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Fortaleza, Ceará, Brazil
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Abstract—This article investigates non-linear and linear re-
ceivers to detect N non-orthogonal m-QAM signals through
AWGN channel: maximum likelihood receiver (ML), minimum
mean square error (MMSE), successive interference cancellation
(SIC) and a completely new architecture called modified SIC.
An analytical development of the project from each one of the
proposed architecture is performed. As contribution we present
the performance of the modified SIC in terms of bit error rate
(BER) which is close to the performance of the ML receiver
with less computational complexity. Another contribution is the
determination of the minimum distance among non-orthogonal
signals according to spectral overlapping considering N = 5.
Finally, the results are discussed as well as our future prospects
of research.

Keywords—Nonorthogonal carriers, Maximum Likelihood de-
tector, MMSE, Successive interfere Cancellation (SIC), spectral
efficiency.

I. INTRODUCTION

It is well known from the literature that orthogonality
can provide great advantages for the communication systems
like high data rates, better spectral efficiency and power
reduction just to name a few. For instance, QAM (Quadrature
Amplitude Modulation) modulation uses two orthogonal PAM
(Pulse Amplitude Modulation) signals doubling the spectral
efficiency. Other systems like Orthogonal Frequency Division
Multiplexing (OFDM) can also achieve high spectral efficiency
and link reliability [1].

OFDM has had great success and has been largely em-
ployed on the actual communication systems, specially in
mobile communication systems, providing them to accomplish
high data rates [1]. Although orthogonal systems have been
widely investigated over the last years, nonorthogonal sys-
tems have also its importance. Classic OFDM is composed
by a rectangular pulsehape and do not have good spectral
shape, therefore it is not a robust scheme for time-frequency
dispersive channels [2]. Such kind of channel breaks the
orthogonality among the subcarriers and their side lobes and
main lobes interfere among themselves, dropping down the
system performance [3]. There are a set of scenarios where the
orthogonality cannot be maintained without severally reduce
the data rates. Therefore, the investigation of nonorthogonal
signals play an important role on the detection of the trans-
mitted information in such scenarios [3]–[5].
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The first nonorthogonal system was presented in [2], [3].
The authors show that the transmitted information can only
be recovered under condition of ∆f ≥ 1/T , where ∆f is the
spacing frequency separation between two close subcarriers
and T denotes the symbol period. Different from those works,
in [6], the authors present two nonorthogonal m-QAM signals
with frequency separation ∆f ≤ 1/T for an AWGN channel.
A maximum likelihood detector is proposed in order to detect
the transmitted m-QAM symbols in the two nonorthogonal
subcarrier. The proposed receiver structure does not have loss
of bit error rate (BER) performance compared to the orthog-
onal case if 1 ≥ ∆fT > 0, 6. This means a better spectral
efficient compared with system employing two orthogonal
subcarriers. The work [7] also shows that is possible to recover
the transmitted information under the condition ∆fT < 1. In
[7], the proposed system is similar to the one presented in [3].
They employ the Weyl-Heisenberg (W-H) function described
as g(t − kT )ej2πl∆ft, where g(t) is the pulseshape and l=1,
2, ... . However, the results show strong constraints for the
g(t) design in order to reduce the interference between the
subcarriers.

The works [6] and [8] drive us to generalize the ML
detector for N non-orthogonal subcarriers and propose further
new receiver structure in order to reducing the computation
complexity of ML detector. We derive a nonlinear approach
based on the successive interference cancellation (SIC) al-
gorithm, which is traditionally employed in MIMO systems
to cancel interference between layers [9]. As contribution we
proposed a modified version of SIC and compare with the
optimum receiver through the BER curve.

This work is organized as follows: in the section II, the
system model is presented to reader. In section III, the ML
detector for N m-QAM nonorthogonal signals is presented.
After this, we derive the SIC receiver and the modified SIC
receiver in the section IV. In the sections V and VI, we show
our results and our conclusions respectively.

