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ABSTRACT 

The eutrophication of aquatic systems is a worldwide environmental problem. 
One of its main outcome is the algal bloom, including the potentially toxic algal 
which can affect human health. Because of the toxicity of the harmful algal 
blooms, environmental monitoring is needed, mainly in aquatic systems near to 
urban centers. The use of remote sensing for monitoring the algal blooms uses 
bio-optical modeling, which is based on the spectral behavior of the optically 
active components in the water to estimate their concentrations as well as their 
inherent optical properties (IOPs). The detection of cyanobacteria, one of the 
main phylum of harmful algal, occurs by the identification of a unique pigment in 
inland waters cyanobacteria, the phycocyanin (PC). Remote sensing 
techniques, such as the quasi-analytical algorithms (QAA) - a type of bio-optical 
model - have been used to the estimation of IOPs in aquatic systems using in 
situ hyperspectral data and satellite multispectral data. However there is not any 
QAA developed or evaluated in tropical inland waters. Therefore the goal of this 
research was to evaluate the need for the re-parameterization of a QAA and to 
re-parameterize one for tropical eutrophic inland waters. Radiometric, 
limnological and IOPs data were collected in the Funil Hydroeletric Reservoir, 
located between São Paulo and Rio de Janeiro States, Brazil. Results of the 
Normalized Root Mean Square Error (NRMSE) showed that for the application 
of QAA in tropical inland waters a re-parameterization is needed. Thus, the 
results of the re-parameterization showed an average NRMSE of 36% for the 
retrieval of the total absorption coefficients. The colored detrital matter (CDM) 
absorption coefficients were retrieved with an average NRMSE of 49%. 
Phytoplankton absorption coefficients were retrieved with an average NRMSE 
of 74%. PC concentration estimation from the estimated IOPs showed good 
results (NRMSE of 24.94%) for the in situ hyperspectral dataset. Uncertainties 
in the estimations are mainly due to the lack of in situ data of PC absorption 
coefficients to calibrate the model. The re-parameterization was also applied for 
a synthetic dataset of the future Ocean & Land Color Imager (OLCI) sensor 
which will be part of Sentinel 3 satellite. The simulation of OLCI data was 
conducted using its spectral response function and it is enhanced because of its 
potentially use of environmental monitoring since its temporal resolution will be 
improved by the launch of 2 satellites working as a constellation. Overall results 
were encouraging since it is one of the first works to explore the estimation of 
IOPs in tropical inland waters through remote sensing. However, results also 
indicated the need for further fine tuning of the model, mainly in the estimation 
of total absorption coefficients. Therefore, the development of a QAA and the 
estimation of PC concentration in tropical inland waters are an important step 
for the development of a robust tool for improving water quality monitoring. 
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RE-PARAMETRIZAÇÃO DE UM ALGORITMO QUASI ANALÍTICO E 

ESTIMAÇÃO DE FICOCIANINA PARA UM RESERVATÓRIO TROPICAL 

RESUMO 

A eutrofização de sistemas aquáticos é um problema recorrente em diversas 
parte do mundo. Uma de suas principais consequências é o florescimento de 
algas, e entre elas, as algas potencialmente tóxicas que podem ser prejudiciais 
para a saúde humana. Devido a essa toxicidade, é necessário um 
monitoramento constante dessas florações em ambientes aquáticos, 
principalmente próximos aos centros urbanos. A utilização de sensoriamento 
remoto para o monitoramento de florescimento de algas ocorre por meio da 
modelagem bio-óptica, que utiliza a resposta espectral dos componentes 
opticamente ativos na água para estimar a sua concentração assim como as 
propriedades ópticas inerentes (POIs). A identificação de cianobactéria, um das 
principais classes de algas tóxicas, é então realizada por meio de um pigmento 
único em cianobactérias de águas interiores que é a ficocianina (PC). Técnicas 
de sensoriamento remoto, como os algoritmos quasi-analíticos (QAAs), um tipo 
de modelo bio-óptico, tem sido utilizados para a obtenção das POIs em 
sistemas aquáticos por meio de dados hiperespectrais coletados in situ e dados 
multiespectrais provenientes de satélites. Entretanto, nenhum QAA foi 
desenvolvido ou avaliado para águas interiores tropicais. Portanto o objetivo do 
presente estudo foi avaliar a necessidade de reparametrizar um QAA e realizar 
a reparametrização do mesmo para águas interiores eutrofizadas em uma 
região tropical. Dados radiométricos, limnológicos e POIs foram coletados no 
Reservatório Hidrelétrico de Funil, localizado entre os estados de São Paulo e 
Rio de Janeiro. Resultados mostram que para a aplicação de QAA em águas 
interiores tropicais é necessária uma reparametrização, que foi avaliada por 
meio da Raiz do Erro Médio Quadrático Normalizada (NRMSE). Dessa forma 
resultados da reparametrização mostram um NRMSE de 36% para a média 
dos coeficientes de absorção total. Os coeficientes de absorção da matéria 
residual colorida (CDM) foram estimados com a média do NRMSE de 49%  já 
os coeficientes de absorção do fitoplâncton foram estimados com a média do 
NRMSE de 74%. A estimação da concentração de PC por meio das POIs 
estimadas mostram bons resultados (NRMSE de 24.94%) para o conjunto de 
dados hiperespectrais in situ. Incertezas das estimações ocorreram 
principalmente pela falta de dados empíricos dos coeficientes de absorção de 
PC para a calibração do modelo. A reparametrização também foi aplicada para 
um conjunto sintético de dados do futuro sensor Ocean & Land Color Imager 
(OLCI) que fará parte do satélite Sentinel 3. A simulação dos dados do sensor 
OLCI foi realizada por sua função de resposta espectral e se destaca pela sua 
possível utilização para o monitorando ambiental devido a sua resolução 
temporal que será ampliada pelo lançamento de 2 satélites atuando em formato 
de constelação. Os resultados das etapas do trabalho foram estimulantes por 
ser um dos primeiros trabalhos a explorar a estimação de IOPs em águas 
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interiores tropicais por meio de sensoriamento remoto. Entretanto os resultados 
também indicam a necessidade de um aprimoramento, principalmente na 
estimação do coeficiente de absorção total, que é essencial para a estimação 
dos demais coeficientes de absorção. Portanto, o desenvolvimento de um QAA 
e a estimação da concentração de PC em águas interiores tropicais são um 
importante passo para o desenvolvimento de uma ferramenta robusta para o 
monitoramento da qualidade da água. 
 
 

 

 

 

 

 

 

 

 

 

 

  



xv 

 

LIST OF FIGURES 

Page 

 

Figure 2.2 - Flowchart of bio-optical models classification and goals ............... 18 
Figure 2.3 - Location of PC bio-optical algorithms developed in the literature .. 25 
Figure 3.1 - Location of Funil Reservoir and sampling points in the State of Rio 
de Janeiro, Brazil .............................................................................................. 31 
Figure 3.2 - Phytoplankton bloom at Funil Reservoir on May, 2012 
(Hydrosphere Processes Research Group/INPE) ............................................ 33 
Figure 3.3 - Radiometric scheme for data acquisition; a) Lw; b) Ls; c) Es; d) Eu; e) 
Ed; and f) Lu. ..................................................................................................... 39 
Figure 3.4 - Remote sensing reflectance for both study sites ........................... 43 
Figure 3.5 - Spectral response function for OLCI and Sea and Land Surface 
Temperature Radiometer (SLSTR) .................................................................. 47 
Figure 3.6 - Flowchart of the methodology used in this study........................... 48 
Figure 4.1 - Scatter plot of SI05 band ratio and PC concentration from datasets
 ......................................................................................................................... 50 
Figure 4.2 - Scatter plot of MI09 band ratio and PC concentration from datasets
 ......................................................................................................................... 51 
Figure 4.3 - Box plots of limnological parameters collected at Funil Reservoir 53 
Figure 4.4 - Relationships between limnological parameters; a) Cell count x 
N:P*Chl-a; b) MC x PC ..................................................................................... 54 
Figure 4.5 - AOP and IOPs for Funil dataset; a) Rrs (λ); b) aCDOM(λ); c) aphy(λ); d) 
aNAP(λ) .............................................................................................................. 55 
Figure 4.6a - Validation of the models (DE03, SC00, SI05 and MI09) in the 
mixed dataset using calibrations from (1) Mixed dataset, (2) Funil Reservoir 
dataset, and (3) Catfish Ponds dataset ............................................................ 58 
Figure 4.6b - Validation of the models (SM12, MM09, and HU10) in the mixed 
dataset using calibrations from (1) Mixed dataset, (2) Funil Reservoir dataset, 
and (3) Catfish Ponds dataset .......................................................................... 59 
Figure 4.7a - Validation for DE03, SC00, SI05 and MI09 to Funil Reservoir 
dataset using calibrations from (1) Mixed dataset and (2) Catfish Ponds dataset
 ......................................................................................................................... 60 
Figure 4.7b - Validation for  SM12, MM09, and HU10 to Funil Reservoir dataset 
using calibrations from (1) Mixed dataset and (2) Catfish Ponds dataset ......... 61 
Figure 4.8a - Validation for DE03, SC00, SI05 and MI09 to Catfish Pond dataset 
using calibrations from (1) Mixed dataset and (2) Funil Reservoir dataset ....... 62 
Figure 4.8b - Validation for SM12, MM09, and HU10 to Catfish Pond dataset 
using calibrations from (1) Mixed dataset and (2) Funil Reservoir dataset ....... 63 
Figure 4.6 - (a) Sensitivity analysis showing the interference of chl-a on the 
performance of (A) SC00, (B) SI05, (C) MI09, and (D) MM09 .......................... 70 
Figure 4.7 - Two dimensional color correlograms of Rrs band ratios and 
concentration of chl-a, PC and TSS. ................................................................ 72 
Figure 4.8 - 3D surface plot from the two dimensional color correlograms ....... 73 



xvi 
 

Figure 4.9 - Estimated and measured a(λ); a) the best NRMSE of 25%, and b) 
the worst NRMSE of 875%. .............................................................................. 76 
Figure 4.10 - Estimated and measured aCDM(λ); a) the best NRMSE of 25%, and 
b) the worst NRMSE of 1536%. ........................................................................ 77 
Figure 4.11 - Estimated and measured aphy(λ); a) the best NRMSE of 153%, 
and b) the worst NRMSE of 33748%. ............................................................... 77 
Figure 4.12 - Estimated and measured a(λ); a) the best NRMSE of 21%, and b) 
the worst NRMSE of 1015%. ............................................................................ 78 
Figure 4.13 - Estimated and measured aCDM(λ); a) the best NRMSE of 23%, and 
b) the worst NRMSE of 2166%. ........................................................................ 79 
Figure 4.14 - Estimated and measured aphy(λ); a) the best NRMSE of 129%, 
and b) the worst NRMSE of 20386%. ............................................................... 79 
Figure 4.15 - Estimated and measured a(λ); a) the best NRMSE of 23%, and b) 
the worst NRMSE of 77%. ................................................................................ 82 
Figure 4.16 - Estimated and measured aCDM(λ); a) the best NRMSE of 09%, and 
b) the worst NRMSE of 185%. .......................................................................... 83 
Figure 4.17 - Estimated and measured aphy(λ); a) the best NRMSE of 16%, and 
b) the worst NRMSE of 180%. .......................................................................... 83 
Figure 4.18 - Estimated and measured PC concentration ................................ 85 
Figure 4.19 - Rrs a) for the proximal remote sensing; b) for the synthetic OLCI 
data. ................................................................................................................. 86 
Figure 4.20 - Estimated and measured a(λ); a) the best NRMSE of 25%, and b) 
the worst NRMSE of 98%. ................................................................................ 87 
Figure 4.21 - Estimated and measured aCDM(λ); a) the best NRMSE of 58%, and 
b) the worst NRMSE of 306%. .......................................................................... 87 
Figure 4.22 - Estimated and measured aphy(λ); a) the best NRMSE of 52%, and 
b) the worst NRMSE of 1065%. ........................................................................ 88 
Figure 4.23 - Estimated and measured PC concentration ................................ 89 
Figure A.1 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 
of 77%; b) aCDM(λ) with a NRMSE of 185%; and aphy(λ) with a NRMSE of 180%.
 ....................................................................................................................... 111 
Figure A.2 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 
of 34%; b) aCDM(λ) with a NRMSE of 56%; and aphy(λ) with a NRMSE of 117%.
 ....................................................................................................................... 112 
Figure A.3 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 
of 32%; b) aCDM(λ) with a NRMSE of 70%; and aphy(λ) with a NRMSE of 77%.
 ....................................................................................................................... 113 
Figure A.4 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 
of 30%; b) aCDM(λ) with a NRMSE of 26%; and aphy(λ) with a NRMSE of 111%.
 ....................................................................................................................... 114 
Figure A.5 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 
of 55%; b) aCDM(λ) with a NRMSE of 77%; and aphy(λ) with a NRMSE of 58%.
 ....................................................................................................................... 115 
Figure A.6 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 
of 28%; b) aCDM(λ) with a NRMSE of 32%; and aphy(λ) with a NRMSE of 36%.
 ....................................................................................................................... 116 



xvii 
 

Figure A.7 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 
of 24%; b) aCDM(λ) with a NRMSE of 30%; and aphy(λ) with a NRMSE of 143%.
 ....................................................................................................................... 117 
Figure A.8 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 
of 29%; b) aCDM(λ) with a NRMSE of 22%; and aphy(λ) with a NRMSE of 16%.
 ....................................................................................................................... 118 
Figure A.9 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 
of 23%; b) aCDM(λ) with a NRMSE of 19%; and aphy(λ) with a NRMSE of 20%.
 ....................................................................................................................... 119 
Figure A.10 - Estimated and measured absorption spectra; a) a(λ) with a 
NRMSE of 35%; b) aCDM(λ) with a NRMSE of 36%; and aphy(λ) with a NRMSE of 
20%. ............................................................................................................... 120 
Figure A.11 - Estimated and measured absorption spectra; a) a(λ) with a 
NRMSE of 27%; b) aCDM(λ) with a NRMSE of 09%; and aphy(λ) with a NRMSE of 
22%. ............................................................................................................... 121 
  
  



xviii 
 

  



xix 

 

LIST OF TABLES 

Page 

 

Table 2.1 – IOPs, AOPs and Radiometric Quantities commonly used in optical 
hydrology .......................................................................................................... 12 
Table 2.2 - Specifications of the OLCI on the Sentinel-3 satellite system; shaded 
areas are the ones that were included from MERIS specifications. .................. 29 
Table 3.1 - Summary statistics for chl-a and PC pigment concentrations at study 
sites .................................................................................................................. 43 
Table 3.2 - Summary of Rrs based bio-optical models used in our study for 
predicting PC concentration. ............................................................................ 44 
Table 3.3 - Summary of calibration and validation datasets used in the study . 44 
Table 3.4 - Summary of error estimators used in our study .............................. 45 
Table 4.1 - Regression values of SI05 and PC concentration from both methods
 ......................................................................................................................... 50 
Table 4.2 - Regression values of MI09 and PC concentration from both methods
 ......................................................................................................................... 52 
Table 4.3 Correlation estimators derived from model calibrations using the three 
datasets for all seven models ........................................................................... 57 
Table 4.4 PC and Chl-a ratio for the Catfish Ponds Dataset ............................ 64 
Table 4.5 - Error analysis for the linear calibrations for each model and dataset 
(shaded areas represent the lowest errors) ...................................................... 68 
Table 4.6 - Calibration Parameters from Mixed Dataset ................................... 74 
Table 4.7 - Error Analysis ................................................................................. 75 
Technical characteristics of the Sentinel-3 OLCI instrument .......................... 123 
 
 

 

 

 

 

 

 

 

 

 

 

 



xx 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxi 
 

LIST OF ACRONYMS AND ABBREVIATIONS 

a Absorption coefficient 

ADEOS Advanced Earth Observing Satellite 

AISA Eagle Airborne Imaging Spectrometer for Applications Eagle 

AOPs Apparent Optical Properties 

ARIES 
Australian Resource Information and Environmental 

Satellite 

ASD Analytical Spectral Devices 

b Scattering coefficient 

CASI-2 Compact Airborne Spectrographic Imager-2 

CDM Colored Detrital Matter 

CDOM Colored Dissolved Organic Matter 

CEBIMar Centro de Biologia Marinha da Universidade de São Paulo  

CHABs Cyanobacterial Harmful Algal Blooms 

Chl-a Chlorophyll-a 

CHRIS Compact High Resolution Imaging Spectrometer 

CI Cyanobacteria Index 

CZCS Coastal Zone Color Scanner 

ELISA Enzyme-Linked ImmunoSorbent Assay 

EnMAP Environmental Mapping and Analysis Program 

ERTS-1 Earth Resources Technology Satellite 

ESA European Space Agency 

ESALQ Escola Superior de Agricultura "Luiz de Queiroz" 

ETM+ Enhanced Thematic Mapper Plus 

FOV Field Of View 

GA-PLS Genetic Algorithm and Partial Least Squares 

HABs Harmful Algal Blooms 

HICO Hyperspectral Imager for the Coastal Ocean 

HyspIRI Hyperspectral Infra-red Imager 

IIE International Institute of Ecology 



xxii 
 

INEA Instituto Estadual do Ambiente do Estado do Rio de Janeiro  

IOPs Inherent Optical Properties 

LED Light-Emitting Diode 

MAE Mean Absolute Error 

MERIS Medium Resolution Imaging Spectrometer 

MODIS Moderate Resolution Imaging Spectroradiometer 

MSE Mean Square Error 

NaClO Sodium Hypochlorite 

NAP Non-Algal Particles 

NASA National Aeronautics and Space Administration 

NDPCI Normalized Difference Phycocyanin Index 

NH3 Ammonia 

NH4
+ Ammonium cation 

NIR Near Infrared 

NRMSE Normalized Root Mean Square Error 

OACs Optically Active Components 

OBM Optimal Band ratio Modeling 

OCM Ocean Color Monitor 

OLCI Ocean & Land Color Imager 

PC Phycocyanin 

pQAA Proposed Quasi-Analytical Algorithm 

PRISMA PRecursore IperSpettrale della Missione Applicativa 

QAA Quasi-Analytical Algorithm 

R Irradiance Reflectance Ratio 

RMSE Root Mean Square Error 

Rrs Remote Sensing Reflectance from above surface 

rrs Remote Sensing Reflectance from subsurface 

SeaWIFS Sea-viewing Wide Field-of-view Sensor 

SLSTR Sea and Land Surface Temperature Radiometer 

SWIR Short Wave Infrared 

TM Thematic Mapper 



xxiii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TSS Total Suspension Solids 

