [14]. It is based on a graph with ver-
tices representing electrodes and edges representing significant coherences
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between electrode signals. The data-driven version of a ROI is called a
functional unit (FU) and is represented in the graph by a clique consisting
of spatially connected vertices [14].

Our existing maximal clique based (MCB) method clusters vertices into
FUs using the concept of maximal clique detection [2], having time complex-
ity O(3n/3) with n the number of vertices [15], which we extended to find
sets of spatially connected vertices [14]. With an interactive visualization
of EEG coherence in mind, we here present a new method with time com-
plexity O(n2 log n), based on the concept of the watershed transform [11]
which is adapted to detect cliques in a greedy way. We refer here to the
more efficient new method as watershed based (WB) method.

2. Preliminaries

2.1 EEG data

EEG can be recorded using up to 512 electrodes attached to the scalp. A
conductive gel is applied between skin and electrodes to reduce impedance.
The electrical potential is measured at all electrodes simultaneously. The
measured signals are amplified, resulting in one recording channel for every
electrode. If there are many electrodes, the term ‘multichannel’ or ‘high-
density’ EEG is used. As a result of volume conduction [8], multiple elec-
trodes can record a signal from a single source in the brain. Therefore,
nearby electrodes usually record similar signals. Because sources of ac-
tivity at different locations may be synchronous, electrodes far apart can
also record similar signals. A measure for this synchrony is coherence,
calculated between pairs of signals as a function of frequency. The co-
herence cλ as a function of frequency λ for two continuous time signals x
and y is defined as the absolute square of the cross-spectrum fxy normal-
ized by the autospectra fxx and fyy [6], having values in the interval [0, 1]:

cλ(x, y) =
|fxy(λ)|2

fxx(λ)fyy(λ) . An event-related potential (ERP) is an EEG record-

ing of the brain response to a sensory stimulus. For L repetitive stimuli,
the EEG data can be separated into L segments, each containing one brain
response. A significance threshold for the estimated coherence is then given
by [6]

ϕ = 1− p1/(L−1), (1)

where p is a probability value associated with a confidence level α, such that
p = 1−α. Throughout this paper, we use p = 0.05, unless stated otherwise.

2.2 Graph theory

A graph G = (V,E) consists of a set of vertices V and a set of edges
E ⊆ V × V . The vertices u and v are called neighbors or adjacent if there
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is one edge between them. The neighborhood of vertex v is the collection of
all neighbors of v. In a directed graph, the set E consists of ordered pairs
of vertices from V . In an undirected graph, the pairs are not ordered. A
directed edge is denoted as e = (u, v), an undirected edge as e = {u, v}; u
and v are called incident with e, and e is said to be incident with u and
v. A walk between two vertices is a sequence of edges (e1, ..., en), with
vertices v0, ..., vn such that ei = {vi−1, vi}. If a walk exists between two
vertices, they are called connected. For a graph G = (V,E) and V ′ ⊆ V ,
the set of all edges with both vertices in V ′ is denoted as E|V ′. The graph
G′ = (V ′, E|V ′) is called the (vertex-) induced subgraph on V ′. If V ′ ⊂ V
and E′ ⊂ E|V ′, then G′ = (V ′, E′) is called a subgraph. If any two vertices
in G = (V,E) are connected, G is called a connected graph. A maximal
connected subgraph of G is a connected component. If all two-element
subsets of V are edges, then G = (V,E) is a complete graph. A clique is a
set V ′ ⊆ V such that the induced subgraph on V ′ is a complete graph. A
maximal clique is a clique which is not a subgraph of a larger clique. For
more background information on graphs, see, e.g., [7].

3. Data representation

3.1 Experimental setup

Here, brain responses from three young adults are studied, recorded using
an EEG cap with 119 scalp electrodes. During a so-called P300 experiment,
each participant was instructed to count target tones of 2000 Hz (proba-
bility 0.15), alternated with standard tones of 1000 Hz (probability 0.85)
which were to be ignored. After the experiment, the participant had to re-
port the number of perceived target tones. For each dataset, brain reactions
to 20 target tones were recorded in L = 20 segments.

A procedure from Neurospec (www.neurospec.org) was adopted to com-
pute the coherence. Frequencies between 1 and 30 Hz are typically stud-
ied clinically. We calculated the coherence within a lower (1-3 Hz) and a
higher (13-20 Hz) EEG frequency band, because EEG synchrony behaves
differently for lower and higher frequencies [9,10]. For 119 electrodes, in to-
tal 7021 coherence values were computed per frequency band. If the conduc-
tive gel accidentally connected two adjacent electrodes, very high coherences
were measured. Coherences higher than 0.99 were therefore ignored.

3.2 EEG coherence graph

The data are represented by a coherence graph with vertices representing
electrodes. Coherences above the significance threshold (Equation 1) are
represented by edges, coherences below the threshold are ignored.

To determine spatial relationships between electrodes, a Voronoi dia-
gram is employed which partitions the plane into regions with the same
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nearest vertex. For EEG data, the vertex set equals the set of electrode
positions (Figure 1). The vertices are referred to as (Voronoi) centers, the
boundaries as (Voronoi) polygons. The area enclosed by a polygon is called
a (Voronoi) cell. We call two cells Voronoi neighbors if they have a bound-
ary in common. A collection of cells C is called Voronoi-connected if for
a pair ϕ0, ϕn ∈ C there is a sequence ϕ0, ϕ1, ..., ϕn of cells in C with each
pair ϕi−1, ϕi consisting of Voronoi neighbors. We use the terms “Voronoi
neighbor” and “Voronoi-connected” interchangeably for cells, vertices, and
electrodes.

Figure 1. Voronoi diagram, with (a
subselection of) all electrode labels in
the corresponding cells (top view of the
head, nose at the top). To improve
the readability, the Voronoi diagram
is stretched horizontally. The bound-
ary is the convex hull of all electrodes.
Because the coherence computation is
independent of distance, distances be-
tween electrodes do not need to be pre-
served. However, spatial relationships
between electrodes are maintained.

4. Vertex clustering

4.1 Existing maximal clique based (MCB) method

A functional unit (FU) is a clique consisting of Voronoi-connected ver-
tices [14]. Consequently, an FU corresponds to a Voronoi-connected set
of electrodes in which the electrodes record pairwise significantly coherent
signals. Our existing FU clustering method for high-density EEG coher-
ence [14] uses maximal clique detection [2], which we extended to find sets of
Voronoi-connected vertices. Every vertex can be part of multiple (Voronoi-
connected) maximal cliques. To assign a unique label to every vertex, a
quantity total strength is defined for a (sub)graph G = (V,E) as the sum
of all edge values. This value is not normalized for the size of E. Conse-
quently, if two graphs have an equal average coherence, the graph with more
vertices has a higher total strength. Next, all cliques are queued in decreas-
ing order by their total strength. Then the following labeling procedure is
repeated, until there are no more cliques or until all vertices are labeled.
The first clique is removed from the queue, and all its vertices are assigned
a unique label and are removed from the other cliques. If necessary, the
changed cliques are separated into Voronoi-connected components. For all
changed cliques, the total strength is recomputed before they are put in the
appropriate position in the sorted queue. After completion of the labeling
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procedure, every set of identically labeled vertices is an FU.
The worst-case time complexity of maximal clique detections is O(3n/3),

with n the number of vertices [15]. In practice, performance of maximal
clique detection strongly depends on graph structure [16].

4.2 New watershed based (WB) method

As an alternative to the MCB method, we present here a greedy method
approximating maximal cliques on the basis of the watershed transform [11].
In the usual watershed algorithm, a subset of all local minima is selected
as markers. Markers are labeled and are associated with basins. Basins
contain vertices with the same label as the corresponding marker and are
extended as follows, using the watershed implementation based on ordered
queues [1]. The first vertex v is removed from a queue of vertices sorted in
decreasing order of priority. Every unlabeled neighbor v′ of v receives the
same label as v and is put into the queue with a priority depending on the
value of v′, but not higher than the priority of v. This continues until the
queue is empty.

Now we modify the usual watershed transform in order to obtain spa-
tially connected sets of electrodes, where all electrodes in a given set have
recorded mutually significantly coherent signals. This modification concerns
two steps in the watershed transform: (i) choice of markers; (ii) use of an
edge queue instead of a vertex queue. We explain these two points in more
detail.

First, we define a marker as an electrode recording a signal that is lo-
cally maximally coherent with signals of its spatially neighboring electrodes.
Because the EEG coherence graph has edge values instead of vertex values,
we first assign a coherence value to each vertex by computing the average
of the edge values between this vertex and all its Voronoi neighbors. Then,
we select all vertices which are local maxima as markers to be associated
with basins, because those vertices are locally maximally similar to their
spatially neighboring vertices. Note that we choose all local maxima as
markers, instead of a small subset as is usually done when the watershed
algorithm is applied to digital images. In our case the over-segmentation
problem is less severe, because the number of electrodes is an order of mag-
nitude smaller than the number of pixels in an image. If the number of
basins (i.e., clusters) found is still too large, we can suppress basins below
a certain size in a post-processing step (see Section 6).

The second point concerns the type of queue we use. Whereas the usual
queue-based implementation of the watershed transform uses a vertex queue
sorted in increasing order of gray value, we use an edge queue sorted in
decreasing order of coherence value. (The vertex values are only used for
defining the markers, as indicated above.) In case the coherence graph has
multiple identical edge values (which did not occur for our datasets), an
ordered queue consisting of queues with identically valued elements can be



294 MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS

used, as for digital images which usually contain multiple identically valued
vertices [1].

This queue is initialized with edges (corresponding with a significant
coherence) between markers and their Voronoi neighbors. The first edge
(v, v′) in the queue corresponds to the highest similarity (coherence) between
any vertex v′ outside and a Voronoi neighboring vertex v inside a basin.
Therefore, vertex v′ is the first candidate to be added to a basin.

The greedy WB method maintains the following dynamic vertex sets for
the detection of Voronoi-connected cliques.

� bsni contains a sorted list of the vertices in basin i.

� L(v) contains the basin label of vertex v.

� adjCohBsni contains a list of vertices (sorted by vertex number) which
are adjacent to each of the vertices in bsni in the coherence graph.

� queue contains edges in decreasing order. When vertex v receives a
label, an edge e = (v, v′) is added to queue for each unlabeled Voronoi
neighbor v′ of v, provided that the corresponding edge value exceeds
the significance threshold (Equation 1).

The main procedure consists of the following steps. Remove the first
edge, say e = (v, v′) from queue. In case vertex v′ was also labeled between
the insertion and removal of e = (v, v′), nothing is done and the procedure
continues with a new edge. Otherwise (v′ is unlabeled), there are two cases.
In case v′ ∈ adjCohBsnL(v), v

′ receives label L(v) and v′ is added to bsnL(v);
adjCohBsnL(v) is replaced by its intersection with the neighborhood of v′

in the coherence graph; queue is extended with the edges between v′ and
its Voronoi-neighbors, provided that corresponding edge values exceed the
significance threshold. In the other case, if v′ /∈ adjCohBsnL(v), v

′ is not
labeled (yet). This procedure is repeated until queue is empty. Each basin
then corresponds to an FU.

The WB vertex clustering procedure is described below in pseudocode.
The operation insertEdgeSort(e(v, v′),queue) inserts edge e(v, v′) into the
appropriate position in a decreasingly sorted edge queue queue; similarly,
insertVSort(v,vqueue) inserts vertex v into the appropriate position in a de-
creasingly sorted vertex queue vqueue; dequeue(queue) returns and removes
the first edge from an edge queue queue; intersect(.,.) gives the intersection
of two sorted vertex sets. The size of a vertex set is denote by | . |.

The creation of the sorted edge queue (step 1) has time complexity
O(m logm) = O(n2 log n), where n denotes the number of vertices and

m = n(n−1)
2 the maximal number of edges. Then (step 2), for every edge e =

(v, v′) in the queue with unlabeled v′ (queue length O(m) = O(n2)), the
following steps are executed consecutively: (a) binary search (O(log n)) is
used to verify the presence of v′ in the set adjCohBsnL(v), a sorted set
of at most n vertices; (b) two sorted vertex sets (with maximum size n)
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Algorithm 1 WB pseudocode.

Input: V is the vertex set; marker(i) = marker i ;
c(v, v′) = coherence(v, v′) = c(v′, v); ϕ = sign. threshold;
adjCohv = {v′ ∈ V | c(v,v′) ≥ ϕ};
adjVorv = {v′ ∈ V | v′ ∈ Vor.-neighborsv & v′ ∈ adjCohv};
{adjCohv, adjVorv are both sorted by vertex number}

Output: bsni is basin i (i.e., an FU) sorted by vertex number
Initialization:

1: queue ← ∅ {queue of edges}
2: for all v ∈ V do
3: L(v) ← 0 {L(v) = label of vertex v}
4: end for
5: for i = 1 to |marker | do
6: bsni ← marker(i); v ← marker(i); L(v) ← i
7: adjCohBsnL(v) ← adjCohv
8: for all v′ ∈ adjVorv do
9: insertEdgeSort(e(v,v′),queue)

10: end for
11: end for
Main:
12: while queue 6= ∅ do
13: e(v, v′) ← dequeue(queue)
14: if L(v′) = 0 then
15: if v′ ∈ adjCohBsnL(v) then
16: adjCohBsnL(v)←intersect(adjCohBsnL(v),adjCohv′)
17: L(v′) ← L(v); bsnL(v) ← insertVSort(v′,bsnL(v))
18: for all v∗ ∈ adjVorv′ do
19: if L(v∗) 6= 0 then
20: insertEdgeSort(e(v′, v∗),queue)
21: end if
22: end for
23: end if
24: end if
25: end while
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are intersected (O(n)); (c) Voronoi-neighbors of v (at most n) are inserted
into the edge queue (O(n logm) = O(n log n)). Step c has a higher time
complexity than a and b. However, step b and c are only executed O(n)
times, because at most n vertices can be added to a basin. Thus, the time
complexity for step 2 is O(n2 log n), as for step 1, which is therefore the
total time complexity.

5. FU map

In a so-called FU map, each FU is visualized as a set of identically colored
Voronoi cells, with different colors for adjacent FUs [14]. Given the FUs,
the inter-FU coherence c′ at frequency λ between two functional units W1

and W2 is defined as the sum of the coherence values between one vertex in
W1 and the other vertex in W2, scaled by the total number of edges between
W1 and W2 [14]:

c′λ(W1,W2) =

∑
i,j{cλ(vi, vj) | vi ∈W1, vj ∈W2}

|W1| · |W2|
, (2)

where, |Wi| indicates the number of vertices in Wi. Note that coherences
between any pair of vertices are taken into account, to normalize for the size
of the FUs. A line is drawn between FU centers if the corresponding inter-
FU coherence exceeds a threshold. We consistently choose this threshold
to be equal to the significance threshold (Equation 1), because we already
used this threshold to determine the coherence graph.

6. Results

We show FU maps for the MCB (Figure 2) and the WB (Figure 3) method,
for three datasets and two frequency bands. Because FU maps including
small FUs fail to give a good overview [14], only FUs larger than 5 cells are
considered.

MCB FU maps (Figure 2) were previously shown to agree with earlier
findings in the literature [14]. The number of connecting lines between FUs
was lower for a higher EEG frequency, in accordance with [9, 10]. Further-
more, connections between anterior and posterior FUs were probably asso-
ciated with the two most important sources of brain activity for this data
type [3, 4]. Here, the WB FU maps (Figure 3) confirmed these findings.

Each WB FU map was compared to the corresponding MCB FU map
(compare Figure 3 to Figure 2). From a visual inspection, the biggest dis-
similarity appeared between the FU maps for dataset 2 and frequency band
1-3 Hz (Figure 2 and Figure 3: top row, middle). For this case, the WB
method showed more FUs (at positions where the MCB method has no suf-
ficiently large FUs) and more inter-FU connections than the MCB method.
However, the six inter-FU connections with the highest value in the WB
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dataset 1 dataset 2 dataset 3
1-3 Hz

13-20 Hz

Figure 2. MCB FU maps (top view of the head, nose at the top) with FUs larger
than 5 cells, for EEG frequency 1-3 Hz (top row) and 13-20 Hz (bottom row), for
three datasets and p = .05. Each FU is visualized as a set of identically colored
Voronoi cells, with different gray values for adjacent FUs. White Voronoi cells are
part of FUs with |FU| ≤ 5. Geographic centers of FUs are visualized as a circle
with a cross inside, having a color corresponding to the FU. A line connects FUs
if the inter-FU coherence exceeds the significance threshold (Equation 1), with its
color depending on the value (see color bar, with minimum corresponding to the
coherence threshold ≈ 0.15). Lines are drawn in the order from low to high inter-
FU coherence values. Above each FU map the number of FUs and the number of
connecting lines between FUs are displayed.

FU map corresponded to the six inter-FU connections in the MCB FU
map. This became more clear by simultaneously increasing the significance
threshold for both the coherence graph and the inter-FU connections in the
WB FU map (i.e., decreasing the p-value). The result showed only the six
highest inter-FU connections for p = .001 (Figure 4, right). Those six con-
necting lines completely connected two anterior and two posterior FUs for
the WB method (Figure 4, right), which were in orientation very similar
to the six connecting lines for the MCB method (Figure 4, left). The two
anterior FUs in the MCB FU map did not correspond exactly with the two
anterior FUs obtained with the WB method, because the latter is a greedy
FU detection method. The same holds for the posterior FUs.

For the other cases, inter-FU connections between FUs which were no
spatial neighbors were usually similar for the MCB and WB method. Fur-
ther, the locations of the FUs were usually similar for the MCB and WB
method, especially for FUs connected with another FU which was not a
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dataset 1 dataset 2 dataset 3
1-3 Hz

13-20 Hz

Figure 3. WB FU maps, with FUs larger than 5 cells, for the 1-3 Hz EEG
frequency band (top row) and for 13-20 Hz (bottom row), for three datasets and
p = .05.

spatial neighbor. For example, anterior and posterior FUs connected by a
line were similarly located for all cases.

Additionally, we compared the numbers of FUs obtained with both meth-
ods. In the range up to an FU size of 5 cells (not illustrated), the MCB
method had on average 14 FUs and the WB method 6 FUs. In the range

MCB: p = .05 WB: p = .05 WB: p = .001

Figure 4. FU maps for dataset 2 and frequency band 1-3 Hz, |FU | > 5. Left:
MCB, p = .05. Middle: WB, p = .05. Right: WB, p = .001. The WB
FU map is more similar to the MCB FU map (left) when the the significance
threshold (Equation 1) is increased (corresponding to decreasing p) for the WB
method (right).
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above an FU size of 5 cells, both methods had on average 6 FUs (Figure 2
and Figure 3). Thus, the maximal clique method detected relatively more
small-size FUs.

For the FU maps created with both methods in Figure 2 and Figure 3,
we determined the CPU time consumed by FU detection. On average, the
(non-optimized) MCB and WB methods took 24 s and 0.06 s, respectively,
meaning that a speedup of factor 400 was obtained by the new WB method.

7. Discussion and conclusions

EEG coherence analysis is defined as the study of coherence between func-
tional units (FUs). We previously introduced the maximal clique based
(MCB) method for data-driven visualization of high-density EEG coher-
ence [14], avoiding the visual clutter of conventional data-driven visual-
izations. This MCB method makes use of the concept of maximal clique
detection with time complexity O(3n/3) for n electrodes. In practice, perfor-
mance of maximal clique detection strongly depends on graph structure [16].
With an interactive visualization in mind, we have designed here a new wa-
tershed based (WB) method having time complexity O(n2 log n), based on
the watershed transform which is modified to detect cliques in a greedy way.
The existing MCB and the new WB method both detect data-driven ROIs
represented by cliques consisting of spatially connected vertices, referred to
as FUs.

Comparing the MCB and the WB method, the greedy WB method di-
rectly results in uniquely labeled electrodes, contrary to the MCB method.
The existing MCB method shows a relatively larger number of smaller FUs
than the new WB method. The MCB and the WB method both depend
on three thresholds. The first two thresholds concern the initial coherence
graph and the inter-FU coherence. Both were chosen to be equal to the sig-
nificance threshold. The third threshold concerns the minimal FU size. FUs
and inter-FU connections were usually similar for the MCB and the greedy
WB method. If not, systematically adapting the significance threshold re-
vealed a strong similarity between FU maps obtained with both FU detec-
tion methods. Thus, both methods visualize similar information. Further,
this information was found to agree with conventional findings [3, 4, 9, 10].

The watershed transform is generally known to suffer from over-segmenta-
tion, for which a solution may be based on the concept of dynamics [5]. How-
ever, dynamics are defined for vertex values, whereas the EEG coherence
graph has edge values. For EEG coherence, there are two straightforward
solutions for potential over-segmentation. First, two spatially neighboring
FUs may be merged if the union of the two corresponding vertex sets is a
clique. Second, determination of the markers can be based not only on (first
degree) Voronoi neighbors, but also on (second degree) Voronoi neighbors
of Voronoi neighbors.
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Here, the new WB method is up to a factor 400 faster than the ex-
isting MCB method. The new method makes interactive visualization of
high-density EEG coherence feasible for the intended users, including EEG
researchers and clinical experts.
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Abstract We study the watersheds in edge-weighted graphs. Contrarily to
previous works, we define the watersheds following the intuitive idea
of drops of water flowing on a topographic surface. We establish
the consistency (with respect to characterizations of the catchment
basins and dividing lines) of these watersheds, prove their optimal-
ity (in terms of minimum spanning forests) and derive a linear-time
algorithm. To the best of our knowledge, similar properties are not
verified in other frameworks and the proposed algorithm is the most
efficient existing algorithm.

Keywords: watershed, catchment basin, minimum spanning forest.

Introduction

The watershed transform introduced by Beucher and Lantuéjoul [3] for im-
age segmentation is used as a fundamental step in many powerful segmenta-
tion procedures. Many approaches [2, 6, 9, 14] have been proposed to define
and/or compute the watershed of a vertex-weighted graph corresponding to
a grayscale image. The digital image is seen as a topographic surface: the
gray level of a pixel becomes the elevation of a point, the basins and valleys
of the topographic surface correspond to dark areas, whereas the mountains
and crest lines correspond to light areas.

In this paper, we investigate the watershed in a different framework: we
consider a graph whose edges are weighted by a cost function (see, for ex-
ample, [10] and [8]). A watershed of a topographic surface may be thought
of as a separating line-set on which a drop of water can flow down toward
several minima. To formalize this intuitive idea, we introduce the drop
of water principle that leads to the definition of watershed cuts in edge-
weighted graphs.
We establish the consistency of watershed cuts. In particular, we prove that
they can be equivalently defined by their “catchment basins” (through a
steepest descent property) or by the “dividing lines” separating these catch-
ment basins (through the drop of water principle). As far as we know,
in other frameworks, no similar property has ever been proved and some
counter-examples showing that such a duality does not hold can be found.
We also establish the optimality of watershed cuts. In [10], F. Meyer
shows the link between minimum spanning forests (MSF) and flooding from
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marker algorithms. In this paper, we prove the equivalence between water-
shed cuts and separations induced by minimum spanning forests relative to
the minima.
Finally, we propose a linear-time algorithm which does not require any sort-
ing step, nor the use of any hierarchical queue, nor the extraction of the
minima in a preprocessing step. This algorithm therefore runs in linear
time whatever the range of the input map. To the best of our knowledge,
this is the first watershed algorithm with such a property.

The proofs of the properties presented in this paper are given in an
extended version [7].

1. Basic notions for edge-weighted graphs

We present some basic definitions to handle edge-weighted graphs.
We define a graph as a pair X = (V (X), E(X)) where V (X) is a finite

set and E(X) is composed of unordered pairs of V (X), i.e., E(X) is a
subset of {{x, y} ⊆ V (X) | x 6= y}. Each element of V (X) is called a vertex
or a point (of X), and each element of E(X) is called an edge (of X).
If V (X) 6= ∅, we say that X is non-empty.
Let X be a graph. If u = {x, y} is an edge of X, we say that x and y are
adjacent (for X). Let π = 〈x0, . . . , xl〉 be an ordered sequence of vertices
of X, π is a path from x0 to xl in X (or in V (X)) if for any i ∈ [1, l], xi
is adjacent to xi−1. In this case, we say that x0 and xl are linked for X.
If l = 0, then π is a trivial path in X. We say that X is connected if any
two vertices of X are linked for X.

Let X and Y be two graphs. If V (Y ) ⊆ V (X) and E(Y ) ⊆ E(X), we
say that Y is a subgraph of X and we write Y ⊆ X. We say that Y is a
connected component of X, or simply a component of X, if Y is a connected
subgraph of X which is maximal for this property, i.e., for any connected
graph Z, Y ⊆ Z ⊆ X implies Z = Y .

Throughout this paper G denotes a connected graph. In order to simplify
the notations, this graph will be denoted by G = (V,E) instead of G =
(V (G), E(G)). We will also assume that E 6= ∅.

For applications to image segmentation, we may assume that V is the set
of picture elements (pixels) and E is any of the usual adjacency relations.

Let X ⊆ G. An edge {x, y} ∈ E is adjacent to X if {x, y} ∩ V (X) 6= ∅
and if {x, y} does not belong to E(X); in this case and if y does not belong
to V (X), we say that y is adjacent to X. If π is a path from x to y and y
is a vertex of X, then π is a path from x to X (in G).

Let S ⊆ E. We denote by S the complementary set of S in E, i.e., S =
E \ S. The graph induced by S is the graph whose edge set is S and whose
vertex set is made of all points which belong to an edge in S, i.e., ({x ∈
V | ∃u ∈ S, x ∈ u}, S). In the following,the graph induced by S is also
denoted by S.

We denote by F the set of all maps from E to Z.
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Let F ∈ F . If u is an edge of G, F (u) is the altitude of u. Let X ⊆ G
and k ∈ Z. A subgraph X of G is a (regional) minimum of F (at altitude k)
if: i) X is connected ; ii) k is the altitude of any edge of X; and iii) the
altitude of any edge adjacent to X is strictly greater than k.
We denote by M(F ) the graph whose vertex set and edge set are, respec-
tively, the union of the vertex sets and edge sets of all minima of F .

In the sequel of this paper, F denotes an element of F .
For applications to image segmentation, we will assume that the alti-

tude of u, an edge between two pixels x and y, represents the dissimilarity
between x and y. Thus, we suppose that salient contours are located on the
highest edges of G.

2. Watersheds

The intuitive idea underlying the notion of a watershed comes from the field
of topography: a drop of water falling on a topographic surface follows a
descending path and eventually reaches a minimum. The watershed may
be thought of as the separating lines of the domain of attraction of drops
of water. Despite its simplicity, none of the classical definitions handle this
intuitive idea. In this paper, contrarily to previous works, we follow the
drop of water principle to define a watershed in an edge-weighted graph.

Extensions and graph cuts

We present the notions of extension and graph cut which play an important
role for defining a watershed in an edge-weighted graph.
Intuitively, the regions of a watershed (also called catchment basins) are
associated with the regional minima of the map. Each catchment basin
contains a unique regional minimum, and conversely, each regional mini-
mum is included in a unique catchment basin: the regions of the watershed
“extend” the minima. In [2], G. Bertrand formalizes the notion of extension.

Definition 1 (from Def. 12 in [2]). Let X and Y be two non-empty sub-
graphs of G. We say that Y is an extension of X (in G) if X ⊆ Y and if
any component of Y contains exactly one component of X.

The subgraphs in Figures 1(b) and 1(c) are two extensions of the one in
Figure 1(a).

The notion of extension is very general. Many segmentation algorithms
iteratively extend some seed components in a graph: they produce an ex-
tension of the seeds. Most of them terminate once they have reached an
extension which cover all the vertices of the graph. The separation which is
thus produced is called a graph cut.

Definition 2. Let X ⊆ G and S ⊆ E. We say that S is a (graph) cut for X
if S is an extension of X and if S is minimal for this property, i.e., if T ⊆ S
and T is an extension of X, then we have T = S.
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(a) (b) (c) (d)

Figure 1. A graph G. The set of vertices and edges represented in bold is: (a), a
subgraph X of G; (b), an extension of X; (c): an extension Y of X which is
maximal; and (d): a cut S for X such that S = Y .

The set S depicted in Figure 1(d) is a cut for X (Figure 1(a)). It can
be verified that S (Figure 1(c)) is an extension of X and that S is minimal
for this property.
If X is a subgraph of G and S a cut for X, it may be easily seen that S is
a maximal extension of X.

The notion of graph cut has been studied for many years in graph theory.
For applications to image segmentation, a classical problem is to find a cut of
minimum weight (a min-cut) for a set of terminal points. The links between
these approaches and the one developed in this paper are investigated in
[1].

Watersheds by the drop of water principle

We introduce the watershed cuts of an edge-weighted graph. To this end,
we formalize the drop of water principle. Intuitively, the catchment basins
constitute an extension of the minima and they are separated by “lines”
from which a drop of water can flow down towards distinct minima.

Let π = 〈x0, . . . , xl〉 be a path in G. The path π is descending (for F )
if, for any i ∈ [1, l − 1], F ({xi−1, xi}) ≥ F ({xi, xi+1}).
Definition 3 (drop of water principle). Let S ⊆ E. We say that S is a
watershed cut (or simply a watershed) of F if S is an extension of M(F )
and if for any u = {x0, y0} ∈ S, there exist π1 = 〈x0, . . . , xn〉 and π2 =
〈y0, . . . , ym〉 which are two descending paths in S such that:
- xn and ym are vertices of two distinct minima of F ; and
- F (u) ≥ F ({x0, x1}) (resp. F (u) ≥ F ({y0, y1})), whenever π1 (resp. π2)
is not trivial.

In order to illustrate the previous definition, it may be seen that the
set S of dashed edges in Figure 2(b) is a watershed of the corresponding
map F . The minima of F are depicted in bold in Figure 2(a).

Let S ⊆ E. We remark that if S is a watershed of F , then S is necessarily
a cut for M(F ). The converse is in general not true since a watershed of F
is defined thanks to conditions that depend of the altitude of the edges
whereas the definition of a cut is solely based on the structure of the graph.
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Figure 2. A graph G and a map F . Edges and vertices in bold depict: (a), the
minima of F ; (b), a maximal extension of M(F ); and (c), a MSF relative to M(F ).
Dashed edges in (b) and (c) depict a watershed of F .

Catchment basins by a steepest descent property

A popular alternative to the drop of water principle defines a watershed
exclusively by its catchment basins and does not involve any property of
the divide.

In the framework of edge-weighted graph, we define a catchment basin as
a component of the graph induced by the complementary set of a watershed.

The following theorem (Theorem 1) shows that a watershed can be de-
fined equivalently by its divide line or by its catchment basins.

For that purpose, we start with some definitions relative to the notion
of path with steepest descent.

From now on, we will also denote by F the map from V to Z such that
for any x ∈ V , F (x) is the minimal altitude of an edge which contains x,
i.e., F (x) = min{F (u) | u ∈ E, x ∈ u}; F (x) is called the altitude of x.

Let π = 〈x0, . . . , xl〉 be a path in G. The path π is a path with steepest
descent for F if, for any i ∈ [1, l], F ({xi−1, xi}) = F (xi−1).

Theorem 1 (consistency). Let S ⊆ E be a cut for M(F ). The set S is a
watershed of F if and only if there exists a path with steepest descent in the
graph induced by S from each point of V to M(F ).

The previous theorem establishes the consistency of watershed cuts: they
can be equivalently defined by a steepest descent property on the catchment
basins (regions) or by a the drop of water principle on the cut (frontier)
which separates them. As far as we know, in the literature about dis-
crete watersheds, no similar property ([11]) has ever been proved and some
counter-examples showing that such a duality does not hold in other frame-
works can be found. Hence, Theorem 1 emphasizes that edge-weighted
graphs are adapted for the definition and study of watersheds.
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Figure 3. A graph G and a map F . The bold edges and vertices represent: (a), X
a subgraph of G; (b) and (c), two MSFs relative to X; their induced cuts are
represented by dashed edges.

3. Minimum spanning forests and watersheds

We introduce the minimum spanning forests relative to subgraphs of G and
show the equivalence between the watershed cuts of a map and the cuts
induced by minimum spanning forests relative to the minima of this map.

Let X and Y be two non-empty subgraphs of G. We say that Y is a forest
relative to X if: i) Y is an extension of X; and ii) for any extension Z ⊆ Y
of X, we have Z = Y whenever V (Z) = V (Y ).

We say that Y is a spanning forest relative to X (for G) if Y is a forest
relative to X and V (Y ) = V .

Thanks to the notion of relative forest, the usual notions of a tree and
a forest can be defined as follows.

Let X ⊆ G. We say that X is a tree (resp. a spanning tree) if X is a
forest (resp. spanning forest) relative to the subgraph ({x}, ∅), x being any
vertex of X. We say that X is a forest (resp. a spanning forest) if X is a
forest (resp. a spanning forest) relative to (S, ∅), S being a subset of V (X).

Let X ⊆ G, the weight of X (for F ) is the value F (X) =
∑
u∈E(X) F (u).

Definition 4. Let X and Y be two subgraphs of G. We say that Y is
a minimum spanning forest (MSF) relative to X (for F , in G) if Y is a
spanning forest relative to X and if the weight of Y is less than or equal to
the weight of any other spanning forest relative to X.

For instance, the graphs Y and Z (bold edges and vertices) in Fig-
ures 3(b) and 3(c) are two MSFs relative to X (Figure 3(a)).

We now have the mathematical tools to present the main result of this
section (Theorem 2) which establishes the optimality of watersheds.

Let X be a subgraph of G and let Y be a spanning forest relative to X.
There exists a unique cut for Y and this cut is also a cut for X. We say
that this unique cut is the cut induced by Y .

Theorem 2 (optimality). Let S ⊆ E. The set S is a cut induced by a MSF
relative to M(F ) if and only if S is a watershed cut of F .
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A MSF relative to the minima of the map Figure 2 is depicted in bold
in Figure 2(c). Observe that the induced cut is indeed a watershed.

As far as we know, this is the first result which establishes watershed
optimality in graphs. Furthermore, Theorem 2 suggests that MSF is a
method of choice for marker based watershed, an illustration of which is
given in [7].

The minimum spanning tree problem is one of the most typical and
well-known problems of combinatorial optimization (see [5]). In the next
paragraph, we show that the minimum spanning tree problem is equivalent
to the problem of finding a MSF relative to a subgraph of G.

Let X ⊆ G. The graph X is a minimum spanning tree (for F , in G)
if X is a MSF relative to the subgraph ({x}, ∅), x being any vertex of X.

In order to recover the link between flooding algorithms and minimum
spanning tree algorithms, in [10], F. Meyer proposed a construction which
shows the equivalence between finding a MSF rooted in a set of vertices
(i.e., a MSF relative to a subgraph X of G such that E(X) = ∅) and finding
a minimum spanning tree. This construction can be easily extended for
proving the equivalence between finding a minimum spanning tree and a
MSF relative to any subgraph X of G. To this end, in a preliminary step,
each component of X must be contracted into a single vertex and, if two
vertices of the contracted graph are linked by multiple edges only the one
with minimal value is kept.

A direct consequence is that any minimum spanning tree algorithm can
be used to compute a relative MSF. Many efficient algorithms (see a survey
in [5]) exist in the literature for solving the minimum spanning tree problem.

4. Streams and linear-time watershed algorithm

As seen in the previous section, MSFs relative to subgraphs of G, and by
the way watershed cuts, can be computed by any minimum spanning tree
algorithm. The best complexity for solving this problem is reached by the
quasi-linear algorithm of Chazelle [4]. In this section, we introduce a linear-
time watershed algorithm. This algorithm does not require any sorting step
nor the use of any hierarchical queue. Thus, whatever the range of the
considered map, it runs in linear time with respect to the size of the input
graph. Furthermore, this algorithm does not need to compute the minima
of the map in a preliminary step. To the best of our knowledge, this is the
first watershed algorithm with such properties.

We first introduce the mathematical tools which allow us to prove the
correctness of the proposed algorithm. In particular, we propose a notion of
stream which is crucial to this paradigm. Then, the algorithm is presented,
and both its correctness and complexity are analyzed.

Definition 5. Let L ⊆ V . We say that L is a stream if, for any two points
x and y of L, there exists, in L, either a path from x to y or from y to x,
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with steepest descent for F . Let L be a stream and let x ∈ L. We say that
x is a top (resp. bottom) of L if the altitude of x is greater than (resp. less
than) or equal to the altitude of any y ∈ L.

We remark that if L is a stream and x is a bottom (resp. a top) of L,
then, from any y ∈ L to x (resp. from x to any y ∈ L), there is a path
in L, with steepest descent for F . Notice that, whatever the stream L, there
exists a top (resp. bottom) of L. Nevertheless, this top (resp. bottom) is
not necessarily unique.

In order to illustrate the previous definitions, let us assume that G and F
are the graph and the function depicted in Figure 2. The sets L = {a, b, e, i}
and {j,m, n} are two examples of streams. On the contrary, the set L′ =
{i, j, k} is not a stream since there is no path in L′, between i and k, with
steepest descent for F . The sets {a, b} and {i} are respectively the set of
bottoms and tops of L.

The algorithm which will be proposed in this section is based on the
iterative extraction of streams. In order to build such a procedure, we
study stream concatenation.

Let L1 and L2 be two disjoint streams (i.e., L1 ∩ L2 = ∅) and let L =
L1 ∪ L2. We say that L1 is under L2, written L1 ≺ L2, if there exist a
top x of L1, a bottom y of L2, and there is, from y to x, a path in L with
steepest descent for F . Note that, if L1 ≺ L2, then L is also a stream.
We say that a stream L is an ≺-stream if there is no stream under L.

In Figure 2(a) the stream {a, b, e, i} is under the stream {j,m, n} and
thus {a, b, e, i, j,m, n} is also a stream. Furthermore, there is no stream
under {a, b, e, i} and {a, b, e, i, j,m, n}. Thus, these are two ≺-streams.

The streams extracted by our algorithm are ≺-streams. As said in the
introduction, this algorithm does not require minima precomputation. In
fact, there is a deep link between ≺-streams and minima.