II. SYSTEM MODEL

Consider N m-QAM signals that are combined to create
M = mN possibles waveforms. The equivalent baseband
signal of i-th waveform can be written as follows

si(t) =

N−1
∑

n=0

xi,n(k)e
j2πn∆ftp(t− kT ) (1)



where i = 1, 2, ...,M , (k − 1)T ≤ t ≤ kT is the time
interval of the k-th transmitted symbol, xi,n(k) is the k-th m-
QAM sub-symbol from the n-th subcarrier being independent
identically distributions (i.i.d) ∀ n and k. p(u) is a rectangular
pulseshape with unitary amplitude and u ∈ [0, T ]. The variable
∆f defines the frequency separation between two subcarrier.
Under ∆f < 1/T condition, there is a frequency overlapping
between the main lobes of the subcarriers of si(t). The
received signal in an AWGN channel is given by:

r(t) = si(t) + q(t), (2)

where q(t) is a baseband white Gaussian noise with zero mean
and spectral power No. Note that, under the ∆f < 1/T
condition, there is no orthogonality among the subcarriers
causing inter-carrier interference (ICI).

III. MAXIMUM LIKELIHOOD RECEIVER

The Maximum Likelihood (ML) criterion maximizes the
probability density function of the received signal r(t) given
si(t), named as f [r(t)/si(t)]. This is the optimum criterion
for AWGN channels and can be implemented through the
minimum distance [10]

Dk[r(t), si(t)] =

∫ kT

(k−1)T

|r(t) − si(t)|
2dt, (3)

where i ∈ [1,M ] , k ∈ N and denotes kT -th time instant.
Another way to implement the ML criterion is performing M
correlation metrics Ck[r(t), si(t)] given by [10]:

Ck[r(t), si(t)] = 2Re

{

∫ kT

(k−1)T

r(t)s∗i (t)dt

}

−

∫ kT

(k−1)T

|si(t)|
2dt, (4)

where i = 1, 2, 3, ...,M and Ei(k) is the energy of the
transmitted signal si(t) in the time interval (k−1)T ≤ t ≤ kT
and given by:

Ei(k) =

∫ KT

(k−1)T

|si(t)|
2dt = Ep{

N−1
∑

n=0

|xi,n(k)|
2+

∑N−1
n=0

∑N−1
m=0
m 6=n

xi,n(k)x
∗
i,m(k)hn,m(∆fT, k)}, (5)

where,

hn,m(∆fT, k) = sinc((n−m)∆fT )ej2π(n−m)∆fT (k−1/2),

and Ep =
∫ T

0 |p(t)|2dt is the pulseshape energy of p(t).
Ei(k) is a function that depends on the m-QAM symbols,
the time instant k and ∆fT . Substituting Eq. (1) in Eq. (4),
the correlation metric between r(t) and si(t) can be rewritten
as follows

Ck[r(t), si(t)] =

2Re

{

N−1
∑

n=0

x∗
i,n(k)

∫ kT

(k−1)T

r(t)e−j2πn∆ftdt

}

− Ei(k). (6)
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Fig. 1. ML receiver structure for a nonorthogonal multicarrier system.

The ML receiver performs the correlation metric as
stated in Eq. (6) for all the possibles transmitted sig-
nals and decides the set of m−-QAM sub-symbols
[x0,i(k)x1,i(k), . . . , xN−1,i(k)] that maximizes Ck[r(t), si(t)].
Fig. 1 shows the ML receiver structure.

Although ML detector achieves the optimum perfor-
mance, its computational complexity poses major challenge for
NOFDM receiver implementation. By increasing the number
of multicarrier the number of the possible transmitted signal
grows up according toM = mN . For instance, the multicarrier
system using a 4-QAM modulation and 16 subcarriers would
result in 416 different correlation metrics Ck[r(t), si(t)].

A. Equivalent Discrete Signal Model

The output signal from the integrator of the l-th branch in
Fig. 1 can be written as follows

dl(k) = T {xl(k) +
N−1
∑

n=0
n6=l

xn(k)hl,n(∆fT, k)}+ zl(k) (7)

where dl(k), xj(k), where j = {l, n}, and zl(k) =
∫ kT

(k−1)T
q(t)ej2πl∆ftdt are the output samples of the integrator

of the l-branch, them-QAM transmitted symbols and the noise
in the l-th subcarrier at k-th time discrete instant, respectively.
Note that in Eq. (7), the transmitted symbol in the l-th
frequency has interference from (N − 1) subcarriers and the
overlapping is dictated by the value of∆fT . The smaller∆fT
is, the larger the interference is.

Eq. (7) shows the information of l-th frequency, however,
we desire a detector that performs jointly the estimation of
all N m-QAM transmitted sub-symbols. Writing the set of N
equations of (7) as a linear system

d(k) = TH(k)x(k) + z(k), (8)

where x(k) is a column vector containing N transmitted



complex symbols at the time discrete instant k,

H(k) =









1 . . . h1,N−1(∆fT, k)
h2,1(∆fT, k) . . . h2,N−1(∆fT, k)

...
. . .

