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1. Introduction ”“If

In this paper, we report on a new nonlinear wave-
wave process called the hybrid stimulated modula-
tional instability (SMI) driven by a travelinig Lang-
muir wave [1). The nonlinear temporal behaviours
of this parametric instability will be analyzed. This
novel resonant wave-wave process may play a sig-
nificant role in the generation of the fundamental
plasma radiation in cosmic and laboratory plasmas.

A number of nonlinear mechanisms involving
the interaction of Langmuir and ion-acoustic wa-
ves have been proposed to explain the genera-
tion of fundamental plasma emissions. These in-
clude induced scattering of Langmuir waves off
ion clouds; incoherent coalescense of Langmuir and
ion-acoustic waves; collapse of nonlinear Langmuir
wave packets; conversion of Langmuir waves by
density fluctuations driven by strong turbulence
(se e.g. [2] for references). In particular, va-
rious types of parametric instabilities have been
studied: three-wave electromagnetic decay (fusion)
instability in which a Langmuir traveling pump
wave produces a Stokes (anti-Stokes) electromag-
netic wave via coupling to an ion-acoustic wave
[3, 4]; electromagnetic modulational instabilities
in which two counter-propagating Langmuir pump
waves generate a pair of electromagnetic daugh-
ter waves via coupling to ion-acoustic waves {3, 2];
hybrid (electromagnetic-electrostatic) absolute mo-
dulational instability in which a Langmuir trave-
ling pump wave excites an electromagnetic daugh-
ter wave and a Langmuir daughter wave via cou-
pling to purely growing density fluctuations [6]; hy-
brid modulational instabilities in which two oppo-
sitely directed Langmuir pump waves emit a pair
of electromagnetic daughter waves and two pairs
of Langmuir daughter waves via coupling to ion-
acoustic waves [7].

In previous works on modulational instabilities
the low-frequency (idler) mode is usually conside-
red non-resonant. whereas the upper and lower-
sidebands are resonant modes [6, 8. 9]. In contrast.

we consider in the present paper the stimulated
modulational instability in which all the daughter
modes (including the idler mode) are resonant wa-
ves.

A linear stability analysis of the purely electros-
tatic SMI induced by a traveling Langmuir wave
[10). L — L + L + S (where S is a resonant ion-
acoustic wave). shows that its maximum growth
rate is comparable to the parametric decay insta-
bility (PDI) L — L 4+ S as well as the oscillating
two-stream instability (OTSI), L — L+ L + $*
(where 5* is a nonresonant purely growing density
perturbation). This result indicates that the SMI
can compete effectively with other parametric pro-
cesses when the Langmuir turbulence is excited in
plasmas.

The novel hybrid (electrostatic and electromag-
netic) SMI to be studied in this paper is L —
T+ L+ S. The Langmuir and electromagnetic
waves have frequencies near the electron plasma
frequency. whereas the ion-acoustic wave has fre-
quency near the ion-acoustic frequency. The total
wave electric field for this process can be written as
E =E¢+E7r + E; + Eg, where Ep is a Langmuir
traveling pump wave (Lo}, ET is an electromagne-
tic daughter wave (T'), Eg is a Langmuir daugh-
ter wave (L), and Eg is a resonant ion-acoustic
daughter wave (5). A previous study analyzed the
linear theory of the hybrid nonresonant (absolute)
modulational instability L — T + L + S™ wherein
the low-frequency density fluctuations (S*) are pu-
rely growing. In this paper. we present the nonii-
near theory of the hybrid stimulated modulational
processes L = T + L 4+ § which are convective
processes involving interactions with resonant ion-
acoustic waves.