Proposition 1. Let L be a stream. The three following statements are
equivalent:
(1) L is an ≺-stream;
(2) L contains the vertex set of a minimum of F ; and
(3) for any y ∈ V \ L adjacent to a bottom x of L, F ({x, y}) > F (x).

In Figure 2(a) the two≺-streams {a, b, e, i} and {a, b, e, i, j,m, n} contain
the set {a, b} which is the vertex set of a minimum of F .

In order to partition the vertex set of G, from the ≺-streams of F , the
vertices of the graph can be arranged in the following manner.

Let L = {L1, . . . , Ln} be a set of n ≺-streams. We say that L is a flow
family if: i) ∪{Li | i ∈ {1, . . . , n}} = V ; and ii) for any two distinct L
and L′ in L, if L∩L′ 6= ∅, then L∩L′ is the vertex set of a minimum of F .

Let L be a flow family and let x ∈ V . It may be seen that, either x
belongs to a minimum of F (in this case, it may belong to several elements
of L), or x belongs to a unique ≺-stream of L which itself contains the



Watershed cuts 309

vertex set of a unique minimum of F . Thus, thanks to L, we can associate
to each vertex x of G a unique minimum of F .

Definition 6. Let L be a flow family. Let us denote by M1, . . . ,Mn the
minima of F . Let ψ be the map from V to {1, . . . , n} which associates
to each vertex x of V , the index (or label) i such that Mi is the unique
minimum of F included in an ≺-stream of L which contains x; we say
that ψ is a flow mapping of F . If ψ is a flow mapping of F , we say that the
set S = {{x, y} ∈ E | ψ(x) 6= ψ(y)} is a flow cut for F .

The next proposed algorithm produces a flow mapping, and hence a flow
cut. The following theorem, which states the equivalence between flow cuts
and watersheds, is the main tool to establish the correctness of Algorithm 1.

Theorem 3. Let S ⊆ E. The set S is a watershed of F if and only if S is
a flow cut for F .

We now present Algorithm 1 which computes a flow mapping, hence, by
Theorem 3, a watershed. It iteratively assigns a label to each point of the
graph. To this end, from each non-labeled point x, a stream L composed of
non-labeled points and whose top is x is computed (Line 4). If L is an ≺-
stream (Line 5), a new label is assigned to the points of L. Otherwise (Line
8), there exists an ≺-stream L′ under L and which is already labeled. In this
case, the points of L receive the label of L′ (Line 9). The function Stream,
called at Line 4, computes the stream L. Roughly speaking, it performs an
intermixed sequence of depth-first and breadth-first exploration of the paths
with steepest descent. The main invariants of the function Stream are: i),
the set L is, at each iteration, a stream; and ii), the set L′ is made of all
non-already explored bottoms of L. The function halts at Line 17 when all
bottoms of L have been explored or, at Line 9, if a point z already labeled
is found. In the former case, by Proposition 1, the returned set L is an
≺-stream. In the latter case, the label lab of z is also returned and there
exists a bottom y of L such that 〈y, z〉 is a path with steepest descent.
Thus, there is an ≺-stream L′, under L, included in the set of all vertices
labeled lab. Thus, by the preceding remarks, the output of Algorithm 1
is a flow mapping of F . Furthermore, using classical data structures to
represent the graph G, we obtain a linear complexity.

Proposition 2. Algorithm 1 outputs a map ψ which is a flow mapping
of F . Furthermore, Algorithm 1 runs in linear-time with respect to |E|.

5. Illustration

In order to illustrate the use of watershed cuts in practical applications, we
derive, from the classical framework of mathematical morphology, a segmen-
tation scheme which consists in the three following steps: (i), computation
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Algorithm 1: Flow mapping.

Data: (V,E, F ): an edge-weighted graph;
Result: ψ: a flow mapping of F .
foreach x ∈ V do ψ(x) := NO LABEL;1

nb labs := 0 ; /* the number of minima already found */2

foreach x ∈ V such that ψ(x) = NO LABEL do3

[L, lab] := Stream(V,E, F, ψ, x) ;4

if lab = −1 then /* L is an ≺-stream */5

nb labs+ + ;6

foreach y ∈ L do ψ(y) := nb labs;7

else8

foreach y ∈ L do ψ(y) := lab;9

of a simple function that assigns a weight to the edges of the 4-adjacency
graph associated to the image; (ii), filtering of this cost function in order to
reduce the number of minima; and (iii) computation of a watershed of the
filtered cost function.

We assume that the graph G is the one corresponding to the 4-adjacency
relation associated to the image I which is to be segmented. We consider
also the map F defined for any {x, y} ∈ E by F ({x, y}) = |I(x)− I(y)|.

A watershed of F would contain too many catchment basins. In order to
suppress many of the non-significant minima, a classical approach consists of
computing morphological filtering of the function [13]. For this illustration,
we implement an adaptation of a classical filter which consists of: (i) remove
the connected component of a lower threshold of F with minimal area; (ii),
repeat step (i) until F has k (a predefined number) minima. Hence, the
watershed of the filtered map contains exactly k catchment basins. The
results obtained on the cameraman image (k = 22) are presented in Figure 4.

Conclusion and perspectives

In this paper, we introduce watershed cuts, a notion of watershed in edge-
weighted graphs. We show the consistency and optimality of watershed
cuts. Furthermore, we derive a simple algorithm which runs in linear-time
whatever the range of the input map. For more details on watershed cuts,
we refer to [7]. In particular in [7], we show that a watershed cut is a
separation which corresponds to a separation produced by a topological
watershed [2, 6] defined on edge-weighted graphs. We also study the links
with shortest-path forests [8].

Further work will be focused on hierarchical segmentation schemes based
on watershed cuts (including geodesic saliency of watershed contours [12]



Watershed cuts 311

Function Stream( V , E, F , ψ, x).

Data: (V,E, F ): an edge-weighted graph; ψ: a labeling of V ; x:
a point in V .

Result: [L, lab] where L is a stream such that x is a top of L,
and lab is either a label of an ≺-stream under L or −1.

L := {x} ;1

L′ := {x} ; /* the set of non-explored bottoms of L */2

while there exists y ∈ L′ do3

L′ := L′ \ {y};4

breadth first := TRUE ;5

while (breadth first) and (there exists {y, z} ∈ E such6

that z /∈ L and F ({y, z}) = F (y)) do
if ψ(z) 6= NO LABEL then7

/* there is an ≺-stream under L already labelled */8

return [L,ψ(z)] ;9

else if F (z) < F (y) then10

L := L ∪ {z} ; /* z is now the only bottom of L */11

L′ := {z} ; /* hence, switch to depth-first exploration */12

breadth first := FALSE ;13

else14

L := L ∪ {z} ; /* F (z) = F (y), thus z is also a bottom15

of L */
L′ := L′ ∪ {z} ; /* continue breadth-first exploration */16

return [L,−1] ;17

and incremental MSFs) as well as on watershed in weighted simplicial com-
plexes, an image representation adapted to the study of topological proper-
ties. Furthermore, we intend to show that our watershed algorithm can be
used to efficiently compute minimum spanning trees.
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Abstract Watershed from propagated markers is a generic method to inter-
active segmentation of objects in image sequences. It consists in a
combination of classical watershed from markers with motion esti-
mation techniques. In order to improve the watershed from prop-
agated markers technique, this paper introduces a marker binding
heuristic. It consists in the imposition of pairs of markers along
the border of the object of interest and both markers in a pair,
the internal and external ones, must be propagated by the same
displacement vector computed from the regions delimited by the
pair.

Keywords: watershed, propagated markers, object segmentation, image se-
quences, binding of markers.

1. Introduction

Object segmentation in image sequences [6,7,13] is the segmentation frame-
to-frame of an object which semantics remains unchanged. Such technique
have been successfully applied to video edition (Video Masking) [5,6,11,13,
15,21], video coding [17,19,22,23,25], video surveillance [9,19] and biomed-
ical imaging [1, 20].

There are two categories of techniques to segment objects in image se-
quences: automatic (or non-supervised) and assisted (or supervised or also
interactive). In the automatic segmentation, the objects are detected auto-
matically in the initial frame and they are tracked in the following frames,
through application of motion estimation techniques. In the automatic seg-
mentation there is no intervention by users in the obtained results.

In the assisted segmentation, the user is allowed to intervene in the
segmentation process. The user can choose, for instance, the objects to be
segmented, how they will be tracked, and he/she has the option to correct
and alter the segmentation results.

It was proposed, in a previous paper, the watershed from propagated
markers, a generic method to interactive segmentation of objects in image
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sequences [7]. This method consists in a combination of the watershed from
markers [4, 24] with motion estimation techniques [2, 3]. The segmentation
technique is tied to the motion estimation one, since the markers to the
objects of interest are propagated to the next frames in order to track such
objects.

The watershed from propagated markers presents the following charac-
teristics.

1. Interactivity: the user may intervene in the segmentation results: it
must be allowed to the user to add/remove markers, to correct bad
segmentation and to choose how the markers will be propagated.

2. Generality: the technique can be applied to any image sequences. It
is not necessary any a priori knowledge about the sequence.

3. Rapid Response: once a marker is imposed or the propagation is ac-
tivated, the method must answer quickly.

4. Progressive Manual Edition: the user does not need to “look back”
to check the previous segmentation; they are considered done. It is
not also necessary to erase all markers imposed to a frame when a
bad segmentation occurs; the bad segmentation is locally fixed by
adding/removing markers to this region.

The proposed method consists in the imposition of markers to the objects
of interest in the current frame, given their computation from the segmen-
tation results in the previous frame and their propagation to the current
frame, in order to adjust them to their respective objects.

Each marker is propagated from the previous frame to the current one
by a displacement vector given by the motion estimation in the area where
the marker was computed.

The computation of the internal (external) markers to an object is done
by taking the contour of the erosion (dilation) of the object segmentation
result in the previous frame. This contour is broken in short segments, and
each segment is a marker belonging to the set of internal (external) markers.

A reasonable assumption about the marker propagation is that two closer
markers assigned to the same object should have similar displacement vec-
tors, i.e., both markers should follow the motion of the object. However,
there are situations where this does not occur properly for two reasons:

1. a marker, that consists in a short segment, may not provide enough
information to estimate accurately its motion;

2. the motion of two closer markers are computed separetely.

In these cases, the motion of these markers may not be coherent, or even
wrong.
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This paper presents an improvement to the watershed from propagated
markers: the binding of markers. It consists of computing pairs of markers
along the border, and each pair is composed by an internal marker and an
external one. Both markers in the pair must be propagated by the same
displacement vector, and this vector is computed by the motion estimation
of the area between the pair of markers.

The binding of markers provides more information to the motion estima-
tion (both markers and the area between them). More, it helps the motion
of the pair of markers to follow the motion of the border that crosses the
region between them in the previous frame.

This paper is organized as follows: The watershed from propagated
markers is proposed and discussed in Section 2. The marker binding heuris-
tic is introduced in Section 3. Several experimental results are presented
and discussed in Section 4. Finally, this paper is conclude in Section 5.

2. Watershed from propagated markers

The watershed from propagated markers [7, 8] consists, basically, in the
following steps.

1. The objects of interest are segmented by the interactive watershed
from markers [18], in the initial frame.

2. Given the mask of the segmented objects, the contour of erosion
of the object and the contour of the erosion of the background are
obtained. Both contours are broken in short segments forming the set
of inner and the set of outer markers to each object.

3. Each segment is propagated to the next frame by motion estima-
tion [10,14,16]. These new set of inner and outer markers are used to
apply the watershed technique to the next frame.

4. If necessary, the user interacts with the markers, doing the corrections
by adding or removing markers, in order to fix the segmentation result.

5. Go to Step 2, until all sequence is processed.

The method proposed above works fine with bad defined contours or
strongly textured objects, since the markers are imposed close to the bor-
ders of the objects to be segmented. If the quality of segmentation is not
approved in some frame, the user can easily move the short-segment marker.
The marker propagation is very fast since each segment consists in a few
points. Moreover, the contours follow the object deformation, since new
markers are created from the segmentation of each frame. The object to be
segmented is processed until the end of sequence or until it leaves the scene
or be totally occluded. If is partially occluded, it may be possible that the
user should intervene to regularize the process.
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3. The binding of markers

Let us consider a pair of closer markers (one internal and the other external)
assigned to the same object. The heuristic proposed here is based on two
assumptions:

1. the border of the object to be segmented crosses the region delimited
by both markers of the pair (Figure 1(a));

2. the pair of markers must follow the motion of the border.

(a) (b)

Figure 1. Binding of Markers. (a) The internal (right) and external (left) markers
delimite a region crossed by the object border. (b) Markers are propagated by the
same displacement vector, computing in function of the delimited region.

Considering the above assumptions, both markers of the pair must be
propagated by the same displacement vector, i.e., they are propagated to
the same direction. For purpose of computing such displacement vector,
the region delimited by both markers is considered as a “marker” (see Fig-
ure 1(a) - such region is the negated one located between the markers); the
displacement vector computed to this region is assigned to the pair of mark-
ers. Since it is expected that a region located at the border of the object of
interest in frame k + 1 gives the best match to the region delimited by the
bound markers (Figure 1(b)), such markers should track the border of the
object.

Figure 1 illustrates the idea. It shows the morphological gradient of two
consecutive frames (both gradients are zoomed). Figure 1(a) shows a pair of
markers, an internal (right) and an external (left). The area delimited by the
markers was highlighted by negating the gradient at the area. The motion
estimation is done considering that area as the marker to be propagated.
The displacement vector assigned to this area (as illustrated in Figure 1(a)
by the central vector) must be used as the displacement vector of the markers
bound to this area (the right and left vectors are exemplified in Figure 1(a)).
Figure 2(b) shows the pair of markers propagated to the next frame.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Creation of the marker pairs and the regions delimited by them. (a)
Mask of the segmented object. (b) The “crown” of the mask that must be sliced
in order to obtain the delimited regions. (c) The seeds to be used to slice the
“crown” of the mask. (d) Watershed lines. (e) Delimited regions (labeled). (f)
Pair of markers (labeled) wrapping the borders of the mask.

The pair of markers assigned to the object of interest and the region used
to estimate the displacement vector are created by morphological processing
of the mask M of the segmented object (Figure 2(a)). Two parameters are
required: the distance m between the internal and the external markers and
the width w of the area.

Let Mδ,m and Mε,m be, respectively, the dilation and the erosion of the
maskM by a disk structuring element with diameter m. Both images will be
used to compute a “crown”, by subtracting Mε,m from Mδ,m (Figure 2(b)).

The next step consists of creating seeds that will be used to separate the
regions. Such seeds must be imposed on the contour of M and the geodesic
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distance [12] (started from a point picked from the contour) between them
must be w. It is done by labeling the contour of M using the geodesic
distance function and by analyzing the division of each label by w; the
points which label divided by w remains zero are the seeds (Figure 2(c)).

The seeds will be used as markers in an application of the watershed
operator. The resulting watershed lines (Figure 2(d)) will be used to slice
the “crown” of the mask.

The slicing is done by computing the intersection between the negation
of the watershed lines and the “crown”. Figure 2(e) shows the sliced regions
identified by a label (let L be the image which contains the labeled regions).

Given the set of all delimited areas, the creation of the markers is simple.
To create the internal markers, just compute the intersection between L
and the contour of Mε,m. To create the external markers, compute the
intersection between L and the contour of Mδ,m. Figure 2(f) shows the pair
of markers wrapping the borders of the mask M . Each pair of internal and
external received a distinct label.

4. Experimental results

This section presents some experiments done with the watershed from prop-
agated markers with the marker binding heuristic and their respective re-
sults. The first experiment demonstrates the improvement given by the
binding of markers. The second one quantifies the method robustness with
several test cases.

4.1 Binding of markers versus no heuristic

The goal in this experiment was to evaluate the improvement of the water-
shed from propagated markers by application of the marker binding heuris-
tic. Figure 3 shows the propagation and segmentation results achieve by
the heuristic.

Figure 3(a) shows the marker propagation by Lucas-Kanade estimation,
without adjustment. The length of each marker is m = 10 pixels and the
distance of each marker and the border (before propagation) is w = 10
pixels. The result is good except for a few misplaced marker that led to a
bad segmentation in some regions (Figure 3(b)).

The heuristic of bind pair of markers provided best results (Figure 4(a)).
The fact that both inner and outer markers of the pair were propagated by
the same displacement vector avoids the local crossing of the markers (i.e.,
the internal marker of the pair is not propagated outer than the exter-
nal one, and vice-versa). More, despite the region between the markers is
greater than the markers themselves, it provides more information than the
markers without significant loss of performance. The segmentation errors
occurred in Figure 4(b) is due the segmentation itself and not due to marker
propagation.
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(a) (b)

Figure 3. Heuristic comparison applied to the Foreman sequence. (a) No heuristic.
(b) Segmentation result.

(a) (b)

Figure 4. Heuristic comparison applied to the Foreman sequence. (a) Binding of
markers. (b) Segmentation result.

4.2 Robustness

It were done two experiments in order to assess the robustness of the water-
shed from propagated markers (using the Lucas-Kanade marker propagation
and the heuristic of bind of markers).

The results of both experiments were compared to the result of sequence
segmented and tracked manually. The robustness was assessed by comput-
ing, to each frame, the symmetrical difference between the manual segmen-
tation and the segmentation provided by the application of the proposed
method in the experiment. The percentage of pixels in the frame that is
not zero (i.e., that belongs to the symmetrical difference) is the percentage
of segmentation error to this frame.

In the first experiment, the object was segmented and tracked without
user intervention. The user just insert markers to the first frame and call for
propagation until the end of sequence, without marker edition. After the
sequence is entirely segmented, the percentage of segmentation error was
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computed to each frame.
The second experiment consisted of applying the following instructions

to each frame:

1. the percentage of segmentation error for this frame is computed, given
the segmentation provided by the markers propagated from the pre-
vious frame;

2. the user intervenes and edit the markers, in order to correct the seg-
mentation errors in the current frame;

3. the new segmentation of the current frame will provide the markers
to be propagated to the next frame.

This experiment was done in order to illustrate the reduction in the
percentage of segmentation error, when the user intervenes to correct the
segmentation results.

It were segmented and tracked objects in several classical image se-
quences, and both experiments were done to each sequence. Table 1 shows
the percentage of segmentation error in frames 1 to 8 to each sequence.
The lines which sequence names are not bold contain the percentage of
segmentation error when the method is applied without user intervention
(first experiment). The other lines which sequence names are bold show the
percentages of segmentation error when the user intervenes (second experi-
ment).

Note that the error in the first frame to all experiments is zero, be-
cause, since the object of interest in the first frame is segmented manually,
its segmentation result is equal to the segmentation of the same object in
the sequence segmented manually. The percentages of segmentation error
are the same in the second frame, to each sequence, because the markers
provided to the second frame, in both experiments, come from a frame seg-
mented manually. Finally, note the error reduction in each frame, provided
by the user intervention in the current segmentation results.

5. Conclusion

In a previous paper, it was proposed the watershed from propagated mark-
ers, a generic method to interactive segmentation of objects in image se-
quences. It consists of computing short segments close to the object borders
and apply them as markers propagated to the next frame. The marker prop-
agation is done by motion estimation techniques and the segmentation of the
obbjects of interest is done by classical watershed from markers technique.
Besides the interactive and the generality, this method also presents two
other main characteristics: progressive manual edition and rapid response.

Despite it is expected that two closer markers are propagated by similar
displacement vectors, it sometimes does not occur, since the computation of
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Table 1. Robustness: Percentage of segmentation error.

Sequence 1 2 3 4 5 6 7 8

Akiyo 0.00 0.85 1.09 0.82 0.95 0.78 0.70 1.20

Akiyo 0.00 0.85 0.95 0.74 0.91 0.76 0.67 0.91

Bream 0.00 0.80 1.72 1.85 0.00 1.98 1.92 1.99

Bream 0.00 0.80 0.61 0.77 1.25 0.59 0.25 0.46

Carphone 0.00 0.66 1.07 1.38 1.90 1.72 1.67 1.67

Carphone 0.00 0.66 0.92 1.31 1.34 1.04 1.38 1.63

Children 0.00 1.14 1.75 2.43 3.18 3.90 5.04 5.19

Children 0.00 1.14 1.31 1.57 1.57 1.93 1.59 2.18

Foreman 0.00 1.31 2.14 2.09 2.39 3.08 3.55 3.83

Foreman 0.00 1.31 2.09 1.15 1.83 1.24 0.98 0.50

Weather 0.00 1.49 1.70 2.36 2.31 2.17 2.26 2.33

Weather 0.00 1.49 1.44 1.52 1.50 1.34 1.28 1.44

the displacement vectors applied to each of such markers is done separetely
or the information provided to the motion estimators is not sufficient to
estimate accurately the marker motions.

This paper introduces the binding of markers, an heuristic applied to
improve the watershed from propagated markers technique. It consists in
the imposition of pairs of markers along the border of the object of interest,
and both markers of each pair, an internal and an external ones, must be
propagated by the same displacement vector, computed in function of the
regions located between the two markers in the pair.

The contributions of the marker binding heuristic to the watershed from
propagated markers are:

� the increasing in the amount of information provided to the motion
estimation, which gives more accurate displacement vectors;

� the easiness for the pair of markers to follow the motion of the border
that crosses the region between them in the previous frame.

Several experiments were also done in order to test the watershed from
propagated markers with the marker binding heuristic. In comparison to the
watershed from propagated markers as it was firstly proposed, the addition
of the marker binding heuristic provided better results. It also worked fine
when applied to a noisy sequence. Percentages of segmentation error were
computed in the robustness experiment and its errors were low.

Future works include the design of more heuristics to boost the marker
propagation and the segmentation results. One of this heuristics consists of
correcting locally the segmentation result by tightening the pair of markers
to the local border of the object.
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Abstract In the present paper, morphological approaches for segmenting ori-
entation fields are proposed. First, it is investigated the use of
directional granulometries and a quadtree structure to extract the
main directional structures of the image. Then, it is proposed a
method based on the concept of the line-segment and orientation
functions. The line-segment function is computed from the supre-
mum of directional erosions. This function contains the sizes of the
longest lines that can be included in the structure. On the other
hand, the orientation function contains their angles. Combining
both functions permits the construction of a weighted partition
using the watershed transformation. Finally, the elements of the
partition are merged using a region adjacency graph (RAG) struc-
ture.

Keywords: directional morphology, directional granulometry, orientation fields,
line-segment function, orientation function, watershed transform.

1. Introduction

Even if anisotropic structures are frequently found in many classes of images
(materials, biometry images, biology, ...), few works dealing with directional
analysis in morphological image processing have been carried out. From an
algorithmic point of view one has [14,15] among others, while in application
some references are [5, 16]. It is in the domain of fingerprint recognition,
which is today the most widely used biometric features for personal identi-
fication, where the study of directional structures based on orientation-field
detection is an active subject of research [2, 7, 9]. In fact, fingerprints can
be considered as a structure composed by a set of line segments (see Fig-
ure 1(a)). However, the orientation-field detection also plays a fundamental
role in other domains [1, 6]. For example, in materials, the pearlite phase
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displays a morphology in the form of parallel lines (see Figure 1(b)) and
when forming another grain, these can change of direction. In this case,
field extraction from an image is a useful technique for the characterization
of the pearlitic phase.

Given the interest in orientation pattern models for characterizing struc-
tures, this paper investigates the use of the mathematical morphology for
modelling orientation fields. As for the human vision, computer image pro-
cessing of oriented image structures often requires a bank of directional
filters or template masks, each of them sensitive to a specific range of ori-
entations. Then, one investigates first the use of directional granulome-
tries, computed by morphological openings, using directional structuring
elements. This approach allows one to determine the main directions of
the structures by identifying the minima of the granulometric distribution
function. In order to define a local approach, a quadtree structure is used
to decompose the image with different resolution according to the levels of
the tree.

After illustrating some drawbacks of using a bank of morphological fil-
ters (openings) and a quadtree structure to characterize orientation fields,
one introduces an approach based on directional erosions. This method con-
siders a local approach using the concept of line-segment function combined
with the watershed transformation. In our case, the line-segment function
is computed from the supremum of directional erosions. This function con-
tains the information of the longest line segments that can be placed inside
the structure. In order to know their orientation, a second image is defined
by observing the construction of the line-segment function and its evolution.
This second image is computed by detecting the orientation of the supre-
mum of directional erosions. These local descriptors, for the element size
and the orientation, enable the identification of the orientation fields based
on the watershed transformation.

This paper is organized as follows. In Section 2, the concepts of morpho-
logical filter and directional morphology are presented. In Sections 3 and
4, a study for segmenting orientation fields based on the directional granu-
lometry is carried out. Next, in Section 5 the notions of line-segment and
orientation functions, derived from the supremum of directional erosions,
are introduced. Finally, in Section 6 an approach of working with direc-
tional morphology, the watershed transform and a region adjacency graph
(RAG) for segmenting orientation fields is proposed.

2. Some basic concepts of morphological filtering

In mathematical morphology one calls morphological filter all increasing
and idempotent transformation [4, 12]. The basic morphological filters are
the morphological opening γµB and the morphological closing ϕµB given
a structuring element B (for example a square of 3 × 3 pixels) and an
homothetic parameter µ. Let B̌ is the transposed set of B (B̌ = {−x :
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x ∈ B}), the morphological opening and closing are given by: γµB(f) =
δµB̌(εµB(f)) and ϕµB(f) = εµB̌(δµB(f)), where the morphological erosion

εµB and dilation δµB are expressed by εµB(f)(x) = ∧{f(y) : y ∈ µB̌x} and
δµB(f)(x) = ∨{f(y) : y ∈ µB̌x}, and where ∧ is the infimum and ∨ is the
supremum.

Morphological directional transformations are characterized by two pa-
rameters. Their structuring elements are line segments L having a length
(size µ) and a slope (angle α). For α ∈ [0, 90], the line segment L(α, µ) is
formed of the set of points {(xi, yi)} computed using the following expres-
sions:

if 0 ≤ α ≤ 45 then, yi = xitan(α) for xi = 0, 1, · · · , (µ/2)cos(α),

if 90 ≥ α > 45 then, xi = yicot(α) for yi = 0, 1, · · · , (µ/2)cos(α),

and of the set of points {(−xi,−yi)}.
In this way, the structuring element is a symmetric, i.e., L(α, µ)=L̂(α, µ).

Similar expressions can be used for α ∈ (90, 180].
For the sake of simplicity, from now on, we will denote the morphological

opening γL(α,µ) and closing ϕL(α,µ), respectively, γα,µ and ϕα,µ.
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Figure 1. (a) Fingerprint image. (b) Pearlitic phase image.

3. Directional granulometry

Granulometry was formalized by Matheron for binary images and extended
to complete lattices by Serra [12]. Granulometry is defined as follows:

Definition 1 (Granulometry). A family of openings {γµi} (or respectively
of closings {ϕµi}), where i ∈ {1, 2, . . . n}, is a granulometry (respectively
antigranulometry) if for all i, j ∈ {1, 2, . . . n} and for all function f ,

µi ≤ µj ⇒ γµi(f) ≥ γµj (f) (resp. ϕµi(f) ≤ ϕµj (f)).
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Fig. 2. (a) Binary image (b), (c) and (d) Directional opening size 80 at directions

0, 55, 112, respectively
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Fig. 3. (a) Granulometric curve computed from image 2(a),(b) minima detection
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Fig. 3. (a) Granulometric curve computed from image 2(a),(b) minima detection
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Fig. 3. (a) Granulometric curve computed from image 2(a),(b) minima detection
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Fig. 3. (a) Granulometric curve computed from image 2(a),(b) minima detection
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Figure 2. (a) Binary image. (b–d) Directional opening of size 80 and angles 0, 55,
112, respectively. (e) Granulometric curve computed from image (a). (f) Minima
detection.

The ordering relationship implies that greater the parameter, more se-
vere the opening (closing). The granulometric analysis of a binary or gray-
level image, consists in associating with each µi value a measure of the image
γµi(f). Two functions are associated to these transformations: the granulo-
metric density function g and its distribution function G given respectively
by:

g(α, λ)(f) = (Mes(γα,λ+1)(f)−Mes(γα,λ)(f))/Mes(f),

G(α, λ)(f) = (Mes(f)−Mes(γα,λ)(f))/Mes(f),

where Mes represents the volume for gray-level images and the area for
binary images. To illustrate the use of the granulometry for detecting
anisotropies inside a structure, the binary image of Figure 2(a) was com-
puted from the gray-level image of Figure 1(a). Figures 2(b), 2(c) and 2(d),
illustrate the output images computed from the image of Figure 2(a), us-
ing a directional opening of size µ = 80 and angles 0, 55 and 112 degrees,
respectively. Observe that this microstructure contains a main direction at
approximately 112 degrees. To detect automatically the main direction in
a structure one computes a granulometry as described below.
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Figure 3. (a) First hierarchy of the quatree. (b, c) Second hierarchy of the
quadtree. (d) Final segmentation. (e–h) Granulometric curves of the first hi-
erarchy.

4. Directional granulometry and quadtree structure

By computing the density function g(α, λ) one obtains the portion of the
structure, for a given direction α, of size λ, whereas the distribution function
G(α, λ) gives the fraction of the structures greater than or equal to the
length λ in the direction α. This latter function is more interesting since
it permits the selection of the main structures in a given direction. Thus,
instead of fixing the parameter α, the parameter λ was fixed. Figure 2(e),
illustrates the distribution function of the image of Figure 2(a), for λ = 80
and 0 < α < 180. This expression permits one to know the percentage of
the structure removed by the opening.

For some angles the directional opening removes all of the structure,
and G(α, λ)(f) ≈ 1, whereas in the direction of the longest structures
G(α, λ)(f) < 1. The global minimum of this function permits us to de-
termine the direction of the main structures. The minimum in Figure 2(f),
was computed from the function of Figure 2(e), using morphological trans-
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formations in one-dimensional case. To carry out the minimum detection,
the distribution function was scaled into the interval [0, 255] in integer num-
bers and then, the traditional morphological tools for detecting minima in
mathematical morphology were applied. In fact, the minima of the function
will enable us to have a criterion to go from a global approach to a local
one by means of the quadtree structure.

In the quadtree approach, the coding by regions is made by an homogene-
ity criterion (or criteria) that enables us to discriminate whether a square
region can be considered a connected component. One starts with a square
of 2n pixels that is subdivided in four square zones. Each square zone is
analyzed as a part of the original image using one or several homogeneity cri-
teria (for example, variance, max-min values). If the homogeneity criterion
(or criteria) is verified, a function value is given at all points of the square
region (for example, the average of the intensity values in the square). For
any square region that does not satisfy the homogeneity criterion, a similar
procedure is performed in a recursive way by further dividing the square
region by four.

For orientation fields, it is clear that an homogeneity criterion is given by
a directional one and in our case, the minima of the distribution function are
used as the criterion. If the distribution function in a square region presents
only a principal minimum, then the region is considered homogeneous. In
this case, the pixel values of the region are replaced by the angle of the
minimum where the minimum was found. Otherwise, if the distribution
function of a square region has several representative minima, then the
region is devided again by four.

Figure 3(a) illustrates the approach to determine the orientation field in
the image. After dividing the image by four (see Figure 3(a), the four distri-
bution functions were computed as illustrated in Figures 3(e), 3(f), 3(g) and
3(h). In particular observe that the distribution functions of Figures 3(g)
and 3(h), corresponding to the bottom right and left squares each contains
only one principal minimum, while the other two squares, Figure 3(e) and
Figure 3(f), contain several representative minima. Thus, these two squares
were subdivided by four and their distribution functions were computed to
know their directional homogeneity. Figure 3(c) illustrates the top square
regions divided by four squares regions. Finally, Figure 3(d) illustrates the
final hierarchy.

5. Size and orientation codification based on
directional erosions

The approach described above for segmenting orientation fields has some
main drawbacks. The first one is due to the fact that some regions must
be processed several times (according to the hierarchy of the quadtree). A
second problem is that the final segmentation will be composed by square
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Figure 4. (a) Original image. (b) Binary image. (c, d) Line-segment and orien-
tation functions. (e) Straight lines at the regional maxima of the line-segment
function.

regions (or the union of square regions) which is not a real representation
of image structures.

In this section and in the following ones we will look for another approach
where the connectivity notion plays a fundamental role for segmenting the
orientation fields. In fact, it is well-known that the notion of connectivity
is linked to the intuitive idea of segmentation task, where the objective
is to split the connected components in a set of elementary shapes that
will be processed separately. Then, the problem lies in determining what a
connected component is for an image such as those illustrated in Figure 1(a)
and in Figure 1(b). Given that, we will look for another approach where
the information of scales and directions of the structures of the image are
easily accessible. Two functions that codify the size and the orientation are
introduced below.

The idea for codifying size structure come from the notion of the distance
function DX(x) that is a transformation that associates with each pixel x
of a set X its distance from the background. The distance function can
be computed by successive erosions of the set X. Let us now build a new
function derived from the notion of distance function. The goal of building
this function consists in codifying the size information in such a way that
local directional information can be accessed from each point of the function.

This codification of the size information will be used to build a local
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approach for detecting orientation fields on an image. This function, which
we call line-segment function Dm, is computed by using the supremum
of directional erosions. To stock the size information for all λ values, a
gray-level image Dm is used. Thus, one begins with a small structur-
ing element by taking into account all orientations to compute the set
supα∈[0,180]{εL(λ,α)(X)}. Then one increases Dm(x) by one at all points
x belonging to the set supα∈[0,180]{εL(λ,α)(X)}, and one continues the pro-
cedure by increasing the size of the structuring element until the structure
is completely removed. This means that the procedure continues until one
has a λmax value such that supα∈[0,180]{εL(λmax,α)(X)} = ∅. The maxima
of the function Dm are the loci of longest structuring elements. Thus, one
knows the position of the largest structuring elements that can be included
completely in the structure.

However, the angles of these structuring elements (line segments) are
not accessible from the image Dm. Therefore, one stocks the directions of
the line segments in a second image Om, called orientation function, when
the line-segment function is computed.

A real example (pearlitic phase) is shown in Figure 4(b), which is the
binary image of that in Figure 4(a). The image of Figure 4(c) illustrates
the line-segment function Dm whereas the image of Figure 4(d) shows the
orientation Om function, computed from the binary image of Figure 4(b).
Now, these functions can be now used for computing the line segments
that characterize the structure. To illustrate the information contained in
these images, the maxima of Dm were computed for obtaining the loci of
the maximal structuring elements. Next, a line segment was placed at each
maximum point x, with an angle given by Om(x). The longest line segments
in the image are illustrated in Figure 4(e). The line-segment function and
its associated orientation image containing the angles, serve to suggest a
method for segmenting images of orientation fields.

6. Image segmentation using directional morphology
and the watershed transformation

Image segmentation is one of the most interesting problems in image pro-
cessing and analysis. The main goal in image segmentation consists in
extracting the regions of greatest interest in the image [3, 8]. A segmenta-
tion method must allow the introduction of specific criteria to obtain the
desired regions (e.g., gray level, contrast, size, shape, texture, etc). In math-
ematical morphology, the watershed-plus-marker approach is the traditional
image segmentation method [8]. This method has proved to be an efficient
tool in many image-segmentation problems. Here, the watershed will be ap-
plied directly for obtaining a fine partition, and then a systematic merging
process will be applied to obtain the final segmentation.

Figure 5(a) shows the inverse image of image Dm in Figure 4(c), while
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Figure 5. (a) Inverse line-segment function. (b) Watershed image. (c) Weigthed
catchment basins. (d) Segmented image. (e, f) Connected components.

Figure 5(b) illustrates its watershed image. To realize the merging process
it is preferable to work with the catchment basins associated with the water-
shed image. Figure 5(c) shows the catchment basins weighted by the values
of the angles of the regional maxima of the image Om of Figure 4(d). Now,
by analyzing a region of the image of Figure 5(c), one can identify the neigh-
boring regions with more-or-less similar orientations. In order to take into
account their neighborhood relationships, a region adjacency graph (RAG)
must be computed. In fact, the RAG simplifies the merging process. We
have chosen the method proposed in [13] for the merging process. Let us
introduce some concepts concerning graphs.

A graph is a pair made of a set V of vertices and a family of arcs.

Here, one considers the case of a graph without loops. This means that
there are no arcs connecting a vertex to itself. In the general case, arcs are
oriented; in this work, however, one takes the case of non-oriented graphs:
if there exists an arc joining vertex v to vertex v′, then there also exists an
arc joining v′ to v.

A vertex v′ is said to be a neighbor of a given vertex v if there exists an
arc joining v to v′.

Thus, one way to represent a RAG consists of associating a vertex to
each region and an edge to each pair of adjacent regions. By definition the
RAG provides a simple connectivity view of the image. Beyond this simple
connectivity view this graph also gives a high-level connectivity view of the
image. Consider three regions A, B and C of an image. Thus, if two regions
A and B are adjacent, and also the regions B and C are adjacent, but A
and C are not adjacent, that leads us to consider that regions A and C have
a second order connectivity relationships.
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Fig. 15. (a) and (b) Images computed after the merging process using criteria values

of 10 and 20, respectively, (c) and (d) Contours imposed to the original image, (e)

and (f) the color representation of both segmentations
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Figure 6. (a) Original image. (b, c) Line-segment and orientation functions. (d, e)
Images computed after the merging process using criteria values of 10 and 20
degrees, repectively. (f, g) Contours imposed to the original image.

In fact, the simple connectivity view contains inherently all high-level
connectivity relationships of the image. Each vertex vi corresponds a region
Ri with orientation values (for example, −→µ i and −→σ i mean value and vari-
ance value of the region) representative of the orientation distribution of this
region. Each edge eij represents a pair of adjacent regions {Ri, Rj} with a
corresponding orientation distance d(Ri, Rj), which can be used to compare
the orientation distribution of these two regions. In our case, the compu-
tation of the RAG, using the angles of the regions, guides the subsequent
merging of regions and provides a complete description of the neighbor-
hoods. The RAG graph is constructed by use of the catchment basins of
the image of Figure 5(c).