...
hN−1,1(∆fT, k) . . . 1









,

and z(k) is the N × 1 complex noise vector. Each entry has
zero mean and the correlation matrix of the noise samples
among the multicarrier at time instant kT is E[z(k)z(k)H ] =
TNoH(k) [11]. If ∆fT = 1, H(k) becomes a diagonal matrix
having no interference among the subcarrier, the noise becomes
a white process in the frequency and the problem is reduced to
the orthogonal case. If ∆fT < 1, the orthogonality condition
is broken and H(k) is cyclostationary.

IV. NONLINEAR RECEIVER

In order to separate the signals from the nonorthogonal
subcarriers at the receiver, interference cancellation detection
algorithms should be considered to detect the m-QAM trans-
mitted symbols. Basically, the detection is performed setting
one subcarrier as the desired, one per turn, and the other ones
are treated as interferers. A filter is designed each turn to
extract the desired symbol from the desired subcarrier.

A. Successive Interference Cancellation

In SIC, the subcarriers are detected sequentially as shown
in Fig. 2. Initially, the signal d(k) goes through a filter detector
for the subcarrier (we can apply ZF or MMSE criteria), whose
output is used to produce a hard estimate of the symbols at this
subcarrier, x̂0(k). Then, the contribution of the first subcarrier
to the received signal is estimated and cancelled, generating the
signal d1(k). This process is recursive until the last subcarrier
is reached. At the i-th subcarrier the signal di(k), hopefully
free from the interference of subcarriers 0, · · · , i − 1, goes
through a filter detector that tries to mitigate the interference
from subcarrier i+ 1, · · · ,M . A hard estimate of the symbol
at this subcarriers, x̂i(k), is then produced, based on the
output of the detector. Then, the contribution of this layer to
the “received signal” di(k) is estimated and cancelled. This
procedure yields a modified received signal given by

di+1(k) = di(k)− x̂i(k)hi(k), (9)

where hi(k) is the i-th column of the “interference” matrix
H(k).

In regard to the filter design, it is calculated following a
given criterion such as ZF and MMSE [11]. In this paper
we consider MMSE criterion, the filter W is assigned by
minimizing the following cost function

J [W(k)] = E{||e(k)||2} = ||x(k)−WH(k)d(k)||2. (10)

Deriving J [W(k)] with respect to wn(k)

∂J [W(k)]

∂wn(k)
= −2E{x∗

n(k)d(k)} + 2Rddwn(k)

∂J [Wo(k)]

∂wn(k)
= 0

wo,l(k) = R−1
dd pl(k) (11)

w0(k)
d(k)

d̃1(k) = d(k)− h0(k)x̂0(k)

x̃0(k)

w1(k)
x̃1(k)

d̃2(k) = d̃1(k)− h1(k)x̂1(k) w2(k)
x̃2(k)

d̃N−1(k) = d̃N−2(k)

−hN−2(k)x̂N−2(k)
wN−1(k)

x̃N−1(k)

Fig. 2. SIC receiver structure.

where wo,l(k) is the filter that minimizes the mean square
error to the l-th subcarrier, Rdd = E{d(k)d(k)H} =
H(k)RxxH(k)H +N0TH(k), Rxx = E{x(k)x(k)H}, pl(k) =
E{x∗

n(k)d(k)} e E{z(k)z(k)H} = N0TH(k). Thus,

Wo(k) = [ wo,0(k) wo,1(k) wo,2(k) . . . wo,N−1(k) ] ,

represents the optimum transformation matrix that combines
linearly.

In this work, we consider Rxx = σ2
xxI, σ2

xx is the
power associated to m-QAM symbols, I is the identity matrix,
H(k)H = H(k), therefore Rdd = σ2

xxH(k)H(k) +N0TH(k).
The vector pl(k) is given by:

pl(k) = [ E{x∗

l
(k)d1(k)} . . . E{x∗

l
(k)dN−1(k)} ]T ,

to assign E{x∗
l (k)dn(k)}, consider Eq. (7):

E{x∗
l (k)dn(k)} =

N−1
∑

m=0

E{x∗
l (k)xm(k)}hn,m(∆fT, k)

+ E{x∗
l (k)zn(k)}

E{x∗
l (k)dn(k)} = σ2

xxhn,l(∆fT, k). (12)

Eq. (12) can be rewritten as

pl(k) = σ2
xx[ h0,l(∆fT, k) . . . hl−1,l(∆fT, k) 1

hl+1,l(∆fT, k) . . . hN−1,l(∆fT, k) ]T .

