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A new approach based on the dual-tree complex wavelet transform is introduced for phase assign-

ment to non-linear oscillators, namely, the Discrete Complex Wavelet Approach—DCWA. This

methodology is able to measure phase difference with enough accuracy to track fine variations, even

in the presence of Gaussian observational noise and when only a single scalar measure of the oscilla-

tor is available. So, it can be an especially interesting tool to deal with experimental data. In order to

compare it with other phase detection techniques, a testbed is introduced. This testbed provides time

series from dynamics similar to non-linear oscillators, such that a theoretical phase choice is known

in advance. Moreover, it allows to tune different types of phase synchronization to test phase detec-

tion methods under a variety of scenarios. Through numerical benchmarks, we report that the pro-

posed approach is a reliable alternative and that it is particularly effective compared with other

methodologies in the presence of moderate to large noises. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4906814]

In the context of interacting non-linear oscillators, phase

synchronization is a remarkable phenomenon in which a

certain relation between phases appears, while their

amplitudes can remain with no significant correlation.
1–4

So, investigating phase synchronization requires a clear

choice of phase variables, in order to test, for example, if

the condition5 D/ðtÞ ¼ j/2ðtÞ � /1ðtÞj < constant, where

/1ðtÞ and /2ðtÞ are the phases of two systems. Therefore,

the process of assigning a phase variable to empirical

data, also known as phase detection, is the first step

required to reveal a myriad of phase synchronization

configurations. This process has been fundamental for

instance to study ecological systems,
6

coupled neurons,
7,8

geophysical phenomena,9 chemical oscillators,10 lasers,11

plasma physics,12,13 and biomedical systems.14–19

I. INTRODUCTION

For periodic oscillators, one can easily define its phase

by taking a variable parameterizing the motion along the

limit cycle, with growth proportional to time. Nevertheless,

the concept of phase for oscillatory systems is not unique, in

the sense that any choice which corresponds to an increment

of 2p at each cycle of the phenomenon in the time-scale that

one wishes to analyze is equally valid. See Ref. 20 for fur-

ther discussions about multi-scale synchronization.

In a more general case, involving chaotic systems, for

example, phase assignment can be a nontrivial task. Thus,

tests of the phase synchronization between systems normally

avoid instantaneous phase measurement of the involved

signals. Instead, average estimations are considered along

well-defined temporal or spatial landmarks, or even statisti-

cal measures are applied to certain time windows. These are

the cases of the following approaches: Poincar�e surface of

section,21 recurrence plots,22,23 localized sets,24 and phase

diffusion coefficient comparison.25 These techniques, we

should emphasize, are effective in providing indications of

phase synchronization in the context of the specific situations

for which they were designed. Even so, there are several sce-

narios for which these methods fail to provide an appropriate

response, as will be shown with a variety of numerical

experiment in this work. One of these situations is when it is

necessary to follow over time instantaneous changes in the

phase relationship between the systems, especially in the

presence of noise. For example, there are technological

applications in which information is embedded in the phase

difference between systems evolution,26 or if one is inter-

ested in following the interaction delay between systems.27

If one assigns phases via linear interpolation between ar-

rival times of the trajectory in a Poincar�e section, by construc-

tion, this function will be monotonously increasing with time.

However, the phase may loose its physical meaning with this

imposition. Some epochs of orientation changes are typically

expected,28 mainly if one considers noise and/or interacting

oscillators.5,29 So, we stress that all methods tested in this

work allow increasing or decreasing phase values.

In order to choose a phase variable for a non-linear os-

cillator, one can use, in principle, direct measurements of

phase angles on a attractor projection, as well as more so-

phisticated techniques such as: Hilbert transform,1,8 Poincar�e
surface of section, curvature and recurrence plots,22,23 local-

ized sets,24 phase estimation by means of frequency

method,30,31 short-time Fourier transforms, and Continuous
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Complex Wavelet Transform (CWT) methodologies.32–41 In

particular, CWT approaches rely on the complex Morlet

wavelet to perform phase detection in chaotic time series,

yielding good results for coherent systems.34,38 So, although

it has a high computational cost and may present some inter-

pretation difficulties when applied to large time series, CWT

strategies are considered one of the best among the known

methods.8,42

Aiming to address this shortcoming of the CWT, we

propose a new method to phase assignment, the Discrete
Complex Wavelet Approach—DCWA, based on the Dual-

Tree Complex Wavelet Transform (DT–CWT) to pointwise

phase assignment. The DT–CWT is a transform that employs

two real Discrete Wavelet Transforms (DWTs). The main

qualities of this transform are that it is nearly shift invariant,

limited redundancy, and reduced computational cost.43–49

To allow comparisons among different phase detection

methodologies, an innovative testbed is also introduced here.