One takes a point from each minimum of the inverse line-segment func-
tion for representing each catchment basin. Remember that the inverse
distance function is used. Since the graph under study is a valued, one
must introduce some numerical values. Each edge is then assigned a value
given by the absolute value of the difference between the angles of two neigh-
boring regions, computed from the orientations image. The neighborhood
graph of the maxima of the line-segment function and the directional func-
tion synthesize the directional field of the image. Two vertices of the graph
are linked by an edge if the catchment basins are neighbors, and the value
of the edge represents the directional similarity. One the regions are codi-
fied on a graph, we can compute the orientation fields based on the valued
graph.

The following method (see [13]) for reducing the numbers of regions was
carried out.
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1. Each border has assigned an angle distance between the two regions
it separates.

2. The borders are sorted in increasing order.

3. Two regions separated by the least value border are merged.

4. Step 2 is repeated until the criterion cannot be satisfied.

We illustrate the method by identifying the adjacent regions with more-
or-less similar orientation by considering the image of Figure 4(a), a micro-
graph of the pearlite structure in steel. To achieve such a goal, one merges
the vertices (catchment basins) with a difference of angles smaller than
or equal to a given angle value d(Ri, Rj) = |angle(Ri) − angle(Rj)| ≤ θ.
Figure 5(d), shows the segmented image of the orientation function of Fig-
ure 5(c), while Figures 5(e) and 5(f) show some connected components after
the merging process using angles difference criterion θ of 20. The same ap-
proach was carried out with the fingerprint image shown in Figure 6(a).
Figures 6(b) and 6(c) illustrate the line-segment function and the orien-
tation function, whereas in Figures 6(d) and 6(e), one shows the images
computed after the merging process using criteria values θ of 10 and 20,
respectively. Finally, Figures 6(f) and 6(g), illustrate the contours imposed
to the original image.

7. Conclusion and future works

This paper has shown the possibilities for application of morphological direc-
tional transformations to segment images with orientation fields. Initially,
one investigates the directional granulometries and the notion of quadtree
structure. The quadtree is used to describe a class of hierarchical data
structures; thus it permits one to classify the orientation fields at different
scales. After some drawbacks of this approach are illustrated, one considers
a second local approach. This approach involves a local analysis using the
notions of the line-segment and orientation functions proposed in this pa-
per. The maxima of the line-segment function were used for computing the
loci of maximal structuring elements, and the orientation function was used
to obtain the angles of the line segments. These pairs of local parameters
enable us to produce a good description of the image by means of line seg-
ments. Then, a partition of the image may be computed by means of the
catchment basins associated with the watershed transform. This enables
us to realize a neighborhood analysis, using a RAG structure, in order to
merge adjacent regions of the partition according to appropriate criteria,
thus segmenting the images into orientation fields. The results based on
the algorithms presented in this paper show the good performance of the
approach. Future work will be in the direction of seeking for an optimal seg-
mentation based on lattice approach for morphological image segmentation
proposed recently by Serra [11].
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Abstract We present a supervised pattern classifier based on optimum path
forest. The samples in a training set are nodes of a complete graph,
whose arcs are weighted by the distances between sample feature
vectors. The training builds a classifier from key samples (proto-
types) of all classes, where each prototype defines an optimum path
tree whose nodes are its strongest connected samples. The opti-
mum paths are also considered to label unseen test samples with
the classes of their strongest connected prototypes. We show how
to find prototypes with none classification errors in the training set
and propose a learning algorithm to improve accuracy over an eval-
uation set. The method is robust to outliers, handles non-separable
classes, and can outperform support vector machines.

Keywords: supervised classifiers, image foresting transform, image analysis,
morphological pattern recognition.

1. Introduction

Pattern classification methods are generally divided into supervised and
unsupervised according to their learning algorithms [9]. Unsupervised tech-
niques assume no knowledge about the classes (labels) of the samples in the
training set, while these labels are exploited in supervised techniques.

We propose a method to project supervised pattern classifiers based on
optimum path forests (OPF). The design of an OPF classifier is based on
labeled samples from training and evaluation sets. A test set with unseen
samples is used to assess the performance of the classifier.

The training samples are nodes of a complete graph in the sample feature
space (all pairs of nodes are connected by one arc). See Figure 1(a). The arcs
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are weighted by the distance between the feature vectors of their nodes. A
set of prototypes (key samples) is obtained from the training set. We define
a path-cost function based on arc weights, which assigns to any path in the
graph the cost of considering all samples along the path as belonging to a
same class (e.g., function fmax which assigns the maximum arc weight along
the path). We then apply the IFT algorithm [10] to partition the graph into
an optimum path forest rooted at the prototypes (Figure 1(b)). That is,
the prototypes compete among themselves and each prototype defines an
optimum path tree, whose nodes are samples more strongly connected to
that prototype than to any other root, according to that path-cost function.
The training essentially consists of building this optimum path forest, where
the samples in a given optimum path tree are assumed to have the same
label of their root prototype.

0.5

0.8

0.7

0.6

0.8

0.7 0.8

0.2

0.3

0.1

(a)

(0.0,1)

(0.5,1)

(0.2,2)

(0.2,2)

(0.0,2)

(b)

(0.0,1)

(0.2,2)

(0.0,2)

(0.5,1)

(0.2,2)0.3
0.4

(?,?)

0.5

0.7
0.6

(c)

(0.0,1)

(0.2,2)

(0.0,2)

(0.5,1)
(0.2,2)

(0.4,2)

(d)

Figure 1. (a) Complete weighted graph for a simple training set. (b) Resulting
optimum-path forest from (a) for fmax and two given prototypes (circled nodes).
The entries (x, y) over the nodes are, respectively, cost and label of the samples.
(c) Test sample (gray square) and its connections (dashed lines) with the training
nodes. (d) The optimum path from the most strongly connected prototype, its
label 2, and classification cost 0.4 are assigned to the test sample.

The classification of a test sample evaluates the optimum paths from
the prototypes to this sample incrementally, as though it were part of the
graph (Figure 1(c)). The optimum path from the most strongly connected
prototype, its label and path cost (classification cost) are assigned to the test
sample (Figure 1(d)). Note the difference between an OPF classifier with
fmax and the nearest neighbor approach [9]. The test sample is assigned
to a given class, even when its closest labeled sample is from another class.
The same rule is used to classify evaluation samples.
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Before testing, we propose a learning algorithm which replaces new sam-
ples of the evaluation set by irrelevant samples of the training set. Very
often real problems limit the training set size. The learning algorithm aims
to improve accuracy with this limitation. When an evaluation sample is
classified, it is assigned to some optimum path in the graph. The train-
ing samples of this path have their numbers of right or wrong classifications
added by one, depending on the classification result. The irrelevant samples
are those with the number of wrong classifications higher than the number
of right classifications. At each iteration, the learning algorithm creates
new evaluation and training sets and recomputes prototypes and optimum-
path forests. These prototypes guarantee none classification errors in the
training set and usually improve the accuracy over the evaluation sets. The
presence of outliers (samples of a given class that fall inside the region of
another class) usually degrades the project of any classifier. Outliers usu-
ally become irrelevant prototypes and are moved out from the training set.
The number of prototypes will not necessarily increase during learning and
the most representative are usually in the frontiers between classes. The
method handles non-separable classes by estimating key prototypes within
the intersection regions.

Section 2 discusses related works. The OPF classifier is presented in
Section 3 and Section 4 presents its learning algorithm, which outputs the
last designed classifier and a learning curve showing the accuracy values of
the designed classifiers along its iterations. In Section 5, we compare the
OPF classifier with support vector machines (SVM) [3]. This comparison
uses databases with outliers and non-separable multiple classes, being two
databases from image analysis. One contains voxels from white and gray
matters in magnetic resonance images of the human brain and the other
contains 2D shapes from binary images. Conclusions and future works are
discussed in Section 6.

2. Related works

Graph-based approaches for pattern classification are usually unsupervised.
Zahn [19] proposed an approach that computes a minimum spanning tree
(MST) in the graph and removes inconsistent arcs to form clusters. Arc
removal in the MST can also produce hierarchical solutions for clustering,
such as the popular single-linkage approach [11]. Other clustering tech-
niques have been formulated as a graph-cut problem [17] with application
to image segmentation, where the graph does not need to be complete.
More recently, graph-cut techniques have also been used for learning [2].
Essentially, graph-based clustering methods aim to partition the graph into
components (clusters), such that each component contains only samples of
a same class. However, there is no guarantee that the samples in a given
cluster belong to the same class, and it is hard to assign these samples to
their correct class without any prior knowledge.
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Supervised approaches usually exploit prior knowledge to teach the ma-
chine how to solve the problem. Artificial neural networks (ANN) [12] and
support vector machines (SVM) [3] are among the most actively pursued
approaches in the last years. An ANN multi-layer perceptron (ANN-MLP),
trained by backpropagation for example, is an unstable classifier. Its ac-
curacy may be improved at the computational cost of using multiple clas-
sifiers and algorithms (e.g., bagging and boosting) for training classifier
collections [12]. However, it seems that there is an unknown limit in the
number of classifiers to avoid an undesirable degradation in accuracy [16].
ANN-MLP assumes that the classes can be separated by hyperplanes in
the feature space. Such assumption is unfortunately not valid in practice.
SVM was proposed to overcome the problem by assuming it is possible to
separate the classes in a higher dimensional space by optimum hyperplanes.
Although SVM usually provides reasonable accuracies, its computational
cost rapidly increases with the training set size and the number of support
vectors. [18] proposed a method to reduce the number of support vectors in
the multiple-classes problem. Their approach suffers from slow convergence
and higher computational complexity, because they first minimize the num-
ber of support vectors in several binary SVMs, and then share these vectors
among the machines. [15] presented a method to reduce the training set
size before computing the SVM algorithm. Their approach aims to identify
and remove samples likely related to non-support vectors. However, in all
SVM approaches, the assumption of separability may also not be valid in
any space of finite dimension [6].

The role of the prototypes for the OPF classifier is very similar to the
importance of the support vectors for SVM. Considering this together with
the fact that SVM is among the best approaches for supervised pattern
classification, we have chosen the SVM code in [4] with a Gaussian kernel
and parameters obtained by cross validation for comparison.

3. Optimum path classifier

Let Z1, Z2, and Z3 be training, evaluation, and test sets with |Z1|, |Z2|, and
|Z3| samples such as points or image elements (e.g., pixels, voxels, shapes).
Let λ(s) be the function that assigns the correct label i, i = 1, 2, . . . , c, from
class i to any sample s ∈ Z1 ∪ Z2 ∪ Z3. Z1 and Z2 are labeled sets used to
the design of the classifier. The applications usually impose an upper limit
in |Z1|, then the role of Z2 is to improve the accuracy of the classifier by
interchanging samples with Z1. Z3 is used to assess the performance of the
classifier and it is kept unseen during the project.

Let S ⊂ Z1 be a set of prototypes of all classes (i.e., key samples that best
represent the classes). Let v be an algorithm which extracts n attributes
(color, shape or texture properties) from any sample s ∈ Z1 ∪ Z2 ∪ Z3 and
returns a vector ~v(s) ∈ Ren. The distance d(s, t) between two samples, s
and t, is the one between their feature vectors ~v(s) and ~v(t). One can use any
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valid metric (e.g., Euclidean) or a more elaborated distance algorithm [1].
Our problem consists of using S, (v, d), Z1 and Z2 to project an optimal

classifier which can predict the correct label λ(s) of any sample s ∈ Z3.
We propose a classifier which creates a discrete optimal partition of the
feature space such that any sample s ∈ Z3 can be classified according to
this partition. This partition is an optimum path forest (OPF) computed
in <n by the image foresting transform (IFT) algorithm [10].

Let (Z1, A) be a complete graph whose the nodes are the samples in Z1

and any pair of samples defines an arc in A = Z1 × Z1 (Figure 1(a)). The
arcs do not need to be stored and so the graph does not need to be explicitly
represented. A path is a sequence of distinct samples π = 〈s1, s2, . . . , sk〉,
where (si, si+1) ∈ A for 1 ≤ i ≤ k − 1. A path is said trivial if π = 〈s1〉.
We assign to each path π a cost f(π) given by a path-cost function f . A
path π is said optimum if f(π) ≤ f(π′) for any other path π′, where π and
π′ end at a same sample sk. We also denote by π · 〈s, t〉 the concatenation
of a path π with terminus at s and an arc (s, t).

The OPF algorithm may be used with any smooth path-cost function
which can group samples with similar properties [10]. A function f is smooth
in (Z1, A) when for any sample t ∈ Z1, there exists an optimum path π
ending at t which either is trivial, or has the form τ · 〈s, t〉 where

� f(τ) ≤ f(π),

� τ is optimum,

� for any optimum path τ ′ ending at s, f(τ ′ · 〈s, t〉) = f(π).

We will address the path-cost function fmax, because of its theoretical
properties for estimating optimum prototypes:

fmax(〈s〉) =

{
0 if s ∈ S,
+∞ otherwise,

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)}, (1)

such that fmax(π) computes the maximum distance between adjacent sam-
ples in π, when π is not a trivial path.

The OPF algorithm assigns one optimum path P ∗(s) from S to every
sample s ∈ Z1, forming an optimum path forest P (a function with no cycles
which assigns to each s ∈ Z1\S its predecessor P (s) in P ∗(s) or a marker
nil when s ∈ S, as shown in Figure 1(b)). Let R(s) ∈ S be the root of
P ∗(s) which can be reached from P (s). The OPF algorithm computes for
each s ∈ Z1, the cost C(s) of P ∗(s), the label L(s) = λ(R(s)), and the
predecessor P (s), as follows.

Algorithm 1. OPF.

Input: A λ-labeled training set Z1, prototypes S ⊂ Z1 and the pair (v, d)
for feature vector and distance computations.

Output: Optimum path forest P , cost map C and label map L.
Auxiliary: Priority queue Q and cost variable cst.
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1. For each s ∈ Z1\S, set C(s)← +∞.
2. For each s ∈ S, do
3. C(s)← 0, P (s)← nil, L(s)← λ(s), and insert s in Q.
4. While Q is not empty, do
5. Remove from Q a sample s such that C(s) is minimum.
6. For each t ∈ Z1 such that t 6= s and C(t) > C(s), do
7. Compute cst← max{C(s), d(s, t)}.
8. If cst < C(t), then
9. If C(t) 6= +∞, then remove t from Q.
10. P (t)← s, L(t)← L(s), C(t)← cst, and insert t in Q.

Lines 1–3 initialize maps and insert prototypes in Q. The main loop
computes an optimum path from S to every sample s in a non-decreasing
order of cost (Lines 4–10). At each iteration, a path of minimum cost C(s)
is obtained in P when we remove its last node s from Q (Line 5). Ties are
broken in Q using first-in-first-out policy. That is, when two optimum paths
reach an ambiguous sample s with the same minimum cost, s is assigned to
the first path that reached it. Note that C(t) > C(s) in Line 6 is false when
t has been removed from Q and, therefore, C(t) 6= +∞ in Line 9 is true only
when t ∈ Q. Lines 8–10 evaluate if the path that reaches an adjacent node
t through s is cheaper than the current path with terminus t and update
the position of t in Q, C(t), L(t) and P (t) accordingly.

The OPF algorithm for fmax is an “IFT-watershed transform” [13] com-
puted in the n-dimensional feature space. Apart from this extension, the
most significant contributions are the training and learning processes which
find optimum prototypes (markers) in the frontier between classes and avoid
outliers (samples of a given class that fall inside the region of another class
in the feature space) in the training set, increasing the accuracy of the
classifier.

The label L(s) may be different from λ(s), leading to classification errors
in Z1. The training finds prototypes with none classification errors in Z1.

3.1 Training

We say that S∗ is an optimum set of prototypes when Algorithm 1 propa-
gates the labels L(s) = λ(s) for every s ∈ Z1. Set S∗ can be found by ex-
ploiting the theoretical relation between Minimum Spanning Tree (MST) [7]
and optimum path tree for fmax. The training essentially consists of finding
S∗ and an OPF classifier rooted at S∗.

By computing an MST in the complete graph (Z1, A), we obtain a con-
nected acyclic graph whose nodes are all samples in Z1 and the arcs are
undirected and weighted by the distance d between the adjacent sample
feature vectors (Figure 2(a)). This spanning tree is optimum in the sense
that the sum of its arc weights is minimum as compared to any other span-
ning tree in the complete graph. In the MST, every pair of samples is
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connected by a single path which is optimum according to fmax. That is,
for any given sample s ∈ Z1, it is possible to direct the arcs of the MST
such that the result will be an optimum path tree P for fmax rooted at s.

0.5
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0.1

(a)

S*

1
Z
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R(t)

P*(t)

t
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Figure 2. (a) MST of the graph shown in Figure 1a where the optimum prototypes
share the arc of weight 0.6. (b) The classification of the test sample (gray square)
t as in Figure 1c assigns the optimum path P ∗(t) from R(t) ∈ S∗ to t passing
through s∗.

The optimum prototypes are the closest elements in the MST with dif-
ferent labels in Z1. By removing the arcs between different classes, their
adjacent samples become prototypes in S∗ and Algorithm 1 can compute
an optimum path forest with none classification errors in Z1 (Figure 1(b)),
which can be explained by the theoretical relation between minimum span-
ning trees and the optimum path tree obtained by OPF with fmax [8]. Note
that, a given class may be represented by multiple prototypes (i.e., optimum
path trees) and there must exist at least one prototype per class.

3.2 Classification

For any sample t ∈ Z3, we consider all arcs connecting t with samples
s ∈ Z1, as though t were part of the graph (Figure 1(c)). Considering all
possible paths from S∗ to t, we wish to find the optimum path P ∗(t) from S∗

and label t with the class λ(R(t)) of its most strongly connected prototype
R(t) ∈ S∗ (Figure 2(b)). This path can be identified incrementally, by
evaluating the optimum cost C(t) as

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (2)

Let the node s∗ ∈ Z1 be the one that satisfies the above equation (i.e., the
predecessor P (t) in the optimum path P ∗(t)). Given that L(s∗) = λ(R(t)),
the classification simply assigns L(s∗) as the class of t. An error occurs
when L(s∗) 6= λ(t).

Similar procedure is applied for samples in the evaluation set Z2. In this
case, however, we would like to use samples of Z2 to learn the distribution
of the classes in the feature space and improve the performance of the OPF
classifier.
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4. Learning Algorithm

The performance of the OPF classifier improves when the closest samples
from different classes are included in Z1, because the method finds proto-
types that will work as sentinels in the frontier between classes. We propose
a learning algorithm to identify better prototypes from samples of Z2 that
have never been in Z1 (Algorithm 2).

Algorithm 2. Learning.

Input: Training and evaluation sets labeled by λ, Z1 and Z2, number T
of iterations, and the pair (v, d) for feature vector and distance
computations.

Output: Learning curve L and the last OPF classifier, represented by the
predecessor map P , cost map C, and label map L.

Auxiliary: False positive and false negative arrays, FP and FN , of sizes c,
lists, LI and LE, of irrelevant samples and error samples for each
class, arrays for the number of right and wrong classifications,
NR and NW , of sizes |Z1|, variables r for sample, and set TR
to avoid samples of Z2 return to Z1.

1. TR← ∅.
2. For each iteration I = 1, 2, . . . , T , do
3. TR← TR ∪ Z1.
4. Compute S∗ ⊂ Z1 as in Section 3.1 and P , L, C by Algorithm 1.
5. For each sample s ∈ Z1, do NR(s)← 0 and NW (s)← 0.
6. For each class i = 1, 2, . . . , c, do
7. FP (i)← 0, FN(i)← 0, LI(i)← ∅ and LE(i)← ∅.
8. For each sample t ∈ Z2, do
9. Find s∗ ∈ Z1 that satisfies Equation 2 and set r ← s∗.
10. If L(s∗) 6= λ(t), then
11. FP (L(s∗))← FP (L(s∗)) + 1.
12. FN(λ(t))← FN(λ(t)) + 1.
13. if t 6∈ TR, then LE(λ(t))← LE(λ(t)) ∪ {t}.
14. While r 6= nil, do
15. NW (r)← NW (r) + 1 and r ← P (r).
16. Else
17. While r 6= nil, do
18. NR(r)← NR(r) + 1 and r ← P (r).
19. Compute L(I) by Equation 5.
20. For each s ∈ Z1, do
21. If NW (s) > NR(s), then
22. LI(λ(s))← LI(λ(s)) ∪ {s}.
23. For each class i = 1, 2, . . . , c, do
24. While |LI(i)| > 0 and |LE(i)| > 0, do
25. LI(i)← LI(i)\{s} and LE(i)← LE(i)\{t}.
26. Replace s ∈ Z1 by t ∈ Z2.
27. While |LI(i)| > 0, do
28. LI(i)← LI(i)\{s}.
29. Find t ∈ Z2\TR, with λ(t) = i, and replace it by s ∈ Z1.
30. Compute S∗ ⊂ Z1 as in Section 3.1 and P , L, C by Algorithm 1.
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Firstly we give preference to replace irrelevant samples of Z1 by errors
in Z2, and secondly other samples of Z2 are replaced by irrelevant samples
of Z1. In both cases, we never let a sample of Z2 return to Z1. If the
application did not impose any limitation in |Z1|, the prototypes could be
found from Z1∪Z2 with none classification errors in both sets. The learning
algorithm essentially tries to identify these prototypes from a few iterations
of classification over Z2.

The algorithm outputs a learning curve over T iterations (Lines 2–29),
which reports the accuracy values of each instance of classifier during learn-
ing, and the final OPF classifier. Lines 4–7 execute training and initialize
the auxiliary arrays and lists. The classification of each sample t ∈ Z2 is
performed in Lines 8–18, updating auxiliary arrays. The condition in Line
10 indicates that t is misclassified.

In order to define irrelevant samples, we consider all right and wrong
classifications in Z2. When t ∈ Z2 is correctly/incorrectly classified, we
add one to the number of right/wrong classifications, NR(r) or NW (r), of
every sample r ∈ Z1 in the optimum path P ∗(t) from R(t) ∈ S∗ to s∗ (Lines
14–18). Additionally, Lines 11–13 update the number of false positive and
false negative arrays, FP and FN , for accuracy computation, and insert t
in the list LE(λ(t)) of errors if t has never been in Z1 (t 6∈ TR).

Line 19 computes the accuracy at iteration I and stores it in the learn-
ing curve L. The accuracy L(I) of a given iteration I, I = 1, 2, . . . , T , is
measured by taking into account that the classes may have different sizes in
Z2 (similar definition is applied for Z3). Let NZ2(i), i = 1, 2, . . . , c, be the
number of samples in Z2 from each class i. We define

ei,1 =
FP (i)

|Z2| − |NZ2(i)| and ei,2 =
FN(i)

|NZ2(i)| , i = 1, . . . , c (3)

where FP (i) and FN(i) are the false positives and false negatives, respec-
tively. That is, FP (i) is the number of samples from other classes that
were classified as being from the class i in Z2, and FN(i) is the number of
samples from the class i that were incorrectly classified as being from other
classes in Z2. The errors ei,1 and ei,2 are used to define

E(i) = ei,1 + ei,2, (4)

where E(i) is the partial sum error of class i. Finally, the accuracy L(I) of
the classification is written as

L(I) =
2c−∑c

i=1E(i)

2c
= 1−

∑c
i=1E(i)

2c
. (5)

Lines 20–22 identify as irrelevant samples in Z1 those with number of
incorrect classifications higher than the number of correct classifications.
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Lines 23–29 remove elements from the lists of irrelevant samples and errors,
LI and LE, for each class, and first replace errors by irrelevant samples
then replace the remaining irrelevant samples (if any) by other samples of
Z2 that have never been in Z1.

Outliers degrade the project of any classifier. They will be usually iden-
tified as irrelevant prototypes, being moved from Z1 to Z2. Finally, Line
30 performs the training over the last set Z1 to output the designed OPF
classifier.

After learning, the classification of any sample t ∈ Z3 is done by simply
finding s∗ ∈ Z1 that satisfies Equation 2 and assigning label L(s∗) as the
class of t.

5. Results

We compare the OPF classifier with support vector machines (SVM [3])
using four databases with outliers and non-separable classes: Cone-torus
from [12], Painted database (Figure 3(a)), MPEG-7 shape database [14],
and WM/GM (white matter/gray matter) database [5]. The cone-torus
database contains 400 samples and 3 non-separable classes while the painted
database contains 5,867 samples with outliers and 4 classes. In both cases,
the feature vectors are the sample (x, y) coordinates. The MPEG-7 database
contains 1,400 2D shapes and 70 classes. To increase overlap (difficulty)
between classes, we simply adopt the 126 most significant coeficients in the
Fourier transform of the shapes as feature vector. The WM/GM database
contains 1.5M voxels of WM and GM (2 classes) from MR-T1 images of
phantoms with various levels of noise and inhomogeneity to produce outliers.
The images and ground truth are available from [5], and the feature vector
is the lowest and highest values around the voxel, and its intensity value.
In all cases, function d is the Euclidean metric.

(a) (b)

Figure 3. (a) Painted database with outliers. (b) OPF learning curve on Z2.

For all databases, we ramdomly selected the same percentage of samples
from each class to create Z1, Z2 and Z3. These percentages were 30% for Z1,
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30% for Z2, and 40% for Z3 in the first three databases. Only the WM/GM
database used 0.1% for Z1, 19.9% for Z2 and 80% for Z3.

For Z1 and Z2, we runned 10 iterations of Algorithm 2 to output the
OPF classifier for test on Z3. Figure 3(b) shows the learing curves for all
databases. Note the usually non-decreasing behavior of the curves after the
outliers be detected as irrelevant samples and moved to Z2.

In SVM, we used a Gaussian kernel and computed support vectors for 10
new instances of Z1 and Z2 by ramdomly replacing samples between them,
keeping the original proportions, and took the configuration with highest
accuracy for test on Z3.

The above learning and testing processes of SVM and OPF were also
repeated for 10 distinct initial sets Z1, Z2, and Z3 to compute mean and
standard deviation of their accuracies over Z3 (Table 1). OPF was usually
more accurate and from 3 to 20 times faster than SVM.

Table 1. Mean and standard deviation of the accuracies for each database.

OPF accuracy SVM accuracy

Database mean std. dev. mean std. dev.

Cone-torus 0.8757 0.0218 0.8147 0.0145

Painted 0.9838 0.0144 0.8763 0.0030

MPEG-7 0.6925 0.0049 0.5869 0.0088

WM/GM 0.9088 0.0006 0.9072 0.0009

6. Conclusions and future work

We use the IFT algorithm in sample feature spaces and propose pattern
classifiers based on optimum path forests rooted at prototypes of training
sets. The OPF classifier finds prototypes with none zero classification errors
in the training sets and learns from errors in evaluation sets. Unseen test
sets are used to assess OPF in comparision with SVM. From the learning
curves of the OPF and its results on the test sets, we may conclude it is
a robust classifier and usually more accurate than SVM for databases with
outliers and non-separable classes.

We are currently evaluating OPF with other databases and its accuracy
is usually higher than using SVM and ANN-MLP. Future works include to
report these results and the extension of OPF to unsupervised classification.
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Abstract Geodesics and minimal surfaces are widely used for medical im-
age segmentation. At least two different approaches are used to
compute such segmentations. First, geodesic active contours use
differential geometry to compute optimal contours minimizing a
given Riemannian metric. Second, Boykov and Kolmogorov have
proposed a method based on integral geometry to compute similar
contours using a graph representation of the image and combinato-
rial optimization. In this paper we present a technique to compute
approximate geodesics and minimal surfaces using a low-level seg-
mentation and graph-cuts optimization. Our approach speeds-up
the computation of minimal surfaces when a low-level segmentation
is available.

Keywords: watershed, minimal surfaces, geodesics, graph-cuts.

1. Introduction

Computation of minimal surfaces and geodesics is a common problem in
image processing [1, 2, 4, 6]. Like many other techniques, the segmentation
by optimal surfaces is a classical minimization problem. At least two dif-
ferent approaches of the problem have been successfully applied to image
segmentation: geodesic active contours [6] and graph-cuts segmentation [4].
The methods will be briefly introduced in Section 2 and Section 3.

In this paper we propose a method to compute approximate geodesics
and minimal surfaces by using the watershed low-level segmentation (wa-
tershed from all the local minima of the image’s gradient). Our approach
is motivated by the simplification it offers in the formalization of the prob-
lem. We propose to compute a curve (or a surface) that minimizes a given
geometric functional in the space of curves (or surfaces) composed by a
sub-set of watershed contours. The segmentation is driven by the search
of a minimal cut in a region adjacency graph. Experimental results show
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that the approximation error is negligible on natural images. Results will
be presented on 3D medical images.

2. State of the art

2.1 Geodesic active contours

The first application of differential geometry in image segmentation has
been introduced by Kass et al. in [9]. The method, called “snakes”, as well
as many variants of active contours models, has been widely used for im-
age segmentation. “Snakes” use a parametric representation of a curve. An
important development has been introduced via a new representation of
active contours [11, 13]. Parametric active contours have been replaced by
an implicit representation of curves and surfaces via level-sets. This rep-
resentation allows topological changes of curves and a better handling of
numerical schemes to achieve the energy minimization. A further develop-
ment of active contours has been introduced by Caselles et al. in [6] with
“Geodesic active contours”. This method simplifies the energy function to
be minimized. The problem is formalized as the minimization of the energy:

E(C) =

∫ |C|ε
0

g(||∇I(C(s))||)ds, (1)

where |C|ε is the Euclidean length of a contour C, and s is the arc length
on the contour. g is a positive and strictly decreasing function and ∇ is the
gradient operator computed on the image I.

This method is equivalent to the minimization of the length of the curve
C according to a Riemannian metric. The Riemannian metric depends
here on the local gradient of the image I. For general curves, length in a
Riemannian space can be written as:

|C|R =

∫ |C|ε
0

√
τTs D(C(s))τsds, (2)

where τs is a unit tangent vector to the contour C and D is a positive
definite matrix, called the metric tensor, specifying the local Riemannian
metric. In “Geodesic active contours” the local Riemannian metric is given
by the following metric tensor:

D =

(
g(∇Ix) 0

0 g(∇Iy)

)
,

where (∇Ix,∇Iy) are the components of the gradient of I.
“Geodesic active contours” minimize the Equation 1 via a gradient de-

scent scheme and a level-sets representation of the curve. Unfortunately, the
method is sensitive to initialization and the global minimum of Equation 1
is not always found. However the method can also be extended to three
dimensions [7].
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2.2 Cauchy-Crofton formulaes

Boykov and Kolmogorov [4] have considered the computation of minimal
surfaces and geodesics based on the Cauchy-Crofton formulaes of integral
geometry. Cauchy established a formula which relates the length of a curve
C to a measure of a set of lines intersecting it. Let L(ρ, θ) be a straight
line characterized in polar coordinates by the two parameters (ρ, θ). The
Cauchy-Crofton formula establishes that the Euclidean length of a curve C
is given by:

|C|ε =
1

2

∫ π

0

∫ ∞
−∞

N(ρ, θ)dρdθ, (3)

where N(ρ, θ) is the number of intersections of L(ρ, θ) with C, and C is a
regular curve. This formula can be extended to a Riemannian space, then
the length of a curve C according to the metric tensor D is given by:

|C|R =
1

2

∫ π

0

∫ ∞
−∞

detD

2(uTLDuL)3/2
N(ρ, θ)dρdθ, (4)

where uL is the unit vector in the direction of line L. This formula is verified
by any continuously differentiable and regular curve in R2 [12].

Let Ng be a neighborhood system on a discrete grid. Ng can be described
by a finite set of undirected vectors ek, Ng = {ek : 1 < k < ng}. Each vector
ek generates a family of lines as shown in Figure 1. Each line in a family
is separated by a distance ∆ρk from the closest line of the family. Now let
θk be a discrete angular parameter. For a fixed θk, we obtain a family of
parallel lines separated by a distance ∆ρk as shown Figure 1.

Figure 1. 8-Neighborhood system. Cauchy-Crofton formula established a link
between a finite set of lines and the Euclidean length of a curve C.

The discretization of Equation 3 gives the following approximation of
the Euclidean length of the curve C:

|C|ε ≈
1

2

ng∑
k=1

(
∑
i

nc(i, k)∆ρk)∆θk =

ng∑
k=1

nc(k)
δ2∆θk
2|ek|

, (5)
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where i indexes the kth family of lines. nc(i, k) counts the number of in-
tersections of line i of the kth family of lines with the curve C. nc(k) =∑
i nc(i, k) is the total number of intersections of the kth family of lines

with C.

3. Graph-cuts

3.1 Basics

Graph-cuts are based on the well-known combinatorial problem of finding
a minimal cost cut in a weighted graph. Suppose that each arc (i, j) of a
graph G has assigned to it a non negative number c(i, j) called the capacity
or the weight of the arc. This capacity is seen as the maximum amount
of some commodity that can “flow” through the arc. Let us consider the
problem of finding a maximal flow from a node s, called the source, to a
node t, called the sink. Finding the maximal possible flow between s and t
is related to finding a minimal cut in the graph. A (s-t) cut is identified by
a pair (S,T) of complementary subsets of nodes, with s ∈ S and t ∈ T . The
cost of the cut is defined by:

c(S, T ) =
∑
i∈S

∑
j∈T

c(i, j). (6)

The minimal cut can be efficiently computed in polynomial time using
classical combinatorial algorithm such as the Ford-Fulkerson algorithm or
more efficient algorithms as the one proposed by Boykov et al. in [5]. Graph
cuts are well suited for image segmentation since a node can represent a
pixel and edges represent neighborhood relations between pixels. Graph-
cuts have already been used in many imaging applications [3, 4, 10].

3.2 Computing geodesics and minimal surfaces via graph-
cuts

Boykov and Kolmogorov have considered the computation of minimal sur-
faces and geodesics with interactive placement of markers. The user has to
specify “background” and “object” seeds and their method finds automati-
cally the optimal curve (or surface) separating the two sets of seeds. The
image is represented by a graph. Two additional nodes s and t are respec-
tively connected to “object” seeds and “background” seeds. “s-links” and
“t-links”, arcs connected to s or t, have infinite capacity to ensure that the
sets S and T respectively contain a “background” seed and a “foreground”
seed.

The aim of the method is to relate the cost of a graph-cut to the length of
a underlying curve as shown in Figure 1. Let us consider an image embedded
on a discrete grid and let Ng be a neighborhood system on the image. As
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described in the previous section, the neighborhood system defines a family
of lines. The cost of a (s-t) cut in the constructed graph is then equal to:

c(S, T ) =
∑
i∈S

∑
j∈T

c(i, j) =

ng∑
k=1

nc(k)wk, (7)

where nc(k) is the number of arcs of family k that connect S to T , and wk
is the weight of the arcs of family k.

The Cauchy-Crofton formula given by Equation 5 can be directly used
to set arcs weights such that the cost of a graph-cut approximates the Eu-
clidean length of the contour separating the two sets S and T :

c(S, T ) =

ng∑
k=1

nc(k)wk with wk =
δ2∆θk
2|ek|

. (8)

The previous relation can also be extended to deal with Riemannian
metric by using the following weights:

wk(p) =
δ2.|ek|2.∆θk.det(D(p))

2(eTkD(p)ek)3/2
, (9)

where wk(p) is the weight of the arcs leaving the node p, and D(p) is the
local Riemannian metric at point p. The previous expressions can also be
extended to 3D spaces [4].

These formulaes show explicitly that the cost of a graph-cut is related
to the geometric length of the contour separating the sets S and T defined
by the cut. Unfortunately existing methods are computationally costly and
cannot always be used interactively on large datasets such as 3D medical
images. Inspired by the approaches presented in Section 2 and Section 3,
we propose a method to compute fast approximate geodesics and minimal
surfaces from an initial low level segmentation of the image.

4. Approximate geodesics and minimal surfaces using
watershed segmentation

4.1 Problem statement

The combination of graph-cuts with a watershed low-level segmentation
(watershed from all the local minima of the image’s gradient) provides us
an explicit way to compute geodesics and minimal surfaces. Our basic as-
sumption is that the geodesic to be computed is embedded in the watershed
low-level segmentation. This proposition is motivated by two observations.
Firstly, the watershed transform (computed from the local minima of im-
age’s gradient), without pre-processing or marker selection, produces an
over-segmentation of real images. Secondly, the watershed lines contain all
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major boundaries of real images. Thus, we propose to solve the following
combinatorial problem: finding a curve composed of a finite union of wa-
tershed lines such that the curve minimizes a given geometric functional.
We will solve this problem by using graph-cuts optimization on a region
adjacency graph, as suggested by Li et al. [10].

4.2 Combining graph-cuts and watershed segmentation

Following [6], we will consider a geodesic curve C than can be computed via
the minimization of the energy given by Equation 1. Let us consider the
graph G = [X,U,W ] of the watershed regions where X = {xk} is the set of
nodes (i.e the regions of the watershed transform), U is the set of arcs (i.e
the neighborhood relations between regions) and W is the weights of the
arcs as illustrated in Figure 2.

(a) (b) (c)

Figure 2. (a) Region adjacency graph of a low-level watershed segmentation. (b)
The sets of pixels considered to compute boundary properties between adjacent
regions, with a V4 adjacency relation. (c) An implicit curve defined by the regions
x1 and x2.

We present a way of defining arcs weight such that a cut partitions
the image by an approximate minimal curve (curve of minimal length in a
Riemannian space). Let us define F(xi,xj) as the border between two regions
xi and xj of the low-level watershed segmentation:

F(xi,xj) = {(pm, pn) | pm ∈ xi, pn ∈ xj , (pm, pn) ∈ N}. (10)

One should note that the set F(xi,xj) depends on the adjacency relation
N . This set of nodes implicitly describes a set of curves between the regions
xi and xj as illustrated in Figure 2(c). Let us define C(xi,xj) as the set of
curves that can go through the nodes of F(xi,xj). Thus we can explicitly
compute the energy E(C(xi,xj)) for all pairs of regions using the Cauchy-
Crofton formulaes detailed in Section 2. Note also that if regions xi and xj
are not adjacent, F(xi,xj) and C(xi,xj) are empty sets.

