Design of robust pattern classifiers based on optimum-path forests

João P. Papa1, Alexandre X. Falcão1, Paulo A. V. Miranda1, Celso T. N. Suzuki1

Nelson D. A. Mascarenhas2

1State University of Campinas, Institute of Computing, Campinas, Brazil

2Federal University of São Carlos, Department of Computing, São Carlos, Brazil
Presentation Overview

- Introduction
- OPF
- Experimental Results
- Conclusion and future work
Introduction

Problem \((Z_1 \text{ and } Z_2)\)
Introduction

Problem (Z_1 and Z_2)

Pattern classification
Introduction

- Problem \((Z_1 \text{ and } Z_2)\)
- Pattern classification
- Unsupervised classification
Introduction

- Problem (Z_1 and Z_2)
- Pattern classification
- Unsupervised classification
- Semi-supervised classification
Introduction

Problem (Z_1 and Z_2)

Pattern classification

Unsupervised classification

Semi-supervised classification

Supervised classification
Motivation

- To propose a new supervised classifier based on optimum path forest
- Support Vector Machines (SVM)
 - binary classifier
 - high dimensional space
- Artificial Neural Networks with Multilayer Perceptron (ANN-MLP)
 - unstable classifier
 - slow convergence
Optimum Path Classifier - OPF

- Watershed computed by the Image Foresting Transform (IFT) with markers obtained from Z_1 (training set) in the feature space

Modeling the problem
- samples are the nodes of the graph
- adjacency relation: complete graph
- arc weight $w(s, t) = d(\vec{s}, \vec{t})$
- path-cost function f_{max}
- prototypes (markers) set S.
Optimum Path Forest - OPF

Supervised pattern classifier with 2 phases:

- Training: forest computation
- Unseen test: nodes are added to the forest, classified and removed

Main question in the training phase: how to choose the prototypes set \(\mathcal{S} \)?

- random choice
- density choice
- minimum spanning tree (MST) choice
Training phase

Samples
Training phase

- Samples
- Random choice
Training phase

- Samples
- Random choice
- Random choice result
Training phase

- Samples
- Random choice
- Random choice result
- Density choice
Training phase

- Samples
- Random choice
- Random choice result
- Density choice
- Density choice result
Training phase

Goal: to achieve zero error in the training set. How ??

Problem region

To put prototypes inside the problem region! How can we identify them?
Training phase

MST approach

- sum of the weights of the edges is minimum
- each pair of nodes is connected by an optimum path

(a) MST

(b) Prototypes chosen by the MST

OPF nodes classification result
Test phase

unseen samples are tested individually

(a) Optimum path forest
(b) Test sample
(c) Classification result
Experimental Results

We performed tests in 16 databases:

- MPEG-7: shape database containing 1400 objects equally distributed in 70 classes.

 ![Fish 1](image1) ![Fish 2](image2) ![Chicken 1](image3) ![Chicken 2](image4)

- Corel: database containing 1607 images of several objects distributed in 49 classes.

 ![Ski 1](image5) ![Ski 2](image6) ![Pumpkin 1](image7) ![Pumpkin 2](image8)
Experimental Results

Unseen test set accuracies

OPF: 9 wins, 1 tie and 6 loses
Learning approach

How can we make sure that a classifier can learns with its own errors without increasing the training set size?

- Z_2: evaluation set
Learning approach

How can we make sure that a classifier can learn with its own errors without increasing the training set size?

- Z_2: evaluation set
- Learning algorithm: to identify more informative samples
Learning approach

How can we make sure that a classifier can learn with its own errors without increasing the training set size?

- Z_2: evaluation set

- Learning algorithm: to identify more informative samples

- Replacements between samples and errors
Learning approach

How can we make sure that a classifier can learns with its own errors without increasing the training set size?

- Z_2: evaluation set
- Learning algorithm: to identify more informative samples
- Replacements between samples and errors
- OPF is designed in Z_1 (training set) and Z_2 (evaluation set) and tested in the unseen Z_3 (test set)
Learning approach

How can we make sure that a classifier can learn with its own errors without increasing the training set size?

- Z_2: evaluation set

- Learning algorithm: to identify more informative samples

- Replacements between samples and errors

- OPF is designed in Z_1 (training set) and Z_2 (evaluation set) and tested in the unseen Z_3 (test set)
Test phase

- unseen samples are tested individually
- relevance number
- irrelevant nodes

(a) Optimum path forest
(b) Test sample
(c) Reward/Penalty.
Learning algorithm

Algorithm:

1. For I from 1 to N do
2. Build the classifier using the OPF algorithm (MST in Z_1).
3. Classify samples in Z_2 and compute the relevance number for each sample in Z_1.
4. Replace misclassified elements in Z_2 by irrelevant (not prototypes) in Z_1.
5. If there exists irrelevant elements in Z_1, replace them by random samples from Z_2.

MPEG-7 Shape Database learning curves
Experimental Results

Unseen test set accuracies

OPF: 11 wins, 4 ties and 1 lose
The OPF was 47.21 times faster than SVM, 98.71 times faster than ANN-MLP and 7.81 times faster than KNN.
Conclusion and future works

- OPF is a new promising tool for supervised pattern recognition
- Faster than the tested approaches
- Similar to SVM (at least)
- Descriptor combination by genetic programming
- New path-cost functions