We tailored special orbits with non-linear chaotic oscillators

characteristics, such that a theoretical phase choice is known

a priori. This framework was adopted, instead of classical

chaotic oscillators like R€ossler or Lorenz, to avoid the usage

of a canonical method to obtain a reliable phase choice for

comparison purposes. As so, we consider first a Kuramoto

model with three interconnected oscillators. Empirically

choosing their parameters and the interconnect topology, it is

possible to simultaneously produce specific synchronization

regimes over each pair of oscillators, ranging from

unsynchronized to synchronized, with or without phase slips.

Then, the phase signals generated for each oscillator in this

Kuramoto model is projected into a surface. We refer this

type of coordinate transformation as embedding. Our more

directed accuracy indicator will be the correct detection in

the signal, after this transformation, of phase-slips. Three

embedding are considered in this paper to emulate different

types and properties of non-linear oscillators: with periodic,

coherent and non-coherent orbits. Different intensities of

Gaussian observational noise were also added to the data.

Using this testbed, we compare the DCWA with some

of the most solid methods in the literature: arctangent

method, Hilbert transform, and CWT transform. Besides the

advantages of only requiring as input a scalar signal and

being robust under moderate noise levels, we point out that

our technique has an efficient computational performance

when applied to large time series. It is applicable to both

phase coherent and non-coherent oscillators. Moreover, it

can be successfully applied to non-stationary signals and the

choice of parameter values to be used is readily available.

A. Related work

Over time, several methods to phase synchronization

detection from experimental measures were intro-

duced.1,19,22–24,31,34–36,41,50 Also, many other phase detection

methods exist in the literature, for example, the synchros-

queezed wavelet transforms51 (for application, see in Refs.

52–54) which is based on EMD algorithm and the continu-

ous complex wavelet transform. In Ref. 55, it is used proto-

phases for phase extraction from the signal, which utilizes

the concepts of the Hilbert and Fourier transform, see

Ref. 56. In Ref. 57, the phase description of chaotic oscilla-

tors is made by generalizing the concept of standard iso-

phases (isochrones) of periodic oscillators.

There are also measures to test the condition of phase

synchronization between systems.15,19,42,58 For example, in

Ref. 19, two synchronization indices are introduced, while in

Ref. 15, it is described an application using the mean phase

coherence of an angular distribution as a statistical measure.

Phase synchronization measures as defined from the Hilbert

transform and from the wavelet transform are presented in

Ref. 42 and, a method of detecting synchrony in a precise

frequency range is shown in Ref. 58. However, to calculate

the measures described above, it is first necessary to calcu-

late the phase. Most studies use the Hilbert transform to

compute the instantaneous phase (see Refs. 15, 19, 42, and

59) or the continuous complex wavelet transform.14,42,58–60

As a valuable alternative, we claim that our DCWA for

phase assignment can be applied in association with those

techniques to obtain more accurate results.

The remainder of this paper is organized as follows. In

Sec. II, we present our proposed approach for phase detec-

tion. Then, in Sec. III, we construct the testbed to measure

the efficiency of the methods. Finally, in Sec. IV, we present

results and analysis of our numerical experiments.

II. METHODOLOGY

It is presented in this section our proposed Discrete
Complex Wavelet Approach (DCWA) for phase detection,

based on DT–CWT. We begin with a brief description of the

DT–CWT and then we follow to our proposed DCWA for

phase detection. In order to compare our proposed approach,

other three traditional methods in the literature for phase

assignment are discussed: the arctangent, the Hilbert trans-

form, and the CWT. A description of these methods is

include in Appendix A.

A. Dual-tree complex wavelet transform

The DT–CWT is a very carefully constructed transform,

from a mathematical and filter bank theory point of view, by

Nick Kingsbury in the late 1990s.44,45,49 We are interested

here in the following main features of this quasi-orthogonal

complex multi-scale transform: the low computation cost

when compared to continuous wavelet transform with Morlet

analyzing wavelet, perfect reconstruction with short support

filters, good shift invariance, and limited redundancy. More

details about these features are discussed in Refs. 43–49.