Let us define a strictly positive function g of (F(xi,xj)) as:
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g(F(xi,xj)) =
∑

(pm,pn)∈F(xi,xj)

1

1 + ||I(pm)− I(pn)||2 , (11)

g(∅) = 0. (12)

The function g works as an edge indicator of the image I and takes a
small value if the gradient of I is high between the regions xi and xj . One
should note that the function g approximates the Riemannian length of the
implicit curves C(xi,xj) in case of the 4-neighborhood system. According to
the Cauchy-Crofton Formulaes, the number of adjacent pixels ((pm, pn) ∈
F(xi,xj)) indicates the number of intersection of an implicit curve between
the regions xi and xj with the horizontal and vertical lines describing the
4-neighborhood system:

|C(xi,xj)|R = E(C(xi,xj)) ≈ g(F(xi,xj)). (13)

Alternatively, the Cauchy-Crofton formulaes can also be used to com-
pute the approximate Riemannian length of the curves C(xi,xj) between two
adjacent regions in case of a larger neighborhood system. However in this
section we will only consider the 4-neighborhood system for simplicity.

The cost of a (s-t) cut in the region adjacency graph weighted by the
function g is equal to:

c(S, T ) =
∑
xi∈S

∑
xj∈T

w(xi, xj), (14)

c(S, T ) =
∑
xi∈S

∑
xj∈T

(g(F(xi,xj))). (15)

As a consequence a (s-t) cut in the region adjacency graph is equal to the
Riemannian length of an curve between the sets S and T . Considering the
weighting function given by Equation 11, the minimal cut of the weighted
adjacency graph of watershed regions is equal to:

min(S,T )c(S, T ) = min(C∈(
⋃
C(xi,xj)

))E(C), (16)

where (
⋃
C(xi,xj)) is the union of all the implicit curves defined by the

watershed regions.

Our minimization problem is reduced to the search of a curve among
all curves implicitly described by the watershed regions instead of searching
among all curves in the domain of the image I. This approximation reduces
drastically the search space.
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4.3 Computing minimal surfaces

The method can easily be extended to three dimensions by considering in-
tegrals on surfaces instead of curves. The aim of the segmentation task is
now to find a surface S that minimizes the following energy:

E(S) =

∫ ∫
S

g(||∇I(x, y)||)dxdy, (17)

where S is a surface and g a positive and strictly decreasing function.

Thus we can use the same capacities defined in Equation 11, and apply
it on the region adjacency graph in 3D:

w(xi, xj) = g(F(xi,xj)). (18)

In 3D, F(xi,xj) defines implicitly a set of surfaces S(xi,xj) between the
regions xi and xj . Thus the minimal cut of the region adjacency graph in
3D is equal to:

min(S,T )c(S, T ) = min(S∈(
⋃
S(xi,xj)

))E(S). (19)

4.4 Adding geometric constraints

Using a region adjacency graph instead of the pixel adjacency graph can be
advantageous in some situations. A wide class of geometric functionals can
be computed on each regions of the watershed transform. As a consequence,
a large class of geometric functionals can be added to the energy defined
by Equation 1. For instance, it remains unclear how to introduce curvature
constraints in the graph-cuts method used at the pixel level, but it is clear
that a curvature term can easily be added in our methodology. For instance
curvature of the border between two adjacent regions can be computed and
used to add a shape constraint to the energy to be minimized.

5. Results

This section presents some results obtained by our method on 3D med-
ical images. Figure 3 illustrates our segmentation method (Figure 3(b))
and compares it with the classical marker-controlled watershed segmenta-
tion (Figure 3(d)) and the minimal surface computed with the technique
proposed by Boykov et al. in [4] (Figure 3(c)). Our method outperforms
the marker-controlled segmentation and produces approximately the same
segmentation as the graph-cuts method proposed by Boykov et al. in [4].

The next example illustrates the method on a 3D CT image. Figure 4
illustrates the segmentation of a liver. The liver presents low-contrasted
boundaries and the segmentation of such organs remains a difficult task.
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(a)

(b)

(c)

(d)

Figure 3. (a) Heart MRI superposed with user-provided markers. (b) Approx-
imate minimal surface by our method. (c) Graph cuts minimal surface. (d)
Marker-controlled watershed segmentation.
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For this application minimal surface remains a leading method. The graph-
cuts used on the watershed adjacency graph (Figure 4(b)) improves the re-
sults given by the classical marker-controlled watershed segmentation (Fig-
ure 4(d)) and speeds up the graph-cuts method proposed by Boykov et al.
[4].

Extensive tests have been undertaken with 3D medical images provided
by the Institut Gustave Roussy1 (mainly CT images of the thorax) and
the Centre for Advanced Visualization and Interaction2 (MRI images of the
heart). According to specialists, the results are very promising, even for
the interactive segmentation of anatomical structures which are difficult to
contour, such as the liver.

Table 1 illustrates the computation time needed by the three methods we
considered: the marker-controlled watershed, our method, and the minimal
surfaces by graph-cuts proposed in [4]. The results shows that our method
reduces drastically the computation time needed by graph based techniques.
Moreover our method do not seem to affect the results quality.

Table 1. Comparisons of computation time. (Laptop Pentium Core Duo 2.16 Ghz,
1Go memory)

Image Watershed Our method Graph cuts

Heart MRI 1,5 sec. 4,2 sec. 15,2 sec.

Liver CT 9,7 sec. 41,6 sec. 1400,2 sec.

5.1 Conclusion

Considering that the watershed transform contains all major boundaries
in real images, our approximate segmentation is in practise quite efficient.
However the graph-cuts approach works slower than the classical marker-
controlled watershed but offers more stable results. In the other hand our
method is not as precise as the graph-cuts method proposed by Boykov et
al. [4], but it offers a good trade off between speed and precision.

A Graph-cuts approach cannot always be used on large images when
the graph considered is the pixel adjacency graph because of the memory
requirements and the computational complexity of the method. The devel-
oped method can efficiently be used on large images considering the region
adjacency graph instead of the pixels graph. Our method do not seem to
introduce large biases in the resulting segmentation of natural images. Lim-
itations of our methods are quite clear since it can only be used when an

1The Institut Gustave-Roussy is a non-profit private institution, exclusively devoted
to oncology, located near Paris, France

2University of Aarhus, Denmark
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(a)

(b)

(c)

(d)

Figure 4. 3D CT image . (a) User-provided markers. (b) Approximate minimal
surface by our method. (c) Graph-cuts minimal surface. (d) Marker-controlled
watershed segmentation.
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over-segmentation can be obtained. Graph-cuts can also be used on other
adjacency graphs. For instance λ-flat zones [8] adjacency graph should be
a good solution to increase the precision of our method since it can offer a
pixel-precision in some situations.

Our methodology can take into account a wide class of geometric func-
tionals since we can compute all kind of measures on the boundaries of the
watershed regions. For instance this method can take into account curva-
ture of the boundaries, which remains impracticable for classical graph-cuts
methods used at the pixel level.
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Morphological texture gradients:

Definition and application to colour and

texture watershed segmentation

Jesús Angulo

Centre de Morphologie Mathématique (CMM), Ecole des Mines de Paris,
Fontainebleau, France
jesus.angulo@ensmp.fr

Abstract This paper deals with a morphological approach to calculate tex-
ture gradients and it is shown how to use them for image seg-
mentation according to the texture; and more generally, for joint
colour/texture segmentation (i.e., structural segmentation). The
starting point is a decomposition of the colour image into two com-
ponents: the object layer and the texture layer. A multi-scale local
analysis from the texture layer is built using morphological op-
erators (openings/closings or levelings) to define the gradients of
texture. The proposed texture gradient is then combined with the
colour gradient to produce mixed segmentations by watershed.

Keywords: granulometry, leveling, colour/texture decomposition, colour gra-
dient, texture gradient, watershed transform.

1. Introduction

The classical paradigm of morphological segmentation is the watershed
transformation with imposed markers [14], which is one of the most pow-
erful segmentation techniques. Watershed-based hierarchical approaches
allow addressing fields where markers cannot be easily defined (e.g., natu-
ral images, video-surveillance, etc.). Two main hierarchical techniques can
be distinguished: 1) non-parametric waterfalls algorithm [4], which elim-
inates the contours completely surrounded by stronger contours; and 2)
hierarchies based on extinction values [12, 20], which allow to select the
minima used in the watershed according to different morphological crite-
ria (in particular, the volume, which combines the size and the contrast
of the regions, defines a good criterion to evaluate the visual relevance
of regions). These algorithms are built on a scalar gradient. A colour
gradient must be calculated to apply the watershed on a colour image.
According to our previous works [2], we propose to compute a complete
colour gradient in a luminance/saturation/hue representation, which is rel-
atively robust towards illumination condition variations. More precisely, if
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f(x) = (fL(x), fS(x), fH(x)) denotes a colour image in the LSH representa-
tion, its colour gradient is given by:

%col(f)(x) = (1− fS(x))× %(fL)(x) + fS(x)× %◦(fH)(x) + %(fS)(x),

where %(g)(x) is the morphological gradient of a scalar function g(x) (in
this case, the luminance fL(x) and the saturation fS(x)) and %◦(a)(x) is
the circular centered gradient of an angular function a(x) (in this case, the
hue component fH(x)).

f , mrks f̂

%col(f̂) Wshed(%col,mrks)

Figure 1. Example of colour segmentation by markers-based watershed.

In the traditional way to segment an image by watershed transformation,
the colour image is previously filtered by means of a connected operator,
typically a leveling [13], λ(m, f) (f is the reference image and m(f) is the
marker image, which is a rough simplification of the reference image), which
simplifies textures and eliminates small details, but preserving the contours
of remaining objects. For colour images, a marginal leveling can be applied
for each component R, G, B or a total colour leveling can be calculated [1].
In any case, the leveling needs an image marker which determines the struc-
tures to be preserved, i.e.,

f̂ = λ(ASFnB(f), f),

where ASFnB is an alternate sequential filter of size n and B is an isotropic
structuring element (other filters such as the Gaussian filters can be used to
build the marker). Then, the watershed is calculated on the colour gradient

of f̂ . The example of Figure 1 illustrates the segmentation with a marker
for each object of interest (each zebra and an additional marker for the
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background). As we can observe, the colour information does not make
possible to extract correctly the object contours.

Indeed, the texture is in certain images a very discriminating information
for object separation. However, to introduce texture into the segmentation
is not so simple as for the colour: texture is a regional notion which is
difficult to quantify. In [6], Hill et al. proposed a method to build a tex-
ture gradient starting from a wavelet transformation, which is then used
with the watershed to segment grey-level images. The combined use of
colour and texture is the topic of a certain number of recent works. Ma and
Manjunath [8] introduced the interest of Gabor filters for texture image seg-
mentation. Vanhamel et al. introduced in [21] a marginal approach to apply
Gabor filters to each component of a colour image and thus to construct a
colour/texture feature space for segmentation. In a similar way, Hoang et
al. [7] used Gabor filters to measure colour/texture and the segmentation
is obtained by k-means. The works by Malik et al. [10] are also based on
banks of Gaussian filters to calculate a texture gradient which is then com-
bined with luminance and colour gradients in a supervised learning frame-
work. Sofou et al. [18] introduced a joint intensity/texture segmentation
by a PDE-based watershed, where texture is measured by a demodulation
filter bank. This last work starts from an image decomposition according to
the model f = u+ v by Y. Meyer [15], where u is the “cartoon component”
(homogeneous zones of the objects) and v is the “texture oscillation”. This
model was initially studied within the framework of a variational approach
by Vese and Osher [22]. More recent works, for example Patwardhan and
Sapiro [16] and Aujol et al. [3], explore fast variational algorithms for the
calculation of the images u and v. Sofou et al. proposed to obtain the tex-
ture component as the residue of a leveling, i.e., v = f − u = f − λ(m, f)
(the marker m is a Gaussian filter of f).

In this paper, we focus on a similar framework to that of Sofou et al. [18],
but less expensive in computational terms. Our starting point is also a
colour image decomposition of f into two components:

f , f̂ ] ftex,

where f̂ is the object layer and ftex is the texture layer. The texture layer is

obtained as the residue of the components of luminance, i.e., ftex = fL− f̂L,
because the texture variations are mainly associated to the luminance.

2. Granulometries and morphological multi-scale
analysis

A granulometry is the study of the size distribution of the objects of an
image [11,17]. Formally, for the discrete case, a granulometry is a family of
openings Γ = (γn)n≥0 that depends on a positive parameter n (which ex-
presses a size factor) such as: 1) γ0(f) = f ; 2) f ≤ g ⇒ γn(f) ≤ γn(g),∀n ≥
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0, ∀f, g; 3) γn(f) ≤ f, ∀n ≥ 0, ∀f ; 4) and γn verifies the semi-group ab-
sorption law; i.e., ∀n,m ≥ 0, γnγm = γmγn = γmax(n,m). Moreover, a
granulometry by closings (or anti-granulometry) can be defined as a family
of increasing closings Φ = (ϕn)n≥0. In practice, the most useful granu-
lometry and anti-granulometry are those associated to morphological open-
ings/closings: γn(f) = δnB(εnB(f)) and ϕn(f) = εnB(δnB(f)) respectively,
where B is a structuring element of unit size (typically a disc or a segment
of straight line) and n = 1, 2, · · · . The greedy algorithms for granulometries
involve consequently openings (closings) of increasing size, and thus they are
relatively expensive. However, optimised fast algorithms for granulometry
computation have been developed by Vincent [23].

ftex PSW (ftex, 2) PSW (ftex, 4)

PSW (ftex, 6) PSW (ftex, 8) %Γ
tex(ftex)

Figure 2. Texture layer, local granulometry (window Wx = 10× 10) by isotropic
openings, morphological texture gradient.

The granulometric analysis of an image f with respect to Γ consists in
evaluating each opening of size n with a measurement: M(γn(f)) (where
M is the integral of scalar function values). The granulometric curve, or
pattern spectrum [9], of f with respect to Γ and Φ, PSΓ,Φ(f, n) or PS(f, n),
is defined by the following normalised mapping:

PS(f, n) = 1
M(f)

{
M(γn(f))−M(γn+1(f)), for n ≥ 0,
M(ϕ|n|(f))−M(ϕ|n|−1(f)), for n ≤ −1.

The value of pattern spectrum PS(f, n) for each size n corresponds to
a measurement of bright structures of size n (similarly, the dark structures
are obtained by closings). The pattern spectrum PS(f, n) is a probability
density function (i.e., a histogram): a peak or mode in PS at a given scale
n indicates the presence of many image structures of this scale or size.
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Granulometric size distributions can be used as descriptors for texture
classification. However, the texture descriptor PS(f, n) is global to the im-
age f , and if f contains more than one texture, the classification should
be carried out at pixel level. This is the concept behind the granulometric
local analysis [5], which consists in calculating a local pattern spectrum,
or more precisely a pattern spectrum in a window Wx = sizeh × sizev
(sizeh is the horizontal size in pixels and sizev the vertical one) centered
at pixel x. The local pattern spectrum PSWx(f, n), or simply PSW (f, n),
is obtained by computing the function PS(fWx

, n) for each pixel x, where
fWx is the restriction of the image f to the window Wx. This method
is very expensive from a computational viewpoint. A faster approach to
obtain PSW (f, n) is based on the computation of only one series of open-
ings/closings and then, for each pixel x, to calculate locally the integral in
Wx, i.e., MWx(g) =

∑
y∈Wx

g(y). As result of this computation, a granu-
lometric curve is obtained for each pixel. This local texture descriptor can
be used to classify the various zones of texture in an image [5].

In our case, this local granulometric analysis must be done on the texture
layer ftex and the series of images which code this analysis is denoted by
{tΓΦ
k (x)}k∈K = tΓΦ(x), where

tΓΦ
k (x) = PSWx(ftex, k).

The function tΓΦ
k (x) is named the image of local energy of size k (k ≥ 0

for the bright structures and k ≤ −1 for the dark structures). In Figure 2
the texture layer for the image of zebras is shown, as well as the images
of local energy associated to the local granulometry by isotropic openings
(window Wx = 10 × 10 and K = {−16,−14, · · · ,−2, 2, 4, · · · , 16}). It is
observed that the structures of ftex have high values of local energy for
their corresponding sizes. In the example, only four images tΓk (x) are shown
(bright structures); a dual analysis tΦk (x) provides the local energies for the
different scales of dark structures. The choice of the size of the window
depends on the “texture scales”. However, its influence is limited: for all the
examples of natural images presented in this study the choice Wx = 10×10
showed to be appropriate. In Figure 3 another example of colour/texture
decomposition is given, including also two images of local energy. Obviously
we can use other non isotropic structuring elements B in order to describe,
for example, orientated textures.

In mathematical morphology, we can build other multi-scale analysis
using other operators different from openings/closings. Let ASFn(f) =
ϕnγn · · · ϕ2γ2 ϕ1γ1(f) be the alternate sequential filter of size n (we can
define another family of filters by reversing the order of the opening/closing).
The family Ξ = (ASFn)n≥0 verifies the semi-group law of absorption and
consequently, it allows to define multi-scale simplification (or selection, by
considering the residues) of the structures of ftex. In addition, if each scale
is associated to a leveling, the new family of transformations, Λ = (λn)n≥0
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f f̂ ftex

PSW (ftex, 2) PSW (ftex, 4) %Γ
tex(ftex)

Figure 3. Colour/texture decomposition, two images of local energy, morphologi-
cal texture gradient.

such that λn(f) = λ(ASFn(f), f), provides a decomposition of the recon-
structed objects according to each scale n. It should be noted that using
the levelings, both bright/dark objects of size n appear in the same image.

This leveling-based quantitative analysis of the objects associated to
each size n makes it possible to define a pseudo-granulometric curve, named
Λ-pattern spectrum, which is defined as follows:

ΛPS(f, n) =M(λn(f))−M(λn−1(f)),

for n ≥ 0. As for the granulometry, a local version of ΛPS(f, n) is defined
by computing the measure in a window W centered in each pixel. The
associated series of images of local energy, i.e.,

tΛk (x) = ΛPSWx(ftex, k),

gives an alternative multi-scale representation (typically k ∈ K = {2, 4,
· · · , 16}). It must be remarked that for tΓΦ

k and tΛk the maximal size k

is limited by the size of leveling used to build f̂ , e.g., the maximal size of
structures in ftex. Other morphological multi-scale decompositions could
be used in order to define other texture descriptors: operators associated
with dynamics, area, volume, etc. [19,20].

3. Morphological gradients of texture

We consider now the alternatives to calculate a gradient, associated to the
multi-scale analysis, which allows determining the contours for the zones of
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different textures.
In each point x, the morphological gradient %(x) of unit size B(x) of an

image g can be written in terms of increments, i.e., %(g)(x) = δB(g)(x) −
εB(g)(x) = ∨[g(x) − g(y), y ∈ B(x)]. Using this formulation, it is possible
to use an Euclidean distance to define a gradient of morphological type for
the series of images of local energy, i.e.,

%tex(ftex)(x) = ∨y[dE(t(x), t(y)), y ∈ B(x)],

where dE(t(x), t(y)) =
√∑

k∈K(tk(x)− tk(y))2 is the Euclidean distance
between the two pixels x and y for all the images of local energy.

Besides this vectorial gradient, it is also possible to define another kind of
gradient, by combining the gradients of each scalar image of energy. Various
tests showed that the gradient by supremum, i.e.,

%tex(ftex)(x) =
∨
k∈K

[%(tk(x))],

is as useful for the segmentation as the vectorial gradient defined by Eu-
clidean distance, and easier to compute. Figure 2 gives also the morpholog-
ical gradient %Γ

tex(ftex) calculated according to the sup of scalar gradients.
For the example of Figure 3, the gradient has been computed using the
vectorial formulation.

%ΓΦ
tex(ftex) %I−α=1

str−ΓΦ %II−α=0.8
str−ΓΦ

%II−α=0.2
str−ΓΦ %Λ

tex(ftex) %I−α=1
str−Λ

Figure 4. Examples of markers-based watershed segmentation with texture gra-
dients and structural gradients (colour+texture), i.e., Wshed(%,mrks).

These texture gradients, derived from the images of local energy {tΓΦ
k (x)}

and {tΛk (x)}, respectively %ΓΦ
tex(x) and %Λ

tex(x), can be used with the water-
shed to segment the image into regions according to the texture. See the
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two corresponding results in Figure 4, to be compared with the colour seg-
mentation of Figure 1. As we can observe, both texture gradients segment
correctly the region of each zebra (which are certainly defined by their tex-
ture), such as we wanted. However, we can also note that the contours of the
obtained regions are not very precise. Indeed, the segmentation according
to a texture gradient gives rough regions.

4. Structural gradient for watershed-based joint
colour/texture segmentation

The approach to produce a structural segmentation consists in constructing
a joint gradient of colour and texture. Once both a colour gradient and a
texture gradient are available, it seems obvious that we can combine them
to obtain the called structural gradient. Among the different alternatives
for the combination of gradients, we retained two of them which appear
particularly simple to implement and sufficiently flexible to evaluate the
influence of a gradient with respect to the other. In fact, it deals, on the one
hand, with the sum of the colour gradient and a weighted texture gradient
(to control the influence of the second one); and on the other hand, with a
barycentric linear combination of both gradients. In mathematical terms,
we have:

%I−αstr (f)(x) = %col(f̂)(x) + α%tex(ftex)(x),

%II−αstr (f)(x) = (1− α)%col(f̂)(x) + α%tex(ftex)(x),

where 0 ≤ α ≤ 1. For both cases, %col(x) and %tex(x) correspond to the defi-
nitions previously introduced in the paper. It is obvious that both structural
gradients are essentially equivalent; moreover, permitting α > 1, identical
linear combinations could be obtained. However, as remarked above, the
aim of %I−αstr (f)(x) is to incorporate the information of texture gradient as
a secondary term with respect to the colour, whereas the barycentric for-
mulation %II−αstr (f)(x) defines a trade-off between texture/colour gradients.
In addition, the inherent normalisation of equation %II−αstr (f)(x) preserves
the dynamic range of the final gradient image, which could be necessary for
watershed computation. We could also consider that the weighting values
are not constant for all the image points; or in other words, to define for
instance %II−αstr (f)(x) = (1−α(x))%col(f̂)(x)+ α(x)%tex(ftex)(x) , where α(x)
is the local weighting function. The appropriate computation of α(x) is out
of the scope of this paper.

Figure 4 shows a comparison of segmentation by watershed on the image
of zebras according to various structural gradients. We observe that for the
texture analysis based on openings/closings as well as for that based on
levelings, the balanced structural gradient, i.e., %I−α=1

str−ΓΦ(f) and %I−α=1
str−Λ (f)

respectively, improves the segmentations compared to the colour gradient



Colour and texture gradients and watershed segmentation 371

%col(f̂). In addition, for this example, we observe also that the best result
corresponds to %II−α=0.8

str−ΓΦ (f); (texture here is more appropriate than the
colour). Moreover, the fact of combining the texture gradient with the
colour gradient leads to more precise contours.

To complement the results of our study, we tested the structural gra-
dients on a series of natural colour images and we evaluated the colour
segmentation vs. the structural segmentation by watershed. Figure 5 shows
four representative images: Examples 1–3 correspond to the segmentation
by marker-based watershed (a marker for the object of interest and a marker
for the background) and Examples 4–6 correspond to the volume-based seg-
mentation into 50 regions. For each image the segmentation according to
the colour gradient and the structural segmentation according to a balanced
colour+texture for the two families of texture descriptors that we studied
in the paper (%I−α=1

str−ΓΦ and %I−α=1
str−Λ ) are given. Due to the fact that it is dif-

ficult to know a priori for an image if it is the colour or the texture which
constitutes the most relevant information for the segmentation, we think
that the most judicious choice is a balanced combination of this type.

We note that for the example of the butterfly, the structural segmenta-
tion is always more coherent than that of the colour. With %I−α=1

str−ΓΦ, only
a part of the wings is obtained (which have same colour-texture) and with
%I−α=1
str−Λ the two colour-textures of the wings are taken into account, pro-

ducing a perfect segmentation. A similar analysis can be made for the
segmentation of the image 2 (a marker following the people and another
for the background). In this case, the “texture” corresponds to the head
and clothes details of the people. The image of the tiger is a good coun-
terexample which shows that if the texture between the object of interest
and the background is very similar, the fact of using a structural gradient
will probably introduce a biased segmentation (an intermediate result is ob-
tained using the barycentric linear combination with a greater weight for
the colour gradient than for the texture gradient).

For the segmentation of complex images into 50 regions which contain
well contrasted coloured objects as well as large areas with or without tex-
ture. We see that the structural gradient makes it possible to improve the
well-known problem of the volume-based watershed which over-segments
the large and homogeneous areas (e.g., sky in Image 4). In addition, certain
objects of small size are better segmented with the structural gradients. The
contribution of texture allows finding the contours of certain texture zones
which are not determined by the colour, as can be observed on Images 5
and 6.

Finally, it is difficult to affirm generally, and without more exhaustive
and systematic tests in a large database, if the partitions for %I−α=1

str−ΓΦ are

more relevant than those for %I−α=1
str−Λ . We observe from the examples that

in random textures (e.g., tiger or bear fur, natural textures of Image 6) the
segmentation associated to an openning/closing granulometry, %I−α=1

str−ΓΦ, is
more satisfactory. In other examples, where the notion of texture is more
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related to certain significant structures (e.g., the image of the butterfly), the
gradient %I−α=1

str−Λ from the pseudo-granulometry of connected filters seems
to be more appropriate.

1

2

3

4

5

6

%col(f̂) %I−α=1
str−ΓΦ %I−α=1

str−Λ

Figure 5. Watershed-based colour segmentation versus structural segmentation.
Examples 1–3, markers for objects; Examples 4–6, selection of 50 volumic regions.
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5. Conclusions and perspectives

This paper presented a morphological approach to calculate texture gradi-
ents and it showed how to use them for image segmentation according to
the texture; and more generally, for joint colour/texture segmentation (i.e.,
structural segmentation). We illustrated that these gradients are directly
usable for morphological segmentation by watershed and that the partitions
obtained with structural gradients are, in most of cases, more relevant than
those obtained only with colour gradients. In particular, we showed that
the areas of texture are better determined and that the over-segmentation
of large and homogeneous zones is reduced.

At present, we are interested in the definition of colour-texture decompo-
sitions, without limiting the texture layer to the luminance information. Our
purpose is to evaluate the interest of residues of colour openings/levelings
(for instance, colour operators defined by means of total orderings in the
luminance/ saturation/ hue representation). In addition, we are working on
an automatic and local combination of the gradients of colour and texture
such that this coupling of information should be adapted to the local image
characteristics (i.e., computation of function α(x)).
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Abstract An interactive image segmentation method based on structural pat-
tern recognition has been recently introduced. A model graph is
generated from an oversegmentation of the image and from traces
provided by the user. An input graph is generated from the overseg-
mented image. Image segmentation is then obtained by matching
the input graph to the model graph. An important problem that
should be addressed is how to control the size of the input graph.
This size is given by the number of regions provided by the over-
segmentation. To address this problem, we propose to control the
maximum number of regions provided by the oversegmentation by
using watershed with markers. The markers are given automati-
cally by using two approaches: quadtrees and centroidal Voronoi
diagrams. Results on real images are discussed.

Keywords: inexact graph matching, oversegmentation control, image segmen-
tation quadtrees centroidal Voronoi diagrams.

1. Introduction

Image segmentation is a key problem in most situations in image processing,
analysis and computer vision. From the mathematical morphology point-of-
view, there are two main paradigms: the flat zone approach using connected
filters [4, 8] and the watershed-based methods [15]. Two key problems that
often arise in the context of the watershed are regularization and overseg-
mentation. Methods that address the regularization problem include the
viscous watershed transform [14] and watersnakes [10]. On the other hand,
oversegmentation may be addressed by watershed with markers [13] (the
most popular approach) or by a hierarchical approach [9].
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Inexact graph matching represents a structural alternative that has been
used for image segmentation [2,3,12]. Since it is a model-based approach, it
solves simultaneously the image segmentation and parts recognition prob-
lems. In the case of image segmentation, two attributed relation graphs
(ARGs) are required. A model graph Gm should be available. There are
different ways to obtain such models, depending on the application. On the
other hand, an input graph Gi is generated from an oversegmented image,
e.g., by using watershed. Image segmentation is then carried out by match-
ing the input graph to the model graph. The possible graph matches may
be shown to be equivalent to cliques of the association graph between input
and model graphs. There are |Vm|Vi| possible solutions for this problem,
|Vm| and |Vi| denote the number of vertices of Gm and Gi, respectively.
Because of the large number of possible matches, an objective function to
assess the quality of each clique must be defined and optimized in order to
provide the most suitable image segmentation.

The size of the model graph is controlled by the operator that creates
the model. On the other hand, a key problem is how to control the size of
the input graph, i.e., |Vi|, which is normally given by the number of regions
of the oversegmented image. As mentioned above, watershed oversegmen-
tation may be controlled either by markers or by a hierarchical approach.
This paper adopts watershed with markers, which is the key difference from
the previous methods [2,3,12]. Because the main goal of using the markers
in this case is not to identify the desirable objects in the image, but only to
control the number of segmented regions, the markers are generated auto-
matically from the image, the only parameter being the maximum number
of image regions in the oversegmented image. The other alternative, i.e.,
hierarchical watershed, will be explored and compared in future research.

We have recently introduced a semi-automated approach for model ini-
tialization to guide the graph matching segmentation procedure [3]. The
input image to be segmented is decomposed into regions using watershed,
as shown in Figure ??. Some regions of the oversegmented image are man-
ually labeled by traces drawn on the main structures to be segmented. The
model graph is automatically derived from the image and the watershed
regions intersected by the label traces provided by the user.

This paper is organized as follows. Section 2 reviews our method. The
main novelty of the present paper, detailed in Section 3, consists of the
automatic generation of markers for watershed using quadtrees and the
centroidal Voronoi diagrams. Experimental results are described in Sec-
tion 4. This paper is concluded with some comments on our ongoing work
in Section 5.

2. Model-based image segmentation

We follow the notation described in [3], where more detailed information
may be found. G = (V,E) denotes a directed graph where V represents the
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Figure 1. The input and model graphs formation process: the input image is
oversegmented by a watershed procedure. Each region is represented as an input
graph vertex. An adjacency graph is then generated. The user defines the model
graph vertices by drawing label traces on some structurally important regions.
The model graph is created as a complete graph. (Adapted from [3]).

set of vertices of G and E ⊆ V ×V the set of edges. An attributed relational
graph (ARG) is defined as G = (V,E, µ, ν), where µ : V → LV assigns an
attribute vector to each vertex of V . Similarly, ν : E → LE assigns an
attribute vector to each edge of E. The vertices and the edges attributes
are called object and relational attributes, respectively. Two ARGs Gi =
(Vi, Ei, µi, νi) and Gm = (Vm, Em, µm, νm) are adopted, i.e., the input (i.e.,
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derived from the image) and the model graphs, respectively. |Vi| denotes
the number of vertices in Vi, while |Ei| denotes the number of edges in Ei.
We use a subscript to denote the corresponding graph, e.g., ai ∈ Vi denotes
a vertex of Gi, while (ai, bi) ∈ Ei denotes an edge of Gi. We define in this
paper µ(a) = (g(a)), where g(a) denotes the average gray-level of the image
region associated to vertex a ∈ V , normalized between 0 and 1 with respect
to the minimum and maximum possible gray-levels. Let a, b ∈ V be two
vertices of G, and pa and pb be the centroids of the respective corresponding
image regions. The relational attribute ν(a, b) of (a, b) ∈ E is defined as
the vector ν(a, b) = (pb − pa)/(2dmax), where dmax is the largest distance
between any two points of the input image region.

An inexact match between Gi and Gm may be represented as an ap-
proximate homomorphism between Gi and Gm and is searched in the corre-
sponding association graph [2]. The association graph GA between Gi and
Gm is defined as the complete graph GA = (VA, EA), with VA = Vi × Vm.
An inexact match between Gi and Gm can be expressed as a clique (i.e.,
a complete subgraph) GS = (VS , ES) of the association graph GA between
Gi and Gm with VS = {aim = (ai, am), ai ∈ Vi, am ∈ Vm} such that ∀ai ∈
Vi,∃am ∈ Vm, aim ∈ VS and ∀aim ∈ VS ,∀bim ∈ VS , ai = bi ⇒ am = bm
which guarantees that each vertex of the image graph has exactly one label
(i.e., it is mapped onto a single vertex of the model graph) and |VS | = |Vi|.

There is a huge number of cliques that represent possible inexact matches
between Gi and Gm, namely |Vm||Vi|. The evaluation of the quality of a
solution expressed by GS is performed through an objective function:

f(GS) =
α

|VS |
∑

aim∈VS

cV (aim) +
(1− α)

|ES |
∑
e∈ES

cE(e), (1)

where cV (aim) is a measure of dissimilarity between the attributes of ai
and am. Similarly, if e = (aim, bim), cE(e) is a measure of the dissimilarity
between edge (ai, bi) of the image and edge (am, bm) of the model. The dis-
similarity objective function should therefore be minimized. Let aim ∈ VA,
ai ∈ Vi and am ∈ Vm. The dissimilarity measure cV (aim) is defined as
cV (aim) = |gi(ai)−gm(am)|, where gi(ai), gm(am) are the object attributes
of vertices ai ∈ Gi, am ∈ Gm, respectively. Let e = (aim, bim) ∈ EA.
We compute the modulus and angular differences between ν(ai, bi) and

ν(am, bm) as ϕm(e) = |‖ν(ai, bi)‖−‖ν(am, bm)‖| and ϕa(e) = | cos(θ)−1|
2 , re-

spectively, where θ is the angle between ν(ai, bi) and ν(am, bm), i.e., cos(θ)
is calculated as:

cos(θ) =
ν(ai, bi) · ν(am, bm)

‖ν(ai, bi)‖‖ν(am, bm)‖ .

In order to define the dissimilarity measure cE(e), we need an auxiliary
function: ĉE(e) = γEϕa(e)+(1−γE)ϕm(e). The parameter γE (0 ≤ γE ≤ 1)
controls the weights of ϕm and ϕa. It is important to note that ν(a, a) = ~0.
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This fact means that, when two vertices in Gi are mapped onto a single
vertex of Gm, we have cE(e) = ‖ν(ai1 , ai2) − ~0‖ = ‖ν(ai1 , ai1)‖, which
is proportional to the distance between the centroids of the corresponding
regions in the oversegmented image (in such cases, we define cos(θ) = 1).
Therefore, ĉE provides large dissimilarity values when assigning the same
label (i.e., the target vertex in Gm) to distant regions and lower values when
assigning the same label to near regions, which is intuitively desirable in the
present application.

Let ai1 , ai2 ∈ Vi and am1
, am2

∈ Vm be vertices of Gi and Gm, respec-
tively. Suppose that ai1 and ai2 are matched to am1

and am2
, respectively.

In this case, the edge (ai1 , ai2) should be matched to (am1
, am2

) and the dis-
similarity measure between them should be evaluated. However, depending
on the adopted graph topology, it is possible that one or both edges do not
actually exist and the dissimilarity measure should properly deal with such
situations. The edge dissimilarity measure is therefore defined by Equa-
tion 2. It is important to highlight the case of e′ = (ai1,m1

, ai2,m2
). The

edge comparisons depend on the graph topology adopted for Gm and Gi.
In the present case, an adjacency graph has been adopted for Gi whereas
a complete graph is generated for Gm. Therefore, there are matching sit-
uations where there exists an edge in Gm but not on Gi (i.e., (ai1 , ai2) 6∈
Ei, (am1

, am2
) ∈ Em) because of the different adopted graph topologies.

In this case, the (ai1 , ai2) features are calculated on-the-fly using the same
procedure to calculate the edge features, thus allowing the comparison to
(am1 , am2). This problem could be solved by adopting a complete graph for
Gi, as in our previous works, but this would naturally increase the memory
costs.

cE(e) =


ĉE(e), if (ai1 , ai2) ∈ Ei, (am1

, am2
) ∈ Em,

ĉE(e′), if (ai1 , ai2) 6∈ Ei, (am1
, am2

) ∈ Em,
∞, if (ai1 , ai2) ∈ Ei, (am1 , am2) 6∈ Em,
0, if (ai1 , ai2) 6∈ Ei, (am1 , am2) 6∈ Em.

(2)

The objective function (Equation 1) should be optimized in order to find
a suitable inexact match between Gi and Gm. There are many different op-
timization algorithms that may be used and the reader is referred to [2]
for a comparative review that includes beam-search, genetic algorithms and
Bayesian networks. The results presented in this paper have been obtained
using the clique-search algorithm described in [3]. The optimization algo-
rithm starts with an empty clique GS and incrementally increases it by
evaluating the objective function (Equation 1). The cheapest clique is cho-
sen and a new vertex is added to it at each iteration. The algorithm stops
when a clique that represents a complete solution is found. The vertices
of GA are of the form aim = (ai, am), ai ∈ Vi, am ∈ Vm. For each ai ∈ Vi
there is a set of vertices aim = (ai, am), am ∈ Vm that represents all possible
labels to which ai may be assigned. Each of these sets is called a supervertex
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of GA, defined as:

si = {aim = (ai, am) ∈ Vs, ai ∈ Vi,∀am ∈ Vm}.

A clique GS that represents a valid solution is composed by one single
vertex aim of each supervertex si in GA. For each supervertex, the associ-
ation vertex aim with the best node cost defines the supervertex cost. The
proposed algorithm selects the cheapest supervertex si at each iteration. All
vertices aim of the selected supervertex si are considered in order to iden-
tify the one minimizing the objective function (Equation 1) when added to
the solution clique. This idea is inspired by the Sequential Forward Search
(SFS) algorithm for feature selection [7]. The final solution produced by the
matching procedure may be represented as a labeled image where a label
associated to the model vertices is assigned to each pixel (actually, to all
pixels of each watershed connected region). A mode filter is applied to the
labeled image to smooth the produced boundaries and to eliminate small
noisy labels.

