<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Conference Proceedings">
		<site>mtc-m16d.sid.inpe.br 806</site>
		<identifier>8JMKD3MGPDW34R/3UFECJL</identifier>
		<repository>sid.inpe.br/mtc-m16d/2019/11.27.18.39</repository>
		<lastupdate>2019:11.27.18.39.59 sid.inpe.br/mtc-m19@80/2009/08.21.17.02 simone</lastupdate>
		<metadatarepository>sid.inpe.br/mtc-m16d/2019/11.27.18.39.59</metadatarepository>
		<metadatalastupdate>2020:07.24.18.56.32 sid.inpe.br/mtc-m18@80/2008/03.17.15.17 administrator</metadatalastupdate>
		<issn>2179-4847</issn>
		<citationkey>AdeuFerrAndrSant:2019:EvGrSe</citationkey>
		<title>Evaluating growing self-organizing maps for satellite image time series clustering</title>
		<format>On-line.</format>
		<year>2019</year>
		<date>11 -13 nov. 2019</date>
		<numberoffiles>1</numberoffiles>
		<size>590 KiB</size>
		<author>Adeu, Rodrigo S. S.,</author>
		<author>Ferreira, Karine Reis,</author>
		<author>Andrade, Pedro Ribeiro de,</author>
		<author>Santos, Lorena,</author>
		<group></group>
		<group>DIDPI-CGOBT-INPE-MCTIC-GOV-BR</group>
		<group>COCST-COCST-INPE-MCTIC-GOV-BR</group>
		<group>LABAC-COCTE-INPE-MCTIC-GOV-BR</group>
		<affiliation>Embraer</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<electronicmailaddress>rodrigo.sales@embraer.com.br</electronicmailaddress>
		<electronicmailaddress>karine.ferreira@inpe.br</electronicmailaddress>
		<electronicmailaddress>pedro.andrade@inpe.br</electronicmailaddress>
		<electronicmailaddress>lorena.santos@inpe.br</electronicmailaddress>
		<editor>Lisboa Filho, Jugurta,</editor>
		<editor>Monteiro, Antonio Miguel Vieira,</editor>
		<e-mailaddress>daniela.seki@inpe.br</e-mailaddress>
		<conferencename>Simpósio Brasileiro de Geoinformática, 20 (GEOINFO)</conferencename>
		<conferencelocation>São José dos Campos</conferencelocation>
		<booktitle>Anais do 20º Simpósio Brasileiro de Geoinformática</booktitle>
		<publisher>Instituto Nacional de Pesquisas Espaciais (INPE)</publisher>
		<publisheraddress>São José dos Campos</publisheraddress>
		<secondarytype>PRE CN</secondarytype>
		<tertiarytype>short paper</tertiarytype>
		<organization>Instituto Nacional de Pesquisas Espaciais (INPE)</organization>
		<transferableflag>1</transferableflag>
		<keywords>geoinformatica.</keywords>
		<abstract>In recent years, analysis of time series extracted from Earth observation satellite images has been widely used to produce land use and cover information. In time series analysis, clustering is a common technique performed to discover patterns on data sets. Self-Organizing Maps (SOM) neural network is a suitable method for such task. However, a critical limitation of SOM is that its map structure size must be predetermined. This limitation has been addressed by Growing SOM method. This paper presents an ongoing work on evaluating Growing SOM for Earth observation satellite image time series clustering.</abstract>
		<area>SER</area>
		<language>pt</language>
		<targetfile>243-248.pdf</targetfile>
		<usergroup>daniela.seki@inpe.br</usergroup>
		<visibility>shown</visibility>
		<copyright>urlib.net/www/2012/11.12.15.19</copyright>
		<rightsholder>originalauthor yes</rightsholder>
		<readpermission>allow from all</readpermission>
		<documentstage>not transferred</documentstage>
		<mirrorrepository>urlib.net/www/2011/03.29.20.55</mirrorrepository>
		<nexthigherunit>8JMKD3MGPCW/3EQCCU5</nexthigherunit>
		<nexthigherunit>8JMKD3MGPCW/3ESGTTP</nexthigherunit>
		<nexthigherunit>8JMKD3MGPCW/3F3T29H</nexthigherunit>
		<nexthigherunit>8JMKD3MGPDW34P/42T2R5B</nexthigherunit>
		<hostcollection>sid.inpe.br/mtc-m19@80/2009/08.21.17.02</hostcollection>
		<username>simone</username>
		<lasthostcollection>sid.inpe.br/mtc-m19@80/2009/08.21.17.02</lasthostcollection>
		<url>http://mtc-m16d.sid.inpe.br/rep-/sid.inpe.br/mtc-m16d/2019/11.27.18.39</url>
	</metadata>
</metadatalist>