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Abstract: A numerical procedure for determining the motion of the balls, sliding friction and internal loading 

distribution computation in a high-speed, single-row, angular-contact ball bearing, subjected to a known 

combined radial, thrust and moment load, which must be applied to the inner ring center of mass, is presented. 

For each step of the procedure it is required the iterative solution of 9Z + 3 simultaneous non-linear equations – 

where Z is the number of the balls – to yield exact solution for contact angles, ball attitude angles, rolling radii, 

normal contact deformations and axial, radial, and angular deflections of the inner ring with respect the outer 

ring. 
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1   Introduction 

 
Ball and roller bearings, generically called rolling bearings, are commonly used machine elements. They are 

employed to permit rotary motions of, or about, shafts in simple commercial devices such as bicycles, roller 

skates, and electric motors. They are also used in complex engineering mechanisms such as aircraft gas turbines, 

rolling mills, dental drills, gyroscopes, and power transmissions. 

 

The standardized forms of ball or roller bearings permit rotary motion between two machine elements and 

always include a complement of ball or rollers that maintain the shaft and a usually stationary supporting 

structure, frequently called housing, in a radially or axially spaced-apart relationship. Usually, a bearing may be 

obtained as a unit, which includes two steel rings each of which has a hardened raceway on which hardened balls 

or rollers roll. The balls or rollers, also called rolling elements, are usually held in an angularly spaced 

relationship by a cage, also called a separator or retainer. 

 

There are many different kinds of rolling bearings. This work is concerned with single-row angular-contact ball 

bearings - see Fig. (1) - that are designed to support combined radial and thrust loads or heavy thrust loads 

depending on the contact angle magnitude. The bearings having large contact angle can support heavier thrust 

loads. Figure (1) shows bearings having small and large contact angles. The bearings generally have groove 

curvature radii in the range of 52-53% of the ball diameter. The contact angle does not usually exceed 40
o
.  

 
 

 

 

 

 

 

 

Figure 1. Angular-contact ball bearing 
 

This work is devoted to study of internal load distribution in a high-speed angular-contact ball bearing. Several 

researchers have studied the subject of internal load distribution in a statically loaded angular-contact ball 

bearing as, for example, Stribeck (1907), Sjoväll (1933), Jones (1946), Rumbarger (1962), Ricci (2009), and 

Ricci (2010). The methods developed by them to calculate distribution of load among the balls and rollers of 

rolling bearings can be used in most bearing applications because rotational speeds are usually slow to moderate. 

Under these speed conditions, the effects of rolling element centrifugal forces and gyroscopic moments are 

negligible. At high speeds of rotation these body forces become significant, tending to alter contact angles and 

clearance. Thus, they can affect the static load distribution to a great extension. 

 

Harris (2001) described methods for internal loading distribution in statically loaded bearings addressing pure 

radial; pure thrust (centric and eccentric loads); combined radial and thrust load, which uses radial and thrust 
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integrals introduced by Sjoväll; and for ball bearings under combined radial, thrust, and moment load, initially 

due to Jones. 

 

The great contribution to the study of ball motion, sliding friction and internal load distribution in a high-speed 

angular-contact ball bearing must be credited to A. B. Jones (Jones, 1959), (Jones, 1960). This work has revisited 

the Jones works, in some cases revising them and attaching improvements under the yoke of critical analysis, in 

other cases introducing new expressions for more realistic equilibrium conditions. Then, particularly, in this 

work, a numerical procedure for motion of the balls, sliding friction and internal loading distribution 

computation in a high-speed, single-row, angular-contact ball bearing, subjected to a known combined radial, 

thrust and moment load, which must be applied to the inner ring center of mass, is presented. For each step of the 

procedure it is required the iterative solution of 9Z + 3 simultaneous non-linear equations – where Z is the 

number of the balls – to yield exact solution for contact angles, ball attitude angles, rolling radii, normal contact 

deformations and axial, radial, and angular deflections of the inner ring with respect the outer ring. 

 
2   Mathematical Model 
 

Having defined in other works analytical expressions for geometry of bearings and the contact stress and 

deformations for a given ball or roller-raceway contact (point or line loading) in terms of load (see, e.g., Harris, 

2001) it is possible to consider how the bearing load is distributed among the rolling elements. In this section a 

specific load distribution consisting of a combined radial, thrust, and moment load, which must be applied to the 

center of mass of the inner ring of a high speed ball bearing, is considered.  

