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Abstract—This work presents a new structure for an all-
digital BPSK demodulator developed for space communications
that performs simultaneously the sampling and down conversion
from intermediate frequency signal to the baseband signal. A new
interpolator is proposed in order to simplify the demodulator
implementation. This interpolator correlates the samples of the
output signal in such way that it was necessary to design a new
data detector appropriate to process the samples corrupted by
gaussian and colored noise. The effects of the new interpolation
at the noise are analyzed as well as the way it affects the whole
demodulator performance. Simulations were performed and the
results are presented to confirm theoretical analysis.

I. INTRODUCTION

Satellite telecommand links demand for higher rate capa-
bilities had increased over the past years, reaching transmission
rates up to 2048 Mb/s. For such high rates transmission
systems, the Consultative Comitte for Space Data Systems
(CCSDS) recommends the utilization of a BPSK modulation
combined with a rectangular pulse shaping [1]. Despite its
large bandwidth, making its use discarded for most applica-
tions, this kind of pulse shaping is very often employed in
spatial telecommand modems due to its simplicity, a mandatory
requisite for onboard systems.

Regarding these recommendations, this work presents a
new interpolator and data detector applied to an all-digital
BPSK demodulator for a satellite telecommand application.
Bandpass sampling technique [2, 3], that simultaneously down
converts the signal from bandpass to baseband frequency, was
employed. This approach reduces the complexity of the system
because it does not use analogic frequency convertors, which
are often subject to imperfections like misadjustments and non-
linearities, preserving the system performance as good as the
analogic equivalent. A sub-Nyquist sampling rate [2] is used
at this sampling process, which means that the received signal
is sampled in a rate lower than the Nyquist rate, with respect
to the carrier frequency. This technique allows a reduction in
the volume of data to be processed, another important requisite
for an onboard system.

One problem that emerges from this sampling process is
the lost of samples due to the interleaving of in-phase and
quadrature channel samples, an issue solved using digital in-
terpolation. The utilization of a rectangular pulse shape makes
this interpolation task much simpler than usual, avoiding the
need of more sophisticated filtering operations. The main

contributions of this paper are: the proposal and mathematical
analysis of a new interpolator, the design of the maximum
likelihood (ML) symbol detector for the interpolated signal
and the analytical determination of the system error rate.
Computational simulation results are also presented in order
to confirm some analytical outcomes.

This paper is organized as follows: in section II, the general
model of the demodulator is presented and the main signals
involved are briefly described. In section III, the down conver-
tion process to baseband frequency is investigated and then,
in section IV, the interpolation technique is presented, starting
by the description of the general structure of the interpolator,
followed by an investigation on how this interpolation affects
the noise. The project of the optimum detector is presented
in the Section V. The bit error rate of the system is evaluated
in the Section VI. In the Section VII, simulation results are
shown and finally, in the Section VIII, we have the conclusion.

II. DEMODULATOR MODEL

Figure 1 shows the demodulator simplified block diagram.

Fig. 1. Demodulator Model.

Before the signal entering the demodulator, it passes
through an IF filter centered at fFI = 70MHz, having a
bandwidth equal to fs/2, where fs is the sampling rate. This
filter is modeled as a rectangular window, in the frequency
domain, and its bandwidth is large enough to avoid distortions
at the received signal.

As it is shown in Figure 1, the signal s(t) is discretized
and converted to baseband by the A/D and PB/BB converter
block. The resulting baseband signal sB [n] is processed by the
optimum filter that implements the required metric, from the
samples of the symbol, for the optimum detection by the ML
criterion. The squaring recovery block [4] corrects any time
error by interpolating the sC [n] signal in order to choose the
best sample. The last block implements a digital Costas loop



[5] that estimates and corrects the phase error and performs
the bit decision.

The Figure 2 details the functionalities of the A/D and
PB/BB converter block.

Fig. 2. Converter Model.

