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Abstract. Data Visualization is an important tool for tasks related to
Knowledge Discovery in Databases (KDD). Often the data to be visu-
alized is complex, have multiple dimensions or features and consists of
many individual data points, making visualization with traditional icon-
and pixel-based and geometric techniques difficult. In this paper we pro-
pose a combination of icon-based and geometric-based visualization tech-
niques backed up by a Self-Organizing Map, which allows dimensionality
reduction and topology preservation. The technique is applied to some
datasets of simple and intermediate complexity, and the results shows
that it is possible to reduce clutter and facilitate identification of associ-
ations, clusters and outliers.
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1 Introduction

Recent technological advances in information technology allows the collection
and storage of large amounts of data almost effortlessly [1]. Data is collected
as much as possible, without much thought at the collecting criteria because
it is expected that it may be a potential source of valuable information after
analysis [2]. However, finding valuable information from collected datasets (a
process known as Knowledge Discovery in Databases or KDD) is often a non-
trivial task.

Data visualization techniques has been used in KDD [3] as an attempt to
make human beings an integral part of the data analysis process [1], never-
theless, creation of good visual representations which help and maximize data
comprehension is not easily achievable. A subjectively good visual representation
of a dataset depends largely on the data itself and is still a largely intuitive and
ad-hoc process. Many of the well-established visualization techniques found in
basic visualization tools (e.g. charts) do not provide adequate support for some
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large, multidimensional and/or complex datasets [1], being adequate only for
summarization of the data.

Two of the problems inherent to visualization of large datasets are clut-
ter, which happens due to the need to display many data points at once; and
projection/representation, which are techniques required for the visualization
of multiple-dimensional data by reducing the number of dimensions for visual
representation.

The Self-Organizing Maps (SOM), a neural network algorithm proposed by
Teuvo Kohonen [4], is a technique that can be used to attempt to solve these two
problems. The SOM is composed of a matrix or lattice of cells, each representing
a prototypical data point that can be considered a centroid of a cluster of the
original data. The data quantization capabilities of the SOM allows the creation
of subsets of the data (reducing clutter). The SOM also creates a view of the data
corresponding to a reprojection of the original dimensions into a smaller number
of dimensions, usually two, allowing the exploration of the relation between cells,
for similarity and dissimilarity identification.

Each cell in a SOM lattice can be used as a basis for well-established visu-
alization techniques or new techniques more adequate to the problem and data.
Integration of the SOM features with the particular visualization techniques
can improve the identification of patterns in datasets when compared with the
traditional visualization techniques alone.

This paper presents techniques for multidimensional and/or large datasets
that uses the Kohonen Self-organizing Map as basis to cluster and reorganize
data vectors. The paper is organized as follows: Section 2 introduces the main
concepts about visualization. Section 3 describes the Self-Organizing Maps al-
gorithm and its use in visualization tasks. Section 4 presents some examples of
the technique. Finally, Section 5 presents conclusions and directions for future
work.

2 Visualization

Visualization is usually described as the mapping of data to a visual represen-
tation. The visual representations, if well constructed, can be useful not only to
present the information quickly to users, but also to help and maximize data
comprehension [5]. Data visualization can be used for Exploratory Analysis,
Confirmatory Analysis and Presentation [6].

A good visual representation enables the processing of several items of infor-
mation at the same time, thanks to the human visual system and brain which is
able to process a huge amount of information simultaneously and which is more
efficient to extract information from visual representation than from an amount
of numbers, text or a combination of these [5].

According to Tufte [7], a good visual representation is one which shows com-
plex ideas with clarity, precision and efficiency. Graphical excellence is what
gives to the viewer the greatest number of ideas in the shortest time with the
least ink in the smallest space telling the true and avoiding misinterpretation
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about data. However, there is no universal process to be done that ensures these
requirements.

Defining a mapping that will result in a good visual representation is not a
trivial task. The mapping depends largely on the task being considered and it is
still a largely intuitive and ad-hoc process. It should feature easy understanding,
avoid complex captions and undesirable visualization characteristics like occlu-
sions and line crossings, that might appear as an artifact limiting the usefulness
of the visualization [8].

