<?xml version="1.0" encoding="ISO-8859-1"?>
<metadatalist>
	<metadata ReferenceType="Journal Article">
		<site>mtc-m21c.sid.inpe.br 806</site>
		<holdercode>{isadg {BR SPINPE} ibi 8JMKD3MGPCW/3DT298S}</holdercode>
		<identifier>8JMKD3MGP3W34R/43FN6FH</identifier>
		<repository>sid.inpe.br/mtc-m21c/2020/10.26.16.46</repository>
		<lastupdate>2020:10.26.16.46.30 urlib.net/www/2017/11.22.19.04 simone</lastupdate>
		<metadatarepository>sid.inpe.br/mtc-m21c/2020/10.26.16.46.30</metadatarepository>
		<metadatalastupdate>2020:10.26.16.48.50 urlib.net/www/2017/11.22.19.04 simone {D 2020}</metadatalastupdate>
		<doi>10.3390/atmos11101073</doi>
		<issn>2073-4433</issn>
		<citationkey>CassolDSBMTACAMGAAG:2020:DeReIn</citationkey>
		<title>Determination of region of influence obtained by aircraft vertical profiles using the density of trajectories from the hysplit model</title>
		<year>2020</year>
		<month>Oct</month>
		<numberoffiles>1</numberoffiles>
		<size>5528 KiB</size>
		<author>Cassol, Henrique Luis Godinho,</author>
		<author>Domingues, Lucas Gatti,</author>
		<author>Sanchez Ipia, Alber Hamersson,</author>
		<author>Basso, Luana Santamaria,</author>
		<author>Marani, Luciano,</author>
		<author>Tejada Pinell, Graciela,</author>
		<author>Arai, Egidio,</author>
		<author>Correia, Caio,</author>
		<author>Alden, Caroline B.,</author>
		<author>Miller, John B.,</author>
		<author>Gloor, Manuel,</author>
		<author>Anderson, Liana O.,</author>
		<author>Aragão, Luiz Eduardo Oliveira e Cruz de,</author>
		<author>Gatti, Luciana Vanni,</author>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid></resumeid>
		<resumeid>8JMKD3MGP5W/3C9JGUP</resumeid>
		<orcid>0000-0001-6728-4712</orcid>
		<orcid></orcid>
		<orcid>0000-0001-7966-2880</orcid>
		<orcid>0000-0002-4208-6039</orcid>
		<orcid>0000-0001-7382-464X</orcid>
		<orcid>0000-0002-8389-0269</orcid>
		<orcid></orcid>
		<orcid></orcid>
		<orcid></orcid>
		<orcid>0000-0001-8630-1610</orcid>
		<orcid></orcid>
		<orcid>0000-0001-9545-5136</orcid>
		<orcid></orcid>
		<orcid>0000-0003-4908-8974</orcid>
		<group>DIDSR-CGOBT-INPE-MCTIC-GOV-BR</group>
		<group>COCST-COCST-INPE-MCTIC-GOV-BR</group>
		<group>CST-CST-SESPG-INPE-MCTIC-GOV-BR</group>
		<group>CST-CST-SESPG-INPE-MCTIC-GOV-BR</group>
		<group>CST-CST-SESPG-INPE-MCTIC-GOV-BR</group>
		<group>CST-CST-SESPG-INPE-MCTIC-GOV-BR</group>
		<group>DIDSR-CGOBT-INPE-MCTIC-GOV-BR</group>
		<group>CST-CST-SESPG-INPE-MCTIC-GOV-BR</group>
		<group></group>
		<group></group>
		<group></group>
		<group></group>
		<group>DIDSR-CGOBT-INPE-MCTIC-GOV-BR</group>
		<group>COCST-COCST-INPE-MCTIC-GOV-BR</group>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>University of Colorado Boulder</affiliation>
		<affiliation>NOAA Global Monitoring Laboratory</affiliation>
		<affiliation>University of Leeds</affiliation>
		<affiliation>Centro Nacional de Monitoramento e Alertas de Desastres Naturais (CEMADEN)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<affiliation>Instituto Nacional de Pesquisas Espaciais (INPE)</affiliation>
		<electronicmailaddress>henrique.cassol@inpe.br</electronicmailaddress>
		<electronicmailaddress>l.domingues@gns.cri.nz</electronicmailaddress>
		<electronicmailaddress>alber.ipia@inpe.br</electronicmailaddress>
		<electronicmailaddress>luanabasso@gmail.com</electronicmailaddress>
		<electronicmailaddress>lmarani@gmail.com</electronicmailaddress>