The signal s(t), at the input of the A/D converter, can be
expressed by

s(t) = A(t) cos[2π(fFI + fd)t+ ϕ] + w(t), (1)

where the baseband signal A(t) is modeled as

A(t) =
∑
i

aig(t− iT − τ), (2)

ai are the BPSK transmitted symbols, T is the symbol period,
g(t) is the baseband pulse defined as a rectangular window

having a duration of T seconds and amplitude
√

Ts
T , where

Ts =
1
fs

. The frequency offset, the phase error offset and the
time delay are fd, ϕ and τ , respectively. The narrow bandwidth
gaussian noise signal w(t) has the following power spectral
density:

Sw(f) =

{
No/2, if |f − fFI | ≤ fs/4,

0, if |f − fFI | > fs/4.
(3)

As it is shown in Fig. 2, s(t) is sampled at the A/D
converter, resulting in the signal s[n], and then multiplied by
the sequence p[n], generating sA[n] which, as we will see
later, consists of interleaved samples of the real and imaginary
parts of the baseband signal plus noise. Next, interpolation is
used to retrieve that lost samples of the real and imaginary
components of the baseband equivalent signal, denoted by
sBI [n] and sBQ[n], respectively.

As synchronization issues are not the main subject of the
paper, for most part of mathematical analysis that will be done
and for the results, it will be considered perfect synchroniza-
tion. Although we made this assumption, it is important to
remark that the demodulator also shows a good performance
in the presence of synchronization errors, exhibiting just a
little degradation. In the next sections, we proceed with the
mathematical analysis, detailing all the processing in each
block at the diagram of the Fig. 2.

III. DETERMINATION OF THE BASEBAND SIGNAL

To avoid aliasing at the sampling process, we should
compute the value of the frequency fs using the following

equation [6], where the highest frequency of the positive
spectrum of s(t) is fu and the lowest is fl:

2fu
q
≤ fs ≤

2fl
q − 1

(4)

and q is an integer number satisfying the condition:

1 ≤ q ≤ int( fu
fu − fl

) (5)

int(x) means the integer part of x. The discrete signal s[n] is
expressed by:

s[n] = <{A[n]ej[2π(
fFI+fd
fs

)n+ϕ]}+ w[n] (6)

where A[n] and w[n] are the discrete versions of the signals
A(t) and w(t) and <{x} represents the real part of x. If we
use fs = 4fFI/(2K + 1), K ∈ N, a special case of Equation
(4), in (6) and remembering that ωd = 2πfdTs, s[n] becomes:

s[n] = <{A[n]ej(ωdn+ϕ)ej(Kπ+π
2 )n}+ w[n] (7)

At this particular case, we used K = 3 and, as a consequence,
fs = 40MHz and w[n] is white. Substituting the values at
the above equation:

s[n] = <{A[n]ej(ωdn+ϕ)ej( 7π
2 )n}+ w[n] (8)

As it is ilustrated in Figure 2, the signal down conversion
to baseband frequency is realized by multiplying it by p[n] =
cos(7πn/2)−sin(7πn/2). Hence, the baseband signal is given
by:

sA[n] = A[n] cos[(
7π

2
+ ωd)n+ ϕ] cos(

7πn

2
)

−A[n] cos[(7π
2

+ ωd)n+ ϕ] sin(
7πn

2
) + z[n] (9)

where z[n] is a random process generated by the multiplication
of w[n] by p[n]. Using trigonometrical identities to develop (9),
sA[n] becomes:

sA[n] =
A[n]

2
{cos(ωdn+ ϕ)((−1)n + 1)

− sin(ωdn+ ϕ)((−1)n − 1)}+ z[n] (10)

Simplifying a little more, it can be shown that sA[n] is
expressed as follows:

sA[n] =

{
A[n] cos(ωdn+ ϕ) + z[n], if n even,
A[n] sin(ωdn+ ϕ) + z[n], if n odd. (11)

From this last equation, it is clear the interleaving of samples
that was described earlier. Every even sample of sA[n] consists
of the baseband signal A[n] multiplied by the cosine whose
argument depends on the frequency and phase error offsets.
For every odd sample, it is exactly the same signal multiplied
by a sine.