 

Figure 2 shows the displacements of an inner ring related to the outer ring due to a generalized loading system 

including radial, axial, and moment loads. Figure 3 shows the relative angular position of each ball in the 

bearing. 

 
 

Figure 2. Displacements of an inner ring (outer ring fixed) due to combined radial, axial, and moment 

loading. 
 

Let a ball bearing with Z balls, each with diameter D, symmetrically distributed about a pitch circle according to 

Fig. 3, to be subjected to a combined radial, thrust, and moment load applied to the inner ring’s center of mass. 

Then, a relative axial displacement, δa, a relative angular displacement, θ, and a relative radial displacement, δr, 

between the inner and outer ring raceways may be expected according Fig. 2. Let ψ = 0 to be the angular 

position of the maximum loaded ball. 

 

Under zero load the centers of raceway groove curvature radii are separated by a distance A given by 

 

        ,            (1) 

 

in which fo, fi are the conformities for outer and inner raceways, respectively. 

 

Under an applied static load, the distance s between centers will increase from A to A plus the amount of the 

contact deformation δi plus δo, as show by Fig. 4. The line of action between centers is collinear with A. If, 

however, a centrifugal force acts on the ball, then because the inner and outer raceway contact angles are 
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dissimilar, the line of action between raceway groove curvature radii centers is not collinear with A, but is 

discontinuous as indicated by Fig. 5. It is assumed in Fig. 5 that the outer raceway groove curvature center is 

fixed in space and the inner raceway groove curvature center moves relative to that fixed center. Moreover, the 

ball center shifts by virtue of the dissimilar contact angles. 

 

 
Figure 3. Ball angular positions in the radial plane that is perpendicular to the bearing’s axis of rotation, 

∆ψ = 2π/Z, ψj = 2π(j−1)/Z, j = 1…Z, in which Z is the number of balls. 
 

 
 

Figure 4. (a) Ball-raceway contact before loading; (b) Ball-raceway contact under load. 
 

In accordance with Fig. 5 the distance between the fixed outer raceway groove curvature center and the final 

position of the ball center at any ball location j is 

 

      .                                                                      (2) 

 

Since ro = foD, 

 

.                    (3) 

 

Similarly, the distance between the moving inner raceway groove curvature center and the final position of the 

ball center at any ball location j is 

 

      ,            (4) 

 

in which δoj and δij are the normal contact deformations at the outer and inner raceway contacts, respectively. 

 
In accordance with the relative axial displacement between inner and outer rings mass centers, δa, and the 

relative angular displacement θ, the axial distance between inner and outer raceway groove curvature centers at 

ball position j is 
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sxj = Asinβf  + δa + Risinθcosψj,                    (5) 

 

in which 

 

Ri = ½de + (fi – ½)Dcosβf                     (6) 

 

is the radius to locus of inner raceway groove curvature centers, de is the unloaded pitch diameter, and βf is the 

unloaded contact angle. Further, in accordance with the relative radial displacement between inner and outer 

rings mass centers, δr, and the relative angular displacement θ, the radial distance between inner and outer 

groove curvature centers at each ball location j is 

 

szj = Acosβf + δrcosψj – Ri(1 – cosθ)√cos
2ψj.                  (7) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Positions of ball center and raceway groove curvature centers at angular position ψj with and 

without applied load. 
 

If the iterative techniques of the Newton-Raphson method is be used to solve the associated nonlinear equations, 

the angles βoj and βij are best stated in terms of the co-ordinates V and W, in Fig. 5. Then 

 

,                     (8) 

,                    (9) 

,                (10) 

.                 (11) 

 

Similarly, the ball angular speed about its own center pitch and yaw angles, αj and α’j, are best stated in terms of 

the ball angular velocity components: ωx’j, ωy’j, and ωz’j. Then 

 

,                  (12) 

,                  (13) 

,                   (14) 

.                  (15) 
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Using the Pythagorean Theorem, it can be seen from Fig. 5 that 

 

,                        (16) 

.              (17) 

 

From (12)-(15) 

 

.              (18) 

 

For steady state operation of a ball bearing at high speed, the forces and moments acting on each ball are as 

shown by Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Ball loading at angular position ψj. 
 