2. Governing equations

The basic equations that govern the pondero-
motive coupling of Langmuir waves with high-
frequency electromagnetic and electrostatic waves.
near the fundamental plasma frequency. and low-
frequency ion-acoustic waves are the generalized
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where n is the jon density fluctuation, wp =
(noe?/m.e0)'/? is the electron plasma frequency,
vih = (KTe/m¢)? is the electron thermal velo-
city, vs = [K'(7eT.+7:T;)/m;]'/? is the ion-acoustic
velocity, ve (v;) is the phenomenological damping
frequency for electrons (ions), 7. (7i) is the ratio
of the specific heats for electrons ( ions), and the
angular brackets denote the fast time average. It
is evident from the wave operator in the LHS of
(1) that the high-frequency wave field E can be hy-
brid (i.e., containing of both electromagnetic and
electrostatic components).

Consider a traveling Langmuir pump wave
Eo(wo, ko) with dispersion relation § = w?+
Yev3 k3. The stimulated modulational process in-
volves the coupling of two wave triplets which sa-
tisfy the following frequency and wavevector selec-
tion rules w™ & wo—w*,wt & wy+w: k¥ = keFksg,
where w is a complex frequency. In this paper. we
make the assumption of imperfect frequency mat-
ching but perfect wavevector matching, and focus
on the temporal dynamics of the hybrid stimula-
ted modulational processes. Two distinct hybrid
SMI’s can be generated: Lo — T+ + L~ + S and
Ly - T- 4+ Lt + 5. In the first case, an anti-
Stokes electromagnetic wave E;(wo + w.ko + ks)
and a Stokes Langmuir wave E7 (wo —w*, ko — ks)
are produced via coupling to an ion-acoustic wave
Es(w,ks). In the second case, a Stokes elec-
tromagnetic wave E7(wo — w*,ko — ks) and an
anti-Stokes Langmuir wave EJ (wo + w, ko + ks)
are generated. The linear dispersion relations are:
(wF)? = w2+ c?(koFk)? for electromagnetic waves,
(wF)? = w? + 7.v} (ko F k)? for Langmuir waves,
and w% = v}k for ion-acoustic waves.

3. Nonlinear solutions

As the result of nonlinear wave-wave interac-
tions, slow spatio-temporal modulations of the
wave fields appezr and the pump depletion must
be taken into account. Thus, we introduce the
following modulational representation for the wave
electric fields

E)(r.t)= %Ea(r,t)exp 10, + c.c.. (3)

where £,(r,t) is a slowly varying complex enve-
lope such that |928,| < |ka0,&,| and [828,| <
lwaB&als s = kg -1 — wytis a fast-varying phase.
a refers to each interacting wave. w, and k, are
the linear wave frequencies and wavevectors.

The coupled mode equations derived from equa-
tions (1)-(2) for the process Lo = T+ + L~ + S
are

(8, + VL/2)£0 =c wo(ESSZ exp 67 t—

rEsEt expiste), (4)

(0 + vs/2)Es = —c" (m, wﬁ/? m; ws)
X(EoEL™ exp —i6™t + TEGEF expibtt), (5)
(0t +vL[2)Ef = —c wy E5€oexp —i6~t, (6)

(O + v1/2)EF = ¢t wi EsEpexp ~ibt, (7)
where v7 is the electron-ion collisional frequency,
vy is the sum of electron Landau damping fre-
quency and electron-ion collisional frequency, and
vs is the ion Landau damping frequency [6); the
nonlinear coupling coefficients are given by ¢~ =
(eks)/(dmewowy ) and ¢t = (eks)/(dmawowit);
6 = Wp - ws —wy and 6t = wo+ws—-w;
are the linear frequency mismatch parameters: and
r = ¢t /¢ is a measure of the relative coupling
strength of the anti-Stokes and the Stokes waves.
For the sake of simplicity, we did not specify
the frequency of the high-frequency fields in the
RHS of the generalized Zakharov equations (1) and
(2). Although the frequencies of the Langmuir and
electromagnetic sidebands are close to the electron
plasma frequency, they need to be differentiated be-
cause the quiver electron velocities in the Langmuir
and electromagnetic fields are different. as specified
now in the RHS of equations (4)-(7) . We only in-
cluded the dominant nonlinear coupling terms in
the RHS of the high- frequency wave equations. In
particular, we only considered the nonlinear cur-
rent arising from the fast component of the electron
quiver velocity but ignored the nonlinear current
arising from the slow component of the electron
quiver velocity which may give additional (but ne-

-gligible) contributions.