The challenges and issues of a good mapping are significant when the data
to be visually represented is large, highly dimensional or complex. The concept
of dimensionality and size refers respectively to the amount of characteristics
(attributes) which describe a data item of the data set and the total amount of
items which comprise this set. There is no precise rule on what characterizes a
high-dimensional and large data set [3]. However, despite of the powerful com-
binations of human brain and visual perception ability and the technological
advances, there are some limitations on our capacity to deal with dimensions
and the amount of data items that can be displayed.

The human vision is easily able to deal with two and three dimensions, so
methods to visualize data with dimensionality greater than three often involves
projecting the information into fewer dimensions. This needs to be done with
care since some approaches to do it may not maintain the existing topological
relationships between data in the original feature space, which is an important
feature in the analysis process [9]. For visualization of large datasets, one must
also consider a hardware-imposed limitation on the amount of data items that
can be displayed on paper or on screen [1].

Even though visualization has an important role in KDD, the major prob-
lem that hampers the use of data visualization in KDD is that many of the
well-established visualization techniques are not effective when applied to com-
plex data sets [3]. Daniel Keim [10] describes some techniques for visualizing
large amounts of multidimensional data. According to the taxonomy described
by Keim and Kriegel [10], examples of visualization techniques are: Geometric
Techniques (Parallel Coordinates, Scatterplot Matrices and others), Icon Tech-
niques (Chernoff faces, Color Icons and others), Pixel-Oriented Techniques (Re-
cursive Patterns, Pixel Bar Charts and others), Hierarchical (n-Vision, dimen-
sional stacking and treemaps), Graph (Hy+, Margritte and SeeNet), and hybrid
approaches.

Oliveira and Levkowitz [3] describe some characteristics considering strengths
and weaknesses of those visualization techniques regarding the dimension and
size of a given data set, but as mentioned these techniques may not be effective
when applied to large datasets or datasets with multiple dimensions. For these
cases, techniques that allow dimensionality reduction and grouping to remove
clutter may be useful.



4 Morais, A.M.M., Quiles, M.G., Santos, R.D.C

3 The Self-Organizing Map

The Self-Organizing Maps (SOM) [4] is a neural network algorithm based on un-
supervised learning. It implements an orderly mapping of high-dimensional data
into a regular low-dimensional grid, compressing information while preserving
the most important topological and metric relationships of the data item on the
display [11].

The SOM consist of M units located on a regular low-dimensional grid which
represent the map. The grid is usually one- or two-dimensional, particularly
when the objective is to use the SOM for data visualization. Each unit j has
a prototype vector m; = [mj1,...,mjq] in a location r;, where d represent the
dimension of a data item. The map adjusts to the data by adapting the values of
its prototype vectors during the training phase. At each training step ¢ a sample
data vector x; = [x;1,...,%;q) is chosen and the distances, usually Euclidean
distance, between xz; and all the prototype vectors are calculated to obtain the
best-matching unit (BMU), ¢;:

¢i = argming{||z; —m;(t)|[} (1)

Once the closest prototype vector is found its values and the values of its
neighborhood prototype vectors are updated, moving them toward z;. The up-
date rule is:

m(t + 1) = m;(t) + a(t)he, jlz; — m;(t)] (2)

where ¢ is the training step index, «(t) is the learning rate at moment ¢
and h,j is a neighborhood centered winner unit (the best-matching unit). The
winner unit is updated with a rate while its neighborhood is also updated with a
smaller rate, determined by the distance on the map grid ||r., —7;||, for example,
by a Gaussian:

2
_ Hrej—mjll

heyj(t) = e 270 (3)

where r.; and r; are positions of units ¢; and j on the SOM grid and o(t) is
the neighborhood radius.

