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Abstract It is shown that a traveling Langmuir pump
wave can nonlinearly convert into electromagnetic,
Langmuir and ion-acoustic daughter waves via a new
mechanism of hybrid stimulated modulational instabi-
lity. The nonlinear temporal dynamics of this modu-
lational process involving coupling to a resonant ion-
acoustic wave is studied. The wave energy conservation
relations are derived. The roles of frequency mismatch,
dissipation and wave dispersion in the temporal evo-
lution of nonlinear coupling of two wave triplets are
analyzed.

1. Introduction The subject of excitation of funda-
mental plasma emissions is of great interest in plasma
physics, space physics and astrophysics. In labora-
tory, plasma radiation near the fundamental plasma
frequency has been observed in quiescent machines
(Cheung et al. 1982), stellarators (Longinov et al.
1976), and tokamaks (Gandy et al. 1985) experiments.
In space plasmas, it has been detected during active
experiments in space (Thidé et al. 1982; Chian 1991),
upstream of planetary bow shocks (Gurnett and Frank
1975; Chian and Abalde 1995), and in type-III events
in the solar wind (Lin et al. 1986; Chian and Alves
1988; Abalde et al. 1998). In astrophysical plasmas, it
may provide the source mechanism for emissions from
flare stars, astrophysical jets and active galactic nuclei
(Baker et al. 1988).

A number of nonlinear mechanisms involving the
interaction of Langmuir and ion-acoustic waves have
been proposed to explain the generation of fundamen-
tal plasma emissions. These include induced scattering
of Langmuir waves off ion clouds; incoherent coales-
cense of Langmuir and ion-acoustic waves; collapse of
nonlinear Langmuir wave packets; conversion of Lang-
muir waves by density fluctuations driven by strong
turbulence (see e.g., Chian and Alves 1988 and Chian
and Abalde 1997 for references). In particular, various
types of parametric instabilities have been studied:
three-wave electromagnetic decay (fusion) instability in
which a Langmuir traveling pump wave produces a Sto-
kes (anti-Stokes) electromagnetic wave via coupling to
an ion-acoustic wave (Shukla et al. 1983; Chian 1991);
electromagnetic modulational instabilities in which two

counter-propagating Langmuir pump waves generate a
pair of electromagnetic daughter waves via coupling to
ion-acoustic waves (Lashmore-Davies 1974; Chian and
Alves 1988); hybrid (electromagnetic-electrostatic) ab-
solute modulational instability in which a Langmuir
traveling pump wave excites an electromagnetic daugh-
ter wave and a Langmuir daughter wave via coupling
to purely growing density fluctuations (Akimoto 1988);
hybrid modulational instabilities in which two opposi-
tely directed Langmuir pump waves emit a pair of elec-
tromagnetic daughter waves and two pairs of Langmuir
daughter waves via coupling to ion-acoustic waves (Ri-
zzato and Chian 1992).

In previous works on modulational instabilities the
low-frequency (idler) mode is usually considered non-
resonant, whereas the upper and lower-sidebands are
resonant modes (Drake et al. 1974; Fried et al. 1976;
Akimoto 1988). In contrast, we consider in the present
paper the stimulated modulational instability in which
all the daughter modes (including the idler mode) are
resonant waves. The existence of the stimulated mo-
dulational instability in which the low-frequency mode
is a resonant mode of plasma was mentioned in the ge-
neral theory of parametric instabilities formulated by
Mima and Nishikawa (1984).

A linear stability analysis of the purely electrostatic
SMI induced by a traveling Langmuir wave (Bardwell
and Goldman 1976), L — L + L+ S (where S is a
resonant ion-acoustic wave), shows that its maximum
growth rate is comparable to the parametric decay ins-
tability (PDI) L — L + S as well as the oscillating
two-strearn instability (OTSI), L — L+ L +S* (where
S* is a nonresonant purely growing density perturba-
tion). This result indicates that the SMI can compete
effectively with other parametric processes when the
Langmuir turbulence is excited in plasmas.

The novel hybrid (electrostatic and electromagnetic)
SMI to be studied in this paper is L — T'+ L+ S. The
Langmuir and electromagnetic waves have frequencies
near the electron plasma frequency, whereas the ion-
acoustic wave has frequency near the ion-acoustic fre-
quency. The total wave electric field for this process
can be written as E = Eq + Er + E; + Eg, where
Eg is a Langmuir traveling pump wave (L), E7 is an
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electromagnetic daughter wave (7), E is a Langmuir
daughter wave (L), and Eg is a resonant ion-acoustic
daughter wave (S). A previous study analyzed the li-
near theory of the hybrid nonresonant (absolute) mo-
dulational instability L — T+ L+ S$* wherein the low-
frequency density fluctuations (S*) are purely growing
(Akimoto 1988). In this paper, we present the linear
and nonlinear theories of the hybrid stimulated mo-
dulational processes L = T 4+ L + S which are con-
vective processes involving interactions with resonant
lon-acoustic waves.