Next, the signal sA[n] passes through two interpolators,
each one retrieving those lost samples of in-phase and quadra-
ture components, to generate the signals sBI [n] and sBQ[n].
It is important to remark that both branches use the same
interpolation technique, differing only on which sample, odd
or even, to retrieve. Based on that, it is sufficient to discuss the
interpolation for just one branch of the demodulator, ignoring



the other one. At this paper, once we are dealing with a BPSK
modulation scheme, is analyzed the in-phase branch.

As discussed earlier, synchronization issues are out of the
scope of this paper, since it does not affect the interpolation
operation. Hence, making ωd = ϕ = 0, Equation (11) can be
simplified to:

sA[n] =

{
A[n] + z[n], if n even,

z[n], if n odd. (12)

Now, our immediate problem is how to recover the odd sample
of the signal A[n]. There are several possibilities [3], including
linear and non-linear interpolation. In the next section, we
present the proposed interpolation technique and analyze the
statistical properties of the output signal sBI [n].

IV. INTERPOLATION

A. Proposed Technique

Considering the baseband pulse is rectangular, the samples
of the signal A[n] are, for each symbol, constants and equal

to
√

Ts
T or −

√
Ts
T , depending on the trasmitted information.

Therefore, an obvious interpolation technique should be to
make the lost odd sample equal to the previous even sample.
Such operation is described by the equation:

sBI [n] =

{
A[n] + z[n], if n even,

A[n− 1] + z[n− 1], if n odd. (13)

For a given symbol, the signal sBI [n] may be expressed in a
more simplified way:

sBI [n] = Â[n] + v[n], (14)

where Â[n] is an estimate of the baseband transmitted signal
A[n] at the interpolator output, and it is given by the expres-
sion:

Â[n] =

{
A[n], if n even,

A[n− 1], if n odd. (15)

and v[n] is the colored noise, represented by:

v[n] =

{
z[n], if n even,

z[n− 1], if n odd. (16)

The statistical characterization of the noise v[n] is made in the
next subsection.

B. Interpolated Noise

Considering the power spectrum density of w(t), at the IF
filter output, given by Equation (3), the random process w[n]
is gaussian, white and its autocorrelation function is expressed
by [3]:

Rw[m] =
No
2Ts

δ[m] (17)

where δ[.] is the unit impulse function. After the multiplication
of the received signal by p[n], the noise factor z[n] = w[n]p[n]
is also gaussian and white, and its autocorrelation function is
identical to w[n]. The interpolator output, taking in account
only the noise term, is modeled as:

v[n] =

{
z[n], if n even,

z[n− 1], if n odd. (18)

which can be rewritten in a single expression:

v[n] =
z[n]

2
[1 + cos(πn)] +

z[n− 1]

2
[1− cos(πn)] (19)

The autocorrelation function of v[n] is:

Rv[n,m] = E{v[n]v[n+m]} (20)

and E{x} is the mathematical expectation of x. Developing
(20) using the representation of v[n] in (19), the expression
for Rv[n,m] becomes:

Rv[n,m] =
1

4
E{z[n]z[n+m](1+cos(πn)[1+cosπ(n+m)]}

+
1

4
E{z[n]z[n+m− 1](1 + cos(πn)[1− cosπ(n+m)]}

+
1

4
E{z[n− 1]z[n+m](1− cos(πn)[1 + cosπ(n+m)]}

+
1

4
E{z[n− 1]z[n+m− 1](1− cos(πn)[1− cosπ(n+m)]}

From the equation above, Rv[n,m] consists in an addition of
four mathematical expectations terms, each of them can be eas-
ily simplified using trigonometrical identities. This simplified
expression for the autocorrelation function of v[n] is:

Rv[n,m] =
No
4Ts

δ[m](1+ cosπn)+
No
4Ts

δ[m− 1](1+ cosπn)

+
No
4Ts

δ[m+ 1](1− cosπn) +
No
4Ts

δ[m](1− cosπn) (21)