		<electronicmailaddress>gracielatejadap@gmail.com</electronicmailaddress>
		<electronicmailaddress>egidio.arai@inpe.br</electronicmailaddress>
		<electronicmailaddress>cacorreia@gmail.com</electronicmailaddress>
		<electronicmailaddress>aldenc@colorado.edu</electronicmailaddress>
		<electronicmailaddress>john.b.miller@noaa.gov</electronicmailaddress>
		<electronicmailaddress>eugloor@gmail.com</electronicmailaddress>
		<electronicmailaddress>liana.anderson@cemaden.gov.br</electronicmailaddress>
		<electronicmailaddress>laragao@dsr.inpe.br</electronicmailaddress>
		<electronicmailaddress>luciana.gatti@inpe.br</electronicmailaddress>
		<journal>Atmosphere</journal>
		<volume>11</volume>
		<secondarymark>B3_ENGENHARIAS_III B3_ENGENHARIAS_I B3_CIÊNCIAS_AMBIENTAIS B4_ENGENHARIAS_II B5_GEOCIÊNCIAS</secondarymark>
		<documentstage>not transferred</documentstage>
		<transferableflag>1</transferableflag>
		<contenttype>External Contribution</contenttype>
		<secondarytype>PRE PI</secondarytype>
		<versiontype>publisher</versiontype>
		<number>10</number>
		<pages>e1073</pages>
		<keywords>footprint, transport pathway, carbon dioxide, greenhouse gases, atmospheric aircraft profiles.</keywords>
		<abstract>Aircraft atmospheric profiling is a valuable technique for determining greenhouse gas fluxes at regional scales (104106 km2 ). Here, we describe a new, simple method for estimating the surface influence of air samples that uses backward trajectories based on the Lagrangian model Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT). We determined regions of influence on a quarterly basis between 2010 and 2018 for four aircraft vertical profile sites: SAN and ALF in the eastern Amazon, and RBA and TAB or TEF in the western Amazon. We evaluated regions of influence in terms of their relative sensitivity to areas inside and outside the Amazon and their total area inside the Amazon. Regions of influence varied by quarter and less so by year. In the first and fourth quarters, the contribution of the region of influence inside the Amazon was 8393% for all sites, while in the second and third quarters, it was 5775%. The interquarter differences are more evident in the eastern than in the western Amazon. Our analysis indicates that atmospheric profiles from the western sites are sensitive to 4252.2% of the Amazon. In contrast, eastern Amazon sites are sensitive to only 10.925.3%. These results may help to spatially resolve the response of greenhouse gas emissions to climate variability over Amazon.</abstract>
		<area>SRE</area>
		<typeofwork>journal article</typeofwork>
		<language>en</language>
		<targetfile>cassol_determination.pdf</targetfile>
		<username>simone</username>
		<usergroup>simone</usergroup>
		<readergroup>administrator</readergroup>
		<readergroup>simone</readergroup>
		<visibility>shown</visibility>
		<archivingpolicy>allowpublisher allowfinaldraft</archivingpolicy>
		<mirrorrepository>urlib.net/www/2017/11.22.19.04.03</mirrorrepository>
		<dissemination>WEBSCI; PORTALCAPES; SCOPUS.</dissemination>
		<hostcollection>urlib.net/www/2017/11.22.19.04</hostcollection>
		<agreement>agreement.html .htaccess .htaccess2</agreement>
		<lasthostcollection>urlib.net/www/2017/11.22.19.04</lasthostcollection>
		<url>http://mtc-m21c.sid.inpe.br/rep-/sid.inpe.br/mtc-m21c/2020/10.26.16.46</url>
	</metadata>
</metadatalist>