3. Markers detection

In order to find markers suitable for the watershed, we use quadtrees and
centroidal Voronoi diagrams, an approach originally proposed for generating
mosaic effects [6]. The simplest method for finding markers is by sampling
the image adaptively using a quadtree. The stop criterion in the quadtree
is that the intensity of all pixels in a cell is close to the average intensity in
the cell. To avoid getting to single-pixel cells, we also stop the subdivision
when cells get too small. The markers are the centers of the leaf cells
in the quadtree. This quadtree sampling method generates two kinds of
points: points that are clustered around the image edges, and points in the
middle of homogeneous regions (having a low level of detail). Both kinds of
points are needed for a fair sampling of the image. The important aspect
is that the center of different cells tends to be on different image basins,
thus defining potentially good markers for the watershed. Because only a
maximum number of quadtree cells are available, oversegmentation may be
controlled by the allowed total number of cells.

A more sophisticated method for finding markers is to use a centroidal
Voronoi diagram whose sites are adjusted to the image features. The Voronoi
diagram of a set of points, called sites, is a decomposition of the space into
cells, one cell for each site, such that the cell corresponding to a site p is the
set of all points in space which are closer to p than to any other site [1,11].
A centroidal Voronoi diagram is a Voronoi diagram in which each site is the
centroid of its cell [5].

Centroidal Voronoi diagrams are very rare. However, any Voronoi di-
agram can be transformed into a centroidal Voronoi diagram by a simple
relaxation procedure known as Lloyd’s algorithm: replace each Voronoi site
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by the centroid of its Voronoi cell, recompute the Voronoi diagram for the
new sites, and repeat until convergence.

A major ingredient in the definition of a centroidal Voronoi diagram is
an underlying density function with respect to which the centroids of the
Voronoi cells are found. More precisely, the centroid of a region V with
respect to a density function µ is the point z given by

z =

∫
V

xµ(x) dx∫
V

µ(x) dx

·

Naturally, for images we use sums over pixels as the discrete analogues
of these integrals. The density function µ does not enter in the computation
of the Voronoi diagram, which is still computed using the Euclidean metric.

Centroidal Voronoi diagrams adapt themselves to the mass distribution
implied by the density function, having larger cells where the density is
low and smaller cells where the density is high. As in the mosaic approach
described in [6], we use the Euclidean norm of the gradient of the image as
density function. The gradient is computed using central differences. We
start from the markers found in the quadtree sampling step and compute a
centroidal Voronoi diagram using a few iterations of Lloyd’s algorithm. The
new markers are the centroids of the final Voronoi diagram.

4. Experimental results

The proposed approach has been applied to different images of the Berkeley
Image Segmentation Database1. The traced strokes manually defined for
three test images are shown in Figure 2. Each color represents a different
label to be recognized by the matching procedure. In order to compare the
different approaches, the same set of traced strokes for each test images
have been used to generate the models for the three approaches assessed
in the present paper: (i) watershed without markers; (ii) watershed with
markers generated by quadtrees; (iii) watershed with markers generated by
the centroidal Voronoi diagrams. It is worth noting that the image regions
may present similar gray-level and belong to different model classes defined
by the user labels. Also, there are some image regions with substantial gray-
level variation because of belonging to non-homogeneous textured regions,
which are traditionally very difficult to segment. The structural information
leads to a robust segmentation performance even in such cases.

The segmentation results are shown in Figures 3, 4 and 5. These figures
present, for each image, the results using the watershed without markers

1
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/


382 MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS

(top row), the watershed with markers provided by the quadtree (middle
row) and the watershed with markers provided by the centroidal Voronoi
diagram (bottom row). The first column shows the oversegmentation in the
case of the watershed without markers and the corresponding quadtree and
Voronoi partitions with the cells seeds, which are used as markers for the
watershed. The middle column shows the corresponding watershed parti-
tions (red) and the final segmentation result in green. Finally, the last row
shows the final segmentation results with the region labels provided by the
inexact matching procedure.

Figure 2. Strokes traced by the user on each test image are used to generate the
graph models. Each color is associated to a different label, i.e., a different class
to be recognized by the matching procedure.

As it can be seen, though a smaller number of larger regions are used
by the matching procedure in the case of the watershed with markers (both
quadtree and Voronoi), the final segmentation results are comparable. In
some cases, the segmentation actually improves, once the watershed with-
out markers lead to too many regions, some very small, which makes more
difficult the correct matching and may lead to misclassifications. Therefore,
in general, the final segmentation is comparable for any of the three assessed
approaches. Nevertheless, the main difference lies in the memory and run-
ning time costs, as shown in Table 1. It can be seen from that table that
the input and model graphs are substantially smaller than with the previ-
ous approach without markers. The running time differences decrease from
nearly an hour to some seconds. This important decrease in running time
is explained because the total number of possible solutions is exponential in
the sizes of the graphs (|Vm|Vi|) and, once both |Vi| and |Vm| decrease, the
search space is considerably shrinked. It is also important to note that, al-
though the centroidal Voronoi method performs a kind of fine tuning in the
position of the markers, there is apparently no strong differences between
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the final result produced by it and the results produced by the quadtrees.

(a)

(b)

(c)

Figure 3. (a) Graph matching without markers; (b) Graph matching with
quadtree markers; (c) Graph matching with Voronoi markers.

Once the quadtrees approach is computationally cheaper, it may be more
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(a)

(b)

(c)

Figure 4. (a) Graph matching without markers; (b) Graph matching with
quadtree markers; (c) Graph matching with Voronoi markers.

(a)

(b)

(c)

Figure 5. (a) Graph matching without markers; (b) Graph matching with
quadtree markers; (c) Graph matching with Voronoi markers.
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advantageous. However, because different density functions may be adopted
for the centroidal Voronoi diagram, we feel that a good research topic is
to look for more suitable functions that could improve its performance.
For instance, an obvious drawback of the quadtree/Voronoi approaches is
that, because the oversegmented image is partitioned in a smaller number
of regions, some true edges are lost. It would be nice to have a method to
avoid such a problem.

Table 1. The table summarizes the size of the input and model graphs (|Vi| and
|Vm|, respectively) and the running time to segment the image.

Watershed Figure |Vi| |Vm| Running time

Without markers 3(a) 1482 352 1h34m20s

Quadtree 3(b) 226 152 25s

Voronoi 3(c) 226 133 24s

Without markers 4(a) 1102 373 59m30s

Quadtree 4(b) 187 121 14s

Voronoi 4(c) 187 117 13s

Without markers 5(a) 1003 317 35m10s

Quadtree 5(b) 232 152 30s

Voronoi 5(c) 232 134 27s

5. Conclusion

We have recently introduced an interactive image segmentation approach
based on inexact graph matching. The present paper improves our previous
works by exploring the watershed with markers automatically generated by
using quadtrees and centroidal Voronoi diagrams. The results are equiva-
lent in quality, but the improvement expressively decreased running time
and memory requirements. Our ongoing work includes research to find
more suitable density functions for the centroidal Voronoi diagram and the
inclusion of additional object attributes such as color and texture. Also, we
intend to explore the method for the recognition of object parts by using
different model and input images.
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Abstract We propose a linear and a morphological approach for the charac-
terization and segmentation of binary and digital random textures.
We focus on descriptors at the level of pixels in images, combined
with statistical learning to select and weight them. The approach
is illustrated on simulations of texture patchworks, for which errors
of classification can be evaluated.

Keywords: texture segmentation, random textures, morphological operations,
multivariate statistical analysis, linear discriminant analysis, ma-
chine learning.

1. Introduction

Image segmentation is a common and important task aimed at extracting
objects that can be subsequently measured or analyzed. This is in particular
useful when looking for defects in materials or for pathological cells in a
biological tissue. In many cases, the background and the objects themselves
are non uniform and made of so-called “textures”. A challenging problem
concerns the automatic extraction (or segmentation) of various textures
present in the same image.

For this purpose, a variety of statistical techniques have been used, such
as histogram-based texture analysis techniques corresponding to the use of
co-occurrence matrices [6], texture modeling [3], filtering approaches [10]
and wavelet transformations of images [9,11,14]. However on materials dis-
playing complex patterns that are random in appearance (i.e., not periodic),
segmenting texture turns out to be difficult [17].

To handle it, we propose the following approach: to describe the texture
for each pixel of the image, accounting for morphological information in its
neighborhood at different scales and then using a multivariate statistical
approach. This approach is illustrated and validated for binary and gray
level textures through simulations.
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2. Theoretical approach of random textures

Natural textures have the following common characteristics: a texture usu-
ally shows fluctuations at a small scale, and some uniformity at a large
scale. The presence of fluctuations requires the use of a probabilistic ap-
proach to characterize textures. In this framework we will consider binary
textures and gray level textures as realizations of random sets or of random
functions. Therefore, from a theoretical point of view, a random texture is
completely known from its Choquet capacity.

It can be shown [13] that a random closed set A is known from the
Choquet capacity functional T (K) defined on compact sets K:

T (K) = 1− P{K ⊂ Ac}, (1)

where P is the probability of the event {}. Similarly, an upper semi-
continuous random function (RF) Z(x) is characterized by the functional
T (g), defined for test functions g with a compact support K [7, 8]:

T (g) = P{x ∈ DZ(g)}, (2)

with

DZ(g)c = {x , Z(x+ y) < g(y) , ∀ y ∈ K}. (3)

When the compact set K is a point x and g(x) = z, the cumulative
distribution function is obtained. When using the two points {x, x+h} and
the function defined by g(x) = z1 and g(x + h) = z2, we can derive the
bivariate distribution F (z1, z2, h). More generally, using g(x) = z for x ∈ K
and g(x) = +∞ for x /∈ K we obtain the distribution function of Z(x) after
a change of support according to the supremum over any compact set K.

From this theoretical background, it turns out that good candidates for
texture descriptors can be provided by estimates of probabilities obtained
after dilations (or erosions) by compact sets for binary textures. Similarly,
distribution functions after dilations (or erosions) of gray level images will
provide texture descriptions in the digital case. Changing the shape and
size of the compact set K provides us with a full set of data.

From a practical point of view, estimates of the Choquet capacity T (K)
or T (g) can be obtained on images. The pertinence of descriptors will
depend on the statistical precision of estimates.

In a second step, a selection of the more efficient descriptors must be
made. This is usually performed by multivariate analysis. This approach
was successfully applied to the classification of images in the standard case
when there is a single texture per field of view [1,5].

To address the problem of segmentation of textures in images, a classi-
fication of pixels must be performed. This requires a local characterization,
that can be made in different ways:
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1. Transform the image by dilations, erosions by Ki, gi (“pixel” ap-
proach), and generate a multispectral image from the collection of
Ki or gi. It corresponds to filters, like granulometries, as already pro-
posed by [1,5,16]. It provides a set of transformed binary or gray level
images (Section 3.2).

2. Consider a neighborhood B(x) of each pixel, and use a local estimate
of T (K), T (g) inside B(x). From the estimates, generate a multispec-
tral image from the collection of Ki or gi. It uses a local estimate in
B of the Choquet capacity and requires the appropriate choice of B
(Section 3.3).

3. Use measures µi with a compact support Ki and estimate µi(A) or
µi(Z), generating a multispectral image from the collection of Ki.
Particular cases are given by various types of linear filters, like multi-
scale convolution by Gaussian kernels, wavelets, curvelets, but also
local measurements of the Minkowski functionals for a random set A
(Section 3.1).

3. Pixel texture description

In this work, texture properties are calculated for each pixel taking into
account local properties of its neighborhood at varying scales. This provides
us with 3 dimensional data having two spatial dimensions and a texture
descriptor dimension. This allows us to characterize texture at the pixel
level and follows the texton approach of [12]. Two families of descriptors
are used: curvelets and morphological transformations.

3.1 The curvelet transform

The curvelet transform is a higher dimensional generalization of the wavelet
transform, designed to represent images at different scales and different
angles [2]. The use of this tool to characterize the texture in an image
is recent [4]. Curvelets have very interesting properties in the context of
object detection, in particular curved singularities can be well approximated
with very few coefficients. This makes the curvelets coefficients for pixels
belonging to a particular object very specific.

The curvelet filter bank is in essence a set of bandpass filters with range
and orientation selective properties. Typically, we apply a linear filtering
of each 100 × 100 neighborhood of every pixel by curvelets with different
frequencies and orientations. The filter bank is decomposed into 4 sets of
frequency containing 1, 8, 16 and 1 filters of varied orientations from the
smallest frequency to the largest one. A spatial filtering of each of the 26
filters results is applied to calculate the local energy function. It aims to
identify areas where the band pass frequency components are strong, after



390 MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS

conversion into gray levels. The outputs of this function are a first class of
texture descriptors.

3.2 Morphological transformations

The morphological operators consist of non linear image transformations
[15]. Different structuring elements are chosen: disks, vertical and horizontal
segments. For a given type of structuring element and a list of sizes, all
eroded and dilated images are evaluated. The descriptor is obtained by
calculating the difference between the eroded images at the step n and n+1
as well as between the dilated images at steps n+ 1 and n. Therefore each
pixel is described by a vector with k morphological components, where k =
number of sizes × number of structuring elements × 2 operations.

More complex pixel descriptors can also be proposed by using opening
and closing operations instead of erosions and dilations, respectively, as
made in [1, 5, 16].

In this study, we choose the following morphological descriptors:

� small scales, erosion and dilation with series of sizes of
[1, 2, 3, 4, 5, 7, 9, 12]× 2 + 1 (size 48);

� small scales, opening and closing with series of sizes of
[1, 2, 3, 4, 5, 7, 9, 12]× 2 + 1 (size 48);

� large scales, opening and closing with series of sizes of
[2, 4, 8, 16, 32]× 2 + 1 (size 30).

3.3 Averaged descriptors

From the initial pixel descriptors, it is easy to estimate average descriptors
in a window B, in order to use the local Choquet capacity. The best size of
the window will be obtained by optimizing the pixels classification. In what
follows, averages in windows up to 60× 60 are tested.

4. Application

The present application is based on simulations of models of random tex-
tures. They are produced and mixed together. Using the knowledge of the
ground truth to calculate errors of classification, we are able to test different
pixel descriptors for the segmentation. We produce a critical analysis of the
approach and evaluate its limitations. Images used here are available on
www.cmm.ensmp.fr/~cord/Synthetik_Texture/ for comparison with any
other segmentation approach.

www.cmm.ensmp.fr/~cord/Synthetik_Texture/
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4.1 Data

On the basis of [7,8], we simulate different textures in images of size 800×800
pixel (Figure 1), using the Micromorph© software:

(a) (b) (c)

(d) (e) (f)

Figure 1. Simulated texture images. (a) Boolean random function. (b) Sequential
Alternate random function. (c) Dead leaves random function. (d) Boolean random
set, with disk primary grain (radius 6). (e) Poisson mosaic. (f) Binary dead leaves.

� a boolean random function with cone primary function (Figure 1(a));
using a uniform distribution of radii between 1 and 32 pixels.

� a sequential alternate random function with cone primary function
(Figure 1(b));

� a dead leaves random function (Figure 1(c));

� a boolean random set, with disk primary grain (radius 6) (Figure
1(d));

� a Poisson mosaic (from a Poisson line tessellation involving 400 lines
(Figure 1(e));

� a binary dead leaves with disks (radius 6) (Figure 1(f)).
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We consider 4 studied cases, corresponding to 4 patchwork images with
a mixture of two textures. They are produced using two original images
from Figures 1(a–f). To combine those texture images, we simulate another
image of size 800 × 800 pixel corresponding to a a binary Poisson mosaic
with 50 lines presented in Figure 2(e). This image is used as a binary mask.
The resulting patchwork images, shown in Figure 2, are used to test the
segmentation procedure on the basis of the local textural properties. We
can notice that the resulting composite images show some very small areas
with different textures, as compared to the size of the primary grains, for
which the segmentation is a very difficult task.

(a) (b)

(c) (d) (e)

Figure 2. Patchwork image containing two types of texture for separation. The
mixtures are obtained by using (e) as a mask. Combination of: (a) Figure 1(a)
and 1(b). (b) Figure 1(a) and 1(c). (c) Figure 1(d) and 1(e). (d) Figure 1(d) and
1(f).

4.2 Experiments

Learning Procedure Texture descriptors are calculated both on origi-
nal images and on the patchwork image. For each patchwork image, two
different learning training procedure based on a linear discriminant analysis
(LDA) are produced and compared. In each case, both training and test-
ing pixels are extracted. First, we randomly extract from each of the two
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original images (Figure 1), 20, 000 pixels half for the training and the rest
for the test. This is labeled “Training ORI” in the following. This analysis
aims to calculate the projection of descriptors that corresponds to the best
linear separation between the two textures. Second, we extract from half of
the patchwork image (Figure 2), 10, 000 pixels of each texture for the train-
ing and from the other half of the patchwork image 10, 000 pixels of each
texture for the test. This is labeled “Training PATCHW” in the following.
This analysis aims to calculate the projection of descriptors that allows to
best discriminate between the two textures even in border areas. We have
to stress the fact that the textures in the original images (Figure 1) and
in the patchwork images (Figure 2) have different probabilistic properties,
since the second ones are a combination of simple textures and of a random
set belonging to the mask (the large Poisson mosaic).

An histogram of train data projections on the first LDA axis is presented
in Figure 3 for the two learning procedures.

(a1) (a2)

(b1) (b2)

Figure 3. Exemple of histogram of training data projection on the first LDA axis
when training on (a1 and b1) ORI, (a2 and b2) PATCHW. (a1 and a2) For gray
scale image corresponding to Figure 2(a) (no averaging of the descriptors). (b1
and b2) For binary image corresponding to Figure 2(c) (descriptors are averaged
by a box of size 35× 35).

It shows that the separation between the two textures is systematically
reachable. The separation appears to be more efficient for training ORI
than training PATCHW. In this last case, the descriptors for one texture
is clearly influenced by the descriptors from the other ones, in particular
for pixels located near boundaries. It confirms that textures have different
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probabilistic properties. The Gaussian shape suggests that LDA was indeed
a good method, much simpler to perform than SVM (however we provide
a comparison of the results obtained for the two techniques). It leads us to
model the data as a mixture of two Gaussian random variables.

Finally, the patchwork image descriptors are projected on the first LDA
axis and classified. The probability for each pixel of belonging to one of the
Gaussian distribution is calculated and is used to produce the classification.
Using the knowledge of the mask, a patchwork error corresponding to a
misclassification is evaluated. It is the global error of the approach.

The difference between train and test errors are smaller than 1.5 % in
all the cases, showing that the system do not overfit. Therefore we restrict
the presentation to test errors.

Different sizes of windows B are used to average descriptors as detailed
in Section 3.3. Figure 4 presents the test errors and the patchwork errors
as a function of this size for the two learning procedures (training ORI and
PATCHW).

(a) (b)

Figure 4. Errors versus size of descriptor averaging boxes (a) For gray scale image
corresponding to Figure 2(a). (b) For binary image corresponding to Figure 2(d).
Notation: ∇ test error for training ORI. 4 patchwork error for training ORI. O
test error for training PATCHW. X patchwork error for training PATCHW.

Only two of the four projections are presented, because the results are
similar for the two gray level images and for the two binary images. However,
the behaviors are very different between gray scale and binary images used
in this study.

Training on original versus patchwork images

The gap between test errors and patchwork errors for training ORI shows
that this training procedure produces a large error, as a result of edge effects
induced by the boundaries of domains with a single texture. Training on
images with a single texture is therefore not very efficient, and should be
avoided for applications to texture segmentation when they are intimately
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mixed.

Influence of the window size of the post-averaging

(a) For gray scale images, only a small box of size 3×3 slightly improves
the results. It shows that the descriptors on the scale of pixels are well
adapted to our problem in the case of the gray level images.

(b) For the training on original images, we note that increasing the
averaging window size systematically decreases the test error: the separation
of the textures increases, as a result of a better estimate of the descriptors.
However, the precision of the detection decreases, in particular near the
boundaries. Therefore we have to find a trade-off, corresponding to the
minimum reached on the patchwork test error curve.

In the following, we keep no averaging for the gray scale and a 35 × 35
averaging box for the binary images. A summary of the test and patchwork
errors is given in Table 1.

Table 1. Test and patchwork errors for the different proposed procedures. Average

box sizes 35× 35. All values are in %.

Figure

Training ORI Training PATCHW

No Average Average No Average Average SVM

Test Patch Test Patch Test Patch Test Patch Patch

2(a) 1.0 29.5 NA NA 15.5 15.7 NA NA 9.7

2(b) 0.8 30.5 NA NA 14.9 14.8 NA NA 9.4

2(c) 25.6 30.6 1.8 15.8 29.1 29.2 13.2 13.5 12.1

2(d) 28.4 39.4 3.7 30.7 35.6 35.0 19.3 18.1 19.3

Results analyses

With the present approach we obtain between 82 % and 90 % of pixels that
are correctly classified. These results are very satisfying taking into account
the complexity of the chosen images. We run a SVM using a radial basis
function (exp(− 1

2 (u−v)2)) for the best training procedure (train PATCHW
with the adapted averaging window size). By minimizing the test error,
we optimized the regularization parameter C that controls the trade-off
between training set accuracy and generalization performance. The result,
presented in Table 1 are similar to LDA ones for the binary images and
greatly improved for gray scale images.

Chosen descriptors

We have also looked for descriptors giving a larger contribution to the LDA
projection. The disk structuring element appears to be the most relevant
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one for all present applications, where the textures are isotropic. The ero-
sion/dilation are most relevant for binary images and opening/closing for
the gray level images. The present curvelet approach, which acts symmetri-
cally on images and on their negative, is unable to separate textures like the
sequential alternate and the Boolean random function. Indeed, the curvelets
are more relevant for binary images than grey level images.

The typical scale of the present binary images is very small (within a
range of 12 pixels), and therefore the contribution of structuring elements
of large size decreases, whatever the considered training.

(a1) (c1) (d1)

(b1) (c2) (d2)

Figure 5. Localisation of misclassified pixels are plotted in white for the 4 studied
cases. a, b , c and d correspond to the label in Figure 2. (a1, b1, c1 and d1)
Descriptors are not averaged. (c2 and d2) Descriptors are averaged by a 35× 35
box.

Error localization

The localization of misclassified pixels gives interesting information. For
gray scale images (Figure 5(a1) and 5(b1)) errors are mainly located in
small areas of the patchwork image and near the boundaries between the two
textures. For binary images, this Figure illustrates the differences existing
between non averaged descriptors (Figure 5(c1) and 5(d1)) and averaged
descriptors (Figure 5(c2) and 5(d2)). The improvement of the descriptors
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averaging is clearly visible: for the training 1 (Figure 5(c1) and 5(d1)) large
areas of identical texture are misclassified, and the error image appears
very noisy. On the contrary, for the training 2 (Figure 5(c2) and 5(d2)),
the localization of misclassified pixels are mainly located on the boundary
between the two textures.

(a) (b)

Figure 6. (a) Classification probability for image 2(d). (b) The corresponding
histogram. In black, pixels that are misclassified and in white, the well classified
ones.

We plot in Figure 6 the classification probability for image 2(d) and the
corresponding histogram. The probability image could be used as a seed for
further segmentation, using for instance watersheds. However, our attempts
and a comparison to image 2(d) shows that it would be very difficult to
recover the misclassified pixels in small area without introducing errors in
the well classified pixels. Therefore the present classification is closed to the
optimal one.

5. Conclusion

A morphological approach at the level of pixels in images, combined with
statistical learning proved to be very efficient for the segmentation of bi-
nary or digital textures, as illustrated for difficult case studies. The main
conclusions for further applications are as follows: the basic operations of
mathematical morphology (erosion/dilation for binary images, and open-
ing/closing for gray level images) provide efficient descriptors of textures,
even on a pixel scale. Local averaging of the binary descriptors improves sig-
nificantly their discriminant power and an optimal size of window is found
for the classification. Finally, the training procedure has to be made on
a selection of pixels in composite images, rather than in pure textures in
order to minimize the edge effect resulting from boundaries separating the
two textures.
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hyperspectral image segmentation
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Abstract The present paper introduces the η and µ connections in order
to add regional information on λ-flat zones, which only take into
account a local information. A top-down approach is considered.
First λ-flat zones are built in a way leading to a sub-segmentation.
Then a finer segmentation is obtained by computing η-bounded re-
gions and µ-geodesic balls inside the λ-flat zones. The proposed al-
gorithms for the construction of new partitions are based on queues
with an ordered selection of seeds using the cumulative distance.
η-bounded regions offers a control on the variations of amplitude in
the class from a point, called center, and µ-geodesic balls controls
the “size” of the class. These results are applied to hyperspectral
images.

Keywords: hyperspectral image, connection, quasi-flat zones, η-bounded re-
gions, µ-geodesic balls, top-down aggregation.

1. Introduction

The aim of this paper is to extend and to improve quasi-flat zones-based
segmentation. We focus on hyperspectral images to illustrate our develop-
ments.

Flat zones, and its generalization, quasi-flat zones or λ-flat zones, ini-
tially introduced for scalar functions (i.e., gray-level images) [6] were gen-
eralized to color (and multivariate) images [12] (see Definition 4 in Section
2). Classically, λ-flat zones are used as a method to obtain a first image
partition (i.e., fine partition). The inconvenience is that the partition typ-
ically presents small regions in zones of high gradient (e.g., close to the
contours, textured regions, etc.). Several previous works proposed meth-
ods to solve it. In [3], Brunner and Soille proposed a method to solve the
over-segmentation of quasi-flat zones. They use an iterative algorithm, on
hyperspectral images, based on seeds of area larger than a threshold. Their
approach consists in computing an over-segmentation and then merging
small regions. Besides, in [8], Salembier et al. propose a method to suppress
flat regions with area below a given size. They work on the adjacency graph
of the flat zones and they define a merging order and criterion between the
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regions. Moreover, a flat zone, below a given size, cannot be shared by
various flat zones. Crespo et al. [4] proposed a similar approach for region
merging.

However, the main drawback of λ-flat zones for space partition is that
they are very sensitive to small variations of the parameter λ. For instance
in the example of Figure 1, we have only 21 or 1 λ-flat zones depending on
a slight variation of λ. In fact, the problem of λ-flat zones lies in their local
definition: no regional information is taken into account. For the example
of Figure 1, with λ = 10 is obtained only one connected region, presenting a
local smooth variation but involving a considerable regional rough variation.
This problem is more difficult to tackle than the suppression of small regions.

(a)

1         5        10      15       20 
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80

60

40

Grey levels

Pixels30

(b) (c) (d)

Figure 1. λ-flat zones of image “tooth saw” (21× 21 pixels). (a) Image. (b) Row
profile. (c) λ = 9.9 (21 zones). (d) λ = 10 (1 zone).

The purpose of our study is just to address this issue. We start with
an initial partition by λ-flat zones, with a non critical high value of λ,
that leads to a sub-segmentation (i.e., large classes in the partition). Then,
for each class, we would like to define a second segmentation according to
a regional criterion. In fact, two new connections are introduced: (1) η-
bounded regions, and (2) µ-geodesic balls; the corresponding algorithms
are founded on seed-based region growing inside the λ-flat zones. We show
that the obtained reliable segmentations are less critical with respect to
the choice of parameters and that these new segmentation approaches are
appropriate for hyperspectral images. From a more theoretical viewpoint,
the Serra’s theory of segmentation [10] allows us to explain many notions
which are considered in this paper.

2. General notions

In this section some notions necessary for the sequel are reminded.
Hyperspectral images are multivariate discrete functions with typically

several tens or hundreds of spectral bands. In a formal way, each pixel of
an hyperspectral image is a vector with values in wavelength, in time, or
associated with any index j. To each wavelength, time or index corresponds
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an image in two dimensions, called channel.
The number of channels depends on the nature of the specific problem

under study (satellite imaging, spectroscopic images, temporal series, etc.).

Definition 1 (Hyperspectral image). Let fλ : E → T L (x → fλ(x) =
(fλ1

(x), fλ2
(x), . . . , fλL(x))), be an hyperspectral image, where: E ⊂ R2,

T ⊂ R and T L = T × T × . . . × T ; x = xi \ i ∈ {1, 2, . . . , P} is the
spatial coordinates of a vector pixel fλ(xi) (P is the pixels number of E);
fλj \ j ∈ {1, 2, . . . , L} is a channel (L is the channels number); fλj (xi) is
the value of vector pixel fλ(xi) on channel fλj .

Definition 2 (Spectral distance). A spectral distance is a function d :
T L×T L → R+ which verifies the properties: 1) d(si, sj) ≥ 0, 2)d(si, sj) = 0
⇔ si = sj , 3)d(si, sj) = d(sj , si), 4)d(si, sj) ≤ d(si, sk)+ d(sk, sj), for si,
sj , sk ∈ T L.

Various metrics distance are useful for hyperspectral points. In this
paper, the following two are used:

� Euclidean distance: dE(fλ(x), fλ(y)) =
√∑L

j=1(fλj (x)− fλj (y))2;

� Chi-squared distance:

dχ2(fλ(xi), fλ(xi′)) =

√∑L
j=1

N
f.λj

(
fλj (xi)

fxi.
− fλj (xi′ )

fx
i′ .

)2

with f.λj =∑P
i=1 fλj (xi), fxi. =

∑J
j=1 fλj (xi) and N =

∑L
j=1

∑P
i=1 fλj (xi).

Definition 3 (Path). A path between two points x and y is a chain of
points (p0, p1, . . . , pi, . . . , pn) ∈ E such as p0 = x and pn = y, and for all i,
(pi, pi+1) are neighbours.

Definition 4 (Quasi-flat zones or λ-flat zones). Given a distance d : T L ×
T L → R+, two points x, y ∈ E belongs to the same quasi-flat zone of an
hyperspectral image fλ if and only if there is a path (p0, p1, . . . , pn) ∈ En
such as p0 = x and pn = y and, if, for all i, (pi, pi+1) ∈ E2 are neighbours
and d (fλ(pi), fλ(pi+1)) ≤ λ, with λ ∈ R+.

A path (p0, p1, . . . , pn) in an hyperspectral image can be seen as a graph
in which the nodes correspond to the points connected by edges along the
path. For all i, the edge between the nodes pi and pi+1 is weighted by
d (fλ(pi), fλ(pi+1)).

Definition 5 (Geodesic path). The geodesic path between two points x
and y in E is the path of minimum weight.

This definition means that the sum of distances
∑n
i=0 d (fλ(pi), fλ(pi+1)),

along this path, (p0, p1, . . . , pn) such as p0 = x and pn = y, is minimum. It
is called the geodesic distance between x and y and noted dgeo(x, y).

In order to compute the geodesic path, the Dijkstra’s algorithm can be
used [5]. Meanwhile we use an algorithm based on hierarchical queues [11].
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For the purposes of segmentation, we need to fix some theoretical no-
tions.

Definition 6 (Partition). Let E be an arbitrary set. A partition D of E
is a mapping x → D(x) from E into P(E) such that: (i) for all x ∈ E:
x ∈ D(x), (ii) for all x, y ∈ E: D(x) = D(y) or D(x) ∩D(y) = ∅. D(x) is
called the class of the partition of origin x.

The set of partitions of an arbitrary set E is ordered as follows.

Definition 7 (Order of partitions). A partition A is said to be finer (resp.
coarser) than a partition B, A ≤ B (resp. A ≥ B), when each class of A is
included in a class of B.

This leads to the notion of ordered hierarchy of partitions ΠN
i=1Di, such

that Di ≤ Di+1, and even to a complete lattice [10].

Definition 8 (Connection). Let E be an arbitrary non empty set. We call
connected class or connection C any family in P(E) such that: (0) ∅ ∈ C, (i)
for all x ∈ E, {x} ∈ C, (ii) for each family Ci, i ∈ I in C, ∩iCi 6= ∅ implies
∪iCi ∈ C. Any set C of a connected class C is said to be connected.

It is clear that a connection involves a partition, and consequently a
segmentation of E. According to [10], more precise notions than connec-
tive criteria (which produce segmentations) can be considered in order to
formalize the theory, but this is out of the scope of this paper.

In particular, the λ flat zones can be considered as a connection, λ-flat
connection, i.e., λFZ is the partition of the image fλ according to the λ-flat
connection.

For multivariate images, where the extrema (i.e., minimum or maximum)
are not defined, the vectorial median is a very interesting notion to rank and
select the points [1].

Definition 9 (Vectorial median). A vectorial median of a set R ⊂ E is any
value fλ(k) in the set at point k ∈ R such as:

k = argminp∈R
∑

i/xi∈R

d (fλ(p), fλ(xi)) = argminp∈RδR(fλ(p)). (1)

In order to compute the vectorial median fλ(k), k ∈ R, the cumulative
distance δR (fλ(p)) has to be evaluated for all p ∈ R. Therefore all points p
are sorted, in ascending order, on the cumulative distance. The resulting list
of ordered points is called ascending ordered list based on the cumulative
distance. The first element of the list is the vectorial median (the last
element is considered as the anti-median).
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3. η-Bounded regions

One of the main idea is to understand that on quasi-flat zones the distance
or slope between two neighbouring points must be inferior to the parameter
λ. We can establish a comparison with a hiker, from one point who will only
deal with the local slope and not on the cumulative difference in altitude
on the λ-flat zones. To consider this limitation we propose a new kind of
regional zones: η-bounded regions, according to the following connection.

Definition 10 (η-bounded connection). Given an hyperspectral image fλ(x)
and its initial partition based on λ-flat zones, λFZ, where λFZi is the
connected class i and Ri ⊆ E (with cardinal K) is the set of points pk,
k = 0, 1, 2, ...,K − 1, that belongs to the class i. Let p0 be a point of Ri,
named the center of class i, and let η ∈ R+ be a positive value. A point
pk belongs to the η-connected component centered at p0, denoted ηBRp0i ,
if and only if d(fλ(p0), fλ(pk)) ≤ η and p0 and pk are connected.

For each class λFZi the method is iterated using different centers pj (j =
0, 1, · · · J) until all the space of the λ-connected component is segmented:
∪Jj=0ηBR

pj
i = λFZi, ∩Jj=0ηBR

pj
i = ∅, where the η-bounded regions are also

connected. Each center pj belongs to λFZi \ ∪j−1
l=0 ηBR

pl
i .

The new image partition associated to η-bounded connection is denoted
ηBR. It is evident that this second-class connection is contained in the λFZ
initial connection, i.e., ηBR(x) ≤ λFZ(x). As shown by Serra [10], a center
or seed pj is needed to guarantee the connectiveness, thus being precise,
the region is bounded with respect to the center. The η-connection is a
generalization of the jump connection [9] with the difference that working
on hyperspectral images, the seeds pj cannot be the minima or maxima.
We propose to compute the median value as initial seed.

Note that the method can be also applied on the space E of the initial
image fλ, without considering an initial λFZ (which is equivalent to take a
value of λ equal to the maximal image distance range). The advantage of
our approach is that we have now a control of the local variation, limited
by λ, and the regional variation, bounded by η. Moreover, the computation
of seeds is more coherent when working on relatively homogenous regions.

In practice, for all the K points on each λFZi, the ascending ordered
list based on cumulative distance δi is computed. Then, the first element of
the list, i.e., the vectorial median, is used as first seed k of the η-bounded
region ηBR1

i . The distance, from the seed to each point p ∈ λFZi, such
as p ∈ Neigh(q), q ∈ ηBR1

i , is measured. If this distance is less than η
then p is added to ηBR1

i and removed from δi. For all the others points
q ∈ λFZi \ ηBR1

i , the first point of the list δi is the seed of the second
η-bounded region ηBR2

i . Then we iterate the process until all the points of
the λ-flat zone λFZi are in an η-bounded region.
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Algorithm 1 µ-geodesic balls.

Given a distance d, the λ-flat zones, λFZ, of an image fλ, δ a list of cumulative
distance, Q a queue, imOut an output scalar image
Initialize the value of η
currentlabel← 0
for all λFZ ∈ fλ do

for all point p ∈ λFZ do
distance←

∑
q∈λFZ d (p, q)

δ ← add the pair (p, distance)
end for
Ascending sort on parameter distance of δ
while δ is not empty do
k ← first point of δ
Q← push(k)
while Q is not empty do
p← pop(Q)
imOut(p)← currentlabel
Remove q and its distance in δ
for all q ∈ Neigh(p) and q ∈ δ do

if d (k, q) ≤ η then
Q← push(q)

end if
end for

end while
currentlabel← currentlabel + 1

end while
end for

Using again the mountain comparison, this can be compared to a hiker
starting from a point with a walk restricted to a ball of diameter 2× η cen-
tered on the starting point. He cannot go upper or lower than this boundary.
The points to be reached by the hiker, given the previous conditions, are
connected and constitute an η-bounded region.

To understand the effect of these regions, they are applied to the image
“tooth saw” with an Euclidean distance dE (Figure 2). For the sake of
simplicity, in this image only the grey levels of the first channel have a
shape of “tooth saw” (Figure 1(b)), the others being constant.

We notice from the figure that the smallest the parameter η, the smallest
the area of η-bounded regions. Besides, η-bounded regions are very sensitive
to the peaks when working on scalar functions. In fact, if η is less than the
difference of altitude between the seed and the peak, the points in between
are in the same η-bounded region. However, if η is larger than the difference
of altitude between the seed and the peak, the points behind the peak, for
which the difference of altitude from the seed is less than η, are in the same
η-bounded region (Figure 3).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2. η-bounded regions and µ-geodesic balls of image “tooth saw” (21×21×4
pixels) for λ = 10. Seeds are marked with a white (or black) point, when they
are not trivial. (a) λFZ. λ = 10. (b) η = 0. (c) η = 10. (d) η = 20. (e) η = 30.
(f) µ = 0. (g) µ = 20. (h) µ = 40. (i) µ = 100.
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Figure 3. η-bounded region and µ-geodesic ball (in green) on the profile “tooth
saw” for λ = 10. (a) η = 20. (b) η = 30. (c) µ = 20. (d) µ = 60.

4. µ-Geodesic balls

As for η-bounded regions, we have created µ-geodesic balls, µGB, to im-
prove the λ-flat zones, but now introducing a control of the dimension of
the zone. First of all, λ-flat zones are built. Then, the cumulative differ-
ence in altitude is measured from a starting point, the seed, in each λ-flat
zone. From this point a geodesic ball of radius µ is computed. This zone
is a µ-geodesic ball. It corresponds to the maximum of steps (points) that
can be reached by a hiker starting from the seed inside a λ-flat zone, for a
given cumulative altitude. µ-geodesic balls are defined using the following
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connection.