The algorithm produces two interesting characteristics to complex data set
visualization: Quantization and Projection. The quantization result in a tentative
to find a set of prototype vectors which reproduce the original data set as well
as possible, while the projection try to find low dimensional coordinates that
preserve the distances (or the order of distances) between the originally high-
dimensional data [12]. The SOM algorithm has proved to be especially good at
maintain the topology of the original dataset, meaning that if two data samples
are close to each other in the grid, they are likely to be close in the original
high-dimensional space data [12].
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3.1 Self-Organizing Maps as Visualization Tool — General Ideas

The methods for visualizing data using SOM at literature can be grouped in
three categories based on the goal of visualization [12]: methods that get an idea
of the overall data shape and detect possible cluster structure, methods that
analyze the prototype vectors and methods for analysis of new data samples for
classification and novelty detection purposes.

At the first category some projection techniques as Principal Component
Analysis (PCA) and Sammon’s projection are used to visualize the shape of the
SOM in the input space. These approaches plot each prototype vector in a two
or three dimension as dots, for example, colored according to its position on
the SOM grid and connected with its neighbors by lines, giving an informative
picture of the global shape [13] and may exposing the clusters’ structures. A
more efficient technique to show cluster structure is the distance matrix, being
the Unified Distance Matrix (U-Matrix) one of the most used [14]. The U-Matrix
is a visual representation of the SOM to reveal cluster structure of the data set.
The approach colors a grid according to the distance from each vector prototype
and its neighbors: dark colors are chosen to represent large distances while light
colors correspond to proximity in the input space and thus represent clusters.

Analysis of prototype vectors is a wide field whose approach is to visualize
data attributes using the prototype vectors in order to get some insights about
the spreading of values, cluster properties and correlations between attributes.
According to Vesanto [12] the component plane plays the key role in the analysis
of the prototype vectors. The component plane consist of a SOM grid where each
map unit represent one prototype vector attribute colored according to the value
of this attribute. The analysis can be done by plotting one component plane or
all of them side by side. Other uses are the plotting of vector prototype attributes
using some simple visualization technique like scatter plot matrix and by plotting
of vector prototype attributes on its grid position.

Methods from the third group can give some insights about which prototype
vector corresponds to a given new data vector, how accurate it is and if the new
data vector really belongs to the abstract model created by the SOM. In order
to detect this the response of the prototype set to the data sample has to be
quantified and visualized. Some visual representations based on histograms are
described by Vesanto [12].

4 Visualization using the SOM and Icon and Geometric
Techniques

The basic principle of using the SOM grid for visualization is to create a graphical
representation associated with each prototype (neuron), then displaying these
graphical representations as a matrix. Each component of the matrix can be
based on a traditional e.g. icon-, pixel- or geometric-based representations, or
specific visualization techniques.

It is expected that the general appearance of the composition of the graphical
componentes on the SOM matrix will yield interesting visual clues to the nature
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of the data and reduce clutter, and at the same time the organization of the com-
ponents will allow comparison between sets of similar data (in one component)
to data that is somehow similar but to a lesser extent (in neighbor components).
Due to the SOM properties the visual representation obtained will obey some of
the principles posed by Tufte [7], particularly, show the data, induce the viewer
to think about the substance rather than about the methodology, avoid distort-
ing what data has to say, present many data in a small space, make large data
sets coherent, encourage the eye to compare different pieces of data and reveal
the data at several levels of detail.

In order to demonstrate the technique we’ve developed an API (Applica-
tion Programming Interface, or a set of classes) using the Java language that
allows the creation of a SOM based on input data and the creation of graphical
components to represent the data visually.

A very simple example that demonstrate the approach can be seen in Fig-
ure 1. In this example, a synthetic dataset with four Gaussian blobs in a two-
dimensional dataset is processed by the SOM. In order to visualize the prototype
vectors (the neurons) we developed a simple component that displays at the same
time the original dataset points (using small dark gray dots); the prototype vec-
tor (neuron) as a light, large blue dot, on the position determined by its values.
The data points that can be considered as assigned or belonging to that neuron
are also displayed as medium blue dots.

