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Abstract Almost all galaxies have massive central
black holes in their centers with masses typically rang-
ing from ∼ 105 to ∼ 109M�. However, the origin and
evolution of these objects and their connection with the
hosting galaxies are not completely understood yet. In
this work we analyze the mass accretion rate of super-
massive black holes (SMBH’s) and the mean Eddington
ratio (MER) of type 1 AGN using data from the Sloan
Sky Survey. For this purpose we improve the method
for constructing the subsample of SMBH, taking into
account the survey flux limit and the bias of the sample.
It was observed that the mean bolometric luminosity of
the active black holes can be represented by a function
composed by a power law in mass and a like-Schechter
function in redshift. Our results also show that both
the mean Eddington ratio and the mass accretion rate
are proportional to this function.

Keywords black hole physics — galaxies: active —
galaxies: evolution — galaxies: nuclei — quasars: gen-
eral

1 Introduction

There is strong evidence that nearly all galaxies contain
supermassive black holes (SMBHs) in their centers, and
that the evolution of the SMBH and its host galaxy are
connected (see, e.g., Ferrarese & Merritt 2000). Ba-
sically, there are two different ways for SMBHs grow
up: by accretion of matter (Soltan argument - Soltan
(1982)) or by merging with other black holes. However,
there are some uncertainties about the formation mech-
anisms and initial masses of the progenitors, or seeds,
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of these SMBHs (see, e.g. Volonteri 2010). On the
other hand, some studies indicate that accretion and
not the merging of black holes is the dominant process
for growing the supermassive black holes we find at the
centers of present-day galaxies (Shankar et al. 2010,
2009; Bertie & Volonteri 2008; Volonteri 2005; Marconi
et al. 2004).

The Eddington ratio is an important element to
study the evolution of SMBHs. It is associated with
both the dynamic of accretion as with the balance be-
tween the gravitational force and the radiation pressure
of the accretion disk. The mean Eddington ratio evolu-
tion, as a function of the redshift, has been described,
for example, by Hopkins & Hernquist (2009) and Cao
(2010). On the other hand, some works discuss the ev-
idence that the evolution of the mean Eddington ratio
is also a function of the mass of the central black hole
(DeGraf et al. 2012; Trakhtenbrot & Netzer 2012;
Kollmeier et al. 2006; Lusso et al. 2012; Kelly &
Shen 2013). However, the real significance of the mean
Eddington ratio is not clear yet.

A recent study (Fathi et al. 2013) using the Ata-
cama Large Millimeter/sub-millimeter Array (ALMA),
and based on the kinematic analysis of the dense molec-
ular gas in the central 200 parsecs of the nearby galaxy
NGC 1097, have shown a molecular and ionized gas
infall ∼ 0.6M� yr

−1 at 100 pc distance from the cen-
tral SMBH of NGC 1097. This inflow corresponds to
Ṁ ∼ 0.066 ṀEdd onto the central black hole with a
mass ∼ 1.2 × 108M�. Beyond this mechanism, which
is associated with the accretion of matter around the
black hole, a second mechanism has been discussed in
the literature. It is associated with the possibility that
SMBHs could grow up from the collapse of rapidly ro-
tating supermassive stars that may have formed in the
early Universe (Reisswig et al. 2013; Choi et al. 2013).
However, if we concentrate the attention on the accre-
tion processes, then the fraction of these black holes,
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that are growing by accretion of matter, can be seen

from the activity of distant quasars. In the local uni-

verse, we can find a similar result from the low lumi-

nosity active galactic nuclei (AGN).

Generally speaking, the mass density of the SMBHs

(MDBH) is obtained from the quasar luminosity func-

tion - QLF (see, e.g, Small & Blandford (1992); Yu &

Tremaine (2002); Merloni et al. (2004); Wang et al.

(2006); Shankar (2009); Raimundo & Fabian (2009);

Shankar et al. (2013)). However, previous models

don’t give a direct way to study the accretion process as

a function of the black hole mass (nor the redshift). In

particular, a more complete scenario including the ac-

cretion processes could be used, for example, to study

the spin variation of the SMBHs in the cosmological

context.