USP Universidade de São Paulo 

UV Ultra-Violet 

UV-A Ultra-Violet A 

VNIR Visible and Near Infrared 



xxiv 

 

  



xxv 

 

INDEX 

Page 

1 INTRODUCTION ......................................................................................... 1 

1.1. Hypothesis ................................................................................................ 5 

1.2. Objectives ................................................................................................. 5 

2 BACKGROUND .......................................................................................... 7 

2.1. Remote Sensing of Aquatic Environments ............................................... 7 

2.2. Optical Properties of Water ...................................................................... 8 

2.3. Bio-optical modeling ............................................................................... 13 

2.3.1. Bio-optical models for predicting PC ................................................... 18 

2.3.2. Bio-optical models for predicting IOPs (including aPC) ......................... 22 

2.3.3. Estimation of PC concentration ........................................................... 23 

2.3.4. Summary of PC bio-optical models ..................................................... 24 

2.4. Sensor applicability ................................................................................. 25 

3 STUDY AREA, MATERIALS AND METHODS ......................................... 31 

3.1. Study Area .............................................................................................. 31 

3.2. Equipment .............................................................................................. 33 

3.2.1. FluoroProbe ........................................................................................ 33 

3.2.2. Fluorometer Turner 10-AU .................................................................. 34 

3.2.3. RAMSES hyperspectral radiometers ................................................... 34 

3.2.4. Hydroscatt 6P ...................................................................................... 35 

3.2.5. Spectrophotometer .............................................................................. 36 

3.3. Limnological Analysis ............................................................................. 36 

3.3.1. Chl-a Analysis ..................................................................................... 36 

3.3.2. TSS Analysis ....................................................................................... 36 

3.3.3. PC Analysis ......................................................................................... 37 

3.3.4. Phytoplankton identification and cell counts ........................................ 37 

3.3.5. Microcystins Analysis .......................................................................... 37 

3.3.6. Nitrogen and Phosphorus .................................................................... 38 

3.4. Radiometric Analysis .............................................................................. 39 

3.5. PC estimation validation ......................................................................... 41 

3.6. Semi-empirical bio-optical models comparison....................................... 42 

3.7. QAA development .................................................................................. 45 



xxvi 
 

3.8. PC estimation ......................................................................................... 46 

3.9. OLCI/Sentinel 3 simulation ..................................................................... 47 

3.10. Summary ................................................................................................ 48 

4 RESULTS AND DISCUSSION .................................................................. 49 

4.1. PC measurement (fluorometry) .............................................................. 49 

4.2. Overview of the dataset .......................................................................... 52 

4.2.1. Limnological dataset............................................................................ 52 

4.2.2. IOPs and AOPs dataset ...................................................................... 54 

4.3. Semi-empirical bio-optical models comparison....................................... 55 

4.3.1. Bio-optical comparison ........................................................................ 55 

4.3.2. Sensitivity analysis .............................................................................. 70 

4.4. Improvement for semi-empirical bio-optical models ................................ 71 

4.5. QAA development .................................................................................. 75 

4.5.1. QAA from the literature ........................................................................ 75 

4.5.2. Algorithm development ........................................................................ 80 

4.5.3. Algorithm validation ............................................................................. 82 

4.6. PC estimation ......................................................................................... 84 

4.7. OLCI simulation ...................................................................................... 85 

4.7.1. Application of pQAA ............................................................................ 86 

4.7.2. Estimating PC concentration ............................................................... 89 

4.8. Uncertainties........................................................................................... 90 

5 FINAL CONSIDERATIONS ....................................................................... 91 

APPENDIX A ................................................................................................. 109 

APPENDIX B ................................................................................................. 111 

ANNEX A ....................................................................................................... 123 

 

 

 

 

 

 

 

 



1 

 

1 INTRODUCTION 

The eutrophication process in aquatic systems is becoming a significant water 

quality problem, affecting inland water bodies all over the world (UNEP, 1999). 

It has been a concern for environmental and public health managers since one 

of its main consequences is the onset of harmful algal blooms (HABs) 

(SIVONEN; JONES, 1999). One of the most common phylum of HABs is the 

cyanophyta, which has some species of cyanobacteria (also known as blue-

green algae) capable of producing toxins. These species have been occurring 

in aquatic systems worldwide during the past decade (FALCONER; HUMPAGE, 

2006). Thus, there is an increasing need for water governance systems, mainly 

in places with lack of potable water and environmental management. Seven key 

challenges to practice a good management were described by the National 

Research Council (NRC) in their document "The Drama of the Commons" 

(NRC, 2002). The first one is the monitoring of resources, and the second, a low 

cost enforcement of rules. To face these challenges, Ostrom et al. (2003) 

believes the use of current research in collaboration with management 

strategies could solve particular challenges. 

The monitoring of Cyanobacterial Harmful Algal Bloom (CHAB) is an important 

task for aquatic systems, mainly in water bodies used for water supply. Its 

importance is justified because cyanobacteria have been considered the largest 

and most diverse group of prokaryotes with very fast growth rates, especially in 

warm summer, when temperature, light and nutrients from agriculture fertilizers 

and other sources increase (MISHRA et al., 2009). They usually dominate the 

phytoplankton in inland and coastal areas because of their capacity of buoyancy 

regulation, elementary nitrogen fixing capability, and efficient use of yellow-

orange light for photosynthesis (REYNOLDS, 2006). All these capabilities make 

cyanobacteria one of the main phylum present in inland eutrophic waters. 

Furthermore, aquatic environments with CHABs develop thick surface scums, 

and they also have a distinct taste and odor (CODD et al., 1999; RANDOLPH et 

al., 2008; MISHRA et al., 2009). However, the main problem of CHABs are their 
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capacity to produce toxins also known as "cyanotoxins", which are a major 

concern for human health. Some species of cyanobacteria produce toxins which 

cause hepatotoxic, neurotoxic and dermatotoxic effects and general inhibition of 

protein synthesis in animals and humans (SIVONEN; JONES, 1999). 

The first scientific report of animals' contaminations by cyanotoxins occurred in 

1878, in an Australian lake which had an unusual warmth causing a "thick scum 

like green oil" on its surface. As cattle drank water from the lake, the animals 

were rapidly poisoned, provoking their death (FRANCIS, G., 1878). The author 

even observed the time that cyanotoxins took to cause death in different 

animals: in sheep, from six to eight hours; in horses, from eight to twenty-four 

hours; in dogs, from four to five hours, and in pigs, from three to four hours. One 

of the first reported cases of human casualty associated with cyanobacteria and 

their toxins came about in 1996, in the city of Caruaru, PE, Brazil, where 

exposure through kidney dialysis led to the death of approximately fifty patients 

(AZEVEDO et al., 2002). This disaster raised the awareness of water quality 

managers, environmental agencies, policy makers and the general public to the 

problem of CHABs which also increases the cost of water treatment. Thus 

reliable and constant monitoring of CHABs is essential for environmental and 

public health. 

Traditional CHAB’s monitoring methods consist of collection of field samples, 

laboratory analysis, and manual cell counts. These methods are time-

consuming, labor intensive, and costly (LE et al., 2011). Additionally, spatial and 

temporal heterogeneity of water bodies often result in inadequate monitoring 

and characterization of CHABs, since they must rely on sampling methods and 

interpolation and extrapolation between sample points (KHORRAM et al., 

1991). Another problem of the traditional methods of monitoring CHABs is 

related to their regulation of buoyancy which allow them to move in the water 

column. This characteristic affects the collection of water since a floating ship 

could disturb the natural spatial distribution of a bloom (KUTSER, 2004). 

Besides, planning field trips to monitor CHABs is extremely difficult, because 
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algal blooms may be ephemeral and vary according to weather conditions, 

capable of changing the dynamics of the water column in few days through 

mixing and stratification processes (TUNDISI et al., 2004; 2010; 

OGASHAWARA et al., 2014).  

Efficient alternative methods should be developed to improve the monitoring of 

CHABs, combining spatial and temporal approaches with low cost analysis. 

These characteristics enhance remote sensing as a valuable tool for a 

potentially effective solution to monitoring inland water quality. This idea is 

supported by Kutser (2004), who emphasized that the use of remote sensing to 

provide information about the extent of CHABs is more reliable if compared to 

traditional monitoring methods, because it does not break (or interfere with) the 

CHABs to collect data. Metsamaa et al. (2006) also highlighted the use of 

remote sensing by describing it as the only technique to map the spatial 

distribution of CHABs. The authors also stressed that remote sensing is an 

alternative to estimate the amount of cyanobacteria just below the surface, 

however it could not be used to estimate it in the water column. 

Remote sensing of aquatic environments can be classified as either Case 1 or 

Case 2 waters (MOREL; PRIEUR, 1977). This classification was previously 

based on the ratio of chlorophyll-a (chl-a) concentration (in mg m-3) to the 

scattering coefficient at 550 nm (in m-1). The ratio for Case 1 waters should be 

greater than 1, and in Case 2, should be less than 1. Nevertheless, Gordon and 

Morel (1983) proposed new definitions for Case 1 and Case 2. They classify as 

Case 1 waters whose optical properties are determined mainly by 

phytoplankton and the other derivative compounds, such as colored dissolved 

organic matter (CDOM) and detritus were related to phytoplankton. They as so 

classified Case 2 waters as waters whose optical properties are significantly 

influenced by other constituents, such as mineral particles and CDOM, and their 

concentrations do not covary with the phytoplankton concentration. This 

classification – in only two different water types – showed several problems 

(MOBLEY et al., 2004) such as the misinterpretation that inland waters belong 
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to Case 2, when it is possible that a continental aquatic system can be 

dominated only by the phytoplankton (Case 1). However this classification is still 

used since their definitions give a synoptic view of the study site.  

The use of remote sensing for water quality monitoring in Case 2 waters has 

been far less successful if compared to Case 1 waters. This fact is explainable 

by the complex interactions of the four main optically active components 

(OACs) present in Case 2 waters (or complex waters): phytoplankton, non-algal 

particles, CDOM and pure water. These complex interactions were intensified 

by anthropogenic actions, which introduced external inputs to the aquatic 

system. This complexity of mixed componets, associated to an inadequate 

atmospheric correction, will increase the uncertainties of the use of orbital 

remote sensing to monitor water quality. Another source of uncertainty are  

sensor's spatial and temporal resolution which are essential to the better 

estimation on water quality parameters in inland waters. Kutser (2004) showed 

that, although hyperspectral orbital sensors could be used to map CHABs, they 

would not be useful for monitoring water quality because of their temporal 

resolution which is inadequate for the speed of environmental responses.  In 

spite of the lack of orbital optical sensors for aquatic studies, remote sensing 

techniques are potential tools for monitoring water quality. Bukata (2005) 

described that, with the increase of governmental sponsoring of satellites for 

monitoring Earth’s ecosystems, remote sensing could easily be made available 

as a technology for monitoring water quality. 

Thus, for the identification of CHABs with remote sensing techniques, scientists 

initially tried to estimate their biomass mostly from chl-a concentration, since it 

is the primary and dominant photosynthetic pigment in cyanobacteria 

(REINART; KUTSER, 2006). However, recent studies have documented that 

chl-a is not an accurate estimator of cyanobacterial biomass, since it is common 

phytoplankton groups (HUNTER et al., 2009). Therefore, recent studies try to 

analyze the spectral characteristics of phycocyanin (PC), a characteristic 

accessory pigment of inland cyanobacteria species (REYNOLDS, 2006). 
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Therefore, PC has been used as a proxy, because of its two distinct spectral 

characteristics: the absorption peak around 620 nm and the fluorescence 

around 650 nm (DEKKER, 1993; SIMIS et al, 2005; RUIZ-VERDU, et al., 2008). 

Thus, the development of bio-optical algorithms that include PC absorption 

peak spectral bands have been used to estimate PC concentrations (VINCENT 

et al., 2004) or PC's Inherent Optical Properties (IOPs) (MISHRA et al., 2013). 

 

1.1. Hypothesis 

To enhance the knowledge on bio-optical modeling in tropical aquatic systems, 

the following hypothesis was elaborated: 

 Is it possible and needed to re-parameterize a quasi-analytical algorithm 

(QAA) to estimate the absorption coefficient of phycocyanin at 620 nm in 

a tropical region?  

1.2. Objectives 

The main objective of this work is the re-parameterization of a QAA for the 

quantification of the coefficient of absorption of PC in order to estimate its 

concentration. 

To achieve the main goal, other specific objectives were: 

1. To analyze the uncertainties and errors from the estimated IOPs and PC 

concentration from the re-parameterized algorithm; 

2. To simulate the algorithm using the spectral bands from the European 

Space Agency future sensor Ocean & Land Color Imager (OLCI); 
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2 BACKGROUND 

2.1. Remote Sensing of Aquatic Environments   

Earth Observations from space began in August, 1972, with the launch by 

National Aeronautics and Space Administration (NASA) of the Earth Resources 

Technology Satellite (ERTS-1) (JENSEN, 2007). The use of this technology to 

monitor aquatic environments was initiated by oceanographers, who were 

aware that chl-a and temperature could be monitored remotely (BUKATA, 

2013). However, for inland waters, limnologists only in the last two decades 

started to extensively use remote sensing techniques to monitor water quality 

parameters. 

This monitoring occurs through the use of optical remote sensing which enables 

spatiotemporally comprehensive assessment of optical properties of the aquatic 

system. Absorption, scattering and attenuation properties of a water body are 

thereby retrieved from proximal, aerial or orbital measurements datasets of the 

visible domain of the solar reflective spectrum. Such optical properties allow the 

estimation of primary production, turbidity, eutrophication, particulate and 

dissolved carbon contents, or the assessment of currents and algal blooms 

(PLATT et al., 2008). 

Oceanographers developed the theory, field procedures and equipment for 

marine optics. All these achievements are the base for the modeling of 

downwelling spectral solar and sky radiation with the air-water interface and the 

subsurface aquatic absorption and scattering centers. Studies from Cox and 

Munk (1954), Petzold (1972), Jerlov (1968, 1976), Preisendorfer (1976), among 

numerous others, established the main theory of marine optics before or around 

the launch of ERTS-1. 

Among these works on marine optics, an important work made by Gordon et al. 

(1975) became the first operational bio-optical ocean model. They used a 

Monte Carlo simulation of the radiative transfer equation to relate the apparent 
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optical properties (AOPs) to the IOPs in oceanic waters containing OACs, 

molecular water and chl-a. For inland waters, the first bio-optical model that 

related the AOPs to its IOPs was developed for Lake Ontario, Canada, by a 

Monte Carlo simulation of the radiative transfer equation and non-linear 

multivariate optimization analyses (BUKATA, 1979). Bukata et al. (1981a,b) 

used a multispectral radiance data recorded by the Nimbus-7 Coastal Zone 

Color Scanner (CZCS) to establish relationships between AOPs, IOPs and OAC 

that enabled the simultaneous extraction of concentrations of chl-a, total 

suspended solids (TSS), and CDOM from a single full spectrum satellite, 

aircraft, or ship-borne satellite-mimic determination of lake water color. 

2.2. Optical Properties of Water 

The optical properties of water are grouped into IOPs and AOPs. The first group 

is related to those properties that depend only upon the environment, thus, they 

are independent of the environment light field. The two most essential IOPs are 

the total absorption coefficient (a) and the total scattering coefficient (b) since 

the sum of both coefficient is the attenuation coefficient. AOPs, on the other 

hand, are those properties that depend on the environment (and on IOPs) and 

also on the directional structure of the environment light field. AOPs are also 

used as descriptors of a water body due to their regular features and stability. 

The most common AOPs are the irradiance reflectance (R), the remote-sensing 

reflectance (Rrs), and various diffuse attenuation functions (MOBLEY, 2001). 

IOPs are easily explained schematically with the help of Figure 2.1, in which it is 

possible to see an imaginary, infinitesimally thin, plane parallel layer of medium, 

illuminated at right angles by a parallel beam of monochromatic light. Figure 

2.1A shows an incident radiant flux (0) – measured in energy or quanta per 

time unit – in the plane parallel layer of medium and also a transmitted radiant 

flux (t). If 0 = t, the energy that enters the system is totally transmitted into 

the medium. If 0 > t, it means there is an attenuation of the energy when it 

achieves the medium. This attenuation can occur through three different 
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processes shown on Figures 2.1B, C and D. Figure 2.1B shows the medium 

can absorb (a) part of the 0, attenuating the t. Figure 2.1C shows the 

medium may scatter (b) forward and backward 0, instead of absorbing it. 

Figure 2.1D shows a combination of absorption and scattering processes, most 

resembling processes in a natural environment.  
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Figure 2.1 – Different types of interactions between a light beam and a thin 

layer of aquatic medium 

Thus it is possible to conclude that attenuation is a sum of scattering and 

absorption processes, as written in equation 2.1. 
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       (2.1) 

Where: c is the attenuation, a and b are the absorption and scattering 

processes, respectively. 

AOP is a ratio of two radiometric quantities which are the basic properties of 

light measured by optical sensors. This rationing removes effects of the 

magnitude of the incident sky radiance onto the aquatic surface. One example 

of this occurs when the sun goes behind a cloud, the downwelling and upwelling 

irradiances within water may change by an order of magnitude within a few 

seconds, but their ratio will be nearly constant. This is why AOPs cannot be 

measured in laboratory or in water sample; they must be measured in situ. A list 

of the main IOPs, AOPs and radiometric quantities are shown on Table 2.1. 
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Table 2.1 – IOPs, AOPs and Radiometric Quantities commonly used in optical 

hydrology 

 

Quantity Units (SI) Simbology 

Inherent optical properties 

Absorption coefficient m-1 a 

Volume scattering function m-1 sr-1 

Scattering phase function m-1 

Scattering coefficent m-1 b 

Backscatter coefficient m-1 bb 

Beam attenuation coefficient m-1 c 

Single-scattering albedo - 0 

Apparent optical properties 

Irradiance reflectance (ratio) - R 

Remote sensing reflectance sr-1 Rrs 

Remote sensing reflectance (sub) sr-1 rrs 

Attenuation coefficients: 
  of radiance L(z, , ) m-1 K(, ) 

of downwelling irradiance Ed(z) m-1 Kd 

of upwelling irradiance Eu(z) m-1 Ku 

of PAR m-1 KPAR 

Radiometric Quantities 

Quantity of radiant energy J nm-1 Q 

Power W nm-1 

Intensity W sr-1 nm-1 I 

Radiance Wm-2 sr-1 nm-1 L 

Upwelling radiance Wm-2 sr-1 nm-1 Lu 

Sky radiance Wm-2 sr-1 nm-1 Ls 

Water leaving radiance Wm-2 sr-1 nm-1 Lw 

Downwelling plane irradiance Wm-2 nm-1 Ed 

Upwelling plane irradiance Wm-2 nm-1 Eu 

Net irradiance Wm-2 nm-1 E 

Scalar irradiance Wm-2 nm-1 E0 

Downwelling scalar irradiance Wm-2 nm-1 E0d 

Upwelling scalar irradiance Wm-2 nm-1 E0u 

Incident spectral irradiance  Wm-2 nm-1 Es 

Photosynthetic available radiation Photons s-1m-2 PAR 

Source: adapted from Mobley (2001) 
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2.3. Bio-optical modeling 

The expression "bio-optical" was first used in a report of the Scripps Institute of 

Oceanography by Smith and Baker (1977) to describe a "state of ocean 

waters". The "state" that the authors referred in this definition is the fact that in 

many oceanic waters, the optical properties of water are essentially 

subordinated to the biological activity, mainly to the phytoplankton and its 

derivatives. However, nowadays this expression has been followed by nouns 

like model or algorithms.  