Each component displays also the number of data points assigned to that
neuron. The visualization components are displayed in a grid, corresponding to
the SOM architecture, in this case a 4 x 4 rectangular lattice.

The plot shown in Figure 1 illustrate the main concepts of using the SOM
for visualization: an overview of the grid shows clusters and how the neurons’
prototypes approximates the centers of the clusters. A more detailed view shows
possible groupings of clusters, e.g. for the large blob in the center of the distri-
bution, which is represented by several neurons which are contiguous due to the
topology-preservation capability of the SOM.

It is important to point that this first example is deliberately simple, with
two-dimensional data being mapped to two dimensions, but the technique could
easily deal with more data and/or more dimensions, provided that the compo-
nent used for visualization could represent multiple dimensions. That will be
demonstrated by other examples in this section.

4.1 Example: Geometric and Icon Techniques applied to the display
of the Iris dataset

Although there is no single rule to develop a good visual representation, some
well-established visualization techniques may give a first insight about the data
and works as a way to construct a better visual representation. For visual rep-
resentation of data processed by a SOM, geometric and icon techniques can be
good starting points.
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Fig. 1. A visual representation of synthetic data using a 4x4 SOM grid

Geometric techniques consist of mapping the data of the attributes on a
geometric space [5], usually by finding an interesting projection of data set di-
mension [10].

Inselberg’s parallel coordinates [15] is an example which maps k-dimensional
data to two-dimensional surface by using k equidistant parallel axes where each
axes correspond to one dimension and may be scaled according to the minimum
and maximum value of this dimension; one data item is presented as a polygonal
line, intersecting each axes at the point which corresponds to the value of con-
sidered dimension. The parallel coordinates technique is effective for detecting
outliers and correlation amongst different dimensions [3] but may suffer from
overlap and occlusions of lines when used to display large datasets.

To give an example of the capabilities of the proposed API we will ex-
plore some visualization techniques applied to the popular Iris dataset [16]. This
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dataset is formed by 50 samples of each Iris plant species: Iris Setosa, Iris Vir-
ginica and Iris Versicolor. Each sample contains four numerical values: sepal
length, sepal width, petal length and petal width. This set is known to have two
easily separable clusters, being one formed by the samples of Iris Setosa and the
other formed by the samples of Iris Virginica and Iris Versicolor. It can not be
considered as a complex data set, nevertheless, it is sufficient to demonstrate the
concepts.

Figure 2 shows the Iris dataset plotted using a plain Parallel Coordinates plot.
Each polygonal line crosses the four vertical axes, each representing a dimension
on the dataset.
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Fig. 2. Iris data set visualized by Parallel Coordinates

Figure 2 represents the 150 data points on the dataset — not a very large
amount of data, but even so it is possible to see correlation between some at-
tributes and some grouping, even with minor occlusion problems. Groupings can
be made more evident and the occlusion problems can be reduced by prepro-
cessing the data with a SOM and plotting it on a grid, as shown in Figure 3.

In Figure 3 the prototype vector is displayed by dark polygons while the
light ones represent the data items mapped by it. The number on top of each
grid unit show the amount of data represented by the neuron at this grid SOM
position. It is possible to observe a grouping of data with similar attributes in
four elements in the lower right corner (corresponding to the Iris Serosa samples),
and that in general that clutter was reduced. It is also important to point out
that the component that displays a single parallel coordinate within the SOM
was designed to be more concise, i.e. without labels and other information that
could clutter the display composition itself.

Icon-based visualization techniques are based on the association of attributes
with features in a geometric figure so the features’ values will determine the
general appearance of the geometric figure as a whole [5]. Icon-based visualization
techniques can be used to allow the instinctive comparison of similarities and
differences.
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Fig. 3. Iris data set visualized by Parallel Coordinate over a SOM grid

Chernoff faces are one example of this technique: in this approach each di-
mension is mapped to the properties of a face icon, i.e, shape of face, nose, mouth
and eyes. This technique can deal with multidimensional data, but its interpre-
tation require training and each dimension may be treated differently by the
human visual perception. The combined use with SOM is not able to minimize
its weaknesses, but cluster and outliers detection may be improved.