Using Eq. (11), Wo(k) is

Wo(k) = [ R
−1

dd
p0(k) R

−1

dd
p1(k) . . .R−1

dd
pN−1(k) ] ,

or in other way

Wo(k) = σ2
xxR

−1
dd H(k)

Wo(k) = σ2
xx(σ

2
xx)

−1(H(k)H(k) +
N0T

σ2
xx

H(k))−1H(k)

Wo(k) = (H(k)H(k) +
T

SNR
H(k))−1H(k) (13)



where SNR =
σ2

xx

No defines the signal-noise ratio.

Unfortunately, only the last subcarrier has total cancellation
of the interference since only the last one has the information
of the estimative from the others N − 1 subcarriers [9], [11].
In the next section, we present a novel nonlinear receiver to
overcome this problem.

B. Modified Successive Interference Cancellation

The modified SIC implements two SIC process in parallel.
The first SIC algorithm cancels successively the interference
from the first subcarrier towards to the last one while the
second one cancels from the last subcarrier backward to the
first subcarrier. At each iteration two symbols are estimated
thus at the N/2-th iteration all the symbols are estimated.
Although the number of operation is increased up comparing
to the traditional SIC, all the subcarriers experience free inter-
subcarrier interference.

Basically, the equalization can be divided into two steps.
The first one is regarded to the first N/2 iterations, when
all the symbols are estimated. The second step fulfil the
total cancellation of the interference among all the subcarriers
estimating new m-QAM sub-symbols without interference.

Fig. 3 shows the structure of the modified SIC. At the
j-th stage, there are two MMSE filters wj(k) and wi(k);
their outputs are x̂j(k) and x̂i(k) respectively. Be N an even
number, then i+ j = N − 1. After x̂j(k) and x̂i(k) detection,
the {j + 1}-th stage is

d̃j+1(k) = d̃j(k)− hj(k)x̂j(k)− hi(k)x̂i(k), (14)

where 0 < j ≤ N/2 − 2 and N/2 + 1 ≤ i ≤ N − 1, ∀ j, i
∈ N. Eq. (14) can be rewritten as

d̃j+1(k) = d(k)−

j
∑

m=0

hm(k)x̂m(k)−

N−1
∑

n=i

hn(k)x̂n(k).

(15)

w0(k)
d(k)

d̃1(k) = d(k)

x̂0(k)

w1(k)
x̂1(k)

d̃2(k) = d̃1(k)
w2(k)

x̂2(k)

x̂N−1(k)
wN−1(k)

wN−1(k)−h0(k)x̂0(k)− hN−1(k)x̂N−1(k)
x̂N−2(k)

−h1(k)x̂1(k)− hN−2(k)x̂N−2(k)
wN−3(k)

x̂N−3(k)

wN

2
−1

(k)

wN

2

(k)

x̂N

2
−1

(k)

x̂N

2

(k)
d̃N

2
−1

(k) = d̃N

2
−2

(k)
−hN

2
−2

(k)x̂N

2
−2

(k)− hN

2
+1(k)x̂N

2
+1(k)

Fig. 3. First phase of modified SIC.

Fig. 4 represents the structure of the second step of the
proposed nonlinear equalizer. As in the first stage, there are a

d̃N

2

(k) = d̃N

2
−1(k)

c̃N

2
−1(k) = c̃N

2
−1(k)

wN

2

(k)

wN

2
−1(k)

−hN

2
−1(k)x̂N

2
−1(k)

−hN

2

(k)x̂N

2

(k) x̃N

2
−1(k)

x̃N

2

(k)

wN

2
+1(k)

wN

2
−2

(k)

x̃N

2
+1(k)

x̃N

2
−2

(k)

d̃N

2
+1(k) = d̃N

2

(k)−

hN

2
−2

(k)x̂N

2
−2

(k)− hN

2
−1

(k)x̃N

2
−1

(k)

−hN

2

(k)x̃N

2

(k)

c̃N

2
−2

(k) = c̃N

2
−1

(k)−
hN

2
−1(k)x̃N

2
−1(k)− hN

2

(k)x̃N

2

(k)