In this work, we present a new data mining process to

construct a representative subsample of active SMBHs.

The major advantage of the method presented here is

related to the fact that the flux limit of the catalog is

taken into account in a more accurate way. We consider

the behaviors of the probability density function of the

bolometric luminosity (PDFL) distribution of quasars

for each bin of mass, of the central black hole, and

redshift. To study the bias of the sample we considered

a Monte Carlo method, known as Bootstrap method.

We also present an original method for obtaining the

mass accretion rate and the mean Eddington ratio as

a function of the SMBH masses and of the redshift as

well.

This work is organized as follows: In section 2 we

present details of the sample and pre-processing of the

observational data. Section 3 presents the new method

to construct the subsample of SMBHs. In the Sec-

tion 4 the study of the mass accretion rate and the

mean Eddington ratio are presented. The last section

presents the final remarks of this work. We consider

standard cosmological model (ΛCDM) with Ωb = 0.04,

Ωm = 0.24, ΩΛ = 0.76, h = 0.73.

2 The Data sample

In this work we use as data sample the Sloan Digital

Sky Survey Data Release 7 (SSDS DR7) Quasar Cat-

alog (Schneider et al. 2010), that contains 105,783

type 1 AGN (quasars) with luminosity greater than

Mi = −22.0. In particular, we consider the catalog pro-

vided by Shen et al. (2011) - the SSDS DR7 Catalog of

Quasar Properties. This catalog contains supplemen-

tary information like: the full-width-at-half-maximum

(FWHM) of broad lines; central black hole masses (es-
timated using the FWHM); luminosity of broad lines

as well as the bolometric luminosity of the quasars. In

order to construct the mean Eddington ratio and to

calculate the mass accretion rate is necessary a homo-

geneous quasar subsample. Thus, once calculated the

Eddington ratio, we observed that some objects had

values greater than 100. We considered these objects

as outliers and they were excluded of our subsample.

Then, the final subsample contains 57, 496 objects with

redshift from 0.03 up to 4.5.

In the Figure 1 is presented the Eddington ratio as

a function of redshift1. The objects are plotted with

different colors according to the specific range of mass.

Fig. 1 represents the total subsample. Note that our

Figure 1 is similar to Figure 16 of Trakhtenbrot & Net-

zer (2012).
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Fig. 1 The dimensionless quasar luminosity weighted by
Eddington luminosity for all objects in our subsample.

3 Statistical Method

Concerning to statistical methods, there are some im-

portant points that must be taking into account (e.g.

Kelly & Shen (2013)). Specifically they are: i) for

a given mass, mbh, there is a large range of luminos-

ity, e.i., for a mass mbh exists a bolometric luminosity

distribution. This fact introduces statistical errors be-

cause some quasars are scattered above the flux limit;

ii) statistical error in the virial mass produces more

1The Eddington ratio is obtained dividing the quasar bolometric
luminosity by the Eddington luminosity, see eq. (7) for details.
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quasars into bins of higher mass than lower mass when

the BHMF declines toward higher values of mbh. An-

other point is that no matter the method used, in some

bins the amount of data may not be statiscally relevant.

In this section we present a method to take into ac-

count the points presented above. This is made in order

to construct a representative and homogeneous subsam-

ple. The method consists in the following steps:

• The observational data are saved into a relational

database;

• We perform a query into the database in order to

select objects in a specific range of mass and redshift

(binning process);

• if the amount of objects within a bin is lower than a

fixed value, Nmin, the bin is not considered;

• else, a new test is applied: this test consists in eval-

uating the probability density function of the bolo-

metric quasar luminosity (PDFL) for the objects into

the bin of mass mbh, and for a given redshift. In this

case, we consider the Freedman-Diaconis rule (Freed-

man & Diaconis 1981). This rule is used to deter-

mine the ideal width, w, of the histogram of PDFL,

and it is given by:

w = 2
IQR
3
√
Ntot

, (1)

where IQR is the inter-quartile range and Ntot is the

total number into the bin.