2. Governing equations The basic equations that
govern the ponderomotive coupling of Langmuir waves
with high-frequency electromagnetic and electrostatic
waves, near the fundamental plasma frequency, and
low-frequency ion-acoustic waves are the generalized
Zakharov equations (Akimoto 1988; Rizzato and Chian
1992; Chian and Rizzato 1994; Chian and Abalde 1997)
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where n is the lon density fluctuation,
(noe? /m.e0)t/? is the electron plasma frequency, vsp =
(KT./m.)"/? is the electron thermal velocity, vs =
(K (yeTe + 7T:)/mi]'/? is the ion-acoustic velocity, v,
{(v;) is the phenomenological damping frequency for
electrons (ions), v. (7:) is the ratio of the specific heats
for electrons (ions), and the angular brackets denote
the fast time average. It is evident from the wave ope-
rator in the LHS of (1) that the high-frequency wave
field E can be hybrid (i.e., containing of both electro-
magnetic and electrostatic components).
3. Nonlinear solutions As the result of nonlinear
wave-wave interactions, slow spatio-temporal modu-
lations of the wave fields appear and the pump de-
pletion must be taken into account. Thus, we intro-
duce the following modulational representation for the
wave electric fields Eq(r,t) = 1€ (r.t)expify + c.c.,
where &£q(r,t) is a slowly varying complex envelope
such that |0284| < ka0,Ea| and |028,| € |wabial,
B0 = ko - T —wqt is a fast-varying phase, « refers to
each interacting wave, wy and k, are the linear wave
frequencies and wavevectors.

The coupled mode equations derived from equations
(1)-(2) for the process Lo = T+ 4 L~ + S are

(2)
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where vp is the electron-ion collisional frequency, vy,
is the sum of electron Landau damping frequency
and electron-ion collisional frequency, and vg is the
ion Landau damping frequency (Akimoto 1988); the
nonlinear coupling coefficients are given by ¢~ =
(eks)/(4mewowy ) and ¢t = (eks)/(dmewowd); 6~ =
wo — wg - wy and 6% = wo + wg — w,}" are the linear
frequency mismatch parameters; and r = c¢t/c™, is a
measure of the relative coupling strength of the anti-
Stokes and the Stokes waves.

For the sake of simplicity, we did not specify the fre-
quency of the high-frequency fields in the RHS of the
generalized Zakharov equations (1) and (2). Although
the frequencies of the Langmuir and electromagnetic
sidebands are close to the electron plasma frequency,
they need to be differentiated because the quiver elec-
tron velocities in the Langmuir and electromagnetic
fields are different, as specified now in the RHS of equa-
tions (3)-(6). Following Thornhill and ter Haar (1978)
and Bingham and Lashmore-Davies (1979), we only
included the dominant nonlinear coupling terms in the
RHS of the high- frequency wave equations. In parti-
cular, we only considered the nonlinear current arising
from the fast component of the electron quiver velocity
but ignored the nonlinear current arising from the slow
component of the electron quiver velocity which may
give additional (but negligible) contributions.

The nonlinear solutions of (3)-(6) are facilitated by
using the polar notation, £, = ,B,,[Fol,/2 exp i¢n, wWhere
Fo and 4, are real variables. With this notation, (3)-
(6) can be rewritten identically as

Fy = 2(F114"2F;»,)1/2 cos ¢~ — 27‘(F1F2F4)1/2 cos ¢

- U{Fl, (7)
Py = —2(Fy FaFi3) % cos ¢~ — 2r(Fy Fy Fa)M/? cos ¢+
— I/éFz, (8)

3= —2(Fy FyF3) /2 cos ™ — V4 Fs,
Py = 2r(Fy F3 F)'? cos % — U4 Fy,
¢E] = —»(F2F3/F1)1/2 sin ¢~ +

(9)
(10)

r(FoFy/F1) ?sing*,  (11)
¢ = —(F1F3/F3)"?sin ¢~ +
r(F1Fy/F)2sin ¢, (12)

$3 = —(F Fy/F3)"2sin ¢~ + 6~ (13)
¢4 = r(FyFy/Fy) % sin ¢+ + 6/, (14)

where for the process Ly = Tt + L— + § (Lo =
T~ + L* +9) the suscript 1 denotes the pump Lang-
muir wavs, 2 denotes the idler ion-acoustic wave, 3
denotes the Stokes Langmuir (electromagnetic) wave,
and 4 denotes the anti-Stokes electromagnetic (Lang-
muir) wave; the dot denotes differentiation with res-
pect to 7 = wyt; ¢7 = @1 — 3 — ¢3 and 4t =
1+ ¢2 — ¢g; §F = 5;/“’173 Ijé( = Va/2wpi the
normalization parameters [, are given by f =
(1) @miws/mew)12, By = (wpe=)waw~ )7,
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Bz = (I/C‘)(2m1-ws/mewo)l/2 expi8'~7, and 8, =
(1/c‘)(2m5ws/mewg)1/2 expi6’tr. Note that (7)-(14)
can be reduced to six equations by rewriting (11)-(14)
In terms of ¢~ and $t.