A bio-optical model or algorithm can have at least 2 different meanings and 

objectives. The first and most used meaning refers to various ways of 

describing and forecasting the "bio-optical state" of the aquatic system. It 

means that the optical properties are just a function of the biological activity 

(MOREL, 2001) in the water body. The goal of this first meaning is to derive the 

biological activity by establishing a statistically significant relationship. These 

models are essentially empirical and descriptive (MOREL, 2001). The second 

meaning refers to a tool which is used to analyze, and then to predict, the 

optical properties of biological materials. The goal, different from the first one, 

aims to derive optical properties, mainly IOPs from the aquatic systems. To 

achieve this, they focus on the various ways of quantifying the optical properties 

and the light within the water are described by fundamental theories of optics 

and in the radiative transfer theory (MOBLEY, 2001). 

In the literature it is possible to find many types of bio-optical models such as: 

empirical, semi-empirical, semi-analytical and quasi-analytical. Based on the 

two described meanings we can classify empirical and semi-empirical in the 

class of algorithms that aim to estimate the biological activity. They are develop 

from a statistical regression between in-situ measurements of limnological 

parameters and radiometric data from satellite or proximal remote sensing 

devices. The difference between empirical and semi-empirical relies on the 

physical explanation for the algorithm development. As we could observe, both 
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of them are statistically correlated to a biological activity, however the physics 

behind them are different. While in an empirical algorithm the choice of the 

wavelength is based on the best correlation result, like in neural networks 

algorithms which uses computer based statistics to find the best correlated 

wavelengths; in the semi-empirical algorithm the wavelengths choices are made 

by physical assumptions based on the spectral behavior of the target (MOREL; 

GORDON, 1980), for example, the "Red-Edge" used in the vegetation indices. 

The results of these models were then related to the biological activity by the 

use of regression analysis. 

Semi and quasi-analytical models can be classified in the class of algorithms 

that aim to estimate the optical properties of the aquatic system. They rely on 

the inversion of mathematical relationships among AOPs to estimate IOPs 

based in analytical and empirical approaches. The derivation is commonly 

based on the reflectance model proposed by Gordon et al. (1975, 1988) which 

describes the relationship between remote sensing reflectance and IOPs 

(Equation 2.2). 

         
    

    

        
     

     

          
     

     

          
 

 

 (2.2) 

Where: rrs(λ) is the remote sensing reflectance just below water surface, a(λ) is 

the spectral total absorption coefficient, bb(λ) is the spectral total backscattering 

coefficient,  Lu(0
-, λ) and Ed(0

-, λ) are upwelling radiance and downwelling 

irradiance, respectively, and g1 and g2 are geometrical factors.  

However several studies have been simplified the reflectance model (Equation 

2.2) by omitting the quadratic term, using equation 2.3. 

         
 

 
 

  
    

  (2.3) 

Where: f is the anisotropic factor of the downwelling light field (KIRK, 1994) and 

Q is the geometrical factor (GONS, 1999). 
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The f value is a function of the solar elevation angle (KIRK, 1994) and can be 

reasonably well expressed as a linear function of μ0 – the mean cosine of the 

zenith angle – and can be determined as in equation 2.4: 

 

                  
(2.4) 

  
The value of μ0 is calculated according to the sampling time, locations (latitude 

and longitude) and solar zenith angle (MARTIN; McCUTCHEON, 1999; REES, 

2001). For the Q value it was proposed (GONS, 1999) an empirical equation for 

turbid inland waters under different solar elevation angles, as expressed in 

equation 2.5: 

  
    

  
 (2.5) 

  
A factor of 0.544 was proposed by Austin (1980) to relate the radiance just 

above the surface to radiance just beneath the surface. Therefore, remote 

sensing reflectance just above the water surface (Rrs) can be determined as in 

equation 2.6: 

               
 

 
 

  
    

  (2.6) 

  
Where: Rrs(λ) is the remote sensing reflectance just above the water surface. 

There are some studies that instead of Rrs or rrs prefer to use the Irradiance 

Reflectance Ratio (R), then its relation to the POIs follows equation 2.7. 

       
    

  

      
   

  
    

  (2.7) 

Where: R(0-) is the irradiance reflectance ratio just beneath the water surface, 

Eu and Ed are upwelling and downwelling irradiance, respectively. 
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From these simplifications of Equation 2.2, several semi-analytical and QAA 

have been proposed for deriving the IOPs in Case 1 waters (MARITORENA et 

al., 2002; LEE et al., 2002). For Case 2 waters semi-analytical and QAA have 

been proposed just recently by Li et al. (2012), Mishra et al. (2014) and Li, et al. 

(2013). The main difference between semi and QAA is based on the estimation 

of the a(λ) and bb(λ). In the QAA the estimation of the total absorption coefficient 

does not depend on others IOPs estimations such as the absorption coefficients 

of phytoplankton, Non algal particles (NAP) and Colored Detrital Matter (CDM) 

like in semi-analytical algorithms. Instead of it, QAA estimates total absorption 

coefficient directly from Rrs and the it is further decomposed spectrally into 

others absorption coefficients when necessary. 

Thus, the a(λ) in semi-empirical algorithms is usually described as the sum of all 

other absorptions coefficients equation 2.8. 

                       
              

    

            
     

(2.8) 

Where: [chl-a] and [NAP] denote concentrations of chl-a and NAP, respectively; 

[CDOM] denotes the absorption of CDOM at 440 nm; aw(λ) is the spectral 

absorption coefficient of pure water; and a*phy(λ), a*NAP(λ) and a*CDOM(λ) are 

spectral specific absorption coefficients for phytoplankton, NAP and CDOM, 

respectively. 

Instead of it, for QAA, the a(λ) is calculated in QAA version 5 (QAAv5) (LEE et 

al., 2009), according to the equation 2.9. 

      
                         

    
 (2.9) 

Where: u is calculated from a relation among back scattering coefficient (bb(λ)), 

to the sum of total absorption coefficients and bb(λ); bb,w(λ) is the spectral 

backscattering coefficient of pure water; and bb,p(λ) is the spectral 

backscattering coefficient of particulate matter. 
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The bb(λ) is also usually expressed as the sum of the backscattering 

coefficients for each constituent in water except for CDOM, as in equation 2.10: 

                                               (2.10) 

Where: bb,phy(λ) and bb,NAP(λ) are spectral backscattering coefficients for 

phytoplankton and NAP. 

Once again in QAA the bb(λ) is calculated differently (LEE et al., 2009), 

according to the equation 2.11. 

                        
  
 
 
 

 (2.11) 

Where: λ0 is the target wavelength, bb,p is backscattering coefficients of 

suspended particles and η is calculated from equation 2.12. 

                  
        

       
   (2.12) 

To summarize the classification of bio-optical algorithms, Figure 2.2 presents a 

flowchart which shows the division of the bio-optical algorithms in two types : 

the ones that estimate biological activity and the ones that estimate the optical 

properties. Each type has a different goal and its own procedures to achieve its 

products. 
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Figure 2.2 - Flowchart of bio-optical models classification and goals 

 

2.3.1. Bio-optical models for predicting PC 

Three methods have been used to develop empirical models for PC 

concentration estimation. A regression procedure was used by Vincent et al. 

(2004) in a study developed at Lake Erie, one of the Laurentian Great Lakes, 

and used Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) 

sensors from Landsat 5 and 7 respectively to acquire the radiometric data. As 

described in the methodology of the study, there was no preconceived notions 

of which were the best bands or spectral bands to be used in the modeling. The 
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authors entered all TM and ETM+ spectral bands and let the multiple regression 

method sort the best ones out. Thus they elaborate two empirical models one 

for the combinations of single bands and another one for the combinations of 

spectral band ratios (VINCENT et al., 2004). Despite the fact that the authors 

tried to achieve the best coefficient of correlation, this study enhanced that the 

use of band ratios suppress the interference of the specular reflection from 

water under wavy conditions. Another technique to choose empirically the 

spectral bands to be used in an empirical algorithm is the genetic algorithm and 

partial least squares (GA–PLS) method (SONG, et al., 2012). In this study, GA–

PLS was used as a combination of GA with PLS regression for spectroscopic 

analysis from proximal and airborne hyperspectral data. GA method was used 

for selection of the spectral variables and PLS was used to evaluate the relation 

among selected spectral variables and the biological activity, in this case the 

PC. In a recent study, Song et al. (2013a) used an optimal band ratio modeling 

(OBM) approach to generate several band ratios in order to estimate PC 

concentration. Although they used bands that could be explained physically and 

are very similar to some semi-empirical models, the use of OBM which is an 

empirical method that makes the choice of spectral bands more dependent of 

the correlogram. Sun et al. (2013) also used a correlogram analysis to estimate 

the best correlations among band ratios for PC detection. They classified waters 

in three different types and then related each water type to several band-ratios. 

Several semi-empirical algorithms have been developed to quantify PC in inland 

waters. As they are classified as semi-empirical, spectral bands selection relies 

on PC specific spectral patterns such as its absorption peak around 620nm and 

its fluorescence peak around 650nm. The first semi-empirical bio-optical model 

was the developed by Dekker (1993) and is known as the baseline algorithm 

and uses two wavelengths (600 and 648 nm) to draw a reference baseline, and 

relates PC concentration to the distance from the midpoint of the baseline to the 

reflectance at 624 nm which is related to the PC absorption peak for the author 

measures. Another semi-empirical algorithm was proposed by Schalles and 
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Yacobi (2000) and it is known as the single reflectance ratio, which uses PC 

fluorescence peak reflectance at 650 nm as reference, and then targets the PC 

absorption at 625 nm. One of the most cited PC semi-empirical algorithm is the 

nested band ratio which was developed for the spaceborn Medium Resolution 

Imaging Spectrometer (MERIS) sensor band settings from the European Space 

Agency (ESA). It relates PC to its absorption peak at 620nm which is also the 

center of band 6 of MERIS. The PC is retrieved from the ratio of the 620 nm 

band and a near infra-red (NIR) band, centered at 709 nm, as reference. The 

algorithm also has a second band ratio (709/665nm bands) which is used to 

infer a correction for the absorption of chl-a at the 620 nm spectral band. 

Another band (centered at 779 nm) is used to calculate the backscattering 

coefficient that is introduced in the two band ratios, to retrieve the absorption 

coefficients through inversion of a reflectance model (SIMIS et al., 2005). 

Wynne et al. (2008) developed a spectral shape (SS) algorithm using the water 

leaving radiance (Lw) from MERIS at 681, 709 and 665 nm. This algorithm 

allowed the authors to distinguish bloom and non-bloom conditions on Bear 

Lake, Michigan, USA. However, this algorithm does not retrieve PC 

concentration, it just retrieve two classes: a positive value or a negative value of 

radiance. Wynne et al. (2010) proposed a cyanobacteria index (CI) using the 

SS algorithm in order to classify the occurrence or not of CHABs. A positive CI 

is indicative of elevated densities of cyanobacteria while the negative CI is 

indicative of no CHABs. Hunter et al. (2008) adapted the three band model 

proposed by Gitelson et al. (2008) used for the retrieval of chl-a from MERIS 

data to propose a PC three band model. They applied their algorithm using an 

Analytical Spectral Devices (ASD) FieldSpec® HandHeld Spectroradiometer 

(ASD Inc., Boulder, CO, USA) spectrophotometer to experimental cultures of 

cyanobacteria. The model was achieved by setting reflectance from 630, 660 

and 750 nm as the reference wavelengths for the PC retrieval model. Hunter et 

al. (2010) proposed an update on their previous three band algorithm for two 

airborne hyperspectral sensors - Compact Airborne Spectrographic Imager-2 

(CASI-2) (ITRES Research Ltd., Calgary, AB, Canada) and Airborne Imaging 
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Spectrometer for Applications Eagle (AISA Eagle) (SPECIM, Oulu, NO, Finland) 

- changing the spectral bands to 600, 615 and 725 nm. The new single 

reflectance ratio (MISHRA et al., 2009) used a proximal remote sensing sensor 

USB 4000 radiometer (Ocean Optics, Inc., Dunedin, FL, USA). The algorithm 

uses the reflectance at 700 nm as reference and targets PC absorption at 600 

nm in order to minimize the chl-a interference. Le et al. (2011) based on a four-

band algorithm for chl-a estimation (LE et al., 2009) developed a four-band 

algorithm for PC concentration estimation. The spectral bands for this algorithm 

were chosen according to the same characteristics used in the chl-a four bands 

model. Thus the first band should be the most sensitive for PC, which the 

authors chose 630nm. The second spectral band should have less interference 

of PC absorption and should have a difference on the absorption coefficients of 

NAP and CDOM, then it was chosen the 645 nm. Third and fourth bands were 

chosen to minimize the effect of backscattering from TSS, then 730 and 695 nm 

were chosen as the wavelengths for the third and fourth bands respectively. 

Dash et al. (2011) used the Ocean Color Monitor (OCM) sensor to develop a 

spectral reflectance slope algorithm in order to map cyanobacteria in a small 

freshwater lake. The slope algorithm proposed by the authors OCM uses OCM 

bands 4 and 5, located at 510.6 and 556.4nm respectively. This spectral range 

was use to identify PC even without the absorption peak at 620nm. Thus, due to 

OCM spectral resolution the slope between bands 4 and 5 was used to identify 

the low PC absorption coefficient values. Domínguez et al. (2011) proposed a 

Normalized Difference Phycocyanin Index (NDPCI) for MERIS and Compact 

High Resolution Imaging Spectrometer (CHRIS) spectral bands. The authors 

used for the index bands around 705 which is the near the fluorescence of chl-a 

(MERIS band 9 and CHRIS band 14) and the absorption peak of PC, centered 

at 620 nm (MERIS band 6 and CHRIS band 9). Wheeler et al. (2012) also 

applied the concept of Red/NIR algorithms, from chl-a bio-optical models for 

case 2 waters, for estimating PC on Quickbird and MERIS images at Missisquoi 

Bay, USA.   
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2.3.2. Bio-optical models for predicting IOPs (including aPC) 

Two algorithms have been developed to estimate IOPs from case 2 waters 

which include the aPC. Li et al. (2012) developed an algorithm to estimate the 

aPC based on two steps which consisted of the use of three-band semi-empirical 

algorithms to estimate pigments absorption coefficients, and the calculation of 

aPC(624) by removing the interference from the absorption of other constituents. 

In this algorithm the authors used Hunter et al. (2010) semi-empirical algorithm 

structure to generate two relations among estimated absorptions coefficients of 

different wavelengths. They used the Rrs at 725nm to correct for the 

backscattering effect, the Rrs at 624nm due to its sensitiveness to PC 

concentration caused by its maximal absorption at around 620nm, and bands 

600 nm and 648 nm could correct the effects of CDM and backscattering since 

both of them are close to band 624 nm. Then the Rrs from the semi-empirical 

algorithms were replaced for relation proposed by Gordon et al. (1975, 1988), 

resulting on equations 2.13 and 2.14. 

     
       

                                   

 
                                   

       

 
                                   

       
 

(2.13) 

Where: R31 is the first three band model structure used. 

     
       

                                   

 
                                   

       

 
                                   

       
 

(2.14) 

Where: R32 is the second three band model structure used. 
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Based on the assumptions that bb(λ) at 600, 624 and 648 nm is not significantly 

different and acdm(725)=aphy(725)≈0 (SIMIS et al., 2005, 2007); the aPC can be 

estimated by equation 2.15. 

                                          (2.15) 

Mishra et al. (2013, 2014) developed a QAA in order to estimate the aphy(λ) from 

proximal Rrs collected in highly turbid catfish ponds. They also developed a 

technique to further decompose the aphy(λ) in order to obtain aPC, at 620 nm – 

the peak of PC absorption spectrum. aphy(λ) was estimated through the QAA 

(LEE et al., 2002) which is a multi-band inversion algorithm that inverts 

absorption coefficients. aPC estimation was based on the assumption that aphy(λ) 

provides information about the absorption by all intracellular phytoplankton 

pigments (MISHRA et al., 2013). The decomposition was based on equation 

2.16 and 2.17 which were based on Simis et al. (2005) relation among chl-a and 

PC contributions to the absorption at 620nm.  

                              (2.16) 

Where: achl is the absorption coefficient of chl-a. 

                              (2.17) 

aPC was finally defined through the solution of these two equations by equation 

2.8 

          
                     

     
 (2.18) 

Where: 1 is the ratio between achl(665) and achl(620) and 2 is the ratio 

between aPC(665) and aPC(620). 

2.3.3. Estimation of PC concentration 

To estimate PC concentration from the aPC, Simis et al. 2005; Li, et al. (2012) 

and Mishra et al. (2013) used the specific absorption coefficient of PC (a*PC). 
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The PC concentration is estimated by a ratio between the aPC and a*PC at 

620nm, expressed in equation 2.19. 

      
        

   
      

 (2.19) 

2.3.4. Summary of PC bio-optical models 

A summary with visual geographic location of all PC bio-optical models 

exemplified here is shown on Figure 2.3. It is important to notice that Figure 2.3 

only enhance the studies that develop algorithms not the studies that applied 

the bio-optical models. It was observed that there is no PC bio-optical model 

developed on the Southern Hemisphere or in the tropical region of the planet. 