• if w is larger than a fixed value, the bin is not con-

sidered;

• else, the relevant informations are saved into a new

table of the database.

Figure (2) presents a map in the space of log(mbh)−
z. In this case was considered w = ∆log10(Lb) = 0.1

and Nmin = 30. The map shows the bins with statisti-

cal representative amount of data. Note that, the sam-

ple is complete for our flux-limited criterion. However

the incompleteness of the sample appears by the fact

that a fraction of the objects (from a cut off of mass)

are in a low activity regime and their luminosities are

below of the flux limit of the catalog. The low activity

regime can be observed in the Figure 1 for objects with

relative low Eddington ratio (λ . 10−1).

We observe that the objects with higher masses are

dominant at distant redshifts. However, close to the

present (low redshifts) the objects with lower masses

become more actives, as expected. This result shows

that our method is producing consistent results.

In the Figures 3, 4 and 5 are presented some exam-

ples of PDFL for mbh = 108.5M� and, z = 0.3, z = 1.0

and z = 1.5 respectively.

Fig. 2 Map of the binned space log(mbh) − z with statis-
tical representative amount of data.

Fig. 3 Probability density Function estimator of the
quasar luminosity distribution with central black hole mass
of 108.5M� and z = 0.3.

Fig. 4 Probability density Function estimator of the
quasar luminosity distribution with central black hole mass
of 108.5M� and z = 1.0.

To determine both the error and bias, caused by

the facts presented at the beginning of this section,
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Fig. 5 Probability density Function estimator of the
quasar luminosity distribution with central black hole mass
of 108.5M� and z = 1.5.

we adopted the non-parametric Monte Carlo bootstrap
resample with replacement method (henceforward just
bootstrap) (Wehrens et al. 2000; Carpenter & Bithell
2000; Press et al. 1992; Beran 1986; Wu 1986; Efron &
Tibshirani 1986). The advantage of this method is that
no prior knowledge about the data distribution is nec-
essary. In the appendix A we present details about the
bootstrap method. The bootstrap was used to calculate
the errors of the mean bolometric luminosity, obtained
from the data sample. Generally speaking, the bias was
lower than 4 percent of the value of the mean bolomet-
ric luminosity. Also this method was used to determine
the errors in the parameters of the likelihood function
used to fit the data and as null hypothesis test.

To evaluate the goodness of the fittings, in this work
was considered the adjusted coefficient of multiple de-
termination, Ra-squared (Kutner et al. 2005):

R2
a = 1−

(
n− 1

n− p

)
SSE

SSTO
(2)

being:

SSE =
∑

(fobsi − fespi )2 (3)

SSTO =
∑

(fobsi − f̄obs)2 (4)

where fobsi represents the data from the observations;
fespi is the expected value (theoretical value); f̄obs is the
mean value of the sample; n and p are the numbers of
data and parameters respectively. The Ra-squared can
have values between 0 and 1, and the result obtained
can be interpreted as the percent of the data that lies
in curve, or surface, fitted from the data. Values next
to 1 indicate a good fit.

Note that as the number of faint sources decreases we
observe that the width of the PDFL histograms become
wider. In this case, not only the number of faint sources
decreases but, in some bins, the total number of sources
also decreases. The method present in this paper takes
into account the reduction of the faint sources and also
the reduction of the sources as a whole.

4 The Mean Mass Accretion Rate and The
Mean Eddington Ratio

The bolometric luminosity of an accretion disk around a
black hole is Lb = η̄Ṁac

2, where c is the speed of light, η̄
is the mean radiative efficiency and Ṁa = ṁbh/(1− η̄)
is the mass accretion rate. On the other hand, the
Eddington luminosity is related to the black hole mass,
mbh, by:

Ledd =
c2

τs
mbh, (5)

where τs = 4.2 × 107yr is the Salpeter time. The Ed-
dington ratio is defined as:

λ ≡ Lb
Ledd

, (6)

that can be written as:

λ =
Lb
Ledd

=
τs
c2

Lb
mbh

, (7)

or,

λ = τs
η̄

1− η̄
ṁbh

mbh
. (8)