In the absence of dissipation (v, = 0), a number of
constant of motion can be derived from (7)-(14):

H = AR Fy)*(Fy P sin g~ —r il gy é7)

- 5/—F3 - 5’+F4,
C2=Fy — F3+ Fy,

(15)
(16)

where H is the Hamiltonian of the system, and (16)
are the Manley-Rowe relations.

4. Wave energy conservation The physics of nonli-
near interaction of the hybrid stimulated modulational
Process can be elucidated by the conservation relations
(15)-(16). Noting that the dimensionless real variables
Fq, introduced in the polar notation to simplify the
derivation of nonlinear solutions, are normalized wave
energies. Therefore, the Hamiltonian & in (15) descri-
bes the wave energy conservation of all the Interacting
Wwaves: the first term in the RHS demonstrates the non-
linear coupling of the two wave triplets 1-2-3 (pump -
idler - Stokes modes) and 1-2-4 (pump - idler - anti-
Stokes modes); the second and third terms in the RHS
represent the effects of frequency mismatch (6~ and
6"*) of the two wave triplets.

By defining the wave energy of each wave as

€1 =Fi 4+ F3+ Fy,

2
_ %o 2 [ “i34
€1,34 = 7 I€1,3,4] (T}ﬁ ) , (17)
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2= & Wl )

the Manley-Rowe relations (16) can be rewritten, res-
pectively, as

€1/wy + €3/ws + €4/wq = constant,

(19)
(20)

which represent the Wave action conservations since
€a/wy Is the wave action. It follows from (19) and

(20) that
c‘),(q +€3+€4) = 0, (21)
at(fz — €3 + 64) = 0, (22)

which are the wave énergy conservation relations for
the two sets of waves 1-3-4 (pump - Stokes - anti-Stokes
modes) and 2-3-4 (idler - Stokes - anti-Stokes modes),
respectively. In quantum mechanical language, (21)
implies that two bump quanta are required to produce
two daughter quanta (one Stokes and one anti-Stokes);
whereas, (22) indicates that a Stokes quantum emits
(the minus sign) an idler quantum and an anti-Stokes
quantum absorbs (the plus sign) an idler quantum, in
agreement with the frequency and wavevector selection
rules.

5. Discussion In the absence of frequency mismatch
and dissipation (§'~ = §+ — vy = 0), some analytical

€2/wy — €3/ws + €4fwy = constant,

Figure 1: The plot of Fo(r)for Lo= T4+ [ + S;r=
0.95, and §'~ = '+ = Vg = 0; the initial conditions are
F1(0) = 100.01, ,(0) = 0, F4(0) = 64 and F4(0) = 49.
The solid curve is 7, (), the dot-dashed curve is Fy(7),
the dotted curve is F3(7), and the long dashed curve
is F4 (7')

periodic solutions of (7)-(14) can be obtained (Walters
& Lewak 1977; Romeiras 1983). An example of the
periodic nonlinear saturated state of the hybrid SMI is
given in figure 1.

The effect of the finite linear frequency mismatch is
Hlustrated in figure 2 for the process Ly = T+ 41— +3,
and in figure 3 for the process Lo=T-+L*+8 Fi
gures 2 and 3 indicate that the frequency mismatch
(6" # 0) reduces the efficiency of the energy transfer
among waves. When §'* = 0, figure 1 shows that the
Langmuir pump is fully depleted with (F)min = 0.
However, a finite frequency mismatch Prevents a com-
plete depletion of the bump energy so that (F,)pmn >
0, as seen in figures 2 and 3.

The effect of dissipation can be identified by compa-
ring figures 2 and 3 with figure 1. In the absence of
dissipation, all four interacting waves are strictly pe-
riodic as shown in figure 1. The dissipation causes the
gradual damping of wave amplitudes as shown in figu-
res 2 and 3. The damping rate of each wave depends
on the nature of Wwave-particle and particle-particle in-
teractions. In general, the damping of Langmuir waves
1s due to the combined action of electron Landau dam-
ping and electron-ion collision; the damping of elec-
tromagnetic waves is due to electron-ion collision; and
the damping of lon-acoustic waves is due to ion Lan-
dau damping (Akimoto 1988). Wave damping converts
the wave energies into the kinetic energies of particles,
resulting in plasma heating.

The effect of wave dispersion is contained in the
nonlinear coupling coefficients ¢F ag well as the pa-
fameter r. In fact, the ratio r as defined reduces
to w= (k™) /w(kH). Therefore, the relative coupling
strength of the two coupled wave triplets in the hy-
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brid stimulated modulational processes is determined
by the dispersive properties of Stokes and anti-Stokes
waves.
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