This fact enhances the need for a re-parameterization of a bio-optical algorithm 

for tropical regions. It is also important to highlight that the development of semi 

and quasi-analytical bio-optical algorithms have been produced just in recent 

years while empirical and semi-empirical algorithms were older. This difference 

could be explained by the technology and labor intensity required from each of 

these two groups of bio-optical models. Semi and quasi-analytical bio-optical 

models depend on several measures of rrs, absorption and backscattering 

coefficients which could not be measured years ago due to the lack of 

equipment. On the other hand, empirical and semi-empirical algorithms just 

depend on the reflectance or radiance measures and the limnological 

parameters to be developed. A list of all model referenced above is shown on 

Appendix A in the end of this Master Thesis. 
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Figure 2.3 - Location of PC bio-optical algorithms developed in the literature 

 

2.4. Sensor applicability 

The first sensor dedicated to aquatic environments was the Coastal Zone Color 

Scanner (CZCS) aboard Nimbus-7 launched in 1978. Therefore, by the launch 

of satellites and earth observing sensors such as ERTS-1/Landsat-1 and 

Nimbus-7, the basis of marine optics were successfully improved enabling 

remote multispectral sensors to monitor water color and, by inference, water 

quality. Several others satellite sensors which could be use for water monitoring 

were launch after the CZCS such as the Landsat family (2 to 8), Sea-viewing 

Wide Field-of-view Sensor (SeaWiFS), Advanced Earth Observing Satellite 

(ADEOS), Hyperion, Australian Resource Information and Environmental 

Satellite (ARIES), Moderate Resolution Imaging Spectroradiometer (MODIS), 

and MERIS. 

Although the great number of Earth Observing sensors we still have a lot of 

limitations for the use of satellite sensors in order to monitor water quality. 

These limitations can be divided in two groups: the sensor limitation and the 

environmental conditions limitations. Sensor limitations are related to their 

resolutions (radiometric, spatial, spectral and temporal) and to signal-to-noise 

ratio. Radiometric resolution is the one which refers to the absolute amounts of 
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reflectance that can be measured by the sensor while the spatial resolution 

limits the finest spatial detail measureable (the pixel size) which is important 

according to the size of the aquatic system. Spectral resolution is the most 

important for the accuracy of bio-optical models, since it determines how 

detailed the spectral reflectance can be measured. The temporal resolution 

represents the nominal frequency with which images of the same area are 

acquired. For monitoring capability, the temporal and spatial resolutions are the 

most important resolutions in a sensor.  

Environmental limitations are the ones that is not caused by the sensor, but by 

environmental factors. Weather dependency is one of the most important 

factors, since the image acquisition may be compromised by adverse 

atmospheric conditions, which are dependent on season and geographical 

location. Other atmospheric compounds like cloud, haze, fog, smoke or dust  

can also compromise the frequency of earth observations over a target area. It 

is important to enhance that the detection of water quality variables is restricted 

to variables that have a direct influence on water optical conditions. It is also 

important to enhance that these few variables that influence bio-optical models 

were located in the top one or two meters of inland, since most of the optical 

remote sensing signal cannot be derived from deeper zones. In the marine 

optics the sea state is also an important environmental limitation for its 

successfulness.  

However for PC estimation, due to the small peak of PC absorption around 620 

nm, the spectral resolution is an important characteristic of the sensor that 

interferers on the performance of the model. Then, few sensors have the 

appropriated spectral bands for the estimation of PC. Hyperspectral orbital 

sensors such as CHRIS, Hyperion and Hyperspectral Imager for the Coastal 

Ocean (HICO) could be used to map PC in a reservoir due to their high spectral 

resolution. However, their use for monitoring programs is compromised by their 

temporal resolution. The use of multi-spectral orbital sensors is reduced due to 

the lack of spectral bands on the absorption peak of PC. MERIS was the only 
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multispectral sensor with a spectral band around 620 nm, however as ENVISAT 

stopped communicating with ground stations in the middle of 2012, the use of 

MERIS for aquatic studies is compromised. 

New hyperspectral sensors such as Environmental Mapping and Analysis 

Program (EnMAP), Hyperspectral Infra-red Imager (HyspIRI) and PRecursore 

IperSpettrale della Missione Applicativa (PRISMA) have been developed to 

improve hyperspectral measures from the space. EnMAP is a German 

hyperspectral satellite mission providing high quality hyperspectral image data 

on a timely and frequent basis. It will provide over 240 continuous spectral 

bands in the range between 420 and 2450 nm with a spatial resolution of 30 m. 

The sensor will work in a push broom configuration. and will provide global 

coverage in quasi nadir mode (±5°) from a sun-synchronous orbit (STUFFLER 

et al., 2009). HyspIRI is a global mapping mission that was recommended by 

the National Research Council's Earth Sciences Decadal Survey (NRC, 2007). 

It will include two sensors: a visible, near−infrared and shortwave infrared 

(VSWIR) imaging spectrometer and multispectral thermal infrared (TIR) 

instrument. The VSWIR instrument will have 213 spectral channels between 

380 and 2500 nm on 10 nm centers. Its spatial resolution for both instruments 

will be 60 m at nadir (ROBERTS et al. 2012). PRISMA is a remote sensing 

space mission under development by the Italian Space Agency (ASI). It will 

provide hyperspectral images of the Earth with a spatial resolution of 30m, and 

250 spectral bands with a spectral resolution better than 10 nm. The spectral 

ranges covered by the sensor are visible and near infrared (VNIR) and short 

wave infrared (SWIR) bands. It will also have a panchromatic band with 5m of 

spatial resolution which will be co-registered to the hyperspectral bands in order 

to allow the fusion techniques on PRISMA's images (LABATE et al., 2009). 

Although these improvements, the revisit times at the equator for each of these 

sensors will be: on demand, 19 days and 25 days for EnMAP, HyspIRI and 

PRISMA respectively (DEKKER; HESTIR, 2012).  
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To substitute ENVISAT, ESA has proposed the Sentinel constellation in which 

there will be on board of its third satellite, Sentinel-3, the Ocean and Land 

Colour Instrument (OLCI). This sensor has similar specifications as the MERIS 

because of this, it will provide data continuity of MERIS on ENVISAT (DONLON 

et al., 2012). However, OLCI will have 21 spectral bands which are few more 

bands than in the MERIS which will be use mainly for a more accurate 

atmospheric correction. Table 2.2 shows all OLCI bands and on the shaded 

areas are the new bands. The sensor will have a swath width of 1270 km (FOV 

of 68°, but slightly tilted) and a spatial resolution of 300 m. It is tilted 12.6° 

westwards to avoid sun-glint over water, which may have some effects over 

land too (CLEVERS; GITELSON, 2013). Due to the satellites constellation 

strategy it has been planned two Sentinel-3 satellites. The revisit time at the 

equator for OLCI (sun glint free) using one satellite is 3.8 days, however using 

the two planned satellites this time will reduce to 1.9 days (ESA, 2012). For 

more details of OLCI sensor, a table with key characteristics is shown on Annex 

A. Another multispectral mission that will be develop is the SABIA-MAR mission 

which will have two sensors to image earth in a global and regional scale. The 

mission was conceived to provide information and products to studies of ocean 

ecosystems, carbon cycling, marine habitats mapping, coastal hazards, and 

coastal land cover/land use (CHAMON. 2013).  
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Table 2.2 - Specifications of the OLCI on the Sentinel-3 satellite system; shaded 

areas are the ones that were included from MERIS specifications. 

Spectral band Center wavelength (nm) Band width (nm) 

O1 400 15 

O2 412.5 10 

O3 443 10 

O4 490 10 

O5 510 10 

O6 560 10 

O7 620 10 

O8 665 10 

O9 673.75 7.5 

O10 681 7.5 

O11 709 10 

O12 754 7.5 

O13 761 2.5 

O14 764.375 3.75 

O15 767.5 2.5 

O16 779 15 

O17 865 20 

O18 885 10 

O19 900 10 

O20 940 20 

O21 1020 40 

Source: ESA, 2012. 

These characteristics show that OLCI is a potential sensor for CHABs 

monitoring since it has a spectral band on the PC absorption peak and it will be 

freely available with a high temporal resolution and the adequate spectral bands 

for water quality monitoring, mainly PC and chl-a. As well as other satellites 

from the Sentinel family, Sentinel 3 will have a global coverage once the second 

system will be acquiring images. Dekker and Hestir (2012) attributed MERIS as 

the most suitable satellite sensor system with sufficient temporal frequency for 

inland and near‐coastal water quality. As OLCI is the successor of MERIS and 

because of the number of spectral bands (MERIS=15, OLCI=21), OLCI has 
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been treated as a potential tool for remote sensing of water quality researches 

(DEKKER; HESTIR, 2012; SONG et al. 2013b). 
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3 STUDY AREA, MATERIALS AND METHODS 

3.1. Study Area   

The study area (Figure 3.1) of this research was a hydroelectric reservoir - the 

Funil Reservoir (22º32' S and 44º45' W). The reservoir has a 16800 km2 

catchment area, surface of 40 km2, mean depth of 22 m, maximum depth of 70 

m and total volume of 8.9 x 109 m3. The retention time varies from 10 to 50 days 

according to the season of the year (ROCHA et al., 2002). It drains water from 

the hydrographic basin of Paraíba do Sul river, in Southeast Brazil, and it is 

located between the cities of Itatiaia and Resende in the state of Rio de Janeiro. 

This hydrographic basin connects three economically important Brazilian states 

including Minas Gerais, Rio de Janeiro, and São Paulo. 

 

Figure 3.1 - Location of Funil Reservoir and sampling points in the State of Rio 
de Janeiro, Brazil 
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Funil Reservoir was constructed during the late 1960s with the purpose of being 

an important hydroelectric power generation source. However, Branco et al. 

(2002) also computed that the Funil reservoir also serves as the primary source 

of drinking water for domestic supply, irrigation, industrial self-supply systems 

and aquaculture. However, the reservoir receives waste from one of the main 

Brazilian industrial areas with a large range of industries: 19 chemical, 26 

siderurgical and metallurgical, 5 electric and eletronic, 1 petrochemical, 3 paper 

and cellulose and few others food and textile industries (PRIMO, 2006). 

As consequence of the draining of all these industrial waste the income of 

nutrients has been increasing. Because of this, it has been observed the 

enhance of the eutrophication process in recent decades (BRANCO et al., 

2002). Thus, the Funil Reservoir showed to be a favorable environement for the 

development of CHABs. Ferrão-Filho et al. (2009) analyzed Funil Reservoir 

from June, 2002 to March, 2006 and concluded that Funil is a cyanobacterial 

dominated reservoir. The authors found three main species of cyanobacterias 

which are potentially producers of microcystins (a hepatotoxin) and saxitoxins (a 

neurotoxin): Anabaena circinalis, Cylindrospermopsis raciborskii and 

Microcystis spp. Ferrão-Filho et al. (2009) also found that the concentration of 

these cyanotoxins were also found on zooplankton cells (Daphnia pulex) 

showing that they had been contaminated. A study of phytoplankton community 

of Funil Reservoir conducted by the Rio de Janeiro State Environmental 

Institute (INEA) showed that from all cells of phytoplankton (8,324,750 cells) 

cyanobacteria represents aproximatelly 94.30% (7,850,166 cells) (ARAUJO et 

al., 2010). Figure 3.2 shows a phytoplankton bloom at Funil Reservoir during a 

field campaing on May of 2012. Figure 3.2A shows a view of the water surface 

with algae blooms and Figure 3.2B shows a closer look on the algal bloom. It is 

possible to notice the development of thick surface scums on the reservoir.  
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Figure 3.2 - Phytoplankton bloom at Funil Reservoir on May, 2012 
(Hydrosphere Processes Research Group/INPE) 

Sampling points were distributed along the entrance of Paraíba do Sul River 

(Figure 3.1) due to be the area of the reservoir with highest levels of 

eutrophication, because of the input of nutrients and other pollutants in the 

reservoir through this river. 

3.2. Equipment 

Several fluorometric, radiometric and spectrometric equipments were used to 

collect data on the water column and above the surface of the Funil Reservoir. 

In this section the main equipments are quickly described by their main 

characteristics. 

3.2.1. FluoroProbe  

FluoroProbe (bbe-Moldaenke, Kiel, Germany) is an in situ fluorometer that uses 

the spectral fluorescence approach to quantify phytoplankton biomass and to 

discriminate among 4 different phytoplankton groups (1) ‘green’ algae 

(Chlorophyta and Euglenophyta) rich in chl-a and b, (2) ‘brown’ xanthophylls 

containing algae (Bacillariophyta, Chrysophyta and  Dinophyta), (3) ‘blue’ PC-

rich algae (Cyanophyta) and (4) ‘red’ phycoerythrin-rich algae (Cryptophyta) 

(HOULIEZ, et al., 2012).   
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For the discrimination of phytoplankton groups, it uses five light emitting diodes 

(470, 525, 570, 590 and 610 nm) for sequential light excitation of accessory 

pigments. It also measured the relative fluorescence intensity of chl-a between 

690 and 710 nm. To quantify the concentration of each phytoplankton group it 

compares the excitation spectrum to a library of four fingerprints stored in the 

probe and the relative concentration of each algal group expressed in terms of 

the equivalent amount of chl-a per liter (μg/L) (BEUTLER et al., 2002). The 

general idea of this procedure is to perform linear regression to estimate the 

weighting factor to be applied to each estimated spectra, which allows the 

calculation of the amount of chl-a corresponding to each group. 

3.2.2. Fluorometer Turner 10-AU 

The 10-AU-005-CE Field Fluorometer (Turner Designs, Sunnyvale, CA, USA) is 

a rugged, field-portable instrument that can be set up for continuous-flow 

monitoring or discrete sample analysis. The instrument features a watertight 

case, internal data logging, automatic range changing, and watertight quick-

change filter paddles (TURNER DESIGNS, 2009). The 10-AU fluorometer was 

equipped with a PC Optical Kit (P/N: 10-305) including a cool-white mercury 

vapor lamp, a 630 nm excitation filter, and a 660-nm emission filter. This optical 

kit permits the measurement of in vivo PC, using the procedure of continuous-

flow through a 12V self priming pump which has a flow rate of approximately 

23.8 liters per minute (L min–1). The hose for water uptake was set at 30 cm 

from the surface to minimize the entry of air bubbles in the system (FERREIRA 

et al. 2012).  

3.2.3. RAMSES hyperspectral radiometers 

Radiance and irradiance measurements were carried out using the RAMSES 

hyperspectral radiometers (TriOS GmbH, Oldenburg, Germany). These 

radiometers take measures in the visible and near-infrared range of the 

spectrum (320–950 nm) with 3.3 nm spectral resolution (0.3 nm accuracy); and 

can be used in air or in water. RAMSES radiometers can be classified in ACC-
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UV, ACC-VIS, ASC-VIS and ARC (TRIOS, 2013). The RAMSES ACC-UV is an 

integrated Ultra-Violet (UV) hyperspectral radiometer; and the RAMSES-ACC-

VIS is a Ultra-Violet A (UV-A) and visible spectral region hyperspectral 

radiometer, both equipped with a cosine collector. RAMSES-ASC-VIS is 

equipped with a spherical collector shielded to measure radiation from one 

hemisphere. It can measure scalar irradiance through the use of two of these 

sensors pointed in opposite directions. RAMSES-ARC is a highly integrated 

hyperspectral radiometer for the UV and visible spectral range. All these 

radiometers are calibrated for underwater and air measurements using two 

different calibrations. They capture the signal through some power consumption 

and portable terminal (laptop) with the MSDA_XE software which is used to 

record the radiance signal and export the data from the database for further 

processing. The use of RAMSES sensors is enhanced due to the work of Ohde 

and Siegel (2003) which used the sensors to calculate its immersion factors of 

sample radiance and irradiance. 

3.2.4. Hydroscatt 6P 

HydroScat-6P (Hydro-Optics, Biology, & Instrumentation Laboratories - HOBI 

Labs, Tucson, AZ, USA) is an instrument for measuring optical backscattering 

at six different wavelengths (420, 442, 470, 510, 590, and 700 nm) in natural 

waters. It can also provide measurements of fluorescence at 700 nm excited by 

442 nm and at 510 nm excited by 420 nm (HOBI LABS, 2013). The six 

independent channels are sensitive to different narrow ranges of optical 

wavelengths. Thus, each channel has a unique source and receiver optics. The 

source will produce a beam from a light-emitting diode (LED) - selected to 

match the desired measurement wavelength - which will be emit through a lens 

to adjust its divergence, then through a prism that bends the beam before it 

goes to the water. The receiver will collect a portion of the light that is scattered 

out of that beam through a band-pass interference filter which will determine the 

exact wavelength range of the measurement from the source beam (HOBI 

LABS, 2010). The geometry of the position of the source beam, the receiver 
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field of view, the angles of the prisms, and the distance between the source and 

receiver windows results in a measurement centered on a scattering angle of 

140º MAFFIONE; DANA, 1997). HydroScat-6P also includes a depth 

transducer, rechargeable batteries, a data logger with real-time clock, and an 

external switch for controlling logging.  

3.2.5. Spectrophotometer 

A Perkin Elmer lambda 35 UV/Vis Systems spectrophotometer (Perkin Elmer 

Inc, Waltham, MA, USA) with an integrating sphere was used to measure 

absorbance of the samples with 10 cm quartz cells and a spectral range from 

190 - 1100 nm. 

3.3. Limnological Analysis 

3.3.1. Chl-a Analysis 

Water samples for chl-a analysis were collected from the subsurface, 

approximately 10 cm below the water surface, and were kept at cool 

temperatures until the inland filtering procedure. This procedure consisted of 

filtering the collected samples using GF/F filters (Whatman, 0.7 μm pore size) 

and then extracting the samples from the filters using 90% acetone and 

measuring the absorbance in a Varian Cary 50 Conc UV-VIS 

spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) (NUSH, 

1980). Concentration of chl-a from the spectrophotometric absorbance data was 

calculated using the equation from Lorenzen (1967). 

3.3.2. TSS Analysis 

TSS concentrations were determined based on Wetzel and Likens (1991) from 

water samples filtered through pre-ashed Whatman GF/F glass-fibre filters, 

dried at 105°C, and weighed to determine the TSS. Filters were dried and 

weighed and TSS calculated by the difference in weight between the pre and 

post filtered filters. 
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3.3.3. PC Analysis 

PC concentration was estimated through the use of an in situ fluorometer called 

FluoroProbe (bbe Moldeanke, GmbH) and a fluorometer (Turner Designs, 

model 10-AU-005) with an in vivo PC optical kit which uses the excitation and 

emission wavelengths at 600 nm and 640 nm, respectively. The fluoroprobe 

measures temperature and phytoplankton concentrations of four groups: (1) 

Chlorophyta, (2) PC-rich Cyanobacteria, (3) Diatoms, and (4) Cryptophyta. All 

data were time stamped and archived on a field handheld personal computer. 

PC concentration were then estimated by a intercalibration among fluorescence 

values measure by the fluorometer and concentrations values measure by the 

Fluoroprobe. 

