<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Journal Article">
		<identifier>8JMKD3MGP3W34R/3UTSP6H</identifier>
		<repository>sid.inpe.br/mtc-m21c/2020/02.12.09.52</repository>
		<metadatarepository>sid.inpe.br/mtc-m21c/2020/02.12.09.52.01</metadatarepository>
		<site>mtc-m21c.sid.inpe.br 806</site>
		<doi>10.4018/IJDWM.2020010102</doi>
		<issn>1548-3924</issn>
		<holdercode>{isadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S}</holdercode>
		<citationkey>MonteiroSantFerr:2020:MiPaTr</citationkey>
		<author>Monteiro, Diego Vilela,</author>
		<author>Santos, Rafael Duarte Coelho dos,</author>
		<author>Ferreira, Karine Reis,</author>
		<resumeid></resumeid>
		<resumeid>8JMKD3MGP5W/3C9JJ4N</resumeid>
		<resumeid>8JMKD3MGP5W/3C9JHKN</resumeid>
		<group>CAP-COMP-SESPG-INPE-MCTIC-GOV-BR</group>
		<group>LABAC-COCTE-INPE-MCTIC-GOV-BR</group>
		<group>DIDPI-CGOBT-INPE-MCTIC-GOV-BR</group>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<electronicmailaddress></electronicmailaddress>
		<electronicmailaddress>rafael.santos@inpe.br</electronicmailaddress>
		<electronicmailaddress>karine.ferreira@inpe.br</electronicmailaddress>
		<title>Mining partners in trajectories</title>
		<journal>International Journal of Data Warehousing and Mining</journal>
		<year>2020</year>
		<volume>16</volume>
		<number>1</number>
		<month>jan./mar.</month>
		<keywords>Data Mining, Moving Objects, Pattern, R, Trajectory.</keywords>
		<abstract>Spatiotemporal data is everywhere, being gathered from different devices such as Earth Observation and GPS satellites, sensor networks and mobile gadgets. Spatiotemporal data collected from moving objects is of particular interest for a broad range of applications. In the last years, such applications have motivated many pieces of research on moving object trajectory data mining. In this article, it is proposed an efficient method to discover partners in moving object trajectories. Such a method identifies pairs of trajectories whose objects stay together during certain periods, based on distance time series analysis. It presents two case studies using the proposed algorithm. This article also describes an R package, called TrajDataMining, that contains algorithms for trajectory data preparation, such as filtering, compressing and clustering, as well as the proposed method Partner.</abstract>
		<pages>22-38</pages>
		<language>en</language>
		<typeofwork>journal article</typeofwork>
		<secondarytype>PRE PI</secondarytype>
		<dissemination>PORTALCAPES; SCOPUS.</dissemination>
		<area>COMP</area>
		<size>2486 KiB</size>
		<numberoffiles>1</numberoffiles>
		<targetfile>monteiro_data.pdf</targetfile>
		<lastupdate>2020:06.17.19.01.08 urlib.net/www/2017/11.22.19.04 simone</lastupdate>
		<metadatalastupdate>2020:07.08.17.10.52 urlib.net/www/2017/11.22.19.04 administrator {D 2020}</metadatalastupdate>
		<username>simone</username>
		<usergroup>simone</usergroup>
		<readergroup>administrator</readergroup>
		<readergroup>simone</readergroup>
		<visibility>shown</visibility>
		<transferableflag>1</transferableflag>
		<hostcollection>urlib.net/www/2017/11.22.19.04</hostcollection>
		<contenttype>External Contribution</contenttype>
		<documentstage>not transferred</documentstage>
		<versiontype>publisher</versiontype>
		<readpermission>deny from all and allow from 150.163</readpermission>
		<nexthigherunit>8JMKD3MGPCW/3EQCCU5</nexthigherunit>
		<nexthigherunit>8JMKD3MGPCW/3ESGTTP</nexthigherunit>
		<nexthigherunit>8JMKD3MGPCW/3F2PHGS</nexthigherunit>
		<agreement>agreement.html .htaccess .htaccess2</agreement>
		<lasthostcollection>urlib.net/www/2017/11.22.19.04</lasthostcollection>
		<url>http://mtc-m21c.sid.inpe.br/rep-/sid.inpe.br/mtc-m21c/2020/02.12.09.52</url>
	</metadata>
</metadatalist>