This is a transform that employs two real DWTs, for

details see Appendix B. The first DWT is associated with a

filter bank of the upper tree, and it uses low-pass filters �h0

and high-pass filters �h1. It computes the multilevel real

wavelet coefficients �d
j

that will be used as the real part of

the desired complex wavelet coefficients d j. The second

DWT is associated with a filter bank of the lower tree, and it

is composed of low-pass filters h 0 and high-pass filters h 1.

Similarly, it computes the d j, which contributes to the pure

imaginary part of d j. A schematic representation of the

DT–CWT decomposition is illustrated in Appendix C.
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In this work, we used first scale decomposition (13, 19)-

tap-filters, which are bi-orthogonal and near symmetric. For

scales j> 1, the filters were used Q-Shift filters with (14,

14)-tap-filters.49 The values for these filters are presented in

Appendix D.

B. Discrete complex wavelet approach - DCWA

In order to calculate the phase of an oscillator using our

DCWA method, the time series x of oscillator 1, i.e., x1, is

analyzed by the multi-scale DT–CWT. As a result of this

transform, we have the time series of the complex wavelet

coefficients d j at each scale j. With these coefficients, the

energy Ej at each scale j is calculated as the square of

the modulus of complex wavelet coefficients, i.e., E jðnÞ
¼ jd jðnÞj2. When, the global wavelet spectrum is computed

using E j ¼
P

nE jðnÞ. In the next step, the scale J1 is chosen

as the scale of the maximal global energy, i.e.,

EJ1 ¼ maxj E j. Subsequently, the same procedure is applied

to the time series x2 of oscillator 2 and the time series x3 of

oscillator 3. For each oscillator, we have the scale of the

maximal global energy J1, J2, and J3. When J1 was different

from J2 and different from J3 we chose the scale

J ¼ minðJ1; J2; J3Þ. This choice was based on the fact that

the number of points N in this multi-scale phase time series

is proportional to the scale, i.e., N ¼ 2L�J , therefore we

chose the larger phase time series. Next, we calculated the

phase time series of each oscillator, /J
1; /J

2, and /J
3. The

phase /J
1 is calculated from the expression

/J1ðtÞ ¼ atan2ðd J1 ; �d
J1Þ; (1)

wherein atan2 is the arctangent function with two argu-

ments; d J1 is the imaginary part of the complex wavelet

coefficient in the scale J1, and �d
J1 is the real part of the com-

plex wavelet coefficient in the scale J1. The atan2 routine is

already built in into many different programming languages.

Instead of a single variable, like the standard atan, the former

function receives as input two real numbers. Thus, it is possi-

ble to correctly choose the quadrant of the computed angle.

The phases of the other oscillators are calculated in the same

way.

Subsequently, with the objective of verifying the phase

synchronization, the combination of the phase difference

between them was computed as D/J
12 ¼ j/J

2 � /J
1j, D/J

13

¼ j/J
3 � /J

1j, and D/J
23 ¼ j/J

3 � /J
2j. Finally, the phase syn-

chronization test condition D/J
12ðnÞ < const < 2p, D/J

13ðnÞ
< const < 2p, and D/J

23ðnÞ < const < 2p is evaluated for

each combination.

The phase difference using the phase calculated via our

DCWA method considering oscillators 1 and 2 are denoted

by D/w
12; between oscillators 1 and 3 are D/w

13 and between

oscillators 2 and 3 are D/w
23.

III. THE TESTBED

In this section, we begin with the definition of the

Kuramoto Model (KM),61 which is the core of our testbed. It

comprises three not identical Kuramoto oscillators intercon-

nected, so different synchronization regimes between each

pairs of oscillators can be obtained by adjusting its parame-

ters. Then, the output signal of the oscillators is transformed

through three different embedding. The first one (a) is an

embedding from phase variable / into a unit circle in the

plane. So, we can illustrate with a simple periodic orbit the

usage of the methods. The second one (b) is an embedding

from phase variable / to a chaotic curve inside a M€obius

strip. Since the M€obius strip has well defined rotation, this

embedding plays the role of a coherent attractor. The last

one (c) is an embedding from phase variable / to a chaotic

curve inside a surface that we call Double strip. Since this

curve presents larger diffusion coefficient, we may regard it

as a non-coherent case. Finally, we explain how the

Gaussian observational noise is added to all test sets.