Rearranging once more these terms, the final expression be-
comes:

Rv[n,m] =
No
2Ts

δ[m] +
No
4Ts

δ[m− 1](1 + cosπn)

+
No
4Ts

δ[m+ 1](1− cosπn) (22)

Examining this equation, it is easy to conclude that the random
process v[n] is cyclostationary with a discrete period of two
samples. Instead of using (22), it is common practice [7]
to work with the average autocorrelation function which is
defined as the average of the autocorrelation function over one
period. Applying this procedure, Equation (22) reduces to:

Rv[m] =
No
2Ts

δ[m] +
No
4Ts

δ[m− 1] +
No
4Ts

δ[m+ 1] (23)

From the above expression, the conclusion drawn is that v[n] is
colored. In this case, when the noise is not white, the classical
receiver structure with matched filter for implementation of
ML detection is not applicable. It is necessary to design a new
optimum ML detector considering the noise characteristics.



V. DETECTOR DESIGN

The samples of sBI [n] conveys the infomation of which
symbol was sent, hence it is essential to design a detector
to recover the transmitted symbol from observation of the
sBI [n] samples. The number of samples per symbol is equal
to int( TTs ). In our particular case, as T

Ts
is already an integer,

the symbol int will be omitted to simplify notation.

Our detection problem consists on, after observing T
Ts

samples of sBI [n], choosing between two hypothesis: H0, if
the transmitted symbol was ai = −1, and H1, if the trasmitted
symbol was ai = 1. We start defining the vector s :

s =
[
sBI [n] sBI [n− 1] · · · sBI [n− T

Ts
+ 1]

]T
(24)

which is the vector of the samples corresponding to a given
symbol. Considering a gaussian and colored noise, the joint
probability density functions, with respect to each hypothesis,
are:

ps(s|H0) =
exp{− 1

2 (s−m0)
TR−1(s−m0)}

(2π)T/2Ts |R|1/2
(25)

ps(s|H1) =
exp{− 1

2 (s−m1)
TR−1(s−m1)}

(2π)T/2Ts |R|1/2
(26)

where:
m0 = [ −1 −1 · · · −1 ]

T (27)

m1 = [ 1 1 · · · 1 ]
T (28)

R =



No
2Ts

No
4Ts

0 0 · · · 0
No
4Ts

No
2Ts

No
4Ts

0 · · · 0

0 No
4Ts

No
2Ts

No
4Ts

· · · 0

0 0 No
4Ts

No
2Ts

· · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · No

2Ts


(29)

and |R| is the covariance matrix determinant. The size of the
mean vectors m0 and m1 are T

Ts
x1, identical to s, and R is a

T
Ts

x T
Ts

matrix.

Detection of transmitted symbols consists in choosing H1,
if ps(s|H1) > ps(s|H0), or H0, if ps(s|H1) < ps(s|H0). This
can be written as:

ps(s|H1)
H1

R
H0

ps(s|H0) (30)

In pratice, it is easier to work with the log-distribution function
rather than the function itself. Hence, applying natural loga-
rithm at both sides of the Equation (30) and rearranging the
terms:

(s−m1)
TR−1(s−m1)− (s−m0)

TR−1(s−m0)
H1

R
H0

0 (31)

Developing Equation (31), after some algebra, we obtain
Equation (32), which is confirmed by making use of the
MATLAB symbolic expressions.

T
Ts
−1∑

k=0

sBI [n− k]
H1

R
H0

0 (32)

That is an interesting result. It suggests that, even though the
noise is colored, the best detection strategy is the mean over
all samples of each symbol, and once the baseband pulse is
rectangular, the optimum detector is clearly a matched filter.
Thus the optimum filtering block in Fig. 1 is implemented by
a rectangular filter. This result leads to a great simplification
of further system performance analysis.