Definition 11 (µ-geodesic connection). Given an hyperspectral image fλ(x)
and its initial partition based on λ-flat zones, λFZ, where λFZi is the
connected class i and Ri ⊆ E (with cardinal K) is the set of points pk,
k = 0, 1, 2, ...,K − 1, that belongs to the class i. Let p0 be a point of Ri,
named the center of class i, and let η ∈ R+ be a positive value. A point
pk belongs to the µ-connected component centered at p0, denoted µGBp0i if
and only if dgeo(fλ(p0), fλ(pk)) ≤ µ.

It is important to notice, that the geodesic paths imposed the connec-
tivity to the µ-geodesic ball. Formally, for each class λFZi the method is
iterated using different centers pj (j = 0, 1, · · · J) until the full segmentation
of the λ-connected component.

Algorithm 2 µ-geodesic balls.

Given a distance d, the λ-flat zones, λFZ, of an image fλ, δ a list of cumulative
distance, Q a queue, imOut an output scalar image
Initialize the value of µ
currentlabel← 0
for all λFZ ∈ fλ do

for all point p ∈ λFZ do
distance←

∑
q∈λFZ d (p, q)

δ ← add the pair (p, distance)
end for
Ascending sort on parameter distance of δ
while δ is not empty do
k ← first point of δ
for all point p inside the geodesic ball of center k and radius µ inside the
λFZ do
imOut(p)← currentlabel
Remove p and its distance in δ

end for
currentlabel← currentlabel + 1

end while
end for

The new image partition associated to µ-geodesic connection is denoted
µGB. As for η-bounded connection, this second-class connection is con-
tained in the λFZ initial connection, i.e., µGB(x) ≤ λFZ(x). The advan-
tage of this approach is that we have now a regional control of the “geodesic
size” of the classes by measuring the geodesic distance, limited by µ inside
the local variation limited by λ. In practice, µ-geodesic balls are built as
η-bounded regions, except that from each seed the geodesic ball is computed
inside the λFZ.

µ-geodesic balls are computed with an Euclidean distance dE for the
image “tooth saw” (Figure 2). We notice that the smaller is µ, the smaller
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the area of µ-geodesic balls is. Besides, these balls are not very sensitive to
the peaks. In fact, if µ is less than the difference of altitude between the
seed and the peak, the points in between are in the same µ-geodesic ball.
However, if µ is larger than the difference of altitude between the seed and
the peak, only the points behind the peak, for which the cumulative altitude
from the seed is less than µ, are in the same µ-geodesic ball (Figure 3).

5. Results and discussions

In order to illustrate our results on real images, we extracted η-bounded
regions and µ-geodesic balls in the image “woman face” of size 45× 76× 61
pixels (Figure 4). The channels are acquired between 400 nm and 700
nm with a step of 5 nm. Moreover, to reduce the number of flat zones
in this image, a morphological leveling is applied on each channel, with
markers obtained by an ASF (Alternate Sequential Filter) of size 1. Then,
λ-flat zones are computed. Besides, the computation time in our current
implementation with Python is moderate, i.e., a few minutes. However,
note that queues algorithms in C++ are very fast.

(a) (b) (c) (d) (e)

Figure 4. Channels of image“woman face” fλ (45×76×61 pixels) and λ-flat zones.
(a) fλ30 . (b) fλ45 . (c) fλ61 . (d) λ = 0.003. (e) λ = 0.006. (Source: Spectral
Database, University of Joensuu Color Group, http://spectral.joensuu.fi/)

It is important to choose an appropriate distance with respect to the
space of the image. In the spectral initial image of “woman face” we choose
the Chi-squared distance. For η-bounded regions and µ-geodesic balls, the
number of zones minus the number of λ-flat zones is measured. In the
Figure 6, we notice that the number of zones decrease with the parameters
η or µ. From figures, we notice that η-bounded regions are less sensitive than
µ-geodesic balls to small variations on distances between points. However,
the area of µ-geodesic balls is more controlled than the area of η-bounded
regions. Therefore, η-bounded regions are better to find the details and
µ-geodesic balls are better to build smoother zones.

http://spectral.joensuu.fi/


408 MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5. η-bounded regions and µ-geodesic balls of image “woman face” for
λ = 0.005 (Chi-squared distance dχ2). (a) λFZ. λ = 0.005.
(b) η = 0.007. (c) η = 0.009. (d) η = 0.011. (e) η = 0.02.
(f) µ = 0.01. (g) µ = 0.02. (h) µ = 0.03. (i) µ = 0.05.
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Figure 6. Variations of the number of ηBR or µGB minus the number of λFZ
versus the parameter η or µ in image “woman face” for λ = 0.005 (Chi-squared
distance dχ2). (a) ηBR. (b) µGB.

Besides, in order to evaluate the influence of choosing the vectorial me-
dian as a reference seed, we have tested the use of the reverse order for
the ascending ordered list based on cumulative distance. In fact, this order
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corresponds to the vectorial anti-median (Figure 7). Comparing these fig-
ure to the zones obtained with the median seed (Figure 5), we notice that
almost the same zones are obtained. Consequently, η-bounded regions and
µ-geodesic balls have a small dependence to the chosen seeds.

(a) (b) (c) (d) (e)

Figure 7. η-bounded regions and µ-geodesic balls with an anti-median seed in
image “woman face” for λ = 0.005 (Chi-squared distance dχ2). (a) λFZ, λ =
0.005. (b) η = 0.009. (c) η = 0.011. (d) µ = 0.02. (e) µ = 0.03.

Moreover, the same segmentations can be obtained in factor space using
an Euclidian distance because it is equivalent to Chi-squared distance in
image space. We have also computed it, keeping three factorial axes with
relative inertia: 87.2 %, 10.2 % and 1.5 %. By reducing the volume of data,
the computation is more efficient on 3 channels than on 61.

6. Conclusion and perspectives

We have presented two new connected zones: η-bounded regions and µ-
geodesic balls. They improve the λ-flat zones, which deals only with local
information, by introducing regional information. Moreover, these new con-
nections are of second order because they are built, and included, in the
λ-flat zones which are already connected. The approach consists in select-
ing a sufficiently high parameter λ to obtain first a sub-segmentation. Then,
η-bounded regions or µ-geodesic balls are built, leading to a segmentation by
a top down aggregation. The η-bounded regions introduce a parameter con-
trolling the variations of distance amplitude in the λ-flat zones, meanwhile
µ-geodesic balls introduce a parameter to control the size by controlling the
cumulative amplitude inside the λ-flat zones.

Besides, these two second order connections produce pyramids of par-
titions with a decreasing number of regions when the value of η or µ is
increased, until the partition associated to the last level is equal to the par-
tition defined by the λ-flat zones. However, it is important to notice that
this pyramid is not an ordered hierarchy in the meaning that the classes are
not ordered by increasing level.
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Furthermore, we have proposed algorithms for the construction of par-
titions associated to both new types connections, η and µ, which are based
on queues with an ordered selection of seeds using the cumulative distance.

About the perspectives, we notice that the proposed method does not
solve the problem of small classes of the initial partition of the λ-flat zones.
However, we can combine our method with the approaches aggregating
smaller regions to these of larger area [3,4,8]. For the future, we are thinking
on more advanced methods in order to select the seeds, and to determine
locally, for each λ class, the adapted value of η or µ.
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Abstract In this paper we approach the segmentation problem by attempt-
ing to incorporate cues such as intensity contrast, region size and
texture in the segmentation procedure and derive improved results
compared to using individual cues separately. We propose efficient
simplification operators and feature extraction schemes, capable of
quantifying important characteristics like geometrical complexity,
rate of change in local contrast variations and orientation, that
eventually favor the final segmentation result. Based on the mor-
phological paradigm of watershed transform we investigate and ex-
tend its Partial Differential Equation (PDE) formulation in order
to satisfy various flooding criteria, and couple them with texture
information thus making it applicable to a wider range of images.

Keywords: watershed, flooding, multi-cue segmentation, PDE.

1. Introduction

In this work we treat image segmentation as a set of procedures that need to
be followed starting from the initial image and yielding the final partition-
ing perceived either as a region map or a segmentation boundary. Indepen-
dently of the method used to achieve the partitioning, this can be divided
into the following stages: (i) image simplification (ii) feature extraction and
(iii) partitioning into disjoint regions. The simplification stage encompasses
tasks such as smoothing, noise reduction, redundant information removal
(resulting in an image consisting mostly of flat and large regions), as well as
image decomposition into constituent parts. The feature extraction deals
with gradient features computation, texture measurements, marker extrac-
tion, whereas the final stage of partitioning is the application of the selected
segmentation algorithm so as to produce a region map of the image.

Motivated by the efficacy of watershed transform along with latest trends
in image segmentation research that encourage combination of different cues
[2, 9], we try to incorporate the generalized flooding concept of watershed,
thus exploiting intensity contrast and region size criteria [19], with other
perceptually meaningful image characteristics such as texture, aiming at
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improved segmentation results. Additionally, we aim at integrating the
aforementioned ideas with Partial Differential Equation (PDE) modeling.

In this paper we propose well-motivated and efficient image simplifica-
tion and feature extraction techniques as necessary tasks of the presegmen-
tation part. We focus on generalized watershed techniques, investigate their
PDE formulation encompassing various flooding criteria, such as region size
and volume, and incorporate geometric and textural features in flooding
using a leveling-based image decomposition scheme. The resulting segmen-
tation method couples contrast, size and texture information driven by two
separate image components: Cartoon U (for contrast information) and Tex-
ture component V , resulting from U + V image decomposition model. The
modeling is done via PDEs using ideas from curve evolution and level sets,
and the implementation is accomplished by adapting specialized level set
methodologies, which ensure speed and reduced computational cost. The
performance and efficacy of the proposed segmentation scheme is demon-
strated through a set of qualitative, quantitative and comparative experi-
mental results.

2. Image simplification

The simplification stage is concerned with noise and redundant information
removal, resulting in an image with smoother structure, but at the same
time with key features accurately preserved, easier to handle and more ap-
propriate for further processing such as feature extraction and partition-
ing. The primary concern here is the selection of the filtering the image
has to undergo in order to retain meaningful information but at the same
time suppress pointless structures without causing boundary blurring or
contour displacement. An efficient family of filters that have the afore-
mentioned properties are the morphological connected operators [11,12,17].
For image simplification we use contrast/area/volume filtering and level-
ings. Further, generalized openings γ and closings ϕ are often combined
sequentially to produce Alternating Sequential Filters (ASF): ΨASF(I) =
ϕnγn...ϕ2γ2ϕ1γ1(I), where i = 1, 2, ...n denotes the increasing scale of the
filter.

Contrast filtering The graylevel reconstruction opening ρ− and closing
ρ+ of an image I(x, y) given a marker signal M(x, y) are:

ρ−(M |I) = lim
n→∞

Fn, Fn = δB(Fn−1|I), F0 = M, (1)

ρ+(M |I) = lim
n→∞

Fn, Fn = εB(Fn−1|I), F0 = M, (2)

where δB(M |I) and εB(M |I) denote the conditional dilation and erosion,
respectively, of M by a unit disk B constrained by I. To achieve contrast
filtering we set the marker M = I − h and M = I + h for reconstruction
opening and closing, respectively, with h being a constant that controls the
contrast of the bright/dark connected components that will be merged.
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Self-dual filtering The above operators are either anti-extensive or ex-
tensive, simplifying bright or dark image components, respectively. Sym-
metrical simplification of image components requires self-dual filters, such
as the levelings, which are nonlinear, increasing and idempotent filters
that have many interesting scale-space properties [11, 12]. They treat sym-
metrically the image foreground and background; further, they can be an-
alyzed as composition of reconstruction opening and closing. They oper-
ate on a reference image I by locally expanding/shrinking an initial seed
image, called the marker M , and globally constraining the marker evolu-
tion by the reference image. Specifically, iterations of the image operator
λ(F |I) = (δ(F ) ∧ I) ∨ ε(F ), where δ(F ) (resp. ε(F )) is a dilation (resp.
erosion) of F by a small disk, yield in the limit the leveling of I w.r.t. M ,

Λ(M |I) = lim
k→∞

Fk, Fk = λ(Fk−1|I), F0 = M. (3)

Levelings preserve the coupling and sense of variation in neighbor im-
age values and do not create any new regional maxima or minima across
scales. In practice, they can reconstruct whole image objects with exact
preservation of their boundaries and edges. In this reconstruction process
they simplify the original image by completely eliminating smaller objects
inside which the marker cannot fit.

Area filtering The need often occurs to filter out small light (respectively
dark) particles from graylevel images without damaging the remaining struc-
tures. The operator that achieves this kind of filtering is the area opening
(closing) of size n that keeps only the light (dark) connected components
whose area (number of pixels) is equal or greater than a threshold n. For
binary images X =

⋃
iXi expressed as disjoint union of connected compo-

nents Xi, the area opening is α−n (X) =
⋃{Xj : Area(Xj) ≥ n}. Dually,

the binary area closing is α+
n (X) = [α−n (Xc)]c. The graylevel area opening

is defined via threshold superposition:

α−n (I)(x, y) = sup{h : (x, y) ∈ α−n (Th(I))}, (4)

where Th(I) = {(x, y) : I(x, y) ≥ h} are the upper level sets of the image I
by thresholding it at level h. Similarly for the graylevel closing.

Volume filtering A combination of the above contrast and size connected
operators yields the volume reconstruction operator. Volume operators re-
move connected components from the image whose volume is below a certain
threshold. They are defined as:

β−n (I)(x, y) = sup{h : (x, y) ∈ β−n (Th(I))}, (5)

β+
n (I)(x, y) = sup{h : (x, y) ∈ β+

n (Th(I))}, (6)

where in the binary case, if Th(I) = X =
⋃
iXi we define β−n (X) =

⋃{Xj :
Area(Xj) ·h ≥ n} with Xj being connected components. Volume operators
present the formal properties of openings and closings and can be used as a
mean of simplification filtering that balances contrast and size criteria.
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3. Feature extraction

The feature extraction stage deals with the extraction of special image fea-
tures which facilitate the final segmentation step, and requires a more severe
but detailed processing of the image. As features we denote regions of in-
terest, gradients, texture measurements, as described below.

Gradient features High values of the image’s gradient are indicative of
abrupt intensity changes and specify possible object/region contours. Ad-
ditionally, the topographic relief, emerging from the gradient magnitude
function is used in the flooding process that leads to the final segmentation
map. There are many different types of gradients that have been exten-
sively used in the edge detection framework. Among them, we choose the
morphological gradient M∇(I) = [(I ⊕ B) − (I 	 B)]/2 for its robust be-
havior low complexity, and better segmentation results compared to other
edge strength operators.

Texture features A way of acquiring texture information from an image
I is via a decomposition scheme [13, 21], according to which the image is
expressed as I = U + V , where U is the “cartoon component” and consists
of relatively flat plateaus for the object regions surrounded by abrupt edges,
whereas V is the “texture oscillation” and contains texture information plus
noise. Simple texture patterns appearing in V component can be modeled
as narrowband 2D AM-FM signals [4,7] of the form α(x, y) cos[ϕ(x, y)], with
a spatially varying amplitude a(x, y) and a spatially-varying instantaneous
frequency vector ~ω(x, y) = ∇ϕ(x, y) The amplitude is used to model local
image contrast and the frequency vector contains rich information about
the locally emergent spatial frequencies. An efficient way to estimate the
2D amplitude and frequency signals is via the 2D Teager energy operator
[7] Ψ(f) , ||∇f ||2 − f∇2f . Applying Ψ to the AM-FM signal yields
Ψ[a cos(ϕ)] ≈ a2||~ω||2, i.e., the product of the instantaneous amplitude and
frequency magnitude squared, which may be called the texture modulation
energy. Complex (wideband) image textures can be modeled as a sum of
2D AM-FM signals; i.e., f(x, y) =

∑
k=1 αk(x, y) cos[ϕk(x, y)]. In our case,

Ψ is applied on narrowband versions of the wideband signal V , which are
obtained by convolving it with a dense filterbank [4] of 2D Gabor filters hk.
The modulation energies of the filtered texture components are measured
via the 2D Energy Operator Ψ, smoothed by a local averaging filter ha
and then are subjected to pixelwise comparisons. This yields the Maximum
Average Teager Energy Ψmat[f(x, y)] = maxk ha ∗ Ψ [f ∗ hk] (x, y). It is a
slowly-varying indication of texture modulation energy, which can classify
among different energy levels. It provides both local and global texture
information and tracks the most dominant texture components along mul-
tiple modulation bands [5]. The derived image texture feature is capable
of quantifying important characteristics like geometrical complexity, rate of
change in local contrast variations and texture scale.
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Markers Markers are predefined image locations that serve as starting
points of the region-growing procedure. These seed points grow in time
according to a set of specified criteria until the image plane is totally cov-
ered by them. It is common practice that markers are chosen as regions
where some homogeneity criterion is constant or a key characteristic is of
certain strength. In our research work we emphasize on contrast, volume
and texture-based markers, i.e., image areas where the homogeneity crite-
rion is contrast, volume (area and contrast) and texture, respectively. In
all three cases we extract markers via a reconstruction procedure as valleys
or peaks of an image transform that resembles one of the aforementioned
characteristics. In all cases, the scale is incorporated in the structuring el-
ement or reconstruction controlling parameter. Specifically, we distinguish
the following cases.

Contrast, Area or Volume - based markers. Markers are estimated as
valleys (or peaks) of certain strength of a generalized Bottom (Top) Hat
Transform. The Bottom Hat Transform is defined as: HB(I) = ϕ(I) − I,
where ϕ(I) is a generalized closing and I is an intensity image (initial or
simplified). Similarly, Top Hat Transform is defined as: HT (I) = I −
γ(I), where γ(f) is a generalized opening. Depending on what kind of
closing /opening transform we choose, we obtain: (a) contrast markers if
the generalized closing is based on reconstruction, i.e., ϕ(I) = ρ+(I + h|I)
that is where the parameter h controls the contrast (valley depth), (b) area
markers if ϕ(I) is area closing, (c) volume markers if ϕ(I) is volume closing,
in which case contrast and area criteria are exploited.

Texture - based markers. Again markers are estimated as peaks of an
image transform that relies on texture characteristics. Therefore, peaks
(valleys) either of the texture component V or its dominant modulation
energy are extracted as highly (poorly) textured regions. The peak (valley)
extraction is based on a reconstruction procedure as discussed earlier.

4. Generalized watershed and PDEs

Apart from the standard morphological flooding approach implemented ei-
ther via immersion simulations [22] or hierarchical queues [1], the watershed
transform has also been modeled in a continuous way via the eikonal PDE
[14] and implemented in [8] using curve evolution and level sets. Further,
generalized floodings and corresponding watersheds have been investigated
in [10]. Using a PDE-based modeling in the flooding process of watershed
transform, each emanating wave’s boundary is viewed as a curve, which
evolves with predefined speed. In the case of uniform height watershed
flooding, let us consider a moving smooth closed curve, which is the bound-
ary of the marker region, ~C(p, t) where p ∈ [0, 1] parameterizes the curve
and t is an artificial marching parameter. The PDE that implements the
generalized watershed flooding is:
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∂ ~C

∂t
=

c

Area(t)‖∇I‖ ·
~N, (7)

where c is a constant, ‖∇I‖ is the gradient magnitude of the image function

I, ~N is the unit outward vector normal to the curve, and Area(t) is either 1 if
we perform only contrast-based segmentation (height flooding) or Area(t) =

Area(~C), that is Area(t) is equal to to area enclosed by the propagating
curve at the specific time t in case of contrast and size segmentation (volume
flooding) [19]. The above propagation PDE implies that the evolution speed
is inversely proportional to the intensity (volume) variation at each image
point, in the direction of the outward normal vector. For implementation
we use the level set approach [15] where at each time the evolving curve is
embedded as the zero level set Γ(t) = {(x, y) : Φ(x, y, t) = 0} of a higher
dimension space-time function Φ(x, y, t). Then this embedding function Φ
evolves in space-time according to the following PDE:

∂Φ

∂t
=

c

Area(t)‖∇I(x, y)‖‖∇Φ‖. (8)

Modeling generalized watersheds via the eikonal has the advantage of a
more isotropic flooding but it also introduces some challenges in the im-
plementation. Efficient algorithms [18] to solve time-dependent eikonal
PDEs are the narrow-band level sets methods, and more specifically, the
fast marching method, an algorithm for stationary formulations of eikonal
PDEs.

Experimental results using height and volume flooding segmentation of
Equation 7 are illustrated in Figure 1, exploiting the basic property of vol-
ume flooding, i.e., retaining the balance between area and contrast. The
image shown left in Figure 1 is synthetically produced by taking the dis-
tance transform of the corresponding binary image and adding an arbitrary
constant to each of their connected components. For illustration purposes,
a flooding source has been superimposed for each object. Bright objects
appear with higher altitude compared to darker objects. Next in Figure 1
we illustrate the contour lines of each object, with blue color corresponding
to lower altitude and red corresponding to higher altitude. The cases of
uniform height and volume flooding are examined and presented in third
and fourth column of Figure 1, respectively. In the case of height flooding
the object of lowest contrast is totally lost, whereas in the case of volume
flooding the undetected object is the one of lowest volume (area and con-
trast).

5. Coupled contrast-texture segmentation

The aforementioned generalized watershed segmentation schemes use as
prominent characteristic the image intensity viewed either as seeds’ con-
trast, size or volume. Any textural information present in the image is in-
corporated in intensity. Based on evidence from psychophysics according to
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Figure 1. Height and volume flooding segmentation results: (from left to right)
synthetic image, contours corresponding to different altitudes (gray values), height
flooding segmentation regions, volume flooding segmentation regions.

which humans combine multiple cues in order to detect boundaries from im-
ages [16], we try to exploit contrast and texture as two separate information
sources so as to improve and balance the segmentation results and eliminate
false boundaries introduced by intensity variations in amplitude and phase,
owing to textured parts. Ideally we want to add a texture-controlled term to
the height/flooding PDE (7) that will be able to quantify properly the avail-
able image texture information by enabling the growing seeds surpass false
edges introduced by texture structures in the image, thus speeding up the
evolution at such places. This can be achieved by the Ψmat operator, which
provides both local and global texture information, tracks the most domi-
nant texture components along multiple modulation bands and is capable
of quantifying important characteristics like geometrical complexity, rate of
change in local contrast variations and texture scale. We thus conclude to
the following PDE:

∂ ~C

∂t
=

(
λ1

max(ε,Area(t)||∇I||) + λ2Ψmat(I)

)
~N, (9)

where λ1 and λ1 are parameters that control the contribution of each cue
and 0 ≤ ε ≤ 1 is used to handle instabilities caused by gradient’s zero
values. The seeds’ evolution speed depends on two eikonal terms, linked with
some optimality criterion. The first term drives the curve (seed’s boundary)
with speed that maximizes the flooding of the image toward its watershed.
The second term can be shown to correspond to a flow that maximizes the
average texture energy: max

∫∫
R(C)

Ψ(I) =⇒ ∂ ~C/∂t = Ψ(I) ~N . This term

pushes the curve toward regions with large average texture energy.
The PDE (9) consists of two terms: the gradient magnitude operator

quantifying intensity changes and the energy modulation operator quan-
tifying AM-FM variations corresponding to texture. Our next concern is
to apply these two different operators of separate image transformations
emphasizing on different type of information. We take advantage of the
recently proposed image decomposition model [13, 21], which provides an
effective way of linearly distinguishing contrast and texture from a single
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image, in the form I = U+V . Specifically, the U component, known as car-
toon, serves very well as a contrast descriptor since it consists of relatively
flat plateaus that correspond to object regions, surrounded by abrupt edges
that correspond to object boundaries. The V component, which is in fact
the texture oscillation contains texture oscillations plus noise information
and serves as texture descriptor. Combining the U+V image decomposition
philosophy with the PDE (9) and level set formulation [15] we derive the
following coupled segmentation PDEs:

∂ ~C

∂t
=

(
λ1

Area(t)||∇U || + λ2Ψmat(V )

)
~N, (10)

∂Φ

∂t
=

(
λ1

Area(t)||∇U || + λ2Ψmat(V )

)
||∇Φ||. (11)

Contrast variations are taken into account from the U part, which is
obtained by applying the leveling operator on the initial image and texture
oscillations are approached through the residual V = I − U . The elimina-
tion of division-by-zero scenario as introduced in Equation 9 can be as well
applied in Equation 10 and Equation 11 in order to handle instabilities.

In the PDE derived above each cue’s contribution is controlled by a
coefficient, namely λ1 geometric evolution controlling parameter and λ2

texture evolution controlling parameter. We set these λ parameters to be
spatially adaptable, taking advantage of the fact that the U + V image
decomposition model gives evidence about the existence of each component
(geometry and texture) at every image location. All the needed information
about contrast at each image pixel is encapsulated by 1/|∇U | component
and texture contribution is captured by Ψmat(V ). Hence, we estimate λ1

(geometric coefficient) and λ2 (textural coefficient) as the mean square error
between the observed image I and the texture V or contrast U component,
respectively. These mean square errors are weighted locally by a small
Gaussian window Gσ(x, y) of scale σ, i.e., λ1(x, y) = [Gσ ∗ (I − V )2](x, y)
and λ2(x, y) = [Gσ ∗ (I − U)2](x, y). We can either use this estimated
λ-space functions directly or normalize their sum to 1. Alternatively, the
coefficients can be estimated as: λ1(x, y) = exp(−[Gσ ∗ (I −U)2](x, y)) and
λ2(x, y) = exp(−[Gσ ∗(I−V )2](x, y)). The former selection of λ parameters
has experimentally been found to yield slightly better results.

The curves that propagate according to the aforementioned evolution
scheme are multiple, initialized as the contours of a set of markers, thus
indicating significant image regions. The marker extraction is done accord-
ing to the methodologies described in Section 3. Specifically, depending on
the type of image to be segmented we choose our markers to be contrast-
oriented, texture-oriented, a combination of the above or manually placed at
areas of interest. The PDE (11) is of pure eikonal-type and its implementa-
tion is based on established techniques from level sets methods, specifically
the fast marching methodology (FMM) [18,20] that ensures computational
speed.
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6. Experiments, comparisons, and conclusions

In Figure 2 we demonstrate a set of the extracted features and segmentation
results on a biomedical image from prostate tissue used for gleason scale
measurement. The reference image is shown left on top row of Figure 2.
In same row we illustrate the automatically extracted marker set, U and V
image components obtained after image decomposition. In the second row
we illustrate the texture modulation energies Ψmat(I), and Ψmat(V ), as well
as the corresponding segmentation results using PDEs (9) and (10).

Figure 2. Image features and segmentation results: (from left to right) Origi-
nal image, Markers, Cartoon U , Texture V , Texture modulation energy Ψmat(I),
Texture modulation energy Ψmat(V ), Coupled segmentation on I, Coupled seg-
mentation on U + V .

In order to judge the quality of the obtained segmented images, we have
used some quality measures in order to quantify the results and test them
against other segmentation methodologies. Although there is a variety of
goodness criteria for the evaluation of segmentation methodologies, and each
criterion can be used in different segmentation scenarios, there is no global
measure that can be applied in every case. Among the goodness measures
[23] established according to human perception and intuition, we eventu-
ally concluded to measure each region intensity variance using a cartoon
version of the image, as well as each region’s modulation energy variance,
thus incorporating both contrast and texture information. The lower those
variance values, the better are the segmentation results.

The proposed method was tested against height and volume flooding wa-
tershed segmentation, as well as the multicue scheme without image decom-
position of Equation 9, since these methods produce similar segmentation
results in terms of closed boundaries and disjoint, plane-filling regions.

In Figure 3, we provide a set of different segmentation results obtained
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by applying the aforementioned methods on four different reference images:
1) a soilsection image consisting of highly contrasted and textured areas,
2) an aerial photo 3) a biomedical image of prostate tissue and 4) an animal
image of differently textured areas. The different segmentation methodolo-
gies are tested using the same set of automatically extracted markers via
contrast or volume criteria for each image (in the case of the animal image
markers are placed manually). Marker sets’ illustration is omitted due to
lack of space. Apart from visual comparisons, we provide Table 1, where the
aforementioned goodness measures are computed for each case. As it can
be observed, the proposed scheme incorporating image decomposition out-
performs the other segmentation methodologies. It provides better results,
in the sense that the resulting partitioning map consists of more uniform re-
gions (low cartoon variance values) with smoother texture (low modulation
energy variance), compared to the other methodologies.

Figure 3. Comparisons of different types of watershed-like segmentation results:
(columns from left to right) Reference images, Multicue segmentation results with-
out decomposition, Multicue segmentation results with decomposition, Height wa-
tershed flooding segmentation results, Volume watershed flooding segmentation
results.
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Table 1. Segmentation comparisons.

Quality

Measures

Segmentation Method

Coupled Type Watershed Flooding

I U + V Height Volume

so
il

var(U) 0.921 0.823 0.893 1.108

var(Ψmat(V)) 0.280 0.259 0.281 0.254

length(Γ) 4855 4987 4982 5742

a
er

ia
l var(U) 0.335 0.281 0.337 0.383

var(Ψmat(V)) 0.473 0.468 0.479 0.555

length(Γ) 3934 4206 4054 4442

b
io

m
ed var(U) 0.327 0.294 0.314 0.365

var(Ψmat(V)) 0.138 0.135 0.140 0.139

length(Γ) 6529 6630 6728 7593

m
a
d
ri

ll var(U) 0.046 0.024 0.046 0.034

var(Ψmat(V)) 0.272 0.232 0.271 0.285

length(Γ) 1167 1210 1201 1960

Concluding remarks The presented research work addressed the prob-
lem of image segmentation in terms of simplification, feature extraction
and image partitioning with focus on a generalized flooding procedure us-
ing geometric and textural information. Generalized watershed transform
was modeled via PDEs and extended to incorporate geometric and textural
information using ideas such as U+V image decomposition and texture AM-
FM modeling. The quality of segmentation results was illustrated through
qualitative, quantitative and comparative results.

It should be noted that geometric curve evolution of the form ∂ ~C/∂t =

g(c − µκ) ~N has been proposed by Caselles et al [3] and Malladi et al [6].
However, our proposed scheme has three differences compared to the afore-
mentioned evolution: i) it has a term that achieves watershed type flooding
ii) it has a second term that is a new contribution and acts on the texture
component of the image that, to our best knowledge, has never been used
before in segmentation schemes, and iii) the curvature component κ is not
present in our scheme since it was experimentally determined that it does
not provide any significant improvement to the overall segmentation.
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Abstract The Image Foresting Transform (IFT) is a powerful graph-based
framework for the design and implementation of image processing
operators. In this work we present the Partitioned IFT (PIFT),
an algorithm that computes any IFT operator as a series of inde-
pendent IFT-like computations. The PIFT makes parallelization
of existing IFT operators easy, and allows the computation of IFTs
in systems with scarce memory. We evaluate the PIFT for two im-
age processing applications: watershed segmentation and Euclidean
distance transforms.

Keywords: graph algorithms, parallel algorithms, image foresting transform,
distance transforms.

1. Introduction

The Image Foresting Transform (IFT) [9] is a graph-based framework for the
design and implementation of image processing operators. It reduces image
processing operations, such as watersheds [3,15], morphological reconstruc-
tions [8], skeletonization [7] and distance transforms [5], to the computation
of a minimum-cost path forest over an implicit graph representation of the
image. The IFT runs in linear time, but it does not take advantage of
parallel and distributed computer systems. Its data structures also require
considerable memory space [10], and this can be a limitation to the process-
ing of large 3D images.

In this work we present the Partitioned IFT, an algorithm that computes
any IFT as a set of independent IFTs over partitions of the input image.
Both time and memory required to compute the IFT of each partition are
proportional to the size of that partition. The minimum-cost path forests of
the partitions are merged by fast differential IFTs [6]. This scheme provides
the means to take advantage of parallel and distributed computer systems
(by assigning each partition’s IFT to a different central processing unit
(CPU)) and to allow the computation of IFTs with a reduced memory
footprint (by computing partition forests sequentially).
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2. Related works

2.1 Related algorithms

Moga et al. [12] presented two parallel watershed algorithms that treat the
image as a graph and perform independent flooding simulations in image
partitions. Parallel flooding simulations are repeated while plateaus over-
flow to adjacent partitions. The same group [13] presented a similar par-
allel algorithm for the computation of the watershed-from-markers trans-
form. Both works achieve scalable speedups in parallel architectures, but
the speedup factor does not scale linearly with the number of processors.
Moga et al. [12] achieve speedup factors1 around 2 for 4-CPU systems, and
3.5 for 8-CPU systems. Bruno and Costa [4] present a distributed algorithm
for the computation of Euclidean distance transforms (EDT) based on mor-
phological dilations. Their algorithm achieves a speedup factor of 3.5 on a
4-CPU system.

2.2 The image foresting transform

The IFT algorithm is essentially Dijkstra’s algorithm [1], modified for multi-
ple sources and general path cost functions [9]. The image is interpreted as a
directed graph whose nodes are the pixels. The edges are defined implicitly
by an adjacency relation A. Tree roots are drawn from a set S of seed nodes
and path costs are given by a path cost function f . We use P ∗(s) to denote
the current path reaching pixel s, 〈s〉 to denote a trivial path containing a
single node, and 〈s, t〉 to denote the edge from pixel s to pixel t. P ∗(s) ·〈s, t〉
is the path that results from the concatenation of P ∗(s) and an edge 〈s, t〉.

The choice of A, S and f define an IFT operator. The IFT algorithm
can compute by ordered propagation any forest property that uses the seed
set as reference. Usually, the IFT computes 4 maps: the cost map C stores
the cost of the optimal path that reaches each pixel, the predecessor map P
stores the predecessor of each pixel in the forest, the root map R stores the
root of each pixel’s optimal path, and the label map L stores object labels
for each pixel. Algorithm 3 below computes the IFT.

Algorithm 3. IFT.

Input: Image I, Path-cost function f , Adjacency relation A, Seed set S
and Seed label map L0.

Output: Cost map C, Predecessor map P , Root map R and Label map L.
Auxiliary: Priority queue Q.

1. Set Q← ∅.

1The speedup factor of a parallel algorithm on an n-CPU parallel system is calculated
as t1

tN
, where t1 is the time required to perform the computation on a single-CPU system,

and tN is the time required to perform the computation on an n-way system.
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2. For each pixel s ∈ I \ S, do
3. Set C(s)←∞, P (s)← nil , R(s)← s and L(s)← nil .
4. For each pixel s ∈ S, do
5. Set C(s)← f(〈s〉) and L(s)← L0(s).
6. Insert s in Q.
7. While Q 6= ∅, do
8. Remove a pixel s from Q such that C(s) is minimum.
9. For each t such that (s, t) ∈ A, do
10. Compute cost← f(P ∗(s) · 〈s, t〉).
11. If cost < C(t) then
12. If t ∈ Q then remove t from Q.
13. Set P (t)← s, C(t)← cost, L(t)← L(s), R(t)← R(s).
14. Insert t in Q.

Lines 1–3 set the forest to an initial state where every node’s optimum
path is a trivial path with infinite cost. Lines 4–6 insert the seed pixels
in the priority queue with a trivial path cost computed by f , and initialize
seed labels for ordered propagation. The loop of Lines 7–14 uses the priority
queue to propagate the optimum paths and conquer the entire image. As
long as f is finite and smooth [9], an optimum path with finite cost will be
assigned to all pixels connected to S. Once a pixel is removed from the queue
(Line 8), it is never inserted again. Therefore, the main loop is repeated |I|
times. For integer path costs with limited increments, Q can be efficiently
implemented such that insertions and removals take O(1) time [1]. With
small adjacency relations (|A| � |I|) and O(1) queue operations, the IFT
algorithm runs in O(|I|) time [9].

Two common path cost functions for IFT operators are fmax and feuc,
shown in Equations 1–2 below. Both fmax and feuc are smooth, as required
to ensure the correctness of the IFT [9].

fmax(〈s1, . . . , sn〉) =

{
maxni=1 (I (si)) if n > 1,
h(s1) otherwise.

(1)

feuc(〈s1, . . . , sn〉) = Euclidean distance between s1 and sn (2)

where I(s) is some value associated to pixel s (such as intensity or gra-
dient intensity) and h is a handicap function for trivial paths. A watershed-
from-markers transform can be implemented as an IFT where f is fmax
(Equation 1), h = 0 (for marker imposition), A is an adjacency with ra-
dius between 1 and

√
2 and S contains the watershed markers [6, 9]. A

classical watershed can be implemented using f = fmax, h(s) = I(s) + 1
and S = I [11]. Function feuc (Equation 2) allows the computation of dis-
tance transforms [5], discrete Voronoi diagrams, skeletonizations and shape
saliences [2, 7, 9, 14].
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2.3 The differential image foresting transform

The differential IFT [6] (DIFT) was motivated by interactive 3D image seg-
mentation applications where the user interactively selects the seed pixels.
It is quite common for the user to add new seeds and remove previous ones
based on the visualization of the segmentation result. The first IFT is com-
puted by Algorithm 3 as usual, from a seed set S0. The maps C, P , R and
L must be initialized to a forest of trivial paths with infinite costs before the
first DIFT is computed. Given a set S ′ of seeds to be added and a set S ′′
of tree roots to be removed, the DIFT computes the optimum path forest
for the effective seed seet S1 = (S0 \ S ′′) ∪ S ′. The DIFT processes only
pixels affected by the seed set editing, and runs in sublinear time. Instead
of providing S ′′ directly, the DIFT takes a set M of removal markers, and
S ′′ is computed as the set of roots of the pixels inM. Algorithm 4 below is
the main DIFT algorithm. The DIFT-TreeRemoval subroutine referenced
in Line 2 visits all pixels that belong to removed trees, sets their optimum
paths to trivial paths with infinite costs (forcing their recalculation by Al-
gorithm 4), and builds the set F of frontier pixels.

Algorithm 4. DIFT.