Figure 4 shows the same Iris dataset preprocessed by a SOM and plotted over
a grid, with each element on the grid being a Chernoff face representation of the
prototype vector (neuron) and data associated to that vector. The prototype
vector is displayed int dark lines while the light ones represent the data items
mapped by it. The number on top of each grid unit show the number of data
vectors represented by the neuron at this SOM grid’s position.

In the example shown in Figure 4 the length and width of the sepal are
mapped to the shape of mouth and nose and the length and width of petal
are mapped to the shape of face and eyes. The cluster (group of neurons) that
represents the samples of Iris Setosa can easily be seen in the bottom right
corner of the SOM grid. Another interesting feature that can be visualized with
the clustering of Chernoff faces is the difference between the prototype vector
and data associated with this vector, shown in the neurons in the top left corner,
meaning that the data is clustered in those neurons but with some variance on
the features’ values.

4.2 Example: Geometric Techniques applied to display of a
medium-sized time series dataset

As a second example of our approach, we've developed a tool to visualize a
collection of time-series representing the accumulated precipitation measured by
a sensor network in Sdo Paulo state, Brazil [17]. Each entry on this dataset is
composed by a time series with two years of monthly average precipitation as
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Fig. 4. Iris data set visualized by Chernoff faces over a SOM grid
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measured by each data collection platform in the sensor network, in a total of
1340 time series.

Figure 5 shows a parallel coordinates plot of the 1340 time series. In that
figure it is possible to identify some seasonal patterns, roughly corresponding to
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dry and wet seasons. It is also possible to identify several outliers and months

with more and less variance on the average precipitation.

Precipitation
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Fig. 5. Visual representation of 1340 time series by a Parallel Coordinates plot

While Figure 5 allows the visualization of some interesting features, it also
presents a lot of clutter, making very hard the identification of groups on the
dataset. Figure 6 shows the same data, grouped and reprojected into a SOM
grid of 7 x 7 neurons.

In Figure 6 we can see the time series clustered into several loosely-defined
groups, with the thick blue line representing the prototype vector (neuron) and
with the data associated to that vector represented by thinner gray lines. In
this example we don’t use dimensionality reduction in the visualization, but the
neurons are grouped in the grid accordingly to projections of the original data —
in other words, similar time series are supposed to be represented by the same
neuron or, if not much similar, by neighbor neurons.

The majority of the time series that follow a similar pattern are loosely
grouped in the top left corner of the SOM grid shown in Figure 6. Some neurons
clearly grouped time series that can be considered outliers, e.g. the neuron on the
sixth row, last column and the one on the last row and first column. Reduction
of clutter allowed the visualization of the prototypes and variation of the time
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Fig. 6. Monthly rainfall visualized by Parallel Coordinates and SOM grid. The number
on top of each grid unit show the amount of data represented by the neuron at this
grid SOM position.

series assigned to those prototypes, which would be impossible to see in the
original Parallel Coordinates plot.

5 Conclusions and Future Work

In this paper we presented a technique for data visualization comprised of tra-
ditional icon- and geometry-based representations organized in a SOM grid or
lattice. This technique allows the visualization of features presented and recog-
nizable in groupings of the dataset, making easier the identification of common
patterns, outliers and reducing clutter for data plots with several data points.
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Future work will be towards a better, more flexible implementation of the
underlying SOM algorithm, particularly allowing the use of hexagonal grids and
different distance metrics. We are also working on an API (Application Pro-
gramming Interface) to facilitate the development of visualization tools based
on this technique. Our decision on an API instead of a final tool is based on the
argument that some visualization techniques are very specific to the data being
analyzed, therefore it is better to allow an user the development of a specific
component than to force him/her to use an existing one. Nonetheless the API
will provide several ready-to-use visualization components.
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