3.3.4. Phytoplankton identification and cell counts 

The sample was preserved with Lugol’s solution and settled until the delivery in 

the laboratory at International Institute of Ecology (IIE). The Lugol's solution is 

recommended for the preservation of the samples since it helps to discharge 

any gas which could be held in the vacuoles of the organisms; and it is also 

good since it kills, stains and weighs the algae (LUND et al., 1958). It was used 

the Utermöhl method since it allows the identification of phytoplankton 

composition and biomass in an ecosystem (WILLEN, 1976). For the Utermöhl 

method it was used a chamber, in which a 2 ml sub-sample is placed and left to 

settle onto a coverslip for two hours to decant the biological material. After this 

procedure phytoplankton were counted using an inverted microscope (Axiovert 

100, Zeiss, Thornwood, NY, USA). Cell counts were given in cells per milliliter 

(cell/mL). 

3.3.5. Microcystins Analysis 

Several researches used the enzyme-linked immunosorbent assay (ELISA) for 

analyze the toxicity of cyanobacterias (CARMICHAEL et al. 2001, AZEVEDO et 

al. 2002, WANG et al. 2013). Water samples were collected and conserved in 
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coolers with dry ice packs and transported to the cyanobacteria laboratory at 

Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ) from the University 

of São Paulo (USP). Microcystins from the water samples were extracted from 

the cells by ultrasonicating the samples to release the intracellular toxins. The 

total of Microcystins concentrations (extracellular and intracellular) were 

measured using a polyclonal ELISA with a commercial commercial microcystin-

LR Beacon kit (Beacon Analytical Systems Inc., USA). The assays of standards 

or samples were performed following the kit instructions. For each assay, the 

negative control, calibrators and samples were tested at least in duplicate and 

the standard calibration curves were drawn using the kit. 

3.3.6. Nitrogen and Phosphorus 

Total Nitrogen and Total Phosphorus were estimated in laboratory from the 

water samples from the subsurface. Total nitrogen was estimated by the 

standard Kjeldahl technique. The Kjeldahl procedure yields a total nitrogen 

which includes most organic-N compounds and ammonia, but neither nitrate nor 

nitrite (SMART et al., 1981). The procedure can be broken down into three main 

steps: digestion, distillation and titration. The first step is used to decompose the 

nitrogen in organic samples utilizing a concentrated acid solution. It is usually 

accomplished by boiling a homogeneous sample in concentrated sulfuric acid 

resulting in an ammonium sulfate solution. The distillation step adds base to the 

acid digestion mixture to convert ammonium cation (NH4
+) to ammonia (NH3), 

followed by boiling and condensation of the NH3 gas in a receiving solution. The 

titration step is used to quantify the amount of ammonia in the receiving 

solution. The amount of nitrogen in a sample can be calculated from the 

quantified amount of ammonia ions in the receiving solution (EPA, 1983). 

Total Phosphorus quantification requires the conversion of the phosphorus to 

dissolved orthophosphate. After this conversion it is possible to measure the 

orthophosphate by colorimetric determination. The most common technique to 

determine the color of orthophosphate is the ascorbic acid method. In this 



39 

 

method ammonium molybdate and antimony potassium tartrate react in an acid 

medium with dilute solutions of orthophosphate-phosphorus. This reaction 

forms an intensely colored antimony-phospho-molybdate complex. Through the 

addition of ascorbic acid, this complex is reduced to an intensely blue-colored 

complex which the color intensity is proportional to the phosphorus 

concentration (EPA, 1983).  

3.4. Radiometric Analysis 

Six RAMSES sensors were used, two ACC and four ARC sensors, acquiring 

data simultaneously (Figure 3.3). The two irradiance sensors centered at 

nominal (excluding effects of wave motion) viewing zenith angle (θv) of 90° 

pointed upward (Ed) and downward (Eu) directions. A radiance sensor was also 

pointed downward to measure (Lu). These three measures were collected 

above and below (below the air-water interface, 1m, 2m and 3m) the water 

surface. On the top of the boat, a radiometer with an optical fiber and cosine 

diffuser (yielding a hemispherical field of view, FOV), pointed upward to acquire 

the Es. The other two radiometers with a 7° FOV were also on the top of the 

boat and were centered at nominal θv of 40° in two different directions: upward 

for the Ls and downward direction for the radiance Lw. 

 

Figure 3.3 - Radiometric scheme for data acquisition; a) Lw; b) Ls; c) Es; d) Eu; e) 
Ed; and f) Lu. 
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Rrs was calculated according equation 3.1 (MOBLEY, 1999): 

        
      

        
      (3.1) 

Where, t is the transmittance at the air-water interface (0.98); n is the refractive 

index of water (1.34); and Fi (λ) is the spectral immersion coefficient (OHDE; 

SIEGEL, 2003). The spectral immersion coefficient for each sensor was derived 

by following Equation 3.2 

       
                  

 

          
 (3.2) 

where, nw is the wavelength-dependent refractive index of freshwater and can 

be estimated using Equation 3.3 (AUSTIN; HALIKAS, 1976). ng is the 

corresponding index of the glass window of the radiance sensor. 

                
      

          
 (3.3) 

The rrs was calculated according to equation 3.4 (MOBLEY, 1999; KIRK, 2011). 

        
         

      
 (3.4) 

where ϴ and ϕ are the specify the polar and azimuthal directions respectively. 

As described by Mishra et al. (2005), changes in sun illumination condition may 

cause variations in Es. Thus, in order to normalize the radiometric 

measurements we adapt Mueller (2000) method to quantify the variation in the 

obtained Ed spectra using simultaneously acquired Es measures as showed on 

Figure 3.3. The methodology calculates a normalization factor which can be 

estimated by equation 3.5. 

    
           

            
 (3.5) 
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where, Es(t(zm),λ) is the Es measured at time t(z1) on the top of the boat at the 

first scan, and t(zm) the Es measured the top of the boat at the m scan. 

Absorption coefficients such as ap, aphy, anap and aCDOM were measured at 

Aquarela Laboratory from the Center of Marine Biology of University of São 

Paulo (CEBIMar/USP). For the acdom, the water samples from the field campaign 

were temporarily stored in a cooled chamber and filtered through 0.2 μm pore 

size nylon filters. To retrieve the CDOM absorption coefficient of the water 

samples, the beam attenuation of the filtered water was measured with a 

Lambda 35 UV/Vis Systems equipment in a transparent cuvette with Millipore 

Milli-Q water in the reference cell. As the data from the equipment are noisy the 

exponential shape of the aCDOM was fitted based on the 250–800 nm wavelength 

range. 

The specific absorption spectra of non-algae particles and phytoplankton were 

measured using the filter pad method using Perkin Elmer integrating sphere 

attached to an Perkin Elmer Lambda 35 UV/Vis Systems spectrophotometer 

following the methods described by Tassan and Ferrari (1995). Briefly the 

method consisted on the determination of ap from water samples that were 

filtered under low pressure through a 25 mm GF/F Whatman filter. ap in the 

range 390 - 800 nm was determined in the spectrophotometer. Samples were 

then de-pigmented by soaking the filters in a 1% solution of sodium hypochlorite 

(NaClO). The values of anap were then measured as described above and aphy 

values were calculated from equation 3.6. 

              (3.6) 

3.5. PC estimation validation 

PC concentrations from the fluorescence excitation methods were compared to 

a PC analytical method proposed by Mishra et al. (2013). This comparison was 

realized using the mix dataset proposed by Ogashawara et al. (2013) and two 

PC band ratio algorithms. This comparison is based on the fact that the 
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specular reflection from water under wavy conditions that generally gets 

suppressed in a band ratio algorithms (VINCENT et al., 2004). Thus, the band 

ratio values would be comparable for different geographical regions. 

It was chosen the nested band ratio algorithm (SIMIS et al., 2005) and the new 

single reflectance ratio (MISHRA et al., 2009) for the comparison between 

fluorescence excitation and analytical methods. Derived values from these two 

band ratio algorithms were compared to PC estimations. This approach will 

analyze de number of trends in these values. If the PC estimations were 

compatible it will only show one trend, otherwise it will not be compatible. 

3.6. Semi-empirical bio-optical models comparison 

Three sets of calibration and validations were performed including one on Funil 

Reservoir’s data, one on Catfish Pond’s data, and the third on a mixed dataset 

Figure 3.4. As the Funil Reservoir and Catfish pond datasets have significantly 

different concentration range (Table 3.1), a third dataset was created by mixing  

the two and then randomly dividing into two datasets, one to be used for 

calibration (60%) and the other for validation (40%). Models were calibrated 

using the hyperspectral Rrs (Figure 3.4) and the formulas listed in Table 3.2. For 

each model and each dataset, a linear calibration curve was set between the 

model values and the PC concentration. We did not use the best fit function, 

which were mainly non-linear functions, to avoid an out of range 

calibration/validation problem because the range of PC concentration in both 

datasets was extreme without any overlap (Table 3.1). 
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Table 3.1 - Summary statistics for chl-a and PC pigment concentrations at study sites 

  
Funil 
Reservoir Catfish Ponds 

Surface Area (km2) 40 0.004-0.03 

Mean depth (m) 20 1.1 

Time frame of field campaigns (years) 2013 2010-2011 

Total samples 16 23 

Chl-a (μg/L) 

Maximum 52.78 831.35 

Minimum 4.92 59.79 

Range 47.86 771.56 

Average 19.49 230.2 

Standard 
Deviation 14.79 176.16 

PC (μg/L) 

Maximum 35.95 857.08 

Minimum 9.16 68.13 

Range 26.79 788.95 

Average 14.52 241.51 

Standard 
Deviation 7.70 215.72 

Total Nitrogen (μg/L) 
Maximum 1620 8000 (Mishra, 2012) 

Minimum 100 4000 (Mishra, 2012) 

Total Phosphorus 
(μg/L) 

Maximum 37.77 500 (Mishra, 2012) 

Minimum 16.46 800 (Mishra, 2012) 

 

Figure 3.4 - Remote sensing reflectance for both study sites 
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Table 3.2 - Summary of Rrs based bio-optical models used in our study for 

predicting PC concentration. 

Name Reference Model 

DE93 Dekker (1993)                                   

SC00 Schalles & Yacobi (2000)                        

SI05 Simis et al. (2005)*                       

MI09 Mishra et al. (2009)                       

SM12 Mishra (2012)                       

MM09 Modified Mishra et al. (2009)**                       

HU10 Hunter et al. (2010)         
           

                   

Notes:* Ratio has been adopted from Simis et al. (2005) in their nested semi-

analytical algorithm.** MM09 is the slightly modified version of MI09   

A cross-validation procedure was adopted, if any, by developing linear 

calibration using one dataset and validating with the two remaining datasets. 

(Table 3.3). Validations were analyzed by plotting PC Measured versus PC 

Predicted. 

Table 3.3 - Summary of calibration and validation datasets used in the study 

Calibration Validation 

Mixed dataset (n=23) 

Catfish Ponds 

Funil Reservoir 

Mixed dataset (n=16) 

Funil Reservoir 
Catfish Ponds 

Mixed dataset (n=16) 

Catfish Ponds 
Funil Reservoir 

Mixed dataset (n=16) 

 

Error analysis was performed by comparing measured and predicted PC 

concentrations. Bias, Mean Square Error (MSE), Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), and Normalized Root Mean Square Error 

(NRMSE) were used to evaluate model performance and were calculated 

according to Table 3.4. 
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Table 3.4 - Summary of error estimators used in our study 

Estimator Formulas 

Bias       
 

 
        

 

   

 

MAE      
 

 
        

 

   

 

MSE      
 

 
        

 

 

   

 

RMSE            

NRMSE        
    

 
     

  
     

 

 

Note: where, yi and xi are the measured and predicted parameter concentration 

in ith sample; yi,max and yi,min are the maximum and minimum measure parameter 

concentration. 

Sensitivity analysis was carried out for the models with the lowest errors and the 

best validation plots for the hyperspectral dataset. This analysis was performed 

to study chl-a interference on the aforementioned PC detection algorithms. The 

sensitivity analysis was conducted using the values derived from PC detection 

algorithms (Table 3.2), chl-a, and PC concentrations. Surface plots were 

generated using these three parameters (model values, PC and chl-a 

concentration). They were analyzed according to the slope in each axes and the 

color scale of the surface which represents the PC detection algorithms. 

3.7. QAA development  

To evaluate the need to re-parameterize a QAA for Funil Reservoir, we applied 

QAAv5 (LEE et al., 2009) and QAA for highly turbid waters (MISHRA et al., 

2014) to Funil’s dataset. IOPs estimations from these two QAAs were validated 

with errors estimators (Table 3.4) using measured absorptions coefficients. The 

evaluation was based not only on the values of the errors estimators, but also in 
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the shape and intensity of spectra (measure and estimated spectral absorption 

coefficient). 

After analyzing the results from these two QAAs we noticed the QAA steps 

which should be re-parameterized and a modified QAA method was proposed. 

The proposed QAA (pQAA) was also validated with errors estimators calculate 

between measured and estimated absorptions coefficients. 

3.8. PC estimation  

To estimate PC from the derived IOPs it was used the relation proposed by 

Mishra et al. (2013) where the aphy(λ) is used to retrieve PC absorption at 620 

nm. Since aphy(λ) provides information about the absorption by all intracellular 

phytoplankton pigments, at 620 nm the value of aphy(620) should be equal to the 

sum of chl-a and PC contributions (SIMIS et al., 2005). Thus, the authors also 

considered that at 665 nm aphy(λ) is dominated by chl-a and develop the 

following relation: 

          
 
 
                 

 
 
  

 

 (3.7) 

where:  1 and  2 corresponds to achl(665)/achl(620) and aPC(665)/aPC(620), 

respectively. 

To calculate the values of  1 and  2 we used the empirical relationship 

proposed by Mishra et al. (2013) which compared  1 measured in vitro and the 

band ratio rrs(560)/rrs(665); and the  2 measured in vitro and another band ratio 

rrs(620)/rrs(665). 

We also use the calibrations, proposed by the authors, which were described in 

equations 3.8 and 3.9. 

 
 
           

        

        
        (3.8) 
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 (3.9) 

Therefore PC concentration was estimated as described on section 2.3.3. For 

this we considered aPC
*(620) as a constant value equals to 0.0019. 

3.9. OLCI/Sentinel 3 simulation 

To apply the pQAA to a synthetic dataset of Rrs of OLCI sensor, it was used the 

hyperspectral Rrs measurements from proximal remote sensing which were 

integrated using OLCI' spectral response function, shown on Figure 3.5  

The pQAA was adapted to OLCI spectral bands and IOPs were estimated from 

the synthetic dataset. Errors estimators were calculated using estimated IOPs 

and measured IOPs also integrated using OLCI' spectral response function. 

Thus, PC concentration was also estimated for the synthetic OLCI dataset 

following the methods described on section 3.8. 

 

Figure 3.5 - Spectral response function for OLCI and Sea and Land Surface 
Temperature Radiometer (SLSTR) 

                     Source: Adapted from IOCCG (2010). 
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3.10. Summary 

A summary of the methodology used in this study is shown on Figure 3.6. It 

starts with the datasets used (from Funil and Catfish ponds) and all the products 

derived from them. 

 
Figure 3.6 - Flowchart of the methodology used in this study 
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4 RESULTS AND DISCUSSION 

4.1. PC measurement (fluorometry) 

As described on section 3.5, Simis et al. (2005) and Mishra et al. (2009) band 

ratios for PC estimation (see Table 3.2) were used to evaluate the accuracy of 

fluorimetric estimation of PC using the two fluorometers mentioned on section 

3.2 (Fluoroprobe and 10-AU). To validate the use of fluorometers, it was used 

the PC concentration estimation used in Mishra et al. (2013, 2014) which was 

based on Sarada et al. (1999) sonicator method and Bennett and Bogorad 

(1973) equation. 

Therefore, if the PC concentration from both methods were similar, the values 

of band ratios against the PC concentration should follow a similar trend. Figure 

4.1 shows a scatter plot in which it is possible to observe the relation between 

PC and SI05 band ratio values through the mixed dataset used by Ogashawara 

et al. 2013. This dataset was composed of field data collected at two study 

sites: the first study site was Funil Reservoir located in Itatiaia, RJ, Brazil during 

2–5 April 2013, and the second dataset was collected from catfish aquaculture 

ponds located at the Thad Cochran National Warmwater Aquaculture Center, 

Stoneville, MS, USA during 13–16 July 2010 and 28–29 April 2011 

(OGASHAWARA et al., 2013). 

Table 4.1 shows the regression analysis between SI05 and PC concentration 

from the mixed dataset. It was tested 4 regressions: Linear, Exponential, 

Logarithmic and Geometric. Regression analysis showed that geometric 

regression for the mixed dataset got a R2 of 0.9437, and for exponential 

regression a R2 of 0.9291. Therefore it seems that there is an exponential trend 

between the SI05 values and PC concentrations calculated from both methods. 

Thus, the use of fluorometers to calculate PC concentration was well validated 

by PC concentration estimated by Sarada et al. (1999) method. 
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Figure 4.1 - Scatter plot of SI05 band ratio and PC concentration from datasets 

 

Table 4.1 - Regression values of SI05 and PC concentration from both methods 

Regression Linear Exponential Logarithmic Geometric 

n 39 39 39 39 

a -120.9312 6.74 93.1013 35.7998 

b 159.2299 1.3038 194.108 1.8797 

R2 70.44% 92.91% 51.16% 94.37% 

Equation Y’ = a + bX Y’ = a * e^(bX) Y’ = a + b * ln(X) Y’ = a * X^b 

p-value p <0.00001 p <0.00001 p <0.00001 0.0001 

Figure 4.2 shows a scatter plot in which it is possible to observe the relation 

between PC and MI09 band ratio values through the mixed dataset. The scatter 

plot also shows a unique trend which could be quantified at Table 4.2.   
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Figure 4.2 - Scatter plot of MI09 band ratio and PC concentration from datasets 

Table 4.2 shows the regression analysis between MI09 and PC concentration 

from the mixed dataset. The regression analysis showed that geometric 

regression was also better for MI09 which got a R2 of 0.9546, and for 

exponential regression a R2 of 0.9235. However, MI09 got better R2 values for 

linear and logarithmic regressions if compared to SI05. The more correlated 

performance between PC concentration and MI09 values was also described by 

Mishra et al. (2009) and Ogashawara et al. (2013). Both studies considered that 

the use of 600 nm as the PC absorption feature on MI09, is the key to improve 

the accuracy of the model, since the influence of chl-a at 600 nm is lower than 

in 620 nm (MISHRA et al, 2009). Therefore, according to MI09, the use of 

fluorometers to estimate PC concentration was also comparable to estimation 

through the sonicator method (SARADA et al., 1999). It was observed three 

outliers with concentrations over 600 μg/L of PC. They were considered outliers 

because of their position on the plot and also because of their very high 
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concentrations, which is not common. Therefore, R2 could be enhanced by the 

elimination of them.  