Input: Image I, Cost map C, Predecessor map P , Root map R, Label
map L, Path-cost function f , Adjacency relation A, Set S ′ of
new seed pixels, Set M of marking pixels, Seed label map L0.

Output: C, P , R and L.
Auxiliary: Priority queue Q, Frontier set F .

1. Set Q← ∅.
2. (C,P,F)←DIFT-TreeRemoval(C,P,R, L,A,M).
3. F ← F \ S ′.
4. While S ′ 6= ∅, do
5. Remove any t from S ′.
6. If f(〈t〉) < C(t) then
7. Set C(t)← f(〈t〉), R(t)← t, L(t)← L0(t), P (t)← nil .
8. Set F ← F ∪ {t}.
9. While F 6= ∅, do
10. Remove any t from F and insert t in Q.
11. While Q 6= ∅, do
12. Remove a pixel s from Q, such that C(s) is minimum.
13. For each t such that (s, t) ∈ A, do
14. Compute cost← f(P ∗(s) · 〈s, t〉).
15. If cost < C(t) or P (t) = s then
16. If t ∈ Q then remove t from Q.
17. Set P (t)← s, C(t)← cost, R(t)← R(s), L(t)← L(s).
18. Insert t in Q.

Lines 2–3 compute a set F of frontier pixels that belong to non-removed
trees but share edges with pixels in removed trees. Lines 4–10 insert the
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new seeds and the frontier pixels in the queue. Lines 11–18 are very much
like the main loop of the IFT Algorithm (Algorithm 3), except for the
condition P (t) = s in Line 14, which forces the update of all pixels that had
their optimum paths modified. The result of the DIFT is an optimum path
forest for the “effective seed set” S1 = (S0 \ S ′′) ∪ S ′.

3. The partitioned image foresting transform

In the Partitioned IFT (PIFT), we split the input image and seed set in NP
partitions. The number of partitions can be chosen to match the number
of available processing nodes, or so that the computer system has enough
memory to run the IFT algorithm on each image partition. Partitions do not
need to be equally sized. We compute independent IFTs on each partition.
At this point, we have an optimum forest that ignores the inter-partition
edges of the graph. Figure 1(a) shows an example of this partial result for
the EDT using a set of random pixels as seeds and 3 partitions. To allow
propagation through the inter-partition graph edges, we consider the paths
obtained by the concatenation of each edge 〈s, t〉 to P ∗(s) (Figure 1(c)).
When f(P ∗(s) · 〈s, t〉) is less than the current cost of t, or the edge was
part of the destination pixel’s previous optimal path, the endpoint is added
as seed in a differential IFT so that it can be propagated. If more than
one inter-partition edge share a same endpoint t, the one that provides the
lower path cost P ∗(t) is propagated. A new iteration of differential IFTs is
computed for each partition. The PIFT halts when no inter-partition edge
satisfies the criteria for addition. Figure 1(b) shows the complete EDT,
obtained after 2 iterations over the 3 partitions.

(a) (b) (c)

Figure 1. Labels of an EDT with the Partitioned IFT: (a) Partial result after the
first iteration and (b) final result after the second iteration. (c) PIFT notation:
〈s, t〉 is an inter-partition edge, P ∗(s) is the optimum path assigned to s, and R(s)
the root of P ∗(s).

The differential IFTs used in the Partitioned IFT always have an empty
set of removal markers. The Partition-IFT algorithm below (Algorithm 5)
computes the IFT within a partition. It is essentially the differential IFT al-
gorithm without tree removal, and with special treatment of inter-partition
edges.
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Algorithm 5. Partition-IFT.

Input: Image partition I′, Cost map C, Predecessor map P , Root map R,
Label map L, Path-cost function f , Adjacency relation A, Set S of
seed pixels, Seed label map L0, Set EI of incoming inter-partition
edges.

Output: Maps C, P , R, L and Set EO of outgoing inter-partition edges.
Auxiliary: Priority queue Q.

1. Set Q← ∅, EO ← ∅.
2. If S 6= ∅ then
3. For each pixel s ∈ I′, do
4. Set C(s)←∞, P (s)← nil , R(s)← s and L(s)← nil .
5. For each pixel s ∈ S, do
6. Set C(s)← f(〈s〉) and L(s)← L0(s).
7. Insert s in Q.
8. For each edge 〈s, t〉 ∈ EI , do
9. Compute cost← f(P ∗(s) · 〈s, t〉).
10. If cost < C(t) or P (t) = s then
11. Set C(t)← cost, P (t)← s, R(t)← R(s) and L(t)← L(s).
12. Insert t in Q.
13. While Q 6= ∅, do
14. Remove a pixel s from Q, such that C(s) is minimum.
15. For each t such that (s, t) ∈ A, do
16. If t ∈ I′ then
17. Compute cost← f(P ∗(s) · 〈s, t〉).
18. If cost < C(t) or P (t) = s then
19. If t ∈ Q then remove t from Q.
20. Set P (t)← s, C(t)← cost, R(t)← R(s), L(t)← L(s).
21. Insert t in Q.
22. Else Insert 〈s, t〉 in EO.

The DIFT is unable to tell whether the algorithm is on the first iteration,
therefore the initial state of the forest must be set before the first iteration.
In the PIFT, the seed set S will only be non-empty in the first iteration.
We use this property to initialize the partition’s forest to trivial paths with
infinite costs in Lines 2–4. Lines 5–7 queue and initialize the seed pixels in
the same way the IFT does. Lines 8–12 process the incoming inter-partition
edges EI . Edges that offer lower costs to their endpoints or belonged to the
previous forest are queued for propagation. If multiple edges in EI reach
the same endpoint, the edge that provides the lower cost for the endpoint
takes precedence. The main loop in Lines 13–22 is very similar to the
main loop of the DIFT, with the addition of the partition test t ∈ I′ in
Line 16. Edges within the current partition are processed normally. Inter-
partition edges are added to the outgoing edge set EO (Line 22). Note that
the cost computation in Line 9 may require additional information about
P ∗(s), which can contain pixels of several partitions. All path information
required to compute f(P ∗(s) · 〈s, t〉) must be passed along with the set EI .
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For fmax, only C(s) is required. For feuc, only R(s) is required. Since L(s)
may be propagated in Line 11, it must also be part of the input. Passing
each element of EI as {s, t, C(s), R(s), L(s)} is enough to compute the PIFT
with either fmax or feuc. The PIFT algorithm (Algorithm 6) that computes
the IFT of an image I from its partitions is shown below.

Algorithm 6. Partitioned IFT.

Input: Image I, Path-cost function f , Adjacency relation A, Set S of
seed pixels, Seed label map L0, Number of partitions NP .

Output: Cost map C, Predecessor map P , Root map R, Label map L.
Auxiliary: Edge sets E, E ′, E ′′ and E ′′′, Seed set S ′.

1. Set E ← ∅.
2. Split I in NP partitions I[1] . . . I[NP ].
3. For i = 1 to NP , do
4. Set S ′ = {s | s ∈ S ∧ s ∈ I[i]}.
5. Set (C[i], P [i], R[i], L[i], E ′)←

Partition-IFT(I[i], C[i], P [i], R[i], L[i], f,A,S ′, L0, ∅).
6. Set E ← E ∪ E ′.
7. Repeat
8. Set E ′′′ ← ∅.
9. For i = 1 to NP , do
10. Set E ′′ = {〈s, t〉 | 〈s, t〉 ∈ E ∧ t ∈ I[i]}.
11. Set (C[i], P [i], R[i], L[i], E ′)←

Partition-IFT(I[i], C[i], P [i], R[i], L[i], f,A, ∅,nil , E ′′).
12. Set E ′′′ ← E ′′′ ∪ E ′.
13. Set E ← E ′′′.
14. Until E = ∅.
15. Set C ← ∪NPi=1C[i], P ← ∪NPi=1P [i], R← ∪NPi=1R[i] and L← ∪NPi=1L[i].

Lines 1–2 initialize the inter-partition edge set E and split the input
image in NP partitions. The loop in Lines 3–6 run the first IFT iteration
on each partition. All inter-partition edges are accumulated in the set E .
The loop in Lines 7–14 run the remaining IFT iterations on the partitions,
until no propagation occurs and the set E of inter-partition edges is empty
(Line 14).

For parallel architectures, both loops (Lines 3–6 and 7–14) can be done
in parallel. For distributed systems, the executions of Partition-IFT (Al-
gorithm 5) can be performed as remote procedure calls. Note that the
partitioned maps (C[i], P [i], R[i] and L[i]) are only needed at the end of
the algorithm, to compose the final IFT maps. In a distributed implemen-
tation, these maps can be kept on the remote processing nodes and do not
need to be transferred at each call to Partition-IFT, as they are not modified
by the caller.

Performance Considerations. The overall number of pixels processed
by the PIFT is larger than |I|. After the loop of Lines 3–6 of Algorithm 6,
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the PIFT has already processed |I| nodes. However, the number of pixels
processed by the loop of Lines 7–14 decreases at each iteration, and the
algorithm converges rapidly to the optimum path forest. The number of
PIFT iterations — i.e., one iteration of the loop of Lines 3–6 plus the number
of iterations of the loop of Lines 7–14 — is bounded by the maximum number
of inter-partition edges contained by an optimum path, plus one. Each
inter-partition edge postpones the resolution of the optimum path to the
next PIFT iteration. Figure 2 illustrates some examples. In an Euclidean
distance transform (Figure 2(a)), all paths flow away from the roots, and a
path may cross at most NP − 1 partition boundaries, requiring at most NP
PIFT iterations. For path cost functions like fmax, there is no restriction
to the shape of optimum paths, and cases like the one in Figure 2(b) can
occur. However, as the number of iterations increases, the number of pixels
processed by each iteration tends to decrease, and the PIFT converges more
rapidly to the optimum forest.

(a) (b)

Figure 2. Partition crossings and PIFT iterations: In the PIFT-EDT, paths cross
at most NP − 1 partition boundaries. In (a), P ∗(p) crosses 2 boundaries to reach
p from a. The numbers are the iteration in which the path segment is propagated.
(b) For general path-cost functions, a path may cross partition boundaries several
times.

4. Experimental results

We implemented the PIFT as a client-server system, with a simple TCP
stream-based protocol for communication between the master client that
executes Algorithm 6 and the distributed servers that execute Algorithm 5.
In our implementation, the image is always split in equal-sized partitions,
using the x coordinate to separate partitions (such as in Figure 1(a)). We
chose 3 applications to evaluate the PIFT:

1. WS-BRAIN: Watershed-based segmentation of a 3D MR image of the
brain, using f = fmax and A =6-neighborhood adjacency. Seeds were
selected interactively in the background and in the brain. The gradient
intensity was computed by a Gaussian enhacement filter followed by
morphological gradient computation [6]. The size of the image is 356×
356× 241, with a voxel size of 0.70mm3 (Figure 3(a–c)).
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2. EDT-RND: Euclidean distance transform of 1000 random points within
a 2563 volume, using f = feuc and A =26-neighborhood (Figure 3(d)).

3. EDT-BRAIN: Euclidean distance transform using the border of the
brain object (segmented in the first application) as seed set (|S| =
355, 556). f = feuc, A =26-neighborhood and volume size is 356 ×
356× 241 (Figure 3(e)).

(a) (b) (c) (d) (e)

Figure 3. Images from the evaluation applications: (a) Slice from the WS-BRAIN
input image. (b) gradient intensity of (a). (c) 3D renderization of the WS-BRAIN
result. (d) Visualization of the discrete Voronoi diagram, result of the EDT-RND.
(e) Slice from the distance map computed in EDT-BRAIN.

First, we measured the processing overhead of the PIFT as the number of
partitions (NP ) increases. We computed the 3 applications with the PIFT,
using from 1 to 10 partitions. Table 1 and Figure 4 present the number of
nodes processed in each case and the upper bound for the speedup factor.
These results indicate that a 10-way parallel system may be able to offer a
speedup factor of 6.60 to the EDT computation, and a factor of 2.34 to the
Watershed transform on these instances of problems.

The EDT computations required at most 4 iterations before halting.
PIFTs based on fmax are less efficient, since they allow free-form paths that
can traverse several partitions. This can be noticed by the irregularity and
increased slope of the plot in Figure 4(b), as compared to Figure 4(a). The
WS-BRAIN PIFTs required at most 23 iterations to converge. The number
of processed nodes grows linearly with the number of partitions. In real
data with non-uniform distributions (WS-BRAIN and EDT-BRAIN), bad
choices of partition boundaries may increase the number of processed nodes,
such as in the NP = 4 and NP = 8 cases of EDT-BRAIN and NP = 5 of
WS-BRAIN.

In a second set of experiments we used the PIFT to compute EDT-
RND, EDT-BRAIN and WS-BRAIN in two parallel systems: a PC with
2 CPUs (Athlon MP 1800+@1150 MHz) and 2 GB of RAM, and a Com-
paq AlphaServer GS140 6/525 with 10 CPUs (Alpha EV6@525 MHz) and
8 GB of RAM. Table 2 presents the results. On the EDT applications, we
achieved speedup factors very close to the measured upper bounds (Table 1)
for NP = 2 and NP = 4. On other hand, there was little or no speedup for
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Table 1. Number of processed nodes and upper bound for the speedup factor in
each application, using up to 10 partitions.

NP
WS-BRAIN EDT-RND EDT-BRAIN

Nodes Speedup Nodes Speedup Nodes Speedup

1 30.5×106 1.00 16.8×106 1.00 30.5×106 1.00

2 48.6×106 1.25 17.3×106 1.94 31.5×106 1.93

3 59.0×106 1.55 17.7×106 2.84 34.2×106 2.67

4 62.7×106 1.94 18.2×106 3.69 39.6×106 3.08

5 76.7×106 1.98 18.6×106 4.51 37.8×106 4.03

6 75.1×106 2.43 19.2×106 5.25 38.7×106 4.72

7 92.2×106 2.31 19.7×106 5.96 42.8×106 4.98

8 98.1×106 2.48 20.1×106 6.68 46.8×106 5.21

9 106.5×106 2.57 20.5×106 7.37 42.2×106 6.50

10 130.2×106 2.34 21.0×106 8.00 46.2×106 6.60

(a) (b)

Figure 4. Number of processed nodes vs. number of partitions for (a) EDT-RND,
EDT-BRAIN and (b) WS-BRAIN.

the watershed application. Our prototype implementation uses a naive com-
munication protocol with no data compression. Besides that, the edge set
transfers of Lines 5 and 11 of Algorithm 6 were implemented in a sequential
way, and instances with a large number of partitions and/or a large number
of PIFT iterations (such as WS-BRAIN with NP = 10) performed poorly
because the CPUs remained idle while waiting for the client to complete the
sequential edge set transfers.
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Table 2. PIFT performance on two parallel computer systems. Times are given
in seconds.

System NP
WS-BRAIN EDT-RND EDT-BRAIN

Time Speedup Time Speedup Time Speedup

Dual Athlon
1 258.1 1.00 195.9 1.00 459.5 1.00

2 242.9 1.06 106.2 1.84 246.3 1.87

10-CPU GS140

1 280.6 1.00 228.8 1.00 611.4 1.00

2 284.3 0.99 126.6 1.81 324.2 1.89

4 226.2 1.24 73.0 3.13 274.3 2.23

8 249.3 1.13 49.3 4.64 214.1 2.86

10 336.4 0.83 47.9 4.78 197.7 3.09

5. Conclusion and future works

We introduced the Partitioned Image Foresting Transform, an algorithm
that computes minimum-cost path forests as a set of independent DIFTs [6,
9] in partitions of the input image. The PIFT is useful for taking advan-
tage of parallel computer systems and for computing IFTs in computer
systems with limited memory, such as handhelds and embedded systems.
The PIFT is applicable to any IFT-based operator, and therefore can be
readily employed to parallelize morphological reconstructions [8], watershed
transforms [2,3,6,15], distance transforms [5,9] and skeletonizations [7,14],
among other operators. It is a trend in microprocessor technology to com-
pensate CPU speed limitations by producing multi-core CPUs. The PIFT
is an important contribution that allows existing image processing applica-
tions to use modern hardware efficiently with minimum effort.

We implemented a prototype PIFT system with a simple client-server
architecture built on top of TCP streams. Even with no data compression
and with some inneficient network operations, we achieved speedup factors
very close to the expected upper bounds for EDT operations. PIFT-based
watershed segmentation performed poorly due to the inneficiency of edge
set transfers in our prototype. With a better protocol, the PIFT should be
able to reach speedup factors closer to the upper bounds in Table 1.

Future works include: development of better protocols for implemen-
tation of the PIFT in parallel systems, evaluation of the speedup bounds
for specific operators – such as the watershed transform – and investigation
of enhancements to the PIFT such as partitioning schemes and iteration
scheduling among nodes.
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Abstract The upper-weighted sets of a signal are the sets of points with
weight above a given threshold. The components of the upper-
weighted sets, thanks to the inclusion relation, can be organized
in a tree structure, which is called the component tree. In this
work, we present a linear time and space algorithm to compute the
component tree of one-dimensional signals. From this algorithm
we derive an efficient gray-level image multithresholding method,
which is based on the hypothesis that objects which appear on an
image can be represented by salient classes present in the histogram
of this image. These classes are modelled as the most significative
components of the histogram’s component tree. We show results of
the proposed method and compare it with classical methods.

Keywords: component-tree, weighted ordered sets, multithresholding.

1. Introduction

The upper-weighted sets of a signal are the sets of points with weight above
a given threshold. The components of the upper-weighted sets, thanks to
the inclusion relation, can be organized into a tree structure, that is called
the component tree. The component tree captures some essential features
of a signal. It has been used (under several variations) in numerous appli-
cations including image filtering and segmentation [5], video segmentation
[13], image registration [9], image compression [13]. In the literature, there
are several algorithms to compute the component tree [2, 8, 10, 13]. The al-
gorithm with the best time complexity to compute the component tree for
N dimensional signals (e.g., a mapping from ZN to Z, where N ∈ N) was
recently proposed in [10] and it is quasi linear.

In this work, we propose a time and space linear algorithm to com-
pute the component tree of a weighted ordered set (WOS), i.e., a model
of 1D signals. As a possible application, we propose a gray-level image
multithresholding method for image segmentation, which is based on the
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hypothesis that objects which appear on an image can be represented by
salient classes present in the histogram of the image. These salient classes
are modelled as the most significative components of the component tree,
where the importance corresponds to the volume attribute.

The remaining of this paper is organized as follows. In Section 2, we
introduce definitions for WOS and define the component tree in this frame-
work. An algorithm to compute the component tree in linear time and space
for WOS is presented in Section 3. In Section 4, we introduce a new method
for gray-level image multithresholding. An experimental comparison with
classical methods is performed. In Section 5, conclusions are pointed out.

2. Weighted ordered sets and the component tree

In this section we introduce the notion of WOS, which allows us to model
1D signals, and the component tree of such WOS.

2.1 Basic notions for ordered set

Let P be a finite set of points and let ≺ be a binary relation on P (i.e.,
a subset of the Cartesian product P × P ) which is transitive ((x, y) ∈≺
, (y, z) ∈≺⇒ (x, z) ∈≺), and trichotomous (i.e., exactly one of (x, y) ∈≺
, (y, x) ∈≺ and x = y is true). The relation ≺ defines an (total) order on P ,
and the pair (P,≺) is a (totally) ordered set. Let (P,≺) be an ordered set
and let x, y, z ∈ P . If (x, y) ∈≺ and there is no z such that (x, z) ∈≺ and
(z, y) ∈≺, then we say that y is the successor of x and x is the predecessor
of y. Let (P,≺) be an ordered set. Let X = {x0, x1, ..., xn} be a subset of
points of P where x0, x1, ..., xn are arranged in increasing order. If for any
i ∈ [1, n], xi is the successor of xi−1, then we say that X is a connected set.
We also say that x0 and xn are the starting and the ending points of X,
respectively.

2.2 Basic notions for weighted ordered set

We denote by F(P,D), or simply by F , the set composed of all mappings
from P to D, where D is any set equipped with a total order e.g., the
set of rational numbers or the set of integers). For a mapping F ∈ F ,
the triplet (P,≺, F ) is called a weighted ordered set (WOS). For a point
p ∈ P , F (p) is called the weight (or level) of p. Let F ∈ F and h ∈ D, we
define the h upper-weighted set of F , denoted by Fh, as {p ∈ P |F (p) ≥ h}.
A connected set X of an upper-weighted set Fh, which is maximal (i.e.,
X = Y whenever X ⊆ Y ⊆ P and Y is connected), is called a (h-weighted)
connected component (of F ). A h-weighted connected component of F that
does not contain a (h + 1)-weighted connected component of F is called
a (regional) maximum of F . We define hmin = min{F (p)|p ∈ P} and
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Figure 1. A component tree example. (a) A weighted ordered set (P,≺, F ) and its
upper-weighted sets at weights 0, 1, 2, 3, 4 and 5. (b) The associated component
mapping M . (c) The component tree C(F ) of F .

hmax = max{F (p)|p ∈ P} as the minimum and the maximum weights in
the mapping F , respectively.

Figure 1(a) shows a WOS (P,≺, F ) with 16 points and the 6-upper-
weighted sets of F , from hmin = 0 to hmax = 5. The set F5 is made of
two connected components which are regional maxima of F . The set F3, in
turn, is made of three connected components - one of them being a regional
maximum of F .

2.3 Component tree

From the example shown in Figure 1(a) we observe that the weighted con-
nected components of the different upper-weighted sets may be organized
to form a tree structure, thanks to the inclusion relation.

Let F ∈ F and let s ⊆ P be a connected component of F . We set
f(s) = max{h|s is a (h-weighted) connected component of F}. Note that
f(s) = min{F (p)|p ∈ s}. Let h = f(s), we say that s is a (h-weighted)
(proper) component of F . We define C(F ) as the set of all components of
F . Let F ∈ F and let x and y be distinct elements of C(F ). We say that
x is the parent of y if y ⊂ x and there is no other z ∈ C(F ) such that
y ⊂ z ⊂ y. In this case, we also say that y is the child of x. In a parent-
children relationship, C(F ) forms a directed tree named component tree of
F , which will also be denoted by C(F ) by abuse of terminology.

Any element of C(F ) is called a node. The node that has no parent,
in turn, is called the root of the component tree. In the following, for the
sake of algorithm description, we denote by ch,n the (n+ 1) -th h-weighted
component of C(F ), where the order of the h-weighted components is derived
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from the order of their starting point in (P,≺). In applications, we need
to recover the component to which a given point belongs to. For such aim,
let us consider the component mapping M defined for any point p ∈ P by
M(p) = [h, n], where h = f(p) and ch,n contains p.

Figure 1(c) and Figure 1(b) show the component tree of the WOS de-
picted in Figure 1(a) and the associated component mapping, respectively.
The component c0,0 at weight 0 is associated with the node [0, 0], the com-
ponent c1,0 at weight 1 is associated with the node [1, 0], and so on.

3. Linear component tree algorithm for WOS

3.1 Description

In this work, we build the component tree C(F ) of a WOS (P,≺, F ) (i.e.,
1D signal) by detecting the components and the parent-children relationship
among them. Simultaneously, we build its respective component mapping
M . The components of C(F ) are detected in the WOS by analyzing the con-
nected components of F . In an 1D space, the connected components of the
upper-weighted sets can be determined by their limits, i.e., the starting and
the ending points of the connected components. The connected component
limits of upper-weighted sets provide the component limits and, therefore,
information for the detection of the components.

In fact, in order to build the component tree we do not need to know
exactly the position of the components in the WOS. What we need is to
know the components hierarchy, since they respect an inclusion relation. In
order to build the component tree in linear time, we propose to analyze
the WOS from the starting point up to the ending point. By processing
the WOS point by point, we determine every connected components and,
consequently, the components present in the WOS with a single scan. In this
same scan, we can also establish the hierarchy of the components necessary
to create the parent-children relationship. Adopting this approach we can
compute the component tree for 1D signals in linear time.

The proposed algorithm roughly works as follows. For each point in the
WOS, it checks if the point is a starting point, an ending point, or an inner
point (a point which is neither a starting nor an ending point) of a compo-
nent of F . During this analysis of the WOS points, if a component indicated
by a point is found to have descendants it is stored into a stack. The stack
plays a fundamental role to maintain the hierarchy of the component tree,
as the parent-children relationships are created as edges between parent and
child components. In the following paragraphs we explain in details how the
component tree and component mapping are build.

The first point, or the starting point p in the WOS (P,≺, F ) receives a
special treatment. It belongs to the first component at weight ph = F (p),
and receives the label 0 at the weight ph. Hence, the node [ph, 0] is associated
with the point p on the component mapping. Once the starting point has
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been analyzed, we consider the next points. For the sake of simplicity,
consider the point p as the current point being analyzed and suppose we
want to make decisions about the component, indicated by its predecessor
r. We first analyze the weights ph = F (p) and rh = F (r), we can find three
possibilities: ph > rh, ph = rh, and ph < rh, as shown in Figures 2(a), 2(b),
and 2(c).

In the first case, where ph > rh (Figure 2(a)), we create a new component
at weight ph, that is, p is the starting point of a component and receives a
new label pn at weight ph. The node [ph, pn] is associated with the point p on
the component mapping. Since the node [rh, rn] has at least one descendant,
i.e., [ph, pn], it will be inserted into the stack. Note that no other component
with weight smaller or equal to ph will be inserted into the stack while the
component [ph, pn] is there.

In the second case, where ph = rh (Figure 2(b)), we know that the point
p belongs to the same component indicated by the point r. Therefore, the
node [rh, rn] is associated with the point p, which is the same node as the
one which contains r, in the component mapping.

In the last case, where ph < rh (Figure 2(c) — an ending or inner point),
we know for certain that the component to which r belongs to is already
analyzed, i.e., the point r is the ending point of the component. In this
situation, we have to decide which component is the parent of the node
[rh, rn]. This decision is based onto the relationship of the nodes in the
stack (nodes with descendants to be analyzed) and the node [ph, pn]. Four
scenarios might appear here, as shown in Figures 2(c), 2(d), 2(e), and 2(f).

The first scenario involves the stack being empty. If there are no elements
left on the stack (Figure 2(c)), we conclude that the node [ph, pn] is the
parent of [rh, rn]. In this situation, we know that the point p belongs to
a new component, which is assigned a new label, i.e., pn, at weight ph.
Hence, the node [ph, pn] is associated with the point p on the component
mapping. Note that in this case, the point p is not the starting point of this
component.

In the other three scenarios assume that there are elements left on the
stack, and consider that the stack head element corresponds to the node
[qh, qn]. If [qh, qn] has its weight qh smaller than ph, i.e., ph > qh (Fig-
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Figure 2. Possible predecessors (r’s) of p and the disposition of p in relation to
the stack (q’s): (a) ph > rh; (b) ph = rh; (c) ph < rh; (d) ph > qh; (e) ph = qh;
(f) ph < qh.
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ure 2(d)), we have the same situation as when there are no elements on the
stack.

In contrast, if [qh, qn] has its weight qh equal to ph, i.e., ph = qh (Fig-
ure 2(e)), we observe that the point p belongs to the same component as q,
i.e., ph = qh and pn = qn (the node [ph, pn] is associated with the point p on
the component mapping). Hence, the node [ph, pn] (or [qh, qn]) is the parent
of [rh, rn]. In this case, the node [qh, qn] is removed from the stack, since the
possible descendant components between the points q and p have already
been computed. Nevertheless, the node [qh, qn] can be inserted again into
the stack later.

The last possible scenario shows that the node [qh, qn] has its weight qh
greater than ph, i.e., ph < qh (Figure 2(f)). Here we have that [qh, qn] is the
parent of [rh, rn]. The node [qh, qn] is removed from the stack, since [ph, pn]
has a weight smaller than it. This is necessary to keep the consistency of
the stack.

After the node is removed from the stack, we need to find its parent.
The node [ph, pn] or the new node on the stack head are candidate parents
of the removed node [qh, qn]. The decision about which component is the
parent is done by naming the removed component [qh, qn] as [rh, rn], and
starting the decision process again according to the situations presented in
Figures 2(c), 2(f), 2(d), and 2(e), as described previously.

Once all points in the WOS were processed, we can still have some
components left on the stack. In this case, the component on the stack
head is the parent of the component pointed by the ending point of the
WOS. The next component on the stack, if there is any, is the parent of the
stack head, and so on. These components are removed from stack one by
one, and edges are inserted between the parent and child components such
that the parent-children relationship is finished. When the stack is empty
the component tree is complete.

3.2 Implementation

Algorithm ?? shows an implementation (with low level details) of the al-
gorithm described in Section 3.1 to compute in linear time and space the
component tree C(F ), the component mapping M of a WOS (P,≺, F ). The
component tree structure (CT ) obtained from the algorithm is composed of
vectors which store pairs of the child and parent components (the parent-
children relationship). Another vector, nnodes, composes the CT structure.
It is used to indicate the number of nodes at each weight. Thus, the vector
nnodes is used to generate unique labels for the new nodes at each weight
during the processing of the WOS. The stack used, CP (to store pairs
[qh, qn]), implement four basic operations: StackPush, StackPop, Stack-
Empty, and StackView. In order to build the parent-children relationship of
the component tree, the function InsEdge is used to insert edges between
nodes in the CT structure.
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Algorithm 1: BuildComponentTree.

Data: (P ,≺, F ) - weighted ordered set with n points
Result: CT - component tree structure
Result: M - a map from P to [hmin...hmax, 0...n− 1]
CT.nnodes[F (0)] + + ; M(0)← [F (0), 0];1

for i← 1 ; i < n ; i+ + do2

ph ← F (i) ; [rh, rn]←M(i− 1);3

if (ph > rh) then4

pn ← CT.nnodes[ph] + + ; M(i)← [ph, pn];5

StackPush(CP, [rh, rn]);6

else if (ph = rh) then7

pn ← rn ; M(i)← [ph, pn];8

else if (ph < rh) then9

while (!StackEmpty(CP )) do10

[qh, qn]← StackView(CP );11

if (ph ≥ qh) then break;12

InsEdge(CT, [qh, qn], [rh, rn]) ;13

StackPop(CP );14

[rh, rn]← [qh, qn];15

if (StackEmpty(CP ) and (ph < rh)) or (ph > qh) then16

pn ← CT.nnodes[ph] + + ; M(i)← [ph, pn];17

InsEdge(CT, [ph, pn], [rh, rn]);18

else if (ph = qh) then19

pn ← qn; M(i)← [ph, pn];20

InsEdge(CT, [ph, pn], [rh, rn]);21

StackPop(CP );22

while (!StackEmpty(CP )) do23

[qh, qn]← StackPop(CP );24

InsEdge(CT, [qh, qn], [ph, pn]);25

[ph, pn]← [qh, qn];26

DefineRoot(CT, [ph, pn]);27

3.3 Complexity analysis

Initially, we stated upper bounds for the data structures used in Algo-
rithm ?? in order to perform the space complexity (SC) analysis. Let n
denote the numbers of points in the WOS (P,≺, F ), i.e., n = |P |, and let
m denote the ordered set amplitude, i.e., m = hmax−hmin + 1. The size of
vector nnodes corresponds to the domain’s size of the mapping F , i.e., the
SC of nnodes is O(m). A WOS with n points can have a maximum of n
components (when each component is composed of a single point). There-
fore, the maximum size of the stacks is the number of points in the ordered
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set, i.e., the SC of CP is O(n). Now we consider the rooted tree. It is a
tree with a root node, where every node has a single parent, but the root
node does not have a parent. From that we have that all rooted trees with e
nodes have e−1 edges. As a component tree is a rooted tree, the component
tree of a WOS can have at maximum n − 1 edges. The vectors inside the
CT structure have a maximum of n elements (n− 1 elements and the field
for the root node), and therefore the SC of these vectors is O(n). After this
analysis of data structures used in Algorithm ?? we can state that the SC
of the algorithm proposed is O(max(n,m)), i.e., it is linear.

Now considering a time complexity (TC) analysis we have that all func-
tions implemented in the Algorithm ?? are atomic, i.e., they can be executed
in O(1). Then, to obtain the TC of Algorithm ?? we have to analyze the
two main loops. The first loop (for in Line 2) is executed n− 1 times while
analyzing n− 1 points. Although this loop uses a stack, the only insertion
point into the stack CP is on the line 6. This fact confirms the SC O(n) of
the stack CP . Continuing on the loop presented in Line 2, we have an inner
loop (while) guided by the stack CP in Line 10. This loop has an amortized
TC at maximum n−1, since each time it is analyzed i.e., the nodes [ph, pn],
[qh, qn] are compared) one edge will be inserted into the tree. The insertion
will be done by either the loop itself (Line 13) or the conditions of the others
two conditionals (when ph > qh in Line 18 and when ph = qh in Line 21).
Then, the first loop has a linear TC,i.e., i.e., O(n). The second main loop
(while) in Line 23 is executed whereas there are elements on the stack.
Every time it is executed one element is removed from the stack. Thus this
loop can be executed at maximum n−1 turns, i.e., the maximum stack size.
Then, the second loop also has TC of O(n). Therefore, the algorithm has a
linear TC, i.e., O(n).

3.4 Attributes

The component tree based approaches use measures extracted from the
nodes of the tree structure. These measures are called attributes. Let
[h, n] ∈ C(F ). We define the height, the surface, and the volume attributes
of the component ch,n as being:

ht(ch,n) = max
x∈ch,n

{F (x)− hp},

s(ch,n) = cardinality(ch,n),

v(ch,n) =
∑
x∈ch,n

(F (x)− hp),

respectively, where hp is the parent weight of ch,n. It is possible to com-
pute, simultaneously, the component tree and these attributes of compo-
nents without changing the time complexity of the algorithm.
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4. Multithresholding

We now turn towards an application for the 1D component tree. Segmen-
tation by multiple-threshold selection, or simply multithresholding, relies
to the assumption that homogeneous regions present in the image can be
detected in the histogram of the image. This segmentation method consists
of selecting threshold levels by analyzing the histogram of the image. These
thresholds determine histogram classes, and therefore any image pixel is
classified according to the histogram class it belongs to.

In this work, we propose a method for multithresholding gray-level im-
ages in K levels. This method is based on the hypothesis that objects
which appear on an image can be represented by salient classes present in
the histogram of the image. These classes can be represented as the K most
significative components extracted from component tree of the histogram of
the image (an histogram is modelled as a WOS) - see Appendix for details.

The proposed method can be described in five main steps: 1) Histogram
computation from gray-level image; 2) Computation of the Component tree
of the histogram of the image; 3) Identification of the salient markers present
in the histogram by means of the extraction of K most significative com-
ponents of the histogram’s component tree; 4) Histogram segmentation by
watercourse transform (i.e., the dual of the watershed transform [1,3]) using
the salient markers extracted in step 3; 5) Image segmentation by applying
the segmented histogram to the original image.

Figure 3 shows the application of the proposed method to six classical
images, namely: lena, goldhill, fruits, barbara, cameraman, and house. The
first four images are of size 512×512 pixels and the last two of size 256×256
pixels. They are shown in the first column of Figure 3. We multithreshold all
the histograms of image in five classes, and therefore the image in five levels.
We chose the same number of classes for all images because all of them have
at least five concise regions. On the other columns of Figure 3, we have,
starting from the second column, the histograms of the input images, the
five most important leaf components of the histograms of images and their
not overlapped ascendant components coverage (as lighter as important -
remark that the histograms are not smoothed), the segmented histograms
in five classes (the classes are separated by vertical lines), and the output
images with five levels (where the level for each histogram region was chosen
as the nearest integer of the mean level in the respective histogram region).

We perform a quantitative comparison of our method, Kapur et al. [6],
Khotanzad and Bouarfa [7], and Otsu [11] using a well-known objective
measure, i.e., the Peak Signal to Noise Ratio (PSNR) [12]. The results
are shown in Table 1. We observe that our method obtains PSNR values
close to the PSNR value achieved by the other methods on four images:
lena, barbara, cameraman and house. Indeed, we can see that our method
segments the images in concise/homogeneous regions in 4 out of 6 images.
However, in the goldhill and fruits images (second and third rows) the salient
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Figure 3. Real examples of classical images illustrating our multithresholding
method. Columns from left to right: input original image, input image histogram,
five (5) most important leaf components (maxima), segmented histogram in five
(5) regions, and output segmented image in five (5) levels.

classes of the histograms of images are overlapped, and so our method is
not suitable. In the cases where the histogram hypothesis holds, we argue
that our method segments the images in regions more homogeneous than
the other methods.
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Table 1. PSNR for test images.

Images Kapur Khotanzad Otsu Our method

lena 25.3574 27.0722 28.2001 27.5316

goldhill 21.8978 22.4819 27.0583 21.6181

fruits 20.7996 22.5991 26.3987 19.6554

barbara 25.4540 26.1957 27.1348 26.4002

cameraman 19.3428 25.5831 27.8837 25.2907

house 20.1270 28.2576 29.3351 28.1030

5. Conclusion

In this paper we introduced, described, and illustrated a time and space
linear complexity algorithm to compute the component tree for weighted
ordered sets, i.e., 1D signals.

We proposed a new method for gray-level image multithresholding, based
on the hypothesis that objects which appear on an image can be represented
by salient classes present in a histogram of the image. These salient classes
were modelled as the most significative components, where the importance
corresponds to the volume attribute. Experiments showed that our method
is competitive compared to classical ones when the hypothesis hold.

For future works, we plan to establish some methodology to select au-
tomatically the number of the most significative components present in the
component tree, yielding an automatic multithresholding algorithm with re-
spect to the number of classes in the output image. We also plan to extend
our method to segment color images [4].
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Appendix: Extracting the most significative
components

In introduction, we have mentioned as simple use of the component tree the
image filtering (removing nodes of the tree whose attribute value is below
a given threshold). Here, we show a more advanced use for the component
tree; determination of the K most significative components of the compo-
nent tree. We hypothesized the volume attribute can model the importance
of a salient region present in the histogram of the image. By using the
tree, this task reduces to the search for the K nodes that have the largest
attribute values and are not bound with each other (even transitively) by
the inclusion relation. An algorithm to achieve this task is proposed in
[10, Algorithm 3]. Its complexity is O(sort(n) + n), where n is the number
of points in the WOS and sort(n) is the complexity of the sorting algorithm
(it can be linear). Once the K most significative components are selected,
we go back to the initial component tree and take as markers for the salient
classes the leaf components corresponding to those K components. These
markers are used in histogram segmentation by the watercourse transform.