The nonlinear solutions of (4)-(7) are facilitated
by using the polar notation, £, = ,HO,F;/ 2 exp 194
where F, and ¢, are real variables. With this no-
tation, (4)-(7) can be rewritten identically as

Fy = 2R F,F3)Y?cos ¢~
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—2r(FyFaFy)Y? cos ot — v Fy.

F, = ~2(FyF,F3)Y? cos 6~
~2r(RFF) P cos ot ~w4F,. (9)
Fy= —2FERF) 2 cos6™ — iFs.  (10)
Fy = 2r( R F )Y cos ¢+ — VyFy, ~ ‘ (11)
o1 = —(FyFs/F)Y2sin 6+ |
}?}QF‘,/F])U?Sinw. (12)
02 = —(FyF3/F,)"2sin 6™+
r(FyFy/F;)Y2sin ¢, (13)
¢3 = —(FiF/F3)?sin ¢ + 6"~ (14)
04 = r(F Fp/F)Y?sin ¢+ + 6, (15)

where for the process Lo = T+ + L= + § (Lo =
T~ + L* + 5) the suscript 1 denotes the pump
Langmuir wave, 2 denotes the idler ion-acoustic
wave, 3 denotes the Stokes Langmuir ( electromag-
netic) wave, and 4 denotes the anti-Stokes electro-
magnetic (Langmuir) wave; the dot denotes diffe-
rentiation with respect to r = wpt; 67 = ¢ —
$2 = ¢3 and ¢F = @1 + ¢ — ¢y; 6F = 6F/uwy,;
Vo = Vo[2up; the normalization parameters Ba
are given by 8y = (1/c™)(2muws/mew™ )2, B, =
(wp/c™ Nwow™)™Y2, By = (1/c™)(2miws [ mewo)}/?
xexpif’~r, and By = (1/¢™)(2muws [ mewp ) /2
x exp i6'TT. Note that (8)-(15) can be reduced to
six equations by rewriting (12)-(15) in terms of ¢~
and ¢t.

In the absence of dissipation (¢, = 0), a number
of constant of motion can be derived from (8)-(15):

H = 2R F)YYF?sin ¢~ — rFM?sin o)

—8'"F3 — 6" Fy, (16)

a=FR+FB+F, c=F-F+F, (17)
where H is the Hamiltonian of the system and (17)
are the Manlev-Rowe relations.
4. Wave energy conservation

The physics of nonlinear interaction of the hy-
brid stimulated modulational process can be eluci-
dated by the conservation relations (16)-(17). No-
ting that the dimensionless real variables F,. in-
troduced to simplifv the derivation of nonlinear so-
lutions in section 3. are normalized wave energies.
Therefore. the Hamiltonian H in (16) describes the

wave energy conservation of all the interacting wa-
ves: the first term in the RHS demonstrates the
nonlinear coupling of the two wave triplets 1-2-3
(pump - idier - Stokes modes) and 1-2-4 (pump -
idler - anti-Stokes modes): the second and third
terms in the RHS represent the effects of frequency
mismatch (6’ and §'*) of the two wave triplets.
By defining the wave energy of each wave as

,2
€0 2 (%134
= —|6134)% | —22
€134 = 2 1€1,3.4 2 s
0

2
= —|¢ —=].(18
€2 9 l 2' (me wg) ( )

the Manley-Rowe relations (17) can be rewritten,
respectively, as

€1/w1 + €3/w3 + €4/wy = constant, (19)

€2/wy — €3/ws + €4/wy = constant. (20)
which represent the wave action conservations since
€a/wy is the wave action. It follows from (19) and
(20) that