The normal ball loads are related to normal contact deformations as follows: 

 

,                     (19) 

.                     (20) 

 

From Fig. 6 considering the three axes equilibrium forces: 

 

,            (21) 

,            (22) 

,                    (23) 

 

Substituting (8)-(11) and (19)-(20) into (21)-(22) yields 

 

,               (24) 

.              (25) 

 

From Fig. 6 considering the three axes equilibrium moments: 

 

,            (26) 

,           (27) 

.                  (28) 

 

Substituting (8)-(11) into (26)-(27) yields 

 

,               (29) 
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.              (30) 

The centrifugal force acting on the ball at angular position ψj is given by 

 

,                   (31) 

 

in which m is the mass of ball, 

 

                 (32) 

 

is the operational ball’s pitch diameter at position j, and ωmj is the absolute orbital speed of the ball about of the 

bearing axis. 

 

Substituting the identity ωmj
2
 = (ωmj/ω)

2ω2
 in (31), the following equation for centrifugal force is obtained 

 

,                  (33) 

 

in which ω is the absolute angular velocity of the rotating ring. 

 

For the outer race to be stationary ωmj = –ωoj, ω = ωij + ωmj, 

 

,                 (34) 

and 

,  ,             (35)      

 

in which ωij, ωoj are the angular velocities about the bearing axis of the inner and outer rings with respect to the 

ball at position j, and ,  are the inner and outer rolling radii. 

 

Likewise, for the inner race to be stationary ωmj = –ωij, ω = ωoj + ωmj, 

 

                    (36) 

and 

.                   (37) 

 

Similarly, the gyroscopic moments acting on the ball at angular position ψj are given by 

 

,               (38) 

and 

 

,              (39) 

 

in which J is the ball’s mass moment of inertia. 

 

The friction forces due to sliding in the x and y-directions of inner and outer ball-raceway elliptical contact areas 

are given by 
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,           (40) 

,            (41) 

,            (42) 

,             (43) 

 

in which µ is the friction coefficient; aij, bij, aoj, and boj are semimajor and semiminor-axes of inner and outer 

pressure ellipses; xij, yij, xoj, yoj are the co-ordinates of an element of area, dA = dydx, inside the contact ellipse, 

which has a resultant velocity of slip V of the race on the ball acting at the angle γ with respect to the y-direction, 

which are given by 

 

,                  (44) 

.                 (45) 

 

Vxij, Vxoj, Vyij, Vyoj, ωsij, and ωsoj are the relative linear and angular slip velocities of inner and outer races with 

respect to the ball located at position j. The terms involving these velocities for use in (44) and (45) are given by 

 

,             (46) 

,            (47) 

,            (48) 

,              (49) 

 

in which Ri and Ro are the curvature radii of deformed surfaces, given by 

 

,                   (50) 

.                  (51) 
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The total frictional moments of the friction forces about the normal at the center of the contact ellipse are 

,                (52) 

.          (53) 

 

The moments of the friction forces about the y’-axis are 

 

,            (54) 

.      (55) 

 

The frictional moments about an axis through the ball center perpendicular to the line defining the contact angle, 

which line lies in the x’z’-plane, are 

 

,           (56) 

.      (57) 

 
Equations (16)-(18), (23)-(25) and (28)-(30) may be solved simultaneously for Vj, Wj, δoj, δij, r’oj, r’ij, ωx’j, ωy’j, 

and ωz’j at each ball angular location once values for δa, δr, and θ are assumed. The afore-mentioned Newton-

Raphson method shall be used for solution of the simultaneous nonlinear equations. 

 

Since Koj and Kij are functions of contact angle, equations (8)-(11) may be used to establish Koj and Kij values 

during the iteration. 

 

To find the values of δa, δr, and θ, it remains to establish the equilibrium conditions of forces and moments about 

the inner ring center of mass, as shown by Fig. 7, which are 

 

,                 (58) 

,                (59) 

{Ri /Ri } = 0,      (60) 

 

in which Fa, Fr and M are external forces and moment applied to the inner ring center of mass. 

 

Having computed values of Vj, Wj, δoj, δij, r’oj, r’ij, ωx’j, ωy’j, and ωz’j at each ball angular location and knowing 

Fa, Fr and M as input conditions, the values of δa, δr, and θ may be computed by equations (58)-(60). After 

obtaining the primary unknown quantities δa, δr, and θ, it is necessary to repeat the calculation of Vj, Wj, δoj, δij, 

r’oj, r’ij, ωx’j, ωy’j, and ωz’j, until compatible values of primary unknown quantities δa, δr, and θ are obtained. 

