A expressão de busca foi <related:sid.inpe.br/mtc-m21d/2023/03.31.22.17.23-0:en:title:2:cerrado classification based image:ai4luc pixel based classification land use land cover via deep learning cerrado image dataset:>.
4 referências similares encontradas (inclusive a original) buscando em 9 dentre 9 Arquivos. Data e hora local de busca: 05/06/2023 07:17. |
Miranda::PiClLa Miranda, M. S. :: AI4LUC: pixel-based classification of land use and land cover via deep learning and a cerrado image dataset ![]() metadados (BibTeX | Refer | Como citar? | XML | xrefer | oai_dc | Capa) < <mtc-m21d.sid.inpe.br> |
BendiniFRRSRMKLSH:2020:StCaBr Bendini, H. N., et al. :2020: Applying a Phenological Object-Based Image Analysis (PHENOBIA) for agricultural land classification: a study case in the brazilian cerrado ![]() metadados (BibTeX | Refer | Como citar? | XML | xrefer | oai_dc | Capa) < <mtc-m21c.sid.inpe.br> |
BendiniFSKRSLH:2019:DeAgLa![]() Bendini, H. N., et al. :2019: Detailed agricultural land classification in the Brazilian cerrado based on phenological information from dense satellite image time series ![]() metadados (BibTeX | Refer | Como citar? | XML | xrefer | oai_dc | Capa) < <mtc-m21c.sid.inpe.br> |
Bendini:2019:AgLaCl Bendini, H. N. :2019: Agricultural land classification based on phenological information from dense time-series Landsat-like images in the brazilian Cerrado ![]() metadados (BibTeX | Refer | Como citar? | XML | xrefer | oai_dc | mtd2-br | Capa) < <mtc-m21c.sid.inpe.br> |