−hN

2
+1(k)x̂N

2
+1(k)

x̂N

2
−1(k)

wN−1(k)

w0(k)

x̃N−1(k)

x̃0(k)

d̃N−1(k) = d̃N−2(k)−

hN−2(k)x̃N−2(k)− . . .− h1(k)x̃1(k)

c̃0(k) = c̃1(k)−

h1(k)x̃1(k)− . . .− hN−1(k)x̃N−2(k)

x̂N

2

(k)

d̃N

2
−1(k)

−h0(k)x̂0(k)

−hN−1(k)x̂N−1(k)

Fig. 4. Second phase of modified SIC.

pair MMSE filter wj(k) and wi(k). Their outputs are x̃j(k)
and x̃i(k), where 0 < i ≤ N/2 − 1, N/2 ≤ j ≤ N − 1 and
i+ j = N − 1. The signals from {j + 1}-th stage are:

d̃j+1(k) = d̃j(k)−

j
∑

m=i

hm(k)x̃m(k)− hi−1(k)x̂i−1(k),

c̃i−1(k) = c̃i(k)−

j
∑

n=i

hn(k)x̃n(k)− hj+1(k)x̂j+1(k),

where 0 < i ≤ N/2− 2, N/2+ 1 ≤ j ≤ N − 1. For instance,
if i = N/2− 1 and j = N/2 thus

d̃N/2(k) = d̃N/2−1(k)− hN/2−1(k)x̂N/2−1(k),(16)

c̃N/2−1(k) = c̃N/2−1(k)− hN/2(k)x̂N/2(k). (17)

V. RESULTS

We simulate a nonorthogonal multicarrier system and eval-
uate it by means of the bit error rate (BER). The receiver
structures are MMSE, SIC and modified SIC receiver. We
assign the MMSE filter using Eq. (13) and apply on the discrete
signal d(k) [11]

x̂MMSE(k) = WMMSE(k)d(k).

Furthermore, we compare the minimum distance curve of 2
nonorthogonal multicarriers, presented in [6], with 5 ones and
verify if is possible to maintain the same performance of the
orthogonal case. We have performed simulations considering
4-QAM modulation.

Fig. 5 shows the minimum distance curve between
nonorthogonal symbols and they were simulated employing
2 and 5 subcarriers [12]. Both curves show a range of ∆fT
where the possible symbols of the nonorthogonal multicar-
rier constellation keep the same minimum distance of the
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using ∆fT = 0.73.

orthogonal case, ∆fT = 1. This means that the system can
keep the same BER performance in AWGN channel with a
better spectral efficiency. On the other hand, the increasing of
the number of subcarriers causes a degradation on the BER
performance.

Fig. 6 shows the BER performance for the nonorthog-
onal multicarriers. The simulation was performed with five
nonorthogonal subcarriers, ∆fT = 0.73 and four different
receiver structures: ML, MMSE, SIC and SIC modified. The
ML receiver shows no loss of performance comparing to
the orthogonal case, this agrees with the minimum distance
curve shown in Fig. 5 since the minimum distance between
two nonorthogonal symbols with ∆fT = 0.73 has the same
distance of two OFDM symbols. SIC receiver has slightly
better performance than MMSE receiver, less than 0.5 dB
for BER about 10−3. In regard to the SIC modified, its
curve shows that it is a better strategy to reduce the level of
interference among the subcarriers in contrast to the SIC and
MMSE receiver.

VI. CONCLUSION

This work investigated the problem of nonorthogonal mul-
ticarrier that has already been addressed for two subcarriers
in [6] and [8]. We contributed extending for N nonorthognal
subcarriers. Furthermore, we evaluate the BER performance
using ML, MMSE, SIC and modified SIC receiver. Although
without orthogonality, the investigated scheme using the ML
receiver can achieve the same BER performance of an OFDM
system. It was noticed that the nonorthogonal system can keep
the same BER if 0.6 ≤ ∆fT ≤ 1 for N = 2 and 0.73 ≤
∆fT ≤ 1 forN = 5 meaning that nonorthogonal multicarriers
can provide an enhanced spectral efficiency. Unfortunately, the
ML criterion implies an exponential computational complexity,
then we propose a modified SIC receiver that shows a better
performance than SIC and MMSE receivers, almost similar to
ML receiver, under ∆fT = 0.73. Furthermore, the proposed
nonlinear receiver has much lower computational complexity
than ML. As on going investigation, we intended to study the
nonlinear structure in the presence of a dispersive channel.
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