From the method presented in the section 3, it is pos-
sible to construct a representative PDFL for each bin of
mass and redshift. Thus, we define the mean Edding-
ton ratio in terms of the mean bolometric luminosity
as:

λ̄ ≡ τs
c2
L̄b(z,mbh)

mbh
, (9)

where L̄b(z,mbh) is the mean value of the bolometric
luminosity for a given bin of mbh and z. From Eqs. (9)
and (8), we write the mean mass accretion rate:

< ṁbh >=
1

c2
1− η̄
η̄

L̄b(z,mbh). (10)
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In particular, we assume that η̄ is constant with fidu-
cial value 0.1. The data associated to L̄b(z,mbh) are
fitted by:

L̄b(mbh, z) = L̄∗
b

(
mbh

m∗
bh

)α(
τ∗
tu(z)

)
exp

(
− tu(z)

τ∗

)
(11)

being L̄∗
b , m

∗
bh, α and τ∗ free parameters and tu(z) is the

look back time. The relation between the cosmic time
and the redshift, for Cold Dark Matter (CDM) plus
cosmological constant (Λ) model - (ΛCDM model), is
given by (Pereira & Miranda 2010):

∣∣dtu
dz

∣∣ =
9.78h−1Gyr

(1 + z)
√

ΩΛ + Ωm(1 + z)3
. (12)

The parameters are determined minimizing the fol-
lowing chi-square equation:

χ2 =

N∑
i=0

M∑
j=0

[
L̄ijb,obs − L̄b(zi,m

j
bh)
]

σij
, (13)

with σij been the standard deviation of L̄b in each bin.
In Table 4 we present the best fit parameters. The

error and bias were obtained from 10000 bootstrap sim-
ulations. The adjusted coefficient of multiple determi-
nation were: R2 = 0.99 for L̄b; R

2 = 0.98 for λ̄; and
R2 = 0.99 for < ṁbh >. We tried different forms for
the LB function in order to fit the data. However, the
choice of the Eq. (11) was based on the hypothesis test,
using the bootstrap method. In some cases, the error
and bias of the parameters become large. In other cases
some parameters were out of the 95% percent of confi-
dence level. Thus the final form of LB was defined by
the criteria of low error and bias, and that all parame-
ters must be within 95% of confidence level.

In the Figure 6 is shown the mean bolometric lu-
minosity as a function of black hole mass and redshift.
The mean Eddington ratio and the mean accretion rate
are plotted in the Figures 7 and 8. We observed that
L̄b increases for higher masses. However, the Edding-
ton ratio picks at lower mass. These results can be
explained by the fact that objects with low masses are
younger than more massive objects. Thus, the dynamic
of the processes associated with radiation and gravita-
tion is more intensive for objects with low masses. An-
other important point is that the mean accretion rate
declines when the redshift approaches to zero. This in-
formation can reflect the fact that, next to the present,
occurs a reduction of the gas available for the growing
of the black holes.

Fig. 6 Mean Bolometric Luminosity of type 1 AGN. The
black dots were obtained from the data sample. The ad-
justed coefficient of multiple determination for this figure is
R2 = 0.99.

Fig. 7 Mean Eddington ration. The adjusted coefficient
of multiple determination for this figure is R2 = 0.98.

Fig. 8 Mean accretion rate. The adjusted coefficient of
multiple determination for this figure is R2 = 0.99.
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Table 1 Best fit parameter: standard error, bias. All pa-
rameters are within 95% of confidence intervals. The values
were obtained from 10000 Simulations.