A. Kuramoto model

We assume the following equation for each oscillator

i¼ 1,…, N in KM:

_/i ¼ xi � k
XN

j¼1

Aij sinð/i � /jÞ; (2)

wherein /iðtÞ is the phase variable of the ith oscillator,

assuming values in the real line R, which can also be seen as

an angle in the unit circumference, /iðtÞmod 2p. The natural

frequencies, also known as angular frequencies, of the oscil-

lators are given by the parameters x ¼ ðx1;…;xNÞ 2 RN .

The constant k 2 R is the coupling strength, which adjusts

the intensity of the influence between neighbor oscillators.

The coupling graph, which can be direct of undirected, is

expressed by its adjacency matrix AN�N¼: ðA ijÞ, with Aii¼ 0;

Aij¼ 1, if oscillator i is influenced by oscillator j; and Aij¼ 0,

otherwise.

It is chosen to our numerical simulation a KM with

N¼ 3 oscillators, because we want to show that our discrete

complex wavelet approach is able to simultaneously detect

fixed phase synchronization and phase slips.5 We selected a

coupling graph with oscillators 1 and 2 mutually coupled

and oscillator 3 acting as a forcing to those oscillators, see

Figure 1. The natural frequencies and initial conditions are

x ¼ ð1:00; 1:05; 1:50Þ and /0 ¼ 0; 2p
3
; 4p

3

� �
, respectively.

Thus, the coupling strength k¼ 0.475 was empirically fixed

to show those two different types of synchronization

regimes.

It is used an Adams-Bashforth-Moulton Method for the

numerical integration (see Ref. 62), with fixed step size

h¼ 0.01. The final integration interval is tf ¼ 2 � h � 2,18 but

its first half is eliminate as a transient time. For simplicity,

we present time variables beginning at instant t¼ 0.

FIG. 1. Schematic representation of the topology connection between

oscillators.
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B. Kuramoto embeddings

In this subsection, we present the embeddings made in

the Kuramoto model and the procedure to add noise.

1. Plane

An embedding in the plan is the simplest, and, this way,

we can validate our proposed method with a model that is al-

ready described in the variable phase.

To transform the phase variables / 2 R of KM (accord-

ing to Eq. (2)) into the plane ðx; yÞ 2 R2, we simply see / as

point in the unit circle with this angle, i.e., we let

x ¼ cos /;
y ¼ sin /:

(3)

2. M€obius strip

Now, concerning the M€obius strip,63 the usual paramet-

rization is

x u; vð Þ ¼ 1þ 1

2
v cos

u

2

� �� �
cos u;

y u; vð Þ ¼ 1þ 1

2
v cos

u

2

� �� �
sin u;

z u; vð Þ ¼
1

2
v sin

u

2

� �
;

(4)

wherein 0� u� 2p and �1� v� 1, but we will let u 2 R

and set u equal to / from the KM. Figure 2(a) shows sche-

matically two constant lines of this parametrization. Figures

2(b) and 2(c) show one example of this construction increas-

ing the final integration time. Furthermore, we chose v equals

to cos ~/, where ~/ is an auxiliary oscillator, with ~/ðtÞ ¼ ~x t,
where ~x is an irrational natural frequency. So, the orbits

defined like this are dense in the M€obius strip, which can be

seen as an analogous of the topological transitivity property

for chaotic attractors, as discussed in Ref. 64.

We choose irrational natural frequencies for the auxil-

iary oscillators as ~x ¼ ð
ffiffi
3
p

10
; p

20
;
ffiffi
2
p

10
Þ, which is approximately

equal to (0.173, 0.157, 0.141) and ten times slower than the

oscillators in the direction of u.

3. Double strip

We introduce here a new Kuramoto embedding, the

Double strip. Roughly speaking, this surface associates an

annulus with a M€obius strip in R3. It was empirically

designed to present orbits with higher diffusion constant,

which is a feature found, for instance, in the non-coherent

R€ossler Attractor _x ¼ yþ z; _y ¼ xþ 0:2y; _z ¼ 0:2þ xz
�5:7z (for information about non-coherent R€ossler Attractor

look,65 and for diffusion constant see Ref. 6).