Oi(e1+€3+¢4) =0, (21)

Oi(ez — €3+ €4) = 0, (22)
which are the wave energy conservation relations
for the two sets of waves 1-3-4 (pump - Stokes -
anti-Stokes modes) and 2-3-4 (idler - Stokes - anti-
Stokes modes), respectively. In quantum mechani-
cal language, (21) implies that two pump quanta
are required to produce two daughter quanta (one
Stokes and one anti-Stokes): whereas, (22) indica-
tes that a Stokes quantum emits (the minus sign)
an idler quantum and an anti-Stokes quantum ab-
sorbs (the plus sign) an idler quantum, in agree-
ment with the frequency and wavevector selection
rules.

5. Discussion

In the absence of frequency mismatch and dis-
sipation (6~ = &+ = y) = 0). some analyti-
cal periodic solutions of (8)-(15) can be obtained
[11. 12]. An example of the periodic nonlinear sa-
turated state of the hybrid SMI is given in 1.

The effect of the finite linear frequency mis-
match is illustrated in figure 2 for the process
Lo =T*+L~+S . Figures 2 indicate that the fre-
quency mismatch (6'F # 0) reduces the efficiency of
the energy transfer among waves. When §'% = 0.
figure 1 shows that the Langmuir pump is fully
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Figure 1: The piot of Fa(r)for Ly = T+ L+S: r = 0.95, and
§'= = §'t = ! = 0: the initial conditions are Fy(0) = 100.01,
F2(0) = 0, F3(0) = 64 and F4(0) = 49. The solid curve is Fy(r),
the dot-dashed curve is F (7). the dotted curve is F3(r). and the
long dashed curve is Fy (7).

depleted with (F})nmin = 0. However. a finite fre-
quency mismatch prevents a complete depletion of
the pump energy so that (F1)min > 0, as seen in
figures 2. y

The effect of dissipation can be identified by com-
paring figures 2 with figure 1. In the absence of dis-
sipation, all four interacting waves are strictly pe-
riodic as shown in figure 1. The dissipation causes
the gradual damping of wave amplitudes as shown
in figure 2. The damping rate of each wave de-
pends on the nature of wave-particle and particle-
particle interactions. Wave damping converts the
Wwave energies into the kinetic energies of particles,
resulting in plasma heating.

The effect of wave dispersion is contained in
the nonlinear coupling coefficients ¢F as well as
the parameter r. In fact, the ratio r reduces to
w™(k™)/w*(k*). Therefore, the relative coupling
strength of the two coupled wave triplets in the
hybrid stimulated modulational processes is deter-
mined by the dispersive properties of Stokes and
anti-Stokes waves.

6. Conclusion

In conclusion. we have developed a nonlinear
theory of the hybrid stimulated modulational pro-
cesses. It is shown that the fundamental plasma
radiation can be driven by a traveling Langmuir
wave via the ponderomotive coupling to the indu-
ced Langmuir and resonant ion-acoustic waves. In
general, the process Lo = T+ 4+ L~ + S is more
efficient than the process Lo = T~ + L* + S in
generating the escaping radiation in plasmas since
the frequency of the induced electromagnetic wave
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Figure 2: The plot of Fa(r) for Lo = T+ + L= + S: r = 0.95:
v{ = vh =01, v} = 0.5 and vy = 0.001: 8~ = 5 and '+ = —5;
the initial conditions are F1(0) = 100.01, F»(0) = 0, F3(0) = 49
and F4(0) = 64: the notations are the same as in figure 5.

is upconverted to wy + wg and can readily leave
the source region. whereas in the latter process the
electromagnetic wave frequency is downconverted
t0 wp —ws and can be easily absorbed by plasmas.
Hence, it is plausible that the hybrid stimulated
modulational process, Lo = T++1-+ . may con-
tribute effectively to the generation of nonthermal
plasma emissions in cosmic and laboratory plas-
mas.
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