 

3   Conclusion 
 

The works of A. B. Jones (Jones, 1959), (Jones, 1960), were revisited and some improvements are being 

proposed, as is the case of introducing new expressions for equilibrium conditions. A numerical procedure for 

determining the motion of the balls, sliding friction and internal loading distribution computation in a high-



Ricci, M.                                                                                                         motion of the balls, sliding friction, and…  
 

 

Simpósio Aeroespacial Brasileiro _ 2014 / Brazilian Aerospace Symposium _ 2014                                                                      
9

speed, single-row, angular-contact ball bearing, subjected to a known combined radial, thrust and moment load, 

which must be applied to the inner ring center of mass, was presented. For each step of the procedure it is 

required the iterative solution of 9Z + 3 simultaneous non-linear equations – where Z is the number of the balls – 

to yield exact solution for contact angles, ball attitude angles, rolling radii, normal contact deformations and 

axial, radial, and angular deflections of the inner ring with respect the outer ring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Forces and moments about the inner ring center of mass. 

 
4   References 
 

Harris, T., Rolling Bearing Analysis, 4
th

 ed., John Wiley & Sons Inc., New York, 2001. 

Jones, A., Analysis of Stresses and Deflections, New Departure Engineering Data, Bristol, Conn., 1946. 

Jones, A. B., Ball Motion and Sliding Friction in Ball Bearings, ASME Journal of Basic Engineering, Vol. 3, 1-

12, 1959.  

Jones A. B., A General Theory for Elastically Constrained Ball and Radial Roller Bearings Under Arbitrary 

Load and Speed Conditions, J. Fluids Eng. 82(2), 309-320, 1960, doi:10.1115/1.3662587. 

Ricci, M. C., Ball bearings subjected to a variable eccentric thrust load, DINCON’09 Proceedings of the 8
th

 

Brazilian Conference on Dynamics, Control and Applications, May, 18-22, Bauru, Brazil, 2009. ISBN: 

978-85-86883-45-3.  

Ricci, M. C., Internal loading distribution in statically loaded ball bearings, ICCCM09 1
st
 International 

Conference on Computational Contact Mechanics, Program and Abstracts, p. 21-22, Sept. 16-18, Lecce, 

Italy, 2009.  

Ricci, M. C., Internal loading distribution in statically loaded ball bearings subjected to a combined radial and 

thrust load, 6th ICCSM Proceedings of the 6
th

 International Congress of Croatian Society of Mechanics, 

Sept. 30 to Oct. 2, Dubrovnik, Croatia, 2009. ISBN 978-953-7539-11-5.  

Ricci, M. C., Internal loading distribution in statically loaded ball bearings subjected to a combined radial, thrust, 

and moment load, Proceedings of the 60
th

 International Astronautical Congress, October, 12-16, Daejeon, 

South Korea, 2009. ISSN 1995-6258.  

Ricci, M. C., Internal loading distribution in statically loaded ball bearings subjected to an eccentric thrust load, 

Mathematical Problems in Engineering, 2009. 

Ricci, M. C., Internal loading distribution in statically loaded ball bearings subjected to a combined radial, thrust, 

and moment load, including the effects of temperature and fit, Proceedings of 11
th

 Pan-American Congress 

of Applied Mechanics, January, 04-10, Foz do Iguaçu, Brazil, 2010. 

Rumbarger, J., “Thrust Bearings with Eccentric Loads,” Mach. Des., Feb. 15, 1962. 

Sjoväll, H., “The Load Distribution within Ball and Roller Bearings under Given External Radial and Axial 

Load,” Teknisk Tidskrift, Mek., h.9, 1933.  

Stribeck, R., “Ball Bearings for Various Loads,” Trans. ASME 29, 420-463, 1907. 

�j 

M Fyij(Ri−ricosβij) 

Fr 
δa 

δr 

Risinβij 

Fyij 

βij 

Fa 

Fyijrisinβij – Msijcosβij 

 Ricosβij − ri 

θ 

M 

 Msijsinβij 

θ 

Fxij 

θ 

Qij 

Ri 

QijRisinβij−Fxij(Ricosβij−ri) 

Msij 