The position of the oscillator in this figure is defined by

a seed v 2 ½0; 1� and a phase /, so we denote this point by

Xðv;/Þ. Moreover, this map will be defined such that, at ev-

ery cycle of the oscillator, it returns to a Poincar�e Section S
given by the line segment joining the origin to (1, 0, 0), more

specifically Xðv; 2kpÞ 2 S for all k� 0. Thus, we may also

define a Poincar�e map P(vk)¼ vkþ1 of the successive returns

of the orbit to S, since Xðvk; 2ðk þ 1ÞpÞ ¼ ðvkþ1; 0; 0Þ 2 S.

For a given point in ðv; 0; 0Þ 2 S, the oscillator will

travel in its next cycle / 2 ½0; 2p� through a annulus-like sur-

face, that we call Normal strip, if v 2 ½0; 0:5� (as can be seen

in Figure 3(a)). Or through a surface similar to a M€obius

strip, that we name Inversion strip, if v 2 ð0:5; 1� (as can be

seen in Figure 3(b)). Another property of the map X that will

be established by construction is that P(v)¼ 2v, if v belongs

to the Normal strip; and P(v)¼�2vþ 2, if v belongs to the

Inversion strip (as can be seen in Figure 3(d)). For this rea-

son, we can argue that the dynamics in the Double strip is

chaotic, since its Poincar�e Map P is the Tent Map, which is a

classical chaotic discrete map (for more information see Ref.

66).

The position of the oscillator in the Normal strip is given

by Xðv;/Þ ¼ f ðv;/Þ defined by

f ðv;/Þ :¼ ð1� kf ðvÞÞ v0ð/Þ þ kf ðvÞ v0:5ð/Þ;
for ðv;/Þ 2 ½0; 0:5� �R; (5)

where

v0ð/Þ ¼ 0:5ðcos /; sin /; 0Þ � ð0:5; 0; 0Þ;
v0:5ð/Þ ¼ ð/=ð4pÞ þ 1Þðcos /; sin /; 0Þ � ð0:5; 0; 0Þ;

kf ðvÞ ¼ 2v:

(6)

FIG. 2. M€obius strip (a) indicates two

curves given by constant lines of its

parametrization (according to Eq. (4));

(b) and (c) orbit of an uncoupled oscil-

lator combined with an irrational auxil-

iary oscillator, with final integration

time tf ¼ 4p and tf ¼ 40p, respec-

tively. A projection into (x, y) plane is

also shown.
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In the other hand, the position of the oscillator in the

Inversion strip is given by Xðv;/Þ ¼ gðv;/Þ with

gðv;/Þ :¼ ð1� kgðvÞÞ v0:5ð/Þ þ kgðvÞ v1:0ð/Þ;
for ðv;/Þ 2 ð0:5; 1� �R; (7)

wherein

v1:0ð/Þ ¼ ðð1þ 0:5cð/Þ cosð/=2ÞÞ cos /� 0:5;

� ð1þ 0:5 cosð/=2ÞÞ sinðuÞ; 0:5 sinð/=2ÞÞ;
cðvÞ ¼ 0:5ðv� pÞ2=p2 þ 0:5;

kgðvÞ ¼ �1þ 2v: (8)

Geometrically, the image of X was designed such that

Xð½0; 0:5� � ½0; 2p�Þ interpolates between curves v0ð½0; 2p�Þ
and v0:5ð½0; 2p�Þ, which forms the Normal strip; while

Xð½0:5; 1� � ½0; 2p�Þ interpolates between v0:5ð½0; 2p�Þ and

v1ð½0; 2p�Þ, defining the Inversion strip, see Fig. 3(c). The ini-

tial seeds for each of the three oscillators where chosen ran-

domly with uniform distribution over [0, 1].

Figures 3(e) and 3(f) illustrate the Double strip embed-

ding for the Kuramoto model with parameters described in

Subsection III A.