 Table 4.2 - Regression values of MI09 and PC concentration from both 

methods 

Regression Linear Exponential Logarithmic Geometric 

n 36 36 36 36 

a -113.3599 3.5457 79.8781 37.3615 

b 169.5896 2.0912 183.8216 2.5098 

R2 75.90% 92.35% 63.99% 95.46% 

Equation Y’ = a + bX Y’ = a * e^(bX) Y’ = a + b * ln(X) Y’ = a * X^b 

(p) p <0.00001 p <0.00001 p <0.00001 0.0002 

 

4.2. Overview of the dataset  

4.2.1. Limnological dataset 

Data of microsystins (MC) concentration (μg/L), PC concentration (μg/L), Total 

Nitrogen (TN) concentration (μg/L), Total Phosphorus (TP) concentration (μg/L), 

chl-a concentration (μg/L), and cyanobacteria cell count (BG) (cell/mL) datasets  

are shown on Figure 4.3 which shows the box plots of each limnological 

variable. Phytoplankton classification showed that the primary specie in the 

Funil Reservoir is the Microcystis aeruginosa which is a cyanobacteria that can 

produce microcystins. A studied conducted by the World Health Organization 

(WHO, 2003) has established a provisional guideline of 1 μg/L for microcystin-

LR for waters of human exposure. Therefore, Figure 4.3 also shows that Funil 

Reservoir's waters are for some sampling points over WHO's MC concentration 

limits for human health.  

Hunter et al. (2010) found that the relationship between the cell counts of 

cyanobacterial and MCs concentration was weak and marginally non-significant 

(R2=0.251;p=0.057). The same relationship was found in the Funil Reservoir 

dataset with a R2 of 0.13 and p-value of 0.003. These low relationships founded 
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in both datasets can be partly explained by the fact that MC production is not 

only related to the presence of cyanobacteria, but also influenced by nutrient 

supply and environmental conditions (HUNTER et al., 2010).  

 

 

Figure 4.3 - Box plots of limnological parameters collected at Funil Reservoir 

 

Although the weak relationship between MC and cyanobacteria cell count, 

Hunter et al. (2010) stated that the accessory phycobiliproteins and MCs 

respond in similar ways to variations in resource supply. Following that 

statement, they were able to produce very strongly correlation between MC and 

PC (R2=0.896; p=<0.001). Figure 4.4a shows the relationship between 

cyanobacteria cell count and an expression using the TN and TP ratio and chl-

a; while Figure 4.4b shows the relation between PC and MC. The first 
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relationship produced a linear R2 of 0.71 and p-value of <0.001; while the 

second produced a R2 of 0.62 and a p-value of <0.001. As well as observed by 

Hunter et al, (2010) the relations using chl-a concentrations were less strongly 

correlated with MC concentrations (R2=0.30; p=0.026). Thus, the estimation of 

PC in inland water is important because of its existence on cyanobacteria cells 

which might provide a crude measure of MC content. 

 

Figure 4.4 - Relationships between limnological parameters; a) Cell count x 
N:P*Chl-a; b) MC x PC  

 

4.2.2. IOPs and AOPs dataset 

Rrs calculated from equation 3.1 is shown on Figure 4.5a and from the spectra it 

is clearly visible two absorption features: one around 620 nm and the second 

around 665 nm. It is also easy to identify the shoulder around 650 nm, which 

have been described as PC fluorescence which is enhanced by the two 

absorptions troughs already described. The same explanation could be use for 

the reflectance peak around 700 nm, not only it is the reflectance of chl-a but it 

is also enhanced by two absorptions troughs (chl-a at 665 nm and water in the 

NIR region). Figure 4.5b shows the aCDOM spectra for the Funil Reservoir. The 

spectra seemed similar to other aCDOM spectra from literature, following the 

typical shape with high absorption coefficients in the blue and green spectral 

channels and a decay in the large wavelengths. Figure 4.5c shows the spectral 
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aphy; in which it was observed not only a high absorption peak around 665 nm 

but also a short peak around 620 nm because of PC absorption range. Figure 

4.5d shows the aNAP spectra for Funil Reservoir in the range from 400 to 800 

nm. As described in the literature the aNAP spectra follows the same shape of 

aCDOM enhancing the idea that blue and green spectral regions are influenced by 

these two components. 

 

Figure 4.5 - AOP and IOPs for Funil dataset; a) Rrs (λ); b) aCDOM(λ); c) aphy(λ); d) 
aNAP(λ) 

4.3. Semi-empirical bio-optical models comparison 

4.3.1. Bio-optical comparison 

To analyze the relationship between PC concentrations and several bio-optical 

models (see Table 3.2), we used three datasets to calibrate the models. We 

used a modification of MI09 proposed by Mishra (2012) referred to as SM12. 



56 

 

SM12 targeted PC absorption at 600 nm and used the reflectance peak at 709 

nm. We also proposed a modification of MI09 using the reflectance peak at 724 

nm which is referred to as MM09. Models were calculated from the Rrs spectra 

from both study sites (Figure 3.4). All seven models were calibrated using a 

linear trend between model values and measured PC concentrations. Funil 

dataset calibration showed the best result with SM12 (R2= 0.909). For catfish 

ponds dataset, the best R2 was found with SI05 (R2= 0.748). The mixed dataset 

showed the lowest R2 among all during model calibrations and its best result 

was found with SI05 (R2= 0.684) (Table 4.3). These models presented similar 

results for the Adjusted R2 confirming consistency in their performance. 

Calibration analysis also showed the slope (X1) and p-value for each model. 

DE93 and SC00 showed the highest values for slope in all the datasets. 

Although HU10 showed low values for its slope in the three datasets, it showed 

high p-values for Funil (0.179) and Catfish ponds (0.261) datasets. One of the 

reasons behind the poor calibration results observed for DE93 and HU10 could 

be the specular reflection from water under wavy condition that generally get 

suppressed in a band ratio algorithm did not get cancelled out due to the band 

architecture of these two algorithms (VINCENT, et al., 2004). The specular 

reflection occurs mainly due to the wind which generates waves controlling the 

brightness of most water pixels. Funil Reservoir is more vulnerable to wind 

compared to catfish ponds and the combinations of single bands used in DE93 

and HU10 were not able to suppress the brightness variations due to wave 

disturbances.  Another reason could be the choice of spectral bands used in 

both algorithms, since DE93 have more influence from the 648nm band which is 

contaminated by chl-a (MISHRA et al., 2009) and HU10 is mainly influenced by 

724nm band which is a chl-a reflectance peak. For accuracy assessment, 

models were validated by applying the linear regression equations to the other 

datasets (Figures 4.6a and b, 4.7a and b, and 4.8a and b). The scatter plots 

show the estimated PC versus the measured PC concentration. Although some 

models produced very high R2 during the calibration with one dataset, they did 

not perform well on other datasets. For example, SM12 which produced the 
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highest R2 (0.909) during calibration, showed that it is not good estimator for PC 

concentration during validation. The poor validation results could be due to the 

difference in the range of PC concentration at two study sites. However, the use 

of the mixed dataset calibration improved the validation for Funil and catfish 

datasets (Figure 4.7a,b and 4.8a,b).  

Table 4.3 Correlation estimators derived from model calibrations using the three 

datasets for all seven models  

Model R2 Adj. R2 X1 p-value 

Funil Dataset 

DE93 0.088 0.023 -664.535 0.2654 

SC00 0.745 0.727 181.122 > 0.0001 

SI05 0.793 0.779 41.196 > 0.0001 

MI09 0.807 0.794 50.836 > 0.0001 

SM12 0.909 0.902 35.638 > 0.0001 

MM09 0.414 0.372 62.656 0.0072 

HU10 0.125 0.062 -3.841 0.1798 

Catfish Ponds Dataset 

DE93 0.617 0.599 1381.323 > 0.0001 

SC00 0.338 0.306 1622.554 0.0036 

SI05 0.748 0.736 274.873 > 0.0001 

MI09 0.170 0.131 268.015 0.0504 

SM12 0.591 0.572 344.990 > 0.0001 

MM09 0.731 0.718 270.868 > 0.0001 

HU10 0.060 0.015 -12.285 0.2611 

Mixed Dataset 

DE93 0.051 0.006 5966.595 0.3016 

SC00 0.518 0.495 1303.031 0.0001 

SI05 0.684 0.669 132.365 > 0.0001 

MI09 0.547 0.525 198.107 0.0001 

SM12 0.640 0.623 155.970 > 0.0001 

MM09 0.673 0.658 136.692 > 0.0001 

HU10 0.466 0.441 -13.919 0.0003 
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Figure 4.6a - Validation of the models (DE03, SC00, SI05 and MI09) in the 

mixed dataset using calibrations from (1) Mixed dataset, (2) Funil 
Reservoir dataset, and (3) Catfish Ponds dataset 
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Figure 4.6b - Validation of the models (SM12, MM09, and HU10) in the mixed 

dataset using calibrations from (1) Mixed dataset, (2) Funil 

Reservoir dataset, and (3) Catfish Ponds dataset  

 

Validations for Funil Reservoir dataset used two calibrations: the Mixed and 

catfish ponds calibrations (Figure 4.7a and b). The mixed dataset calibration 

showed a poor accuracy for all the models tested. The catfish ponds 

calibrations also performed very poorly on Funil’s dataset; however, HU10 

produced the lowest value for the slope and showed a linear behavior. The poor 

performance of the bio optical models is due to the fact that linear models were 

chosen for the individual calibrations with Funil and catfish ponds data instead 

of the best-fit models, which are clearly non-linear mainly at high PC 

concentrations.  
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Figure 4.7a - Validation for DE03, SC00, SI05 and MI09 to Funil Reservoir 
dataset using calibrations from (1) Mixed dataset and (2) Catfish 
Ponds dataset 
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Figure 4.7b - Validation for  SM12, MM09, and HU10 to Funil Reservoir dataset 

using calibrations from (1) Mixed dataset and (2) Catfish Ponds 
dataset 

 

Validation plots for catfish ponds dataset used Funil and Mixed datasets 

calibrations (Figure 4.8a and b). Validations showed to be very poor at PC 

concentrations higher than 500 μg/L in all cases. The best validations were 

found using MM09 for the Funil calibration, and MM09 and SI05 for the mixed 

dataset calibration.  
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Figure 4.8a - Validation for DE03, SC00, SI05 and MI09 to Catfish Pond dataset 

using calibrations from (1) Mixed dataset and (2) Funil Reservoir 
dataset 
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Figure 4.8b - Validation for SM12, MM09, and HU10 to Catfish Pond dataset 

using calibrations from (1) Mixed dataset and (2) Funil Reservoir 
dataset 

 

The use of three different datasets showing low, high and mixed range of PC 

concentrations allowed us to analyze which calibration is more accurate for 

different environments. For a low PC concentration environment, the calibration 

using HU10 and the mix dataset (wide range) produced the best validation 

result. For a high PC concentration environment, mix dataset calibrations also 

produced some of the best results with SI05 and MM09 models due to its wide 

range. Mixed dataset calibration also showed the best validation plots for the 

rest of the 40% of the mixed data using MM09. 
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However, if we observe the validation plots for the catfish ponds dataset in 

Figure 4.8, it is possible to notice a cloud of points in the region of low PC 

concentration. This cloud of points does not have a linearity which also 

contributes to the poor validation results. The reason for this non-linear behavior 

of the scatter plot could be attributed to the dominant species of cyanobacteria 

in the catfish ponds, Planktothrix agardhii. Post et al. et al. (1985) described that 

this species can significantly increase the content of chl-a thus varying the 

irradiance. At sampling points with low PC in the catfish ponds, the PC to chl-a 

ratio (Table 4.4) were also lower due to high values of chl-a. Thus, the high chl-

a concentration for the points with low PC concentration, due to this specific 

characteristic of Planktothrix agardhii, could have been the reason for the cloud 

of points and interfered in the PC estimation. 

Table 4.4 PC and Chl-a ratio for the Catfish Ponds Dataset 

PC Chl-a PC:Chl-a 

68.13 228.26 0.30 

77.19 229.25 0.33 

83.19 59.79 1.39 

84.88 205.60 0.41 

92.24 117.40 0.78 

105.75 131.05 0.80 

114.50 94.03 1.22 

116.82 109.26 1.07 

118.79 360.01 0.33 

119.02 152.50 0.78 

119.61 130.43 0.91 

136.44 101.40 1.34 

159.31 332.38 0.48 

173.54 117.42 1.48 

191.12 198.50 0.96 

203.17 164.30 1.23 

234.32 149.61 1.56 

301.60 210.83 1.43 

352.66 155.54 2.26 

550.96 168.22 3.27 

639.02 539.73 1.18 

655.33 507.70 1.29 

857.08 831.35 1.03 
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Table 4.5 shows the error analysis for all models and for the three validation 

datasets. For the mixed dataset, the best results were obtained by using MM09 

in the Mixed and Funil’s calibrations, with an RMSE of 15.675% and 23.985% 

respectively. The best catfish ponds calibration for the mixed dataset used 

SC00 algorithm and had a RMSE of 18.179%. The lowest errors in Funil 

dataset were found using HU10 model with a RMSE of 221.63% and 40.92% 

for catfish ponds and mixed calibrations respectively. It showed that the errors 

decreased by the use of mixed calibration, enhancing the importance of using a 

large range of PC concentrations for the calibration of these models. These 

results also showed that the catfish ponds calibration mostly overestimates the 

PC prediction values. On the other hand, for the catfish ponds dataset, it was 

observed that the models which were calibrated with low PC range perform 

better when compared to the opposite (predicting low PC concentration from 

calibrations with high PC concentration). This could be due to the fact that 

mostly the non-linearity or signs of saturation during calibration were observed 

at high PC concentrations. Overall, results showed that the MM09 was the best 

model for the Funil and Mixed datasets with a RMSE of 23.985% and 15.675% 

respectively. These results also confirmed that it is possible to improve the 

accuracy of these models since the validation results (Figures 4.3, 4.4 and 4.5) 

showed that there is still some residual interference at the PC absorption 

region. The interference was observed for data points where the PC 

concentration was zero but the bio-optical models produced a significant value. 

Interference from CDOM absorption is not an issue for the spectral range used 

in these models; therefore, the residual scattering from algal pigments and TSS 

are the potential interference factors at these wavelengths. 



68 

 

Table 4.5 - Error analysis for the linear calibrations for each model and dataset (shaded areas represent the lowest 

errors) 

Mixed Dataset  

Mixed Calibration 

Estimator D93 SC00 S05 M09 SM12 MM09 H10 

Bias 27.884 55.119 30.472 36.709 34.287 36.062 43.176 

MAE 156.034 100.247 84.726 111.710 95.558 79.642 111.087 

MSE 59821.765 31009.467 18507.809 39371.406 25612.029 17665.301 43296.194 

RMSE 244.585 176.095 136.043 198.422 160.038 132.911 208.077 

NRMSE(%) 28.845 20.768 16.044 23.401 18.874 15.675 24.540 

Funil Reservoir Calibration 

Bias 171.474 145.279 109.744 124.394 125.551 90.375 125.742 

MAE 173.428 147.109 112.190 125.891 125.922 96.090 127.198 

MSE 86109.276 72634.933 52200.685 65289.794 62249.894 41362.024 66594.099 

RMSE 293.444 269.509 228.475 255.519 249.499 203.377 258.058 

NRMSE(%) 34.607 31.785 26.945 30.135 29.425 23.985 30.434 

Catfish Ponds Calibration 

Bias 3103.557 6.313 128.852 43.635 138.474 123.386 1.175 

MAE 3103.557 105.260 154.526 125.628 174.409 147.100 140.362 

MSE 9688859.449 23761.486 36958.560 38411.144 46590.750 30953.637 42369.837 

RMSE 3112.693 154.148 192.246 195.988 215.849 175.936 205.839 

NRMSE(%) 367.097 18.179 22.673 23.114 25.456 20.749 24.276 

Funil Reservoir Dataset 

Catfish Ponds Calibration 

Bias 2939.150 -57.184 279.993 52.170 275.038 250.650 -58.610 

MAE 2939.150 62.948 279.993 55.642 275.038 250.650 58.610 
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MSE 8638835.017 6338.247 79998.696 3682.608 79783.183 63125.493 3526.687 

RMSE 2939.190 79.613 282.840 60.684 282.459 251.248 59.386 

NRMSE(%) 10969.226 297.121 1055.577 226.478 1054.154 937.672 221.632 

Mixed Calibration 

Bias -83.570 -24.276 22.903 3.636 11.262 23.130 -3.393 

MAE 83.570 34.342 25.841 16.831 23.490 23.768 5.927 

MSE 7115.514 2301.443 767.377 426.762 746.925 604.059 114.377 

RMSE 84.354 47.973 27.702 20.658 27.330 24.578 10.695 

NRMSE(%) 314.812 179.039 103.384 77.098 101.997 91.725 39.913 

Catfish Ponds Dataset 

Funil Reservoir Calibration 

Bias 5040.604 207.704 150.849 173.707 174.972 116.461 174.222 

MAE 5040.604 207.704 151.761 173.707 174.972 126.505 174.222 

MSE 25606599.392 86365.614 59637.746 73992.014 71760.882 46177.712 75424.552 

RMSE 5060.296 293.880 244.208 272.015 267.882 214.890 274.635 

NRMSE(%) 641.398 37.250 30.954 34.478 33.954 27.238 34.810 

Mixed Calibration 

Bias -13613.808 64.019 5.273 22.999 10.620 8.999 32.391 

MAE 13613.808 128.858 104.186 128.950 115.237 104.689 140.536 

MSE 185669971.223 35529.975 21105.169 39685.667 27393.270 20938.331 44856.741 

RMSE 13626.077 188.494 145.276 199.213 165.509 144.701 211.794 

NRMSE(%) 1727.120 23.892 18.414 25.250 20.978 18.341 26.845 
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4.3.2. Sensitivity analysis 

Sensitivity analyses were performed using the mixed dataset due to its overall 

strong performance and wide PC concentration range. Some of the best 

performing models including SC00, SI05, MI09 and MM09 were used to analyze 

their sensitivity to chl-a (Figure 4.6). The color scale is based on individual 

model outputs. Figure 4.6A showed that SC00 was insensitive to both chl-a and 

PC, and therefore, is not suitable to retrieve PC accurately although it was 

nearly insensitive to chl-a. SI05 on the other hand showed (Figure 4.6B) to be a 

good estimator for PC concentration because of its high sensitivity to PC. 

However, it also showed a high sensitivity to chl-a (Figure 4.6B). In contrast, 

MI09 showed high sensitivity to PC and low sensitivity to chl-a corroborating to 

the fact that chl-a effect on MI09 band ratio is comparatively less than other 

models as previously shown in Mishra et al. (2009) (Figure 4.6C). MI09 was 

developed to avoid the residual chl-a absorption at the widely used PC 

absorption maxima, i.e., at 620 nm. This was accomplished by moving the PC 

sensitive band to 600 nm instead of using 620 nm in the band ratio model. 