best fit bias error

L∗
b 3.05× 1047 6.65× 1045 3.14× 1046

m∗
bh 2.19× 1011 1.88× 1010 4.88× 1010

α 2.71× 10−1 −1.29× 10−4 1.18× 10−2

τ∗ 4.81× 109 1.05× 107 1.69× 108

5 Final Remarks

In this work we present a new method to obtain the
mean Eddignton ratio and the mass accretion rate of su-
permassive black holes. The difference of our method,
in relation to other described in literature, is that we
employ a new data mining process in order to construct
a representative subsample of the SMBHs. The major
advantage of this method is the possibility of taking into
account the catalog flux limit. This occurs because we
consider the behaviors of the probability density func-
tion of the bolometric quasar luminosity distribution
for each bin of mass, of the central black hole, and red-
shift. However, only a fraction of the original sample
can be used to construct the final subsample. Here was
considered as data sample the Sloan Digital Sky Survey
Data Release 7 (SSDS DR7) Quasar Catalog (Schnei-
der et al. 2010), that contains 105,783 type 1 AGN
(quasars) with luminosity greater than Mi = −22.0. In
particular, we consider the catalog provided by Shen et
al. (2011) - the SSDS DR7 Catalog of Quasar Proper-
ties.

The mass accretion rate and the Eddington ratio are
described in terms of the mean bolometric luminosity
(MBL) as a function of both SMBH mass and redshift.
The MBL, fitted from the data, increases in direction
to high masses. However, the Eddington ratio picks
at low mass. This result is explained by the fact that
objects with low mass are younger than more massive
objects. Thus, the accretion process is more intensive
for objects with low mass. That is, at high redshifts
we find a huge concentration of gas inside the halos not
yet used for star formation. Thus, the black holes find,
at high redshifts, favorable conditions for growing up.
This last fact could be observed in the evolution of the
mean accretion rate, that decreases for low redshift.
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A The Bootstrap Method

The Monte Carlo Bootstrap method (henceforward bootstrap method) is a powerful tool to obtain the bias,

standard error and percentile confidence level interval of the parameters considering statistical inferences from

data resampling (Wehrens et al. 2000; Carpenter & Bithell 2000; Beran 1986; Wu 1986; Efron & Tibshirani

1986). In general, there are two bootstrap methods, the parametric and the non-parametric.

In the parametric bootstrap, one fits a plausible model to the data and acts thereafter as though the fitted

model is true (Beran 1986). In this case, new samples are obtained, randomly, from the fitted model, and these

new data are assumed as the bootstrap resample. This is an interesting method for low number of original data.

In this work we consider the non-parametric bootstrap method. This method consists in creating new samples

from the original data. The new bootstrap sample is obtained by random selection of objects from the original

data, being that the new sample has the same size as the original sample (Wehrens et al. 2000; Carpenter & Bithell

2000; Press et al. 1992). About 30 percent of new samples are constituted by repeated objects (Press et al. 1992).

Note that, this could produce a slight modification to the statistical properties of the binned sample. However,

it is possible to test the sensibility of the parameters with respect to the distribution and completeness of the

original sample. To do that, we developed a module using Python language, called pybootstrap, that is released

under GNU general license version 3. It can be downloaded from http://github.com/duducosmos/pyboostrap.

The general idea of the bootstrap method is present hereafter.

Let θ be a parameter of a population. From a random sample (X1, X2, ..., Xn), with length n sufficiently large,

we have a statistical correspondent parameter θ̂. Note that θ̂ is an estimator of θ.

The bias, biasB,i and the standard error, seB,i, of the i parameter obtained from the bootstrap method are

(Wehrens et al. 2000):

biasB,i = θ̂∗.i − θ̂i, (A1)

seB,i =

√
1

B − 1

∑
j

θ̂∗ij − θ̂∗.i (A2)

where θ̂i is the ith parameter, θ̂∗.i is the mean value of the ith parameter calculated from the bootstrap subsamples.

The θ̂∗ij is the jth bootstrap parameter correspondent to ith parameter obtained from the original sample and B is

the total number of bootstrap samples. The percentile bootstrap confidence interval is calculated as follows: first,

the parameters ri∗ are drawn, and, sorted in crescent way, from the bootstrap sample. Then, the α-percentile

interval confidence level is (Wehrens et al. 2000):

ri∗(B+1)α/2 ≤ θi ≤ r
i∗
(B+1)(1−α/2). (A3)

The principal question solved by the bootstrap method is how accurated θ̂ is as an estimator of θ (Efron &

Tibshirani 1986). Nowadays, with relatively low cost of powerful computers, the bootstrap method became a very

useful and robust statistical tool to study a large quantity of observational data.