4. Applying noise

Through numerical integration, a discrete approximation

/ð0Þ;…;/ðtf Þ for the solution of model (2) is computed,

according to Subsection III A. Then, one of the embeddings

F(.) is applied, yielding Fð/ð0ÞÞ;…;Fð/ðtf ÞÞ. Let Xi denote

the time series of the ith coordinates obtained like this, i.e.,

Xi :¼ ðFð/ð0ÞÞi;…;Fð/ðtf ÞÞiÞ.
We separately perturb each coordinate with a non-

correlated additive noise Xi þ na, where a is the intensity of

the white noise. If a¼ 0, no noise is included. Otherwise, we

generate na ¼ a ~rN , where 0 � a � 1; ~r is the standard

deviation of Xi; and N are random numbers chosen from a

standard normal distribution. Noise intensities of a¼ 0,

0.10,…, 0.90, 1.0 are explored in this article.

Figures 4(a)–4(c) show the orbits of those three oscilla-

tors in the M€obius strip, according to Subsection III A, con-

sidering the intensity noise a¼ 0 in (a); (b) a¼ 0.10 and (c)

a¼ 0.20.

C. Unwrapping stage

In a first moment, all methods studied here provide

wrapped phases, meaning that they are limited to the unit

circle ½0; 2pÞ. Thus, to quantity how many cycles one oscilla-

tor overtakes another, we must apply an unwrapping stage.

This procedure accumulates the phase difference between

consecutive discrete times, with a threshold difference of p
to distinguish between phase increments and phase decre-

ments. Thus, it is clearly necessary a sufficiently small dis-

cretization time. Otherwise, successive phase differences

may become larger than p not because a phase decrement,

but due to its fast dynamics in comparison with the sampling

rate. Since our fastest uncouple oscillator evolves 0.015 rad

per time step (see Sec. III A), in general, this assumption is

easily satisfied.

IV. RESULTS

We present now the results of the phase difference

assignment considering the Kuramoto model embedding in

the plane, in the M€obius strip, and in the Double strip. The

theoretical phase difference between oscillators i and j, from

the Kuramoto model itself, is denoted by D/ k
ij. The phase

difference assigned by the arctangent method, Hilbert trans-

form, the CWT and our DCWA method are denoted by

D/ t
ij; D/ hilbert

ij ; D/ cwt
ij , and D/w

ij , respectively.

We stress that no preliminary filter or denoising proce-

dure is applied before using any of the methods studied.

FIG. 3. (a)–(c) Double strip construction scheme. (d) The Poincar�e return map considering section S. (e) and (f) Examples of embedded orbits for the

Kuramoto model described in Subsection III A. (e) The most common behavior, while (f) display the moment during phase slips when oscillator 3 gives an

additional spin and crosses oscillators 1 and 2.
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Besides, an unwrapping process to transform consecutive

phase points from the unit circle [0, 2?) into continuous real

values, adding 2p every complete cycle, is applied in all

methods according to Sec. III C.

A. Kuramoto model in the plane

We discuss now the results for the Kuramoto model em-

bedded in the plane.

In this case, were found very small values of diffusion

coefficient, describing a system with coherent phase, as dis-

cussed in Ref. 6. The values for each oscillator are
~D1 ¼ 0:049659; ~D2 ¼ 0:11847, and ~D3 ¼ 0:01476. The av-

erage diffusion coefficient is ~Daverage ¼ 0:060963.

Figure 5 displays (a) the global wavelet spectrum of the

Kuramoto model in the plane considering a¼ 0. The phase

difference between oscillators of the Kuramoto model in the

plane without noise (a¼ 0) using (b) the theoretical KM, (c)

arctangent method, (d) Hilbert transform, (e) the CWT trans-

form, and (f) our DCWA method.

Note that, for oscillators 1 and 2, the scale of maximum

energy is J¼ 9 and for oscillator 3, the scale of maximum

energy is J¼ 8, as can be seen in Fig. 5(a). Here, we consider

the scale J¼ 9 in the phase difference assignment. The scale

J¼ 8 was also tested and showed similar results when used

to scale J¼ 9 and, for this reason, there is illustrated here.

When we consider the presence of noise, the global wavelet

spectrum shows the same scale of maximum energy found

when a¼ 0 and, therefore is not illustrated here.

Note in Figure 5 that all methods were able to verify

phase synchronization between oscillators 1 and 2, as well as

the phase slips between oscillators 1 and 3 and oscillators 2

and 3. Note that applying CWT, as can be seen in Fig. 5(e),

the detection of phase slips were not as expected given by

theoretical KM, as can be seen in Fig. 5(b).