MM09, a modified MI09, showed high sensitivity to both PC and chl-a similar to 

SIO5 (Figure 4.6D).  

 
Figure 4.6 - (a) Sensitivity analysis showing the interference of chl-a on the 

performance of (A) SC00, (B) SI05, (C) MI09, and (D) MM09 
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These results showed that, overall, MI09 has the least interference from chl-a 

and can be used to accurately monitor blue-green algal in widely varying water 

bodies. Although MI09 was developed using a dataset collected from a series of 

controlled laboratory experiments with two cyanobacteria species 

(Synechocystis sp. and Anabaena sp.) (MISHRA et al., 2009), our review shows 

that it still serves as the most accurate algorithm to be used in natural 

environments. To confirm the results of the sensitivity analysis, a linear 

regression between these models and chl-a concentration was conducted. The 

results of the regression showed that SC00 and MI09 were the models without 

a significant dependency on chl-a concentration with R2 of 0.42 and 0.38 

respectively. On the other hand contrary, SI05 and MM09 showed a significant 

dependency on chl-a with a R2 of 0.65 and 0.66 respectively. This analysis also 

revealed that MI09 can be used in semi-analytical algorithms to solve for PC 

absorption at 600 nm which can be safely assigned to PC without chl-a 

interference.  

4.4. Improvement for semi-empirical bio-optical models 

Based on the findings presented at section Ogashawara et al. (2013), it was 

possible to observe that there is an influence of chl-a and TSS on the Rrs 

spectra at PC absorption region. To confirm this we ran a series of two 

dimensional color correlograms of Rrs spectra from Funil Hydroeletric Reservoir. 

Each correlogram correlates 292681 band ratios values from the Rrs spectra to 

each limnological concentration (Figure 4.7).  
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Figure 4.7 - Two dimensional color correlograms of Rrs band ratios and 

concentration of chl-a, PC and TSS. 

From the results of the color correlogram showed on Figure 4.7, we generate a 

3D surface plot from the R2 values of each color correlogram. The surface plot 

(Figure 4.8) shows the R2 values of the three OACs: PC on the x axis; TSS on 

the y axis; and chl-a on the z axis. It shows that the high R2 between band 

ratios and PC (around 0.9) were also high for chl-a (around 0.8) and around 0.4 

for TSS. Thus, it shows that band ratios which were correlated to PC were also 

correlated to chl-a and TSS.  
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Figure 4.8 - 3D surface plot from the two dimensional color correlograms  

 

Applying the PC band ratio algorithms such as SC00, SI05 and MI09, it also 

showed the interference of these OACs. A high R2 value (0.93) was found 

between chl-a concentrations and MI09, while for SC00 and SI05 a R2 of 0.88 

and 0.90 were found, respectively. It shows that PC algorithms are very 

sensitive to chl-a. For PC concentrations prediction, SC00 and SI05 produced a 

R2 of 0.77 and 0.78 respectively, while MI09 showed a R2 of 0.82; proving that 

MI09 is the most sensitive to PC. However, all algorithms showed more 

sensitivity to chl-a than PC. For the TSS correlogram, SC00 produced a R2 of 

0.18 (p= 0.41), while SI05 and MI09 showed a R2 of 0.26 (p= <0.001) and 0.24 

(p= 0.019) respectively, indicating some influence of TSS at the PC absorption 

feature. 

In order to reduce the influence of these constituents at the PC absorption 

spectral region, we developed a filter using the inverse Rrs values. The Rrs 

values were used due to the fact that it could act as a proxy to spectral 

absorption. These values were used to isolate the PC absorption signal at 600, 

620, and 625 nm from the composite absorption signal at those spectral regions 

due to the influence of OACs the absorption of non PC constituents. Rrs
-1 at 575 

nm was used in this PC absorption isolation procedure with an assumption that 

inverse reflectance at 575 nm could be related to the absorption of chl-a and 
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reflectance of TSS. Rrs
-1 (575 nm) value was subtracted from the reflectance 

value at 600, 620, and 625 nm and then inverted again (Eq. 4.1). The filtered 

value of Rrs was then used in the band ratios. 

             
           

        
  

 (4.1) 

where: λ0 is the target wavelength. 

To analyze the improvement of the use of this filter, we applied it to the PC 

band ratios (SC00, SI05 and MI09) using the Mixed Dataset described on 

section 3.6. Table 4.6 shows the results of calibration using 40% of the mixed 

dataset. Estimators include R2, adjusted R2,  slope (X1) and p-value. After the 

application of the filter, the R2 increased in all cases when compared to the Raw 

algorithm. 

Table 4.6 - Calibration Parameters from Mixed Dataset 

Model Filter R2 Adj. R2 X1 p-value 

SC00 Raw 0.499 0.476 -1614.55 0.000166 

SC00 Filtered 0.705 0.691 1320.626 p < 0.0001 

SI05 Raw 0.684 0.67 132.365 p < 0.0001 

SI05 Filtered 0.784 0.774 327.53 p < 0.0001 

MI09 Raw 0.546 0.525 198.107 p < 0.0001 

MI09 Filtered 0.7 0.685 728.147 p < 0.0001 

 

To evaluate the improvement of each approach we calculated (Table 4.7) the 

NRMSE (%) between the estimated and measured PC concentration, after the 

application of the calibration described in Table 1. This analysis shows that for 

the mixed dataset, the filtered procedure produced the lowest errors for all three 

algorithms with a NRMSE(%) of 12.69, 9.67, and 18.49 for SC00, SI05, and 

MI09 respectively; while using the raw values the NRMSE(%) were 56.42, 

16.04, and 23.40% for SC00, SI05, and MI09 respectively. For Funil Reservoir 

dataset, the lowest NRMSE(%) was found in the filtered version of MI09, with 

an NRMSE (%) of 75.28, however, the filtered application of SC00 algorithm 

showed the most significant improvement among all models. In the catfish 

ponds datasets, the use of our filter was the most successful because of the 

significantly higher PC concentrations in that water body. It is important to note 

that, MI09 did not show a significant improvement in all three datasets before 
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and after the filter procedure, proving once again that it is least sensitive to chl-a 

and TSS and most sensitive to PC.   

Table 4.7 - Error Analysis 

Model Filter 
NRMSE 

(%) Model Filter 
NRMSE 

(%) Model Filter 
NRMSE 

(%) 

Mixed dataset Funil dataset Catfish Ponds dataset 

SC00 Raw 56.42 SC00 Raw 410.147 SC00 Raw 73.73 

SC00 Filtered 12.694 SC00 Filtered 170.516 SC00 Filtered 22.382 

SI05 Raw 16.044 SI05 Raw 102.798 SI05 Raw 18.414 

SI05 Filtered 9.67 SI05 Filtered 88.12 SI05 Filtered 12.873 

MI09 Raw 23.401 MI09 Raw 79.804 MI09 Raw 25.25 

MI09 Filtered 18.493 MI09 Filtered 75.282 MI09 Filtered 20.197 

 

Our results also show that it is possible to enhance the accuracy of PC bio-

optical models up to 77% in some cases. This improvement is important not 

only for semi-empirical algorithms but also for semi-analytical ones which 

typically use  band ratio as an estimator of PC. These improved models can be 

applied to the upcoming satellite multispectral sensors such as the Ocean and 

Land Color Instrument (OLCI) from European Space Agency, which will have a 

spectral band centered at 620 nm. 

4.5. QAA development 

4.5.1. QAA from the literature 

To test the need of a re-parameterization of a QAA for a tropical reservoir, we 

tested two QAA from the literature: QAAv5 (LEE et al., 2009) and QAA for turbid 

productive waters (MISHRA et al, 2014). We used the Rrs (eq. 3.1) acquired by 

RAMSES spectroradiometers from Funil Reservoir, Rio de Janeiro, Brazil. 

4.5.1.1. QAAv5 

QAA in the native form is able to retrieve a(λ) and aphy(λ) successfully in waters 

where a(443) is less than 0.5 m-1 (MISHRA et al., 2014). In order to check it’s 

applicability in tropical waters we evaluate its performance using NRMSE(%). 

For a(λ) estimation, QAAv5 got an average NRMSE of 511%; while for aCDM(λ)  

and aphy(λ)  it got an average NRMSE of 885 and 9401%. Although the results 



76 

 

of NRMSE were accurate for a(λ) and aCDM(λ), their spectra did not agree with 

the accuracy. 

Figure 4.9 shows the estimated and measured a(λ) spectra. Figure 4.9A shows 

the spectra for the best NRMSE (25%) while Figure 4.9B shows the spectra for 

the worst NRMSE (875%). Although the use of QAAv5 has low NRMSE for the 

estimation of a(λ), such variations on the estimated spectra increases the errors 

for the others estimations. 

 

 

Figure 4.9 - Estimated and measured a(λ); a) the best NRMSE of 25%, and b) 
the worst NRMSE of 875%. 

Figure 4.10 shows the estimated and measured aCDM(λ) spectra. Figure 4.10A 

shows the spectra for the best NRMSE (25%) while Figure 4.10B shows the 

spectra for the worst NRMSE (1636%). Once again, although the use of QAAv5 

has low NRMSE for the estimation of aCDM(λ), such variations on the estimated 

spectra (almost 40 times the measured spectrum) increases the errors for the 

others estimations. 
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Figure 4.10 - Estimated and measured aCDM(λ); a) the best NRMSE of 25%, and 
b) the worst NRMSE of 1536%. 

Figure 4.11 shows the estimated and measured aphy(λ) spectra. Figure 4.11A 

shows the spectra for the best NRMSE (153%) while Figure 4.11B shows the 

spectra for the worst NRMSE (33748%). In the estimation of aphy(λ) for both 

cases (the best and worst sample point estimation) the spectra of aphy(λ) were 

inaccurate. Even the sample point with the lowest NRMSE, the estimation of 

aphy(λ) was overestimating in the blue and green spectral channel and 

underestimating in the red and NIR spectral channel. For the sample point with 

the highest NRMSE, it was underestimating in the blue and green spectral 

channel and overestimating in the NIR. 

 

Figure 4.11 - Estimated and measured aphy(λ); a) the best NRMSE of 153%, 
and b) the worst NRMSE of 33748%. 

Overall results showed that the main problem in the estimation of QAA_v5 in its 

native form is occurs in the step of a(λ) estimation, which have been 

overestimated in the majority of the sample points. Thus, the estimation of 
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aCDM(λ) is compromised since its estimation is derived from the a(λ) estimation, 

affecting all the estimations. 

4.5.1.2. QAA for turbid productive waters 

Mishra et al. (2014) re-parameterize the QAA proposed by LEE et al. (2002) to 

make it suitable to work particularly in highly absorbing waters and algal bloom 

scenarios in inland ponds, lakes, and coastal and estuarine environments, 

where, chl-a concentration reaches as high as 1000 mg m-3 (MISHRA et al., 

2014). The authors tried to solve the problem of a(λ) estimation since an under 

or overestimation of it causes inaccurate estimation of bbp(λ0) and propagates 

the error to others steps of the QAA.  

Using Mishra et al. (2014) QAA for turbid productive waters the average 

NRMSE(%) for a(λ) estimation was lower if compared to QAAv5. A NRMSE(%) 

of 3.99% was found, however as observed in the QAAv5, the spectra showed a 

lot of variation. Figure 4.12 shows the estimated and measured a(λ) spectra. In 

Figure 4.12A it shows the spectra for the best NRMSE (21%) while in Figure 

4.12B it shows the spectra for the worst NRMSE (1015%). Although the authors 

tried to correct the a(λ) estimation, the use of QAA for turbid productive waters 

continued to overestimate the a(λ). 

 

Figure 4.12 - Estimated and measured a(λ); a) the best NRMSE of 21%, and b) 
the worst NRMSE of 1015%. 

Figure 4.13 shows the estimated and measured aCDM(λ) spectra, average 

NRMSE(%) of aCDM(λ) estimation was 726% which was also lower than the 
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NRMSE for the QAAv5. Figure 4.13A shows the spectra for the best NRMSE 

(23%) while Figure 4.13B shows the spectra for the worst NRMSE (2166%).  

 

Figure 4.13 - Estimated and measured aCDM(λ); a) the best NRMSE of 23%, and 
b) the worst NRMSE of 2166%. 

Average NRMSE(%) for aphy(λ) estimation was lower than in the QAAv5 with an 

NRMSE of 6911%. Figure 4.14 shows the estimated and measured aphy(λ) 

spectra. Figure 4.14A shows the spectra for the best NRMSE (129%) while 

Figure 4.14B shows the spectra for the worst NRMSE (20386%).  

Although the use of QAA for turbid productive waters reduced the NRMSE for 

all the estimations, the a(λ) estimations still overestimating in the values on the 

blue and green spectral regions. Therefore, aCDM(λ) and aphy(λ) estimations 

were compromised. In the aphy(λ) case, even the best sample point estimation 

got an inaccurate aphy(λ) spectrum.  

 

Figure 4.14 - Estimated and measured aphy(λ); a) the best NRMSE of 129%, 
and b) the worst NRMSE of 20386%. 
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Therefore, an empirical scheme to retrieve the a(λ) needs to be re-

parameterized for successful retrieval of aCDM(λ) and aphy(λ) in a tropical 

reservoir.  

4.5.2. Algorithm development 

As noticed by applying QAAv5 and QAA for turbid productive waters, the main 

source of error was in the a(λ) estimation. Due to this reason we followed 

Mishra et al. (2014) steps 0 to 5 using the Rrs from Funil Reservoir. 

The first step is based on the transformation of Rrs to rrs (Equation 4.2): 

        
      

                
 (4.2) 

The second step is the estimation of u which is calculated following Equation 

4.3. 

   
     

            
  

                          

   
 (4.3) 

Where: g0 = 0.089 and g1 = 0.125 

The third step is the estimation of total absorption at a reference wavelength 

(708 nm)which shown on Equation 4.4. 

                          
 
 (4.4) 

Where a = 0.7153; b= 2.054; c= 1.047 and   is calculated from equation 4.5. 

         
                      

               
        
        

         
  (4.5) 

The fourth step is the estimation of bbp at the reference wavelength (708 nm). 

          
            

        
          (4.6) 

The fifth step is the estimation of bbp(λ). 

                         
   

 
 
 

 (4.7) 
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Where η is calculated from equation 4.8. 

                  
        

        
   (4.8) 

The sixth step is the estimation of a(λ) which was overestimated on the QAAv5 

and QAA for turbid productive waters. To solve this problem we change the 

factor 1 in the first subtraction to 0.1, as shown on Equation 4.9. 

      
                           

    
 (4.9) 

From the total absorption spectrum, QAA was further decomposed into aCDM(λ) 

which is the combined absorption by CDOM and NAP. aCDM(λ) can be 

calculated by using the power spectral slope as in Equation 4.10. 

                   
          (4.10) 

where, S was calculated using Equation 4.11 and aCDM(443) was calculated 

using Equation 4.12 as: 

         
     

                     
 (4.11) 

           
                                   

   
 (4.12) 

where, 

        
   

                    
 (4.13) 

               (4.14) 

aphy(λ) in this work was calculated based on Lee et al. (2010) which uses a 

normalized phytoplankton absorption coefficient to provide the spectral shape of 

aphy(λ). 

                      
     (4.15) 

where, aphy(432) can be calculated from Equation 4.16; and a+
phy(λ) was 

obtained from Roesler et al. (1989). 
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 (4.16) 

4.5.3. Algorithm validation 

To validate the proposed QAA (pQAA), we followed the same method used to 

analyze the QAAv5 and QAA for turbid productive waters. Therefore, the 

average NRMSE(%) for a(λ) estimation was 36%. If compared to QAAv5 

(511%) and QAA for turbid productive waters (399%) the error estimation for the 

pQAA was very low. Not only the NRMSE was improved from the other two 

QAAs but also the spectra comparison was improved. Figure 4.15A shows the 

spectra for the best NRMSE (23%) while Figure 4.15B shows the spectra for the 

worst NRMSE (77%). It shows that the pQAA improved spectra even for the 

worst NRMSE sample point, which is more overestimated in the blue spectral 

region. 

 

Figure 4.15 - Estimated and measured a(λ); a) the best NRMSE of 23%, and b) 
the worst NRMSE of 77%. 

For the average NRMSE of aCDM(λ) estimation was also lower if compared to 

the others QAAs. While the pQAA got an average NRMSE of 49%, QAAv5 and 

QAA for turbid productive waters got a NRMSE of 885% and 726% respectively. 

Figure 4.16 shows the estimated and measured aCDM(λ) spectra. Figure 4.16A 

shows the spectra for the best NRMSE (9%) while Figure 4.16B shows the 

spectra for the worst NRMSE (185%). Once again, application of pQAA for Funil 

Reservoir dataset showed a better accuracy in the spectra shapes for the 

estimated aCDM(λ). 
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Figure 4.16 - Estimated and measured aCDM(λ); a) the best NRMSE of 9%, and 
b) the worst NRMSE of 185%. 

For the average NRMSE of aphy(λ) estimation for pQAA got an average NRMSE 

of 74%, while for the QAAv5 and QAA for turbid productive waters got a 

NRMSE of 9401% and 6911% respectively. Figure 4.17 shows the estimated 

and measured aphy(λ) spectra. Figure 4.17A shows the spectra for the best 

NRMSE (16%) while Figure 4.17B shows the spectra for the worst NRMSE 

(180%). The most important achievement of the pQAA was the improvement of 

the spectral shape of estimated aphy(λ). The aphy(λ) estimation is important since 

it used in the estimation of PC concentration as described on section 3.8.  

 

Figure 4.17 - Estimated and measured aphy(λ); a) the best NRMSE of 16%, and 
b) the worst NRMSE of 180%. 

Overall results showed that the pQAA is more accurate due to the empirical re-

parameterizations proposed in this study. More accurate results were estimated 

skipping the first step and using the measured rrs. However, for the application 
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to orbital sensors the use of Rrs with an accurate atmospheric correction is 

required. Results for all studied points are shown on Appendix B.  

4.6. PC estimation 

PC concentration estimation from pQAA was calculated as described on section 

3.8 following Mishra et al (2013) procedures. We use their empirical relationship 

to estimate  1 and  2 the results and we also used a fixed aPC
*(620) at 0.0019, 

based on Dekker (1993) measurements at two shallow hyper eutrophic lakes: 

Lake Naardermeer Wijde Blik and Lake Hollands Ankeveen which had a 

measured aPC
*(620)  of 0.0022 and 0.0014 respectively.  