Note that similar results could be obtained by performing attribute
based operations using several volume threshold values.
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Abstract This paper presents a concurrent implementation of a previously
developed Dual-Input Max-Tree algorithm that implements anti-
extensive attribute filters based on second-generation connectivity.
The paralellization strategy has been recently introduced for ordi-
nary Max-Trees and involves the concurrent generation and filter-
ing of several Max-Trees, one for each thread, that correspond to
different segments of the input image. The algorithm uses a Union-
Find type of labelling which allows for efficient merging of the trees.
Tests on several 3D datasets using multi-core computers showed a
speed-up of 4.14 to 4.21 on 4 threads running on the same num-
ber of cores. Maximum performance of 5.12 to 5.99 was achieved
between 32 and 64 threads on 4 cores.

Keywords: second-generation connectivity, Dual-Input Max-Tree, attribute fil-
ter, parallel computing, shared memory.

1. Introduction

Attribute filters [2, 9] are a class of shape preserving operators. Their key
property is that they operate on image regions rather than individual pix-
els. This allows image operations without distorting objects, i.e., they either
remove or preserve objects intact, based on some pre-specified property. At-
tribute filters can be efficiently implemented using the Max-Tree algorithm
[9], or similar tree structures [3, 12]

Image regions in mathematical morphology are characterized by some
notion of connectivity, most commonly 4- and 8-connectivity. This yields
an association between connectivity and connected operators which is ex-
tensively discussed in [1, 8, 10]. These papers also provide extensions to
these basic connectivities known as second-generation connectivity. A gen-
eral framework and algorithm is presented in [7]. The algorithm referred to
as the Dual-Input Max-Tree supports the mask-based connectivity scheme,
for which we give a concurrent implementation in this paper. It is based on
the parallel Max-Tree algorithm in [14], which builds individual Max-Trees
for image regions concurrently, and merges these trees efficiently.
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2. Attribute filters

Attribute filters are based on connectivity openings. In essence, a con-
nectivity opening Γx(X) yields the connected component containing the
point x ∈ X and ∅ otherwise. A connectivity opening is characterized by
the following properties; for any two sets X, Y it is anti-extensive i.e.,
Γx(X) ⊆ X, increasing i.e., if X ⊆ Y ⇒ Γx(X) ⊆ Γx(Y ), and idempotent
i.e., Γx(Γx(X)) = Γx(X). Furthermore, for all X ⊆ E, x, y ∈ E,Γx(X) and
Γy(X) are equal or disjoint.

A general approach in deriving second-generation connectivity openings
using arbitrary image operators is given in [7]. A mask-based connectivity
opening is defined as:

ΓMx (X) =


Γx(M) ∩X if x ∈ X ∩M , (1a)

{x} if x ∈ X \M , (1b)

∅ otherwise. (1c)

where M is an arbitrary, binary mask image.
We can define a number of other connected filters based on a connectivity

opening that work by imposing constraints on the connected components it
returns. In the case of attribute openings such constraints are commonly
expressed in the form of binary criteria which decide to accept or to reject
components based on some attribute measure.

Attribute criteria Λ are put in place by means of a trivial opening ΓΛ.
The latter yields C if Λ(C) is true, and ∅ otherwise. Furthermore, ΓΛ(∅) = ∅.
Attribute criteria are typically expressed as:

Λ(C) = Attr(C) ≥ λ, (2)

with Attr(C) some real-value attribute of C, and λ an attribute threshold.

Definition 1. The binary attribute opening ΓΛ of a set X with an increas-
ing criterion Λ is given by:

ΓΛ(X) =
⋃
x∈X

ΓΛ(Γx(X)). (3)

Many examples are given in [2, 9]. Note that if Λ is non-increasing we
have an attribute thinning ΦΛ [2] instead. An example is the scale-invariant
non-compactness criterion of the form of (2), in which

Attr(C) = I(C)/V 5/3(C), where I(C) =
V (C)

4
+
∑
x∈C

(x− x)2, (4)
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Figure 1. Isosurface projections of a confocal laser scanning micrograph of a
pyramidal neuron and the output of the non-compactness filter (4) based on the
26-connectivity, both at isolevel 1. The first image in the bottom row illustrates
the filter’s performance using closing-based connectivity and the second shows the
difference volumes between two attribute filter results. Various details within the
neuron are lost using the 26-connectivity which are preserved by using a second-
generation connectivity instead. See [7] for details.

with I the trace of the moment of inertia tensor in 3D and V (C) the vol-
ume of a component C [15]. Attribute filters can be operated on sets char-
acterized by second-generation connectivity by replacing Γx with ΓMx in-
stead. The proof of this and a more detailed analysis can be found in [7].
Furthermore, an investigation in optimizing the parameters affecting the
performance of these filters is discussed in [6] An example of attribute thin-
nings using closing-based second-generation connectivity is shown in Fig-
ure 1.

3. The Max-Tree algorithm

The Max-Tree was introduced by Salembier [9] as a versatile structure for
computing anti-extensive attribute filters on images and video sequences. It
is a rooted, unidirected tree in which the node hierarchy corresponds to the
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Figure 2. Example of input signal, peak components, Max-Tree and its encoding
in a par array, in which ⊥ denotes the overall root node, and boldface numbers
denote the level roots, i.e., they point to positions in the input with grey level
other than their own.

nesting of peak components given a gray-scale image. A peak component Ph
at level h is a connected component of the thresholded image Th(f). Each
tree node Ckh (k is the node index) contains only those pixels of a given peak
component which have gray-level h. In addition each node except for the
root, points towards its parent Ck

′

h′ with h′ < h. The root node is defined
at the minimum level hmin and contains the set of pixels belonging to the
background.

The algorithm is a three-stage process in which the construction of
the tree and the computation of node attributes is independent of filter-
ing and image restitution. During the construction stage every pixel vis-
ited contributes to the auxiliary data buffer associated to the node it be-
longs to. Once a node is finalized, its parent inherits these data and re-
computes its attribute. Inheritance in the case of increasing attributes such
as area/volume is a simple addition while for non-increasing attributes such
as the non-compactness measure of (4) the accumulation relies on more
delicate attribute handling functions described in [7].

4. Including union-find in the Max-Tree

The hierarchical queue-based algorithm given by Salembier [9] cannot be
trivially parallellized. In our approach we choose to partition the image
into Np connected disjoint regions the union of which is the entire image
domain. Each region is assigned to one of the Np processors for which a
separate tree is constructed. The non-trivial part of this approach is the
merging of the resulting trees. It is a process that requires (i) the merging of
the peak components P ih, (ii) the updating of the parent relationships, and
(iii) the merging of the attributes of the peak components. Parallellizing
the filtering stage is trivial.

Previously, Najman et al. provided an algorithm to compute the Max-
Tree using union-find [5]. Wilkinson et al. [14] use a different approach, using
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Salembier et al.’s original algorithm [9] and changing the way the labels
indicating node-membership of each pixel were chosen. Instead of using
arbitrary numbers, Wilkinson et al. use the index of the first pixel of a node
as the label. This means that each pixel of a node points to this “canonical
element”, which is referred to as a level root. The level root of a node itself is
given the level root of its parent node as its index. These labels (or actually
parent pointers in union-find terms) are stored in an array denoted par.
Thus, if f(par[x]) 6= f(x), x is a level root. In the algorithm in [14], after
building a tree using a single thread, each par[x] points directly to a level
root: its own if x is not a level root, or to the level root of the parent node.
An example is shown in Figure 2. Once the results of multiple threads are
merged, this is no longer true. Therefore, we implement a function levroot

to find the level root of any pixel. If levroot(x) = levroot(y) x and y
belong to the same node. The implementation of levroot also includes
path compression as in [11].

5. The dual-input mode

As in the sequential case, the structure of the Max-Tree is dictated by the
peak components of the mask volume m rather than the original volume f .
An example is given in Figure 3. The dual-input version of the algorithm
in [14] requires a number dummy nodes which assist in the merging of the
different trees once all the threads return. To do this we double the size of
the par array, and place the volumes f and m side by side in a single block
of memory. In this way f(p+ volsize) = m(p) for all voxels p in the volume
domain. For all p for which f(p) 6= m(p) par(p + volsize) will contain a
valid reference to a level root.

The flooding function proceeds as described in [14] only we modify the
way auxiliary data are handled and add a number of intensity mismatch
checks to conform with the dual-input algorithm. After reaching a given
level lev(=current level in mask m) and before retrieving any of the pixels
available in the queue for that level, we first initialize the auxiliary data
variable attr. It is set to the attribute count of the node corresponding to
the lero[lev]. If an attribute count from a node at higher level is inherited
through parameter thisattr, we update attr. A while loop then retrieves
sequentially the members of the queue and for each one performs the mis-
match check. If f(p) 6= m(p) for a pixel p this signals the case in which p
belongs to the current active node at f(p) through the connected component
at level m(p), i.e., it defines a peak component at level f(p) to which p in the
mask volume is connected. In terms of our parallelizing strategy this means
that it already defines a dummy node at m(p) offset by volsize. We must
then set par(p + volsize) to lero[lev]. We must also create a new node at
level f(p) if none exists, and add p to the node at level f(p). If f(p) > m(p)
p is a singleton (according to (1)). This requires finalizing the node which
is done by setting its parent to lero[lev], setting its auxiliary data to the



454 MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS

P 0
f3

P 0
f2 P 1

f2

P 1
f1P 0

f1

P 0
f0

segment bounds
�
�	

@
@R

P 0
m3

P 0
m2

P 0
m1

P 0
m0

segment bounds
�
�	

@
@R

C0
3

?
C0

2

@@R
C0

1

@@R

C1
1

?

C2
1

��	
C0

0

f m: connectivity mask Max-Tree of f

(standard) (mask-based)

C0
3

?
C0

2

?
C0

1

?
C0

0

C1
2

?
C1

1

@@R

C2
1

��	
C1

0

C3
1

?
C2

0

C0
3

?
C0

2

@@R

C1
2

��	
C0

1

@@R

C1
1

��	
C0

0

C0
3

?
C0

2

@@R
C0

1

@@R

C1
1

?

C2
1

��	
C0

0

partial Max-Trees Merged at level f merged at level m

Figure 3. Dual-Input Max-Tree of 1D signal f using mask m: The attributes of
C0

2 and C1
2 are merged to C0

2 since all pixels at level h = 2 are clustered to a single
peak component. Furthermore C1
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f1. Bottom row: partial Max-Trees of segments of
signal indicated by the dashed lines; merger of partial Max-Trees at level of f at
the boundaries yields standard Max-Tree in this case; merging at level of m at
the boundary yields correct result.

unit measure and clearing lero[f(p)]. Details are given in Algorithm 1.

Otherwise, if f(p) = m(p), it is necessary to check if the lero[lev] ≥
volsize, i.e., if it is a dummy node. If this is the case, we update par[lero[lev]]
to p, and then set lero[lev] to p, effectively setting the level root to a non-
dummy node. The auxiliary data stored in attr are then updated.

For every unprocessed neighbour q of p we determine where to create
a new node. If f(q) = m(q) the new node is q, otherwise q + volsize. If
lero[m(q)] exists, we set par[newnode] to lero[m(q)], otherwise lero[m(q)]
is set to par[newnode]. If m(q) ≥ lev we then enter into the recursion as in
[9, 14].

6. Concurrent merging of Max-Trees

As in regular connectivities, we must now connect the Np Max-Trees. In
[14], this is done by inspecting the pixels along the boundary between the
parts, and performing the connect function on adjacent pixels on either
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Algorithm 1 The flooding function of the concurrent Dual-Input Max-Tree
algorithm.

procedure LocalTreeFlood(threadno, lero, lev, thisattr) =
Initialize auxilliary attribute data attr and merge with thisattr
while (QueueNotEmpty(set, lev)) do

retrieve p from queue at level lev
if f(p) 6= lev then

par[p+ volsize] := lero[lev];
if node at level f(p) exists then

add p to it; par[p] := lero[f(p)];
else

create node at level f(p); lero[f(p)] := p;
end;
if f(p) > lev then (* singleton with parent at lev *)

finalize node; add p to attr; par[p] := lero[lev];
end;

else (* No mismatch *)
if lero[lev] ≥ volsize then (* First pixel at level lev *)

par[lero[lev]] := p; lero[lev] := p;
end;
add p to attr;

end; (* No mismatch *)
end; (* while *)
for all neighbours q of p do

if not processed[q] then
processed[q] := true; mq := m(q);
initialize childattr to empty;
if m(q) 6= f(q) then newnode := q + volsize;
else newnode := q; end;
if lero[m(q)] does not exist then lero[m(q)] := newnode;
else par[newnode] := lero[m(q)]; end;
while mq > lev do

mq := LocalTreeFlood(threadno, lero,mq, childattr);
end;
add any data in childattr to attr;

end;
end; (* for *)
detect parent of lero[lev]
add auxilliary data in attr to auxilliary data of lero[lev]
set thisattr to attribute data of lero[lev]
return level of parent of lero[lev]

end LocalTreeFlood.
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Algorithm 2 Concurrent construction and filtering of the Max-Trees,
thread p.

process ccaf(p)
build dual input Max-Tree Tree(p) for segment belonging to p
var i := 1 , q := p ;
while p+ i < K ∧ q mod 2 = 0 do

wait to glue with right-hand neighbor ;
for all edges (x, y) between Tree(p) and Tree(p+ i) do

if f(x) 6= m(x) then x := x+ volsize;
if f(y) 6= m(y) then y := y + volsize;
connect(x, y) ;

end ;
i := 2 ∗ i ; q := q/2 ;

end ;
if p = 0 then

release the waiting threads
else

signal left-hand neighbor ;
wait for thread 0

end ;
filter(p, lambda) ;

end ccaf.

side of the boundary. This function is shown in Algorithm 3. A proof of the
correctness and a detailed discussion are given in [14]. The key reason why
this works efficiently, is that merging two nodes containing x and y, with
f(x) = f(y) reduces to the assignment:

par[levroot(y)] := levroot(x). (5)

This is easily verified as follows: par[levroot(y)] now points to a pixel with
the same grey level because f(x) = f(y), and levroot(x) = levroot(y)
after assignment (5), so that x and y belong to the same node.

Algorithm 3 Merging two Max-Trees.

Function connect is called by the process concurrent construction and
filter or ccaf(see Algorithm 2), which corresponds to one of the threads of
the concurrent merging algorithm. Each thread p first builds a Max-Tree
for its own sub-domain Vp.

Process ccaf is called after initializing par, the auxiliary data functions
and preparing the thread data. It starts off by first initializing the level root
array lero and hierarchical queue for all gray-levels and finding the minimum
voxel values in f and m. Having got the starting voxel of minimum grey
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Figure 4. Binary tree used for merging domains.

value in m it calls LocalTreeFlood. If the minimum values in f and m
differ, some post-processing as explained in [7] is required.

After this, the sub-domains are merged by means of a binary tree in
which thread p accepts all sub-domains Vp+i with p+i < Np and 0 ≤ i < 2a,
where 2a is the largest power of 2 that divides p. An example of a binary
tree for Np = 8 is shown in Figure 4. Note that odd-numbered threads
accept no sub-domains. A thread that needs to accept the domain of its
right-hand neighbor, has to wait until the neighbor has completed its Max-
Tree computation. Because the final combination is computed by thread
0, all other threads must wait for thread 0 before they can resume their
computation for the filtering phase. This synchronization is realized by
means of two arrays of Np − 1 binary semaphores. The filtering phase is
also fully concurrent, and is identical to that described in [14].

For second-generation connectivity, the difference lies not in the imple-
mentation of connect, but in which pixels need to be merged. Suppose x
and y are adjacent voxels which lie on different sides of the boundary in-
spected by ccaf. If f(x) = m(x) the node in the Max-Tree at level f(x) is
the correct one, as before, otherwise we should start merging at level m(x),
as shown in Figure 3. At the left-hand segment boundary in this figure,
merging at level f(x) ignores the fact that P 0

f2 and P 1
f2 are clustered to-

gether in node C0
2 using connectivity based on mask m. By contrast, at the

right-hand segment boundary, merging from level f(x) would merge nodes
C2

1 and C3
1 , which are considered singletons in the mask-based connectivity.

In the scheme outlined above, this means that we start the merger from x
if f(x) = m(x), and from x + volsize, otherwise. The same holds for y.
Thus the only changes to the ccaf function when compared to [14] lies in
the statements immediately preceding the call to connect.
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Figure 5. Speed-up for volume openings (solid) and non-compactness thinnings
(dashed) as a function of number of threads. The left graph shows the initial,
slightly better than linear (dotted-line) speed-up as we move from 1 to 4 threads.
The right-hand graph also shows the behaviour up to 64 threads.

7. Performance testing and complexity

The above algorithm was implemented in C for the general class of anti-
extensive attribute filters. Wall-clock run times for numbers of threads equal
to 1, 2, 4, 8, 16, 32, and 64 for for two different attributes were determined.
The attributes chosen were volume (yielding an attribute opening) and the
non-compactness measure (4) [15] yielding an attribute thinning.

Timings were performed on an AMD dual-core, Opteron-based machine.
This machine has two dual-core Opteron 280 processors at 2.4 GHz, giving
a total of 4 processor cores, and 8 GB of memory (4 GB per processor
socket). Each timing was repeated 10 times, and the minimum was used
as the most representative of the algorithm’s performance. Five volume
data sets publicly available from http://www.volvis.org were used. All
volumes were 8 bit/voxel sets, comprising 4 CT-scans and 1 MRI scan. Test
were done using volume openings with λ = 100 and ϕ1 with λ = 2.0 and the
subtractive rule. The volume sizes ranged from 22.7 to 128 MB. The speed-
up achieved is shown in Figure 5. As can be seen, the speed-up is slightly
better than linear, as we move from 1 to 4 threads (4.21 ±0.15 for volume
openings and 4.14 ± 0.15 for non-compactness thinning at 4 threads). This
may be due to the fact that more than 4 GB of memory is required when
processing the larger volumes in the set, and therefore the processor doing
the work requires access to the memory bank of the other socket, resulting
in higher latency. As the number of threads exceeds the number of cores,
we still obtain more speed-up, up to 5.99 ± 0.2 at 64 threads for volume
openings, and 5.12 ± 0.27 at 32 threads for non-compactness thinning. In
absolute terms, computing time went from between 20.8 and 128 s down to
between 4.66 and 23.4 s.

The complexity of the algorithm is governed by two main parts: the

http://www.volvis.org
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building phase and the merging phase. Assuming a volume of X ×Y ×Z =
N , in the building phase the time complexity is O(GN/Np), with G the
number of grey levels, and Np the number of processors. This complexity
arises from the O(GN) complexity of Salembier et al.’s Max-Tree algorithm
[4]. If the number of grey levels is large, it may be better to replace this
by Najman and Courpie’s method [5]. The merging phase has complexity
O(GXY logN logNp) if the volume is split up into slices orthogonal to the
Z direction. The logN is due to the fact that we only use path compression,
not union-by-rank. Memory requirements are O(N +G).

8. Conclusions

The speed-up of the algorithm presented is similar to that of the parallel
Max-Tree algorithm in [14]. However, it is about 50% slower in absolute
terms. The speed-up if the number of threads exceeds the number of physical
processors is due to reduced cache thrashing, as is confirmed by profiling. It
also indicates that on machines with more processing cores, a (near) linear
speed up beyond 4 CPUs is expected.

Apart from use in 3D data, the algorithm could be of use in the efficient
implementation of attribute-space connected filters [13], in which the 2D
input image is embedded into a higher-dimensional attribute space, followed
by application of a connected filter in that space.

Given the ready availability of multi-core processors, this algorithm is
not restricted to supercomputers anymore, but will be of use to many, and
in the near future most desktop machines.
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Abstract Mathematical Morphology (MM) is used in medical image analy-
sis for applications such as segmentation and skeletonization. The
available efficient MM methods do not readily adapt to true Eu-
clidean disc/sphere structuring elements (SE), which we are par-
ticularly interested in, without sacrificing accuracy for efficiency.
An efficient method for MM using convex/symmetric SE, including
Euclidean discs/spheres, is presented. Performance results for the
proposed method are compared to the performance of a commer-
cially available software package for a 512 × 512 × 418 chest CT
dataset. Increasing gains of the method for larger SE are demon-
strated, making the method suitable for analysis of high resolution
images. The method is efficient for iso/anisotropic SE.

Keywords: structuring element decomposition, sphere, disc, circle.

1. Introduction

Mathematical morphology (MM) is based on set theory and can be used to
analyze image shape features [5, 7, 15]. MM is useful for a wide variety of
applications including object recognition, image segmentation, and indus-
trial inspection [16]. In medical imaging, MM is used for such applications
as brain segmentation from MR images [4] and airway/vessel segmentation
from CT images [6, 10].

Dilation and erosion are the elementary operations of MM. Other oper-
ations such as morphological opening and closing may be formed by com-
bining dilation and erosion in sequence [15,16]. A structuring element (SE)
is the morphological kernel that is translated over the image domain and
compared with the overlapping image region. For flat (binary) SE, the com-
parison operation is a local maximum for dilation and a local minimum for
erosion, where the local neighborhood is defined by the SE’s shape. These
min/max comparisons for gray-level images reduce to logical AND/OR op-
erations for erosion/dilation of binary images using flat SE.
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Morphological analysis methods used in medical imaging generally re-
quire SE of different sizes and shapes. Since some of these methods require
multiple larger sized SE, which require greater processing time, such meth-
ods can take several hours for a single image [10]. Long processing times
impede clinical utility of applications as well as application/algorithm de-
velopment itself.

The processing time for brute-force implementation of MM is propor-
tional to the discrete mass (number of pixels/voxels) of the SE. As such, for
2D and 3D SE, which are used for medical image processing, the processing
time can increase polynomially with respect to SE diameter and can be-
come prohibitive. A multitude of methods have been proposed to accelerate
MM and the majority of these involve some form of SE decomposition. The
HGW algorithm is regarded as the most efficient for a 1D straight line SE
[18,19]; logarithmic decomposition (LD) is also very efficient for 1D and as
such may be applied to separable 2D and 3D SE [3,5]. However, only a sub-
set of useful SE are separable. Some methods are applicable only to binary
images or require preprocessing/encoding of the image [9, 12]; others cater
to particular constraints such as the limited region of support of specialized
hardware [8, 13].

We are particularly interested in 2D Euclidean disk and 3D Euclidean
sphere SE that incur no further approximation beyond quantization it-
self, with no restriction placed on the isotropy of the quantization. Effi-
cient methods that have already been proposed for convex/symmetric SE
[11, 21] are usually discussed and demonstrated in 2D and don’t readily
lend themselves to a true 3D extension. Although the sphere falls into
convex/symmetric category, as far as we know, these methods may not be
used to obtain the decomposition of a sphere. Moreover, the definition of
convexity used in these methods is not consistent and as such, Euclidean
disks/spheres are outside the scope of some such methods. Methods for
decomposition of a disc SE usually sacrifice accuracy for efficiency and still
do not lend themselves to the 3D sphere [1, 5, 19, 21]. Some methods refer
to gray-level disk SE as spheres [1, 5]; these SE are not the focus of this
paper and are not to be confused with binary 3D spheres. Although the
method using local histograms described in [5] may be applied to spheres, it
does not readily lend itself to an efficient vectorized implementation, which
is important for certain types of computation platforms.

SE decomposition as a union of partitions is described in [2] where ge-
netic algorithms are used to compute the decomposition. A deterministic
method for decomposing a 2D disc SE into a union of partitions is intro-
duced in [20]. However, the decomposition is described analytically and
may be difficult to understand and implement. We present a reworking of
this method and describe the decomposition using morphological primitives.
As such, it is now easier to understand/implement. The new morphological
decomposition naturally extends itself to all 2D and 3D convex symmetric
SE, such as Euclidean spheres. We present timing results and comparison
for a large CT lung volume dataset.
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In the remainder of this paper we refer to the following notations and
definitions and introduce additional elements as necessary.

∪ : Union ⊕ : Dilation • : Morphological closing
∩ : Intersection 	 : Erosion ◦ : Morphological opening

Definition 1 (Convex SE). If the discrete SE is equal to the set of all
voxels that fall inside its Euclidean convex hull [17] it is considered to be
convex. Continuous domain convex shapes that are discretized satisfy this
definition of digital convexity.

Definition 2 (Symmetric SE). A symmetric SE has a clearly defined center.
When the center of a symmetric SE is translated to the origin of a standard
Cartesian coordinate system, the translated SE would be symmetric about
the x = 0, y = 0, and z = 0 planes.

Definition 3 (Sparse SE). In general, a 3D SE that is not face-connected,
or a 2D SE that is not edge-connected, is said to be sparse.

2. Method

2.1 Overview of the proposed decomposition

The proposed method decomposes the SE into a union of partitions (Equa-
tion 1a), where each partition, Pi, consists of two factors; the first is the
largest cube, Ci, that can morphologically open the partition without change,
and the second is a sparse factor Si (Equation 1b). This method will de-
compose any 2D or 3D convex/symmetric SE.

SE = P1 ∪ P2 ∪ P3 . . . (1a)

SE = (C1 ⊕ S1) ∪ (C2 ⊕ S2) ∪ (C3 ⊕ S3) . . . (1b)

SE = (C1 ⊕ S1) ∪ ((C1 ⊕ L2)⊕ S2) ∪ ((C1 ⊕ L2 ⊕ L3)⊕ S3) . . . (1c)

SE = C1 ⊕ (S1 ∪ L2 ⊕ (S2 ∪ (L3 ⊕ S3) . . .)) (1d)

As a consequence of convexity of the underlying SE, C1 is a factor of
C2 and C2 is a factor of C3 and so on (Equation 1c). The Li factors
that relate the different Ci factors are described below and illustrated in
Figure 3. This allows us to further decompose Ci and reuse morphological
comparisons across the cubic factors (Equation 1d).

Figure 1 illustrates Equation 1a and shows the three partitions obtained
by using the proposed method to decompose the example 2D SE shown on
the right hand side. The cubic and sparse factors of each of these partitions
are shown in Figure 2, which illustrates Equation 1b.
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Figure 1. The proposed method decomposes the example SE (right) into a union
of partitions P1, P2, and P3. The origin of each partition is the center. The
partitions overlap; this is possible due to the idempotency property of comparison
operations (OR, AND, min, max) used to combine the partitions.

Figure 2. Each partition Pi has a cubic factor Ci and a sparse factor Si, where
i = 1, 2, 3 in this example. The origin of each factor is at its center.

2.2 Usage of the decomposition

Binary image dilation and erosion

I ⊕ SE = (I ⊕ P1) ∪ (I ⊕ P2) ∪ (I ⊕ P3) . . . (2a)

I ⊕ SE = (I ⊕ C1 ⊕ S1) ∪ (I ⊕ C2 ⊕ S2) ∪ (I ⊕ C3 ⊕ S3) . . . (2b)

I ⊕ SE = I ⊕ C1 ⊕ (S1 ∪ L2 ⊕ (S2 ∪ (L3 ⊕ S3) . . .)) (2c)

Substituting ⊕ with 	 and ∪ with ∩ yields the equations for erosion.

Gray-level image dilation and erosion

I ⊕ SE = Supremum((I ⊕ P1), (I ⊕ P2), (I ⊕ P3) . . .) (3)

I 	 SE = Infimum((I 	 P1), (I 	 P2), (I 	 P3) . . .) (4)



Multi-level decomposition of Euclidean spheres 465

Efficient MM for the cubic factors Ci

The cubic factors of each partition may be decomposed further. Logarithmic
decomposition (LD) [5] is simple and can yield efficiency through compu-
tation reuse across partitions. The logarithmic factors for the considered
example are illustrated in Figure 3. The figure shows how the dilation or
erosion for all three cubic factors can be obtained with merely 9 comparison
operations (ops) per output pixel or voxel. This can be accomplished by
using a cascaded implementation as is suggested in Equation 2c.

While we favor the cascaded implementation with LD as described above,
the HGW algorithm [18] may be used to efficiently compute the morphology
result for the cubic factors. However this algorithm is more complex and
does not gain from computation reuse that is possible due to the fact that
Ci is a factor of Ci+1. If the user prefers parallelization, using the proposed
decomposition in the form shown in Equation 2b with the HGW algorithm
might be a good choice.

Figure 3. C1 is a factor of C2 and C2 is a factor of C3; as such, we may reuse
computation across cubic factors. We use logarithmic decomposition (LD) to
simply and efficiently perform the dilation/erosion of Ci. The origin of each Ci
should be in its center. This can be satisfied either by assigning the origin of each
logarithmic factor Lix accordingly, or by updating the origin on each Ci. This is
possible due to translational invariance property of dilation.

2.3 Decomposing a SE using the proposed method

Figure 4 illustrates the steps for decomposing a SE. The proposed decom-
position follows the steps below.

1. Initialization: set CSE (current SE) to be equal to SE.

2. Find the largest cube with which CSE might be morphologically opened
without change. This is the cubic factor Ci.
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3. Find the corresponding sparse factor Si. (See discussion below and
Figure 5). Now that Ci and Si have been found we have essentially
decomposed a partition from CSE.

4. Update CSE with the subset that remains to be decomposed (RSE:
remaining SE) as shown in Figure 4.

5. Go to Step 2 and repeat until RSE is NULL.

Figure 4. Decomposing the SE. At each iteration the current SE (CSE) is updated
to reflect the subset of the SE that remains to be decomposed (RSE). Ci is the
largest cube with which CSEi can be morphologically opened without change.
We can then determine Si which completes the task of determining Pi and then
determine the subset of CSEi that remains to be decomposed RSEi. The next
iteration begins with updating CSEi+1 by setting it equal to RSEi.

Determining Si

Figure 5 illustrates the process to determine S2 for the example in Figures
1–4.

1. Once Ci is available, obtain candidate sparse factors ST1, ST2, ST3.

2. Test each STj for sparseness (see sub-section below).

3. Select the STj that is sparse and has the largest number of voxels
(largest discrete mass) and assign it to Si.

Testing for sparseness

We enforce that our sparse factor is not face-connected for 3D. For 2D, it
should not be edge-connected. There are a few exceptions to this rule, such
as if there is connectivity with the central voxel (local origin) during the
first iteration of decomposition, i.e., during the process of determining S1.
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Figure 5. Determining S2 for the considered 2D example. Obtain test cubic factors
CTj , by dilating Ci with Tj , where j = 1, 2, and 3 for 2D SE. As illustrated above,
we can then obtain a set of candidate RSE, RTj , and candidate sparse factors
STj . Determine the subset of STj that is indeed sparse and from this subset
pick the “best” one and assign it to Si. We apply a greedy criterion for “best”,
which is to pick the sparse STj that has the largest number of pixels/voxels. The
implementation tests each STj for sparseness. Of course, once a particular STj is
selected, we can simply assign its corresponding RTj to RSEi.

2.4 Method for 3D SE

� Once the decomposition is available for a 3D SE, the usage is identical
to the 2D case discussed above.

� Decomposition is slightly more elaborate in the stage of selecting a
sparse factor. Whereas for the 2D case we have three STj sparse
factor candidates to consider, for the 3D case we have seven. This is
a consequence of now having Tj , where j = 1, 2, . . . 7. These Tj are
the bar-3 and the square-3, each in the horizontal, vertical and axial
orientations as well as the cube-3 (cube with discrete diameter 3).

3D sphere example

Figures 6, 7 and 8 illustrate the cascaded implementation of the proposed
method for a radius-5.5 Euclidean sphere obtained under isotropic unit
quantization. The method decomposes this SE into 3 partitions, as illus-
trated in the figures. Only the upper half of the SE is illustrated without
loss of generality due to symmetry. The cubic factors C1, C2, C3 are equal
to cube-3, cube-5, cube-9 respectively. The origin is marked in dark gray
(center of slice 6 of 11) in each of the figures and is not part of S1 or S2,
which are depicted in medium gray; S3, however, is just the single voxel at
the origin. The medium and light gray voxels together depict a particular
partition. The gray and white voxels together in Figure 7 illustrate the



468 MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS

Figure 6. Upper half of P1 for a radius-5.5 Euclidean sphere at unit quantization.
The origin is the dark gray voxel in the center of slice 6, P1 is the union of the
light and medium gray voxels, S1 is medium gray. C1 is cube-3.

Figure 7. Foreground is P1 ∪ P2 for the radius-5.5 sphere (only upper half of the
sphere is shown). The origin is dark gray, P2 is the union of light and medium
gray voxels, S2 is medium gray, the region of P1 that does not overlap with P2 is
white. C2 is cube-5.

union of P1 and P2, where the white pixels indicate the portion of the SE
that is exclusively covered by P1. The union of the gray and white voxels in
Figure 8 depicts the union of P1, P2 and P3 and is thus the SE itself. The
white voxels in Figure 8 indicate the region that is covered exclusively by
P1 ∪ P2.

3. Results and analysis

The proposed method was implemented and compared to the commercially
available SDC morphology toolbox [14]. Dilation on a gray-level chest CT
image, sized 512×512×418, was performed using various spherical SE. The
standard “brute-force” direct implementation was also compared. Timing
results were obtained for spherical SE with discrete radii 1-12. A dual-
CPU Intel 2.0 GHz Xeon� computer with 2 GB of RAM was used. The
proposed method was implemented as a single-threaded executable. As is
evident in Figure 9, the processing time for our own implementation of the
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Figure 8. The origin coincides with S3 and is dark gray, P3 is the union of light
gray and the origin. C3 is cube-7, which coincides with P3. The region of P1 ∪P2

that does not overlap with P3 is white. The union of all foreground voxels is the
union of all three partitions and is the radius-5.5 Euclidean isotropic sphere.

Figure 9. Processing times for gray-level dilation (binary SE) using sphere SE for
a 512 × 512 × 418 chest CT image. Results obtained on and Intel Pentium IV
Xeon Dual CPU 2.00 GHz platform with 2.00 GB of RAM.

direct method becomes prohibitive for larger SE. The algorithmic advantage
of the proposed method facilitates gains over the SDC Morphology Toolbox
that increase as SE size increases.

In [13], the four factors on the right of Figure 10 are offered as an optimal
decomposition for the convex/symmetric SE shown to their left (“Iteration
2”). The proposed method will decompose the SE into 2 partitions whose
cubic factors are square-3 and square-7 and obtain the MM result in 13 ops
per output pixel (4 ops for C1, 4 ops for L2, and 5 ops for the sparse factors
and the union), while the 4 factor decomposition requires 16 ops.

The number of comparison ops required per output voxel for dilation
or erosion using discrete Euclidean sphere SE of radii 1-40 was calculated
for the direct implementation, the proposed method, and two variations of
the proposed method as shown in Figure 11. The op count for the direct
implementation is one less than the number of voxels in the SE. One flavor
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Figure 10. [Left] 2-partition decomposition of a 2D SE using the proposed method.
Cubic factors are square-3 and square-7. Dark gray - origin (center): not part of
S1, however S2 is the pixel at the origin. Light and medium gray together - the
partition, medium gray (only in iteration 1) - S1, white - region of P1 that does not
overlap with P2. [Right] 4-factor decomposition for the same SE from Example 1
in [13]. The proposed method is more efficient.

of the proposed method was to consider the sphere SE as the collection of
its 2D slices, implement the MM for each of the unique slices separately
using the proposed method and combine the results. This implementation
is less efficient and requires more memory. It illustrates that a true 3D
method is superior to a 2D method directly applied to 3D SE, as would be
required in order to make use of most of the applicable methods available
in the literature.

The majority of comparison ops of the proposed method occur by way of
the sparse factors of the partitions: for a radius-20 sphere SE, the proposed
2-canvas implementation (Equation 2c) would incur 600 comparisons per
output voxel, 36 of which would be due to the cubic factors while the re-
maining 564 would be due to the sparse factors. By decomposing the sparse
factors, this could be reduced to 292, thus reducing the total number to 328
ops per output voxel. While this could be considered an optimization, it
comes at the expense of a third copy of the image volume for interim work,
which may be undesirable for computation platforms with memory capacity
constraints.

4. Discussion and conclusion

An efficient method for MM using Euclidean disk and sphere SE has been
presented. These SE do not lend themselves well to factorization methods
that can usually be used for convex/symmetric SE. The proposed method
can be applied to all 2D/3D convex/symmetric flat (binary) SE. The method
may be used for binary as well as gray-scale images and does not require
any prior analysis or encoding of the image: its gain is not based on image
content. The low memory overhead and efficient looping as well as vector-
ized implementations promote the utility of the method for development
(scripting) as well as application platforms.

We believe the challenge of decomposing SE into partitions to be an
instance of an NP-complete problem. The proposed method uses locally
optimal (greedy) criteria to select a sparse factor during each iteration of
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Figure 11. Number of comparison ops required per output voxel for MM using
sphere SE. Note, op count presented on a log scale. Data obtained analytically.
Proposed implementation follows Equation 2c and implements the sparse factors
directly. A possible optimization would be to decompose the sparse factors, but
this would require another interim copy of the image volume.

the decomposition. As such, it is not guaranteed to be optimal. We are in-
vestigating optimality relevant to the proposed method and expect to report
on how the proposed greedy method compares to an optimal decomposition.
This will of course require a clear definition of optimality.

The method is robust to scale: it works for iso/anisotropic SE. As such,
it facilitates the development of scale-robust applications/algorithms. For
medical image segmentation, SE may be defined in the context of anatomy
instead of using discrete parameters. The chest CT image used to obtain the
results shown in Figure 5 was quantized to a mm scale of 0.67×0.67×0.80.
With the proposed method, an algorithm could define a 3 mm sphere SE
and this SE would be discretized according to the quantization scale of the
CT image at run-time.

A comparison of the proposed method with others is underway. An em-
pirical assessment of the gains of the method in the context of real medical
applications will be performed. Since the method lends itself to vectoriza-
tion, even hardware acceleration by means of a graphics processing unit
(GPU) implementation would be possible.
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