Considering the presence of noise a¼ 0.10, a¼ 0.20,

and a¼ 0.30, the results are similar for the three tested meth-

ods, arctangent method, Hilbert transform, and our DCWA

method, were able to reconstruct the original phase differ-

ence of the Kuramoto model. Figure 6 shows the phase dif-

ference between oscillators of the Kuramoto model in the

plane, with the intensity of noisy a¼ 0.30 considering in (a)

the theoretical KM, (b) arctangent method, (c) Hilbert trans-

form, and (d) our DCWA method.

Observed from Figure 6 that even with an intensity of

noise a¼ 0.30, the three methods were able to reconstruct

the original phase difference of the Kuramoto model.

Oscillators 1 and 2 are phase synchronized, since their phase

difference is almost zero. Oscillator 3 presents phase slips

relative to oscillators 1 and 2: for approximately every 500

time units, oscillator 3 gives one additional spin around

oscillators 1 and 2, almost like a jump, and then returns to an

almost constant phase difference. An important feature was

that our discrete complex wavelet approach was much less

sensitive to the noise than the arctangent method and Hilbert

transform.

However, for further increments in the noise level

(a¼ 0.40), the arctangent method and the Hilbert transform

fail to correctly identify phase slips and phase synchroniza-

tion, as can be seen in Figures 7(b) and 7(c).

Figure 7 shows the phase difference between oscillators,

of the Kuramoto model in the plane, with the intensity of

noisy a¼ 0.40 considering in (a) the theoretical KM, (b) arc-

tangent method, (c) Hilbert transform, and (d) our DCWA

method.

Analysing the results obtained from arctangent method,

Figure 7(b), three false phase slips are detected between

oscillators 1 and 2, in the interval t� 640, t� 860, and

t� 1950. Considering the oscillators 1 and 3 three false

phase slips are detected in the interval t� 640, t� 790, and

t� 885; and between oscillators 2 and 3 four false phase

slips are detected in the interval t� 790, t� 860, t� 885,

and t� 1950.

Note in Figure 7(c), the Hilbert transform fail to cor-

rectly identify phase slips and phase synchronization. When

we consider the phase difference between oscillators 1 and 2,

the Hilbert transform erroneously detects 12 regions of phase

slips. Considering the phase difference between oscillators 1

and 3, are erroneously detected 15 phase slips and when we

consider oscillators 2 and 3 are erroneously detected 12

phase slips.

The our DCWA method correctly detect phase slips and

phase synchronization, as can be seen in Figure 7(d) and

compared with the theoretical KM in Figure 7(a). Even for

FIG. 4. (a)–(c) Illustrate the orbit of

oscillators in the M€obius strip with os-

cillator 1 in blue, 2 in orange, and 3 in

red as described in Subsection III A,

considering the intensity noise in (a)

a¼ 0, (b) a¼ 0.10, and (c) a¼ 0.20.

Projections into (x, y) plane are also

shown.
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noise levels up to a¼ 2.0, our DCWA method correctly

detect phase slips and phase synchronization, not shown

here.

B. Kuramoto model in the M€obius strip

We discuss now the results of the Kuramoto model em-

bedded in a M€obius strip.

In this case, were found small values of diffusion coeffi-

cient characterizing a system with coherent phase, as dis-

cussed in Ref. 6. The values for each oscillator are ~D1

¼ 0:18605; ~D2 ¼ 0:11314, and ~D3 ¼ 0:013888. The average

diffusion coefficient is ~Daverage ¼ 0:10436.

Figure 8 displays (a) the global wavelet spectrum of the

Kuramoto model in M€obius strip, considering a¼ 0. The

phase difference between oscillators of the Kuramoto model

in M€obius strip without noise (a¼ 0) using in (b) the theoret-

ical KM, (c) arctangent method, (d) Hilbert transform, (e)

the CWT transform, and (f) our DCWA method. Note that,

for oscillators 1 and 2, the scale of maximum energy J¼ 9

and for oscillator 3, the scale of maximum energy is J¼ 8, as

can be seen in Fig. 8(a). Both results of the global wavelet

spectrum are similar with noise, and therefore are not illus-

trated here. The scale J¼ 9 was used to calculate the phase

difference between oscillators. The scale J¼ 8 was also

tested and showed similar results when used to scale J¼ 9,

and for this reason, there is illustrated here.