Although the use of parameters estimated from remote sensing and calibrated 

from literature reviews, it was found a NRMSE of 24.94% with a R2 of 0.98 (p-

value < 0.0001) for the estimation of PC concentration. Figure 4.18 shows a 

scatter plot of estimated and measured PC concentration, as it could be 

observed, for all points there were an underestimation of PC concentration. 

However, for overall results, considering all the modeling behind this estimation, 

the PC concentration estimation was considered accurate enough for our state 

of art of bio-optical modeling. 
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Figure 4.18 - Estimated and measured PC concentration 

 

4.7. OLCI simulation 

Firstly it was created a synthetic dataset of OLCI spectral bands following its 

spectral response function showed on section 3.9. A comparison between 

hyperspectral and the synthetic datasets is shown on Figure 4.19 which shows 

in A the hyperspectral Rrs data from proximal remote sensing and in B the 

synthetic OLCI Rrs data.   
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Figure 4.19 - Rrs a) for the proximal remote sensing; b) for the synthetic OLCI 
data. 

The synthetic dataset of the 16 spectral bands of OLCI could estimate well the 

data hypespectral data, and could retrieve well some important features on the 

Rrs spectra. The absorption feature of chl-a at 665 nm was well described in the 

synthetic dataset and also the absorption of PC at 620 nm could be noticed due 

to OLCI's spectral band centered at 620 nm.  

4.7.1. Application of pQAA 

It was applied the pQAA for the OLCI synthetic dataset, following the same 

steps described on section 4.4.2 just using the nearest wavelengths of OLCI. 

Average NRMSE for a(λ), aCDM(λ) and aphy(λ) estimations were low around 43%, 

105% and 478% respectively. 

Figure 4.20 shows the estimated and measured a(λ) spectra. Figure 4.20A 

shows the spectra for the best NRMSE (25%) while Figure 4.20B shows the 

spectra for the worst NRMSE (98%).  
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Figure 4.20 - Estimated and measured a(λ); a) the best NRMSE of 25%, and b) 
the worst NRMSE of 98%. 

Although the use of different wavelengths in the pQAA, the application of pQAA 

for OLCI synthetic dataset showed very similar results in the a(λ) spectra 

comparison between measured and estimated. 

Figure 4.21 shows the estimated and measured aCDM(λ) spectra. Figure 4.21A 

shows the spectra for the best NRMSE (58%) while Figure 4.21B shows the 

spectra for the worst NRMSE (306%).  

 

Figure 4.21 - Estimated and measured aCDM(λ); a) the best NRMSE of 58%, and 
b) the worst NRMSE of 306%. 

 

Once again, application of pQAA for OLCI synthetic dataset showed very similar 

results to the hyperspectral dataset. Although the NRMSE results were low, the 

difference on the estimations at the blue spectral channel is high.  
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Figure 4.22A shows the spectra for the best NRMSE (52%) while Figure 4.22B 

shows the spectra for the worst NRMSE (1065%). The estimation of aphy(λ) is 

one of the most important goals of this thesis, since with the use of this 

estimation is possible to calculate the concentration of biological activity such as 

chl-a and PC. 

 

Figure 4.22 - Estimated and measured aphy(λ); a) the best NRMSE of 52%, and 
b) the worst NRMSE of 1065%. 

Overall results using the synthetic OLCI dataset showed that the application 

pQAA in the future satellite Sentinel-3 can enhance the estimation of IOPs in 

tropical inland waters using the OLCI sensor. With the constellation proposal for 

the Sentinel Satellites Series, the monitoring of tropical inland aquatic systems 

can be also improved by the application of remote sensing technique such as 

the bio-optical modeling.  

However, the use of remote sensing technologies for inland waters is limited by 

its spectral resolution. Usually, the remote sensing of inland water quality 

requires high spectral and spatial sensitivity from space-borne imaging 

spectroradiometers. The spatial resolution is needed because of the size of 

inland aquatic systems, however, it would be most welcome, current and 

planned satellite sensors to have spectral sensitivities in excess of what is 

needed for most water column OAC. Thus, from the perspective of water 

quality, upcoming hyperspectral satellite sensors such as Environmental 

Mapping and Analysis Program (EnMAP), Hyperspectral Infrared Imager 

(HyspIRI) and PRecursore IperSpettrale della Missione Applicativa (PRISMA) 
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as well as aquatic multispectral sensors such as OLCI and SABIA-MAR present 

exciting opportunities for generating inland and coastal water quality products.  

4.7.2. Estimating PC concentration 

The estimation of PC concentration from OLCI synthetic dataset was not 

accurate if compared to the hyperspectral dataset PC concentration estimation. 

The high NRMSE of 112.49% and a R2 of 0.55 (p-value of 0.013) showed that 

improvements on the aPC
*(620) estimation should be developed for multispectral 

sensor, such as OLCI. As it was used Mishra et al. (2013) calibration which was 

settled with hyperspectral measures to estimate aPC
*(620), this low accuracy is 

probably derived from the use of a calibration for hyperspectral measures 

instead of using one for multispectral ones. Figure 4.23 shows the scatter plot of 

estimated and measured PC concentration, after removing few outliers with 

negative concentration. 

 

Figure 4.23 - Estimated and measured PC concentration 
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It was observed that PC concentration estimation from OLCI synthetic dataset 

underestimated the low concentrations (<10 μg/L) and overestimated the high 

concentrations (>10 μg/L) as it could be observed, for all points there were an 

underestimation of PC concentration. 

4.8. Uncertainties  

The use of QAA for retrieving IOPs showed to be very accurate considering the 

NRMSE(%) values. However for the purpose of estimating the biological activity 

the intensity and shape of the estimated IOPs spectra should be similar to the 

measured ones. Although the modifications for the pQAA, there are few 

uncertainties on the estimation in the blue spectral channel, which should be 

explored on the first steps on the estimation of a(λ).  

However the biggest uncertainties were found on PC concentration estimation 

due to the lack of aPC(λ) measurements. Due to that it was not possible to 

calculate and calibrate the  1 and  2. Therefore, the error of the algorithm was 

increased due to the use of a calibration developed for the catfish ponds in the 

U.S. Therefore, without aPC(λ) it was also impossible to calculate the aPC
*(620) 

which was substituted for 0.0019, based on literature reviews. Although these 

approaches to substitute the aPC(λ) and aPC
*(620) values got for the 

hyperspectral dataset an NRMSE of 24.94%, this accuracy could be improved 

by the use of in situ measurements of then. 

Besides all these errors from based on the performance  of the algorithm, errors 

from the measured dataset should be also considered on these errors 

estimators. 

Thus considering all sources of errors in the bio-optical modeling, and error of 

proximally 25% on PC concentration can be considered a good result for the 

first QAA approach for PC quantification in a tropical inland waters. 
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5 FINAL CONSIDERATIONS 

In this master thesis, a QAA was re-parameterized to retrieve IOPs from a 

tropical hydroelectric reservoir. It was presented one of the first bio-optical 

models to retrieve IOPs developed in a Brazilian tropical hydroelectric reservoir. 

It was also shown an application of a model to retrieve the absorption of PC at 

620 nm as well as its application to estimate the concentration of PC in a water 

column. Although all these procedures were conducted using proximal remote 

sensing, it was also simulated the application of these techniques to a synthetic 

dataset of OLCI spectral bands. 

Results of this master thesis also include the evaluation of the use of in vivo 

fluorimetry for the quantification of PC concentration comparing the results to 

the PC concentration estimated from the sonicator method (SARADA et al, 

1999), as well as a comparison among PC Rrs-based algorithms using 3 

datasets and analyzing their sensitivity to chl-a. The comparison among Rrs-

based algorithms showed the influence of not only chl-a but also TSS on the Rrs 

at PC absorption range. To minimize these interference on the PC absorption 

range Rrs spectra, it was proposed a filter to decrease the interference of other 

OACs on this spectral range. 

A summary of the results show that the use of in vivo fluorimetry for the 

quantification of PC concentration was compatible for the measured PC 

concentration using the sonicator method with an R2 of 0.94. Comparison 

analysis suggested that although MI09 seemed to be the most sensitive to PC, 

SI05 got the best validation plots, due to the interference of other OACs at 600 

nm. The evaluation of our filter to decrease this interference was satisfactory, 

showing that for the three algorithms tested in three different datasets the 

NRMSE was reduced. 

The application of QAAv5 and QAA for turbid productive waters to Funil 

Reservoir dataset was not satisfactory, although they presented a lower 

NRMSE on the estimation of a(λ) and aCDM(λ). The estimations of aphy(λ) were 

inaccurate for both methods. Thus the need for a re-parameterization was 

confirmed and pQAA was developed based on Lee et al. (2009), Lee et al. 
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(2010) and Mishra et al. (2014). Predicted a(λ) from pQAA got an average 

NRMSE of 36%, while QAAv5 got a NRMSE of 511%, and QAA for turbid 

productive waters, a NRMSE of 399%. However, not only the NRMSE was 

lower, but also the spectral shape of the estimated a(λ) was closer to the 

measured one. Predicted aCDM(λ) got an average NRMSE of 49%, while QAAv5 

and QAA for turbid productive waters got NRMSEs of 885% and 726%, 

respectively. However, the most impressive result was on the estimation of 

aphy(λ), which got an average NRMSE of 74%, while the NRMSEs for QAAv5 

and QAA for turbid productive waters was 9401% and 6911%, respectively. 

From the results of the pQAA, we applied the model to estimate aPC(620) 

developed by Mishra et al. (2013) in order to assess the PC concentration 

dividing it by its specific absorption. It was applied the same calibration 

proposed in the work of Mishra et al. (2013), since it was not possible to get in 

situ measures of aPC(λ) at Funil Reservoir. Although this lack of in situ data, the 

estimation of PC got an NRMSE of 24.94%. Thus with empirical calibrations of 

the algorithm, this error tends to be lower.  

An important task accomplished in this thesis was the simulation of OLCI 

spectral bands for the application of the pQAA. Using the Spectral Response 

Function of OLCI, it was simulated spectral bands 1 to 16 in the range of 400 

nm to 800 nm. From this synthetic dataset of OLCI sensor we applied the 

pQAA. Average NRMSE for a(λ), aCDM(λ) and aphy(λ) estimations were a little 

higher if compared to the pQAAs applied on the hyperspectral data, with values 

around 43%, 105% and 478%, respectively. However, the application of Mishra 

et al. (2013) calibration for the estimation of aPC(λ) and further PC concentration 

were not useful for OLCI synthetic dataset. The NRMSE for PC estimations was 

112.49%, enhancing the need to develop a calibration of Mishra et al. (2013) 

PC’s model for OLCI spectral bands.  

Future challenges for the QAA modeling in inland waters is the substitution of 

the spectral bands in the blue range for other ranges (i.e., red and NIR). As 

described in this Master Thesis, is usually used for atmospheric correction and 

it has very high spectral response from CDOM and TSS. Therefore the future 

sensors for water color studies such as OLCI and SABIA-MAR can be 
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applicable for QAA modeling, since they will have a fine spectral resolution. 

Moreover, future studies should concentrate not only in the development of 

algorithms for remotely estimation of biogeochemical components, but also in 

the response of biological activities according to their life cycles and differences. 

One good example of an application of this understanding of the life cycles in 

the cyanobacteria remote sensing is the detection of a signal which allows the 

identification of cyanobacteria population growth in its early stages. If there is a 

difference on the spectral response of cyanobacteria in their early life, it will be 

possible to establish an early warning system for water quality. Nevertheless, 

more studies should be developed aiming the understanding of IOPs’ behavior 

in tropical inland aquatic systems, mainly in the ones near urban centers, which 

are essential for the water supply of big cities. 

To conclude, I hope this master thesis is merely the first of many to explore the 

re-parameterization of semi and quasi-analytical models for the accurate 

estimation of IOPs and biological activity on tropical inland waters. Although it is 

a new and still in development area of knowledge, it is important to develop 

remote sensing studies of water quality due to the significant number of Lakes 

and Reservoirs in Brazil. Its importance is not restricted to the scientific 

community, but includes policy makers and environmental managers, who 

would be given a trustful tool for improving water governance. 
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APPENDIX A 

Model Reference Sensor Algorithm 

Empirical Vincent (2004) TM and ETM+ 
                                       

                                   
                                  

Empirical Song, Kaishan et al. (2012) AISA GA-PLS of (713/647; 704/628; 694/638; FDR713; FDR713; Rrs628) 

Empirical Song, Kaishan et al. (2013) ASD FieldSpec / Ocean Optics          
           

                  

Empirical Sun et al. (2012) FieldSpec spectroradiometer Type 3 waters (765/268; 765/623; 804/628; 820/628; 765/609) 

Semi-Empirical Dekker (1993) CAESAR / CASI                                 

Semi-Empirical Schalles and Yacobi (2000) Ocean Optics                        

Semi-Empirical Simis et al. (2005) MERIS        
        

        
                                        

Semi-Empirical Wynne et al. (2008) MERIS                                         
         

         
 

Semi-Empirical Hunter et al. (2008) ASD FieldSpec          
           

                  

Semi-Empirical Mishra et al. (2009) Ocean Optics                        

Semi-Empirical Hunter et al. (2010) AISA / CASI-2          
           

                  

Semi-Empirical Le et al. (2011) ASD FieldSpec          
           

            
           

           

Semi-Empirical Dash et al. (2011) Ocean Color Monitor                                            

Semi-Empirical Dominguez et al. (2011) MERIS / CHRIS                         

Semi-Empirical Wheeler et al. (2012) QuickBird                 

Semi-Analytical Li, Linhai et al. (2012) OceanOpticsUSB4000                                           

QAA Mishra et al. (2013) Ocean Optics           
                   

     

 

 
Where: TRM is Landsat TM Radiance; FDR is the first derivative; nLw is the normalized water leaving radiance; OCMRrs is the Rrs from OCM sensor; MB is 
MERIS band; QBNIR is the Quickbird NIR channel and QBRed is the Quickbird red channel; φ1 is the ratio between achl(665) and achl(620) and φ2 is the ratio 
between aPC(665) and aPC(620). 
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APPENDIX B 

Figure A.1 shows the estimated and measured a(λ), aCDM(λ) and aphy(λ) spectra 
for point 1. 

 
Figure A.1 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 

of 0.77%; b) aCDM(λ) with a NRMSE of 1.85%; and aphy(λ) with a 
NRMSE of 1.80%. 
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Figure A.2 shows the estimated and measured a(λ), aCDM(λ) and aphy(λ) spectra 
for point 2. 

 
Figure A.2 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 

of 0.34%; b) aCDM(λ) with a NRMSE of 0.56%; and aphy(λ) with a 
NRMSE of 1.17%. 
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Figure A.3 shows the estimated and measured a(λ), aCDM(λ) and aphy(λ) spectra 
for point 3. 

 
Figure A.3 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 

of 0.32%; b) aCDM(λ) with a NRMSE of 0.70%; and aphy(λ) with a 
NRMSE of 0.77%. 
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Figure A.4 shows the estimated and measured a(λ), aCDM(λ) and aphy(λ) spectra 
for point 4. 

 
Figure A.4 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 

of 0.30%; b) aCDM(λ) with a NRMSE of 0.26%; and aphy(λ) with a 
NRMSE of 1.11%. 
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Figure A.5 shows the estimated and measured a(λ), aCDM(λ) and aphy(λ) spectra 
for point 6. 

 
Figure A.5 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 

of 0.55%; b) aCDM(λ) with a NRMSE of 0.77%; and aphy(λ) with a 
NRMSE of 0.58%. 
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Figure A.6 shows the estimated and measured a(λ), aCDM(λ) and aphy(λ) spectra 
for point 7. 

 
Figure A.6 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 

of 0.28%; b) aCDM(λ) with a NRMSE of 0.32%; and aphy(λ) with a 
NRMSE of 0.36%. 
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Figure A.7 shows the estimated and measured a(λ), aCDM(λ) and aphy(λ) spectra 
for point 9. 

 
Figure A.7 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 

of 0.24%; b) aCDM(λ) with a NRMSE of 0.30%; and aphy(λ) with a 
NRMSE of 1.43%. 
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Figure A.8 shows the estimated and measured a(λ), aCDM(λ) and aphy(λ) spectra 
for point 12. 

 
Figure A.8 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 

of 0.29%; b) aCDM(λ) with a NRMSE of 0.22%; and aphy(λ) with a 
NRMSE of 0.16%. 
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Figure A.9 shows the estimated and measured a(λ), aCDM(λ) and aphy(λ) spectra 
for point 13. 

 
Figure A.9 - Estimated and measured absorption spectra; a) a(λ) with a NRMSE 

of 0.23%; b) aCDM(λ) with a NRMSE of 0.19%; and aphy(λ) with a 
NRMSE of 0.20%. 
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Figure A.10 shows the estimated and measured a(λ), aCDM(λ) and aphy(λ) 
spectra for point 17. 

 
Figure A.10 - Estimated and measured absorption spectra; a) a(λ) with a 

NRMSE of 0.35%; b) aCDM(λ) with a NRMSE of 0.36%; and 
aphy(λ) with a NRMSE of 0.20%. 
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Figure A.11 shows the estimated and measured a(λ), aCDM(λ) and aphy(λ) 
spectra for point 18. 

 
Figure A.11 - Estimated and measured absorption spectra; a) a(λ) with a 

NRMSE of 0.27%; b) aCDM(λ) with a NRMSE of 0.09%; and 
aphy(λ) with a NRMSE of 0.22%. 
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ANNEX A 

Technical characteristics of the Sentinel-3 OLCI instrument 

Swath 1440 km 

SSI at SSP (km) 300 m 

Calibration 

MERIS type calibration arrangement 
with spectral calibration using a doped 
Erbium diffuser plate, PTFE diffuser 
plate and dark current plate viewed 
~ every 2 weeks at the South Pole 
ecliptic. Spare diffuser plate viewed 
~ periodically for calibration degradation 
monitoring. 

Detectors 

ENVISAT MERIS heritage back 
illuminated CCD55-20 frame-transfer 
imaging device (780 columns by 576 
row array of 22.5 μm square active 

elements). 

Optical scanning design 

Push-broom sensor. 5 cameras 
recurrent from MERIS dedicated 

Scrambling Widow Assembly 
supporting 5 Video Acquisition Modules 

(VAM) for analogue to digital 
conversion. 

Spectral resolution 1.25 nm (MERIS heritage), 21 bands. 

Radiometric accuracy 

< 2% with reference to the sun for the 
400–900 nm waveband and < 5% with 

reference to the sun for wavebands 
> 900 nm 

0.1% stability for radiometric accuracy 
over each orbit and 0.5% relative 

accuracy for the calibration diffuser 
BRDF. 

Radiometric resolution < 0.03 W m− 2 sr− 1 mm− 1  

Mass 150 kg 

Size 1.3 m3 

Design lifetime 7.5 years 

         Source: Donlon et al. 2012. 
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