VI. PERFORMANCE ANALYSIS

Once the detector is chosen, it is possible to calculate
the signal-to-noise ratio at the filter output. The in-phase
component of the matched filter output sC [n] is:

sCI [n] =

∞∑
k=−∞

sBI [n]h[n− k] (33)

where h[n] is its impulse response and sBI [n] is the signal at
the input of the optimum filter, given by (14). Replacing (14)
into (33), sCI [n] is expressed by:

sCI [n] =

∞∑
k=−∞

Â[k]h[n− k] +
∞∑

k=−∞

v[k]h[n− k] (34)

The symbol detection is performed over the samples of each
pulse. For the sake of simplicity, taking this summation over
the first received pulse and sampling at the final time instant
n = Ns =

T
Ts
− 1, the expression above reduces to:

sCI [Ns] =

Ns∑
k=0

Â[k]h[Ns − k] +
Ns∑
k=0

v[k]h[Ns − k] =M +N

(35)
where M relates to the first summation, over the deterministic
signal Â[n], and N to the second one, over the noise. Next
step, the calculation of the noise power, which is equal to the
variance of N , should be performed:

σ2
N = E{N2} =

Ns∑
k=0

Ns∑
i=0

Rv[k − i]h[Ns − k]h[Ns − i] (36)

Replacing (23) into (36) and after a little algebraic manipula-
tion, the noise power becomes:

σ2
N =

No
2Ts

(
T

Ts
) +

No
2Ts

(
T

Ts
− 1) (37)

At our particular case, there is a large number of samples per
pulse (T >> Ts), thus the variance reduces to:

σ2
N =

No
2Ts

(
2T

Ts
− 1) ≈ NoT

T 2
s

(38)

The BPSK demodulator bit error rate (BER) is given by:

BER = Q


√
M2

σ2
N

 (39)

where M2

σ2
N

is the signal-to-noise ratio of the system. Consider-
ing the first transmitted symbol was ao = 1 and recalling that
the pulse amplitude is equal to

√
Ts
T , the value of M2 is:

M2 = {
Ns∑
k=0

Â[k]h[Ns − k]}2 = {
√
Ts
T

T

Ts
}2 =

T

Ts
(40)



Replacing (36) and (38) into (37):

BER = Q

√ Ts
No

 (41)

The bit energy Eb of the demodulated pulse is Ts
2 , hence:

BER = Q

√2Eb
No

 (42)

which is the classical result for BPSK demodulation operating
in an AWGN channel. The conclusion drawn from this analysis
is that even though the noise is colored by the interpolator, the
system performance remains as good as the white noise case.

VII. SIMULATION RESULTS

In this section, we present some simulation results concern-
ing the proposed demodulator. It was evaluated the bit error
rate as a function of the bit energy per noise power density
(Eb/No) ratio, and also it was determined the power spectral
density of the colored noise at the interpolator output. The
main purpose of these simulations is to confirm the theoretical
results presented in the previous sections. As we mentioned
before, the simulation was performed in the following con-
ditions: sampling rate fs = 40MHz, IF carrier frequency
fFI = 70MHz and bit rate 1

T = 1MHz.

Fig. 3. Power spectral density of the noise v[n].

The power spectral density of v[n] is shown in Fig. 3.
Clearly, as it can be seen from its round shape, v[n] is a colored
noise, like was predicted in Equation (23). The simulation
result of the BER versus Eb/No is presented in Fig. 4, where
the implemented model was perfectly synchronized in terms
of carrier and symbol timing. Note the system performance is
in accordance with Equation (42).

VIII. CONCLUSION

The proposed all-digital BPSK demodulator performs si-
multaneously sampling and IF to baseband frequency down
conversion, utilizing a new interpolator and a new data detec-
tor, presenting a very good performance. All the functionalities

Fig. 4. Bit error rate versus Eb/No.

was designed using digital signal processing techniques, dis-
carding the need of analog components at the system. The great
contributions of this work are the new interpolation scheme
and the design of a ML data detector for non-white noise,
as well as all the mathematical analysis. As we have seen
by analysis and simulation, the system performace, with this
interpolation technique and data detector, is identical to the
classical optimum BPSK detection for the AWGN channel.
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