Observed from Figures 8(c), 8(d), and 8(f) that the arc-

tangent method, Hilbert transform, and our DCWA method

were able to reconstruct the original phase difference of the

Kuramoto model (see Figure 8(b)). The CWT transform

erroneously detected two phase slips between oscillators 1

and 2. With respect to phase slips occurring between oscilla-

tors 1 and 3 and oscillators 2 and 3, the CWT correctly detect

the intervals (in time) occurring this phase slips, but do not

correctly detect the value thereof, as can be seen in Fig. 8(e).

Despite the fact that our DCWA method presented small

perturbations in its results, the method successfully detected

the phase slips and phase synchronization. Below, we discuss

what can be these perturbations.

FIG. 5. In (a), the global wavelet spec-

trum of the Kuramoto model in the

plane considering a¼ 0. The phase dif-

ference between oscillators when a¼ 0

Kuramoto model plane, considering in

(b) the theoretical KM, (c) arctangent

method, (d) Hilbert transform, (e) the

CWT transform, and (f) our DCWA

method.
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Figure 9(a) displays the zoom of phase difference

between oscillators of the Kuramoto model in M€obius strip

without noise, a¼ 0, considering our DCWA method. Here,

we want to show why the perturbations where found in the

phase difference when applied our DCWA method. In

Figures 9(b), 9(c), and 9(d), the interval t¼ [1350, 1450] of

the time series of oscillators 1 and 2; 1 and 3; and 2 and 3

are presented, respectively. Note that in Figure 9(a) the phase

FIG. 6. The phase difference between

oscillators, of the Kuramoto model in

the plane, with the intensity of noisy

a¼ 0.30 considering in (a) the theoreti-

cal KM, (b) arctangent method, (c)

Hilbert transform, and (d) our DCWA

method.

FIG. 7. The phase difference between

oscillators, of the Kuramoto model in

the plane, with the intensity of noisy

a¼ 0.40 considering in (a) the theoreti-

cal KM, (b) arctangent method, (c)

Hilbert transform, and (d) our DCWA

method.
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difference of oscillators 1 and 2 oscillate around zero and the

phase difference of the oscillators 1 and 3 and 2 and 3 oscil-

late around 3.5 in t� [1350,1390]. In the interval

t¼ [1390,1410], there is a phase slips between oscillators 1

and 3 and 2 and 3, and the phase difference starts to oscillate

around 5.5. Observing this interval of the time series of oscil-

lators (see Figures 9(b)–9(d)), we note that the method was

able to associate the oscillations found in the phase differ-

ence with their delays and/or advances present in time series

of oscillators. Note that the other methods were not able to

verify this phenomenon, being this one of characteristic of

the proposed method.

Considering the presence of noise a¼ 0.10 and a¼ 0.20,

the results are similar for the three methods, arctangent

method, Hilbert transform, and our DCWA method, were

able to reconstruct the original phase difference of the

Kuramoto model.

Figure 10 shows the phase difference between oscilla-

tors, of the Kuramoto model in M€obius strip, with the

intensity of noisy a¼ 0.20 considering in (a) the theoretical

KM, (b) arctangent method, (c) Hilbert transform, and (d)

our DCWA method.

Fig. 10 shows that the three methods were able to detect

phase synchronization, like in the previous experiment with-

out noise (Figure 8). However, the Hilbert transform errone-

ously detects a region of the phase slip between oscillators 1

and 3 and oscillators 2 and 3 in the interval t� 490 (see

Figure 10(c)). Nevertheless, our DCWA method was again

much less sensitive to the noise than the arctangent method

and Hilbert transform.

Increasing the amount of noise for a¼ 0.30, the arctan-

gent method and the Hilbert transform fail to correctly iden-

tify phase slips and phase synchronization, as can be seen in

Figures 11(b) and 11(c). In this case, these methods detect

various phase slips which verifying in the evolution of the

time series, the same does not occur. However, the our

DCWA method correctly detects phase slips and phase syn-

chronization, as can be seen in Figure 11(d).

FIG. 8. Results of the Kuramoto model

embedded in a M€obius strip. In (a), the

global wavelet spectrum and the phase

difference between oscillators, consid-

ering in (b) the Kuramoto model in the

M€obius strip with a¼ 0; (c) arctangent

method; (d) Hilbert transform; (e) the

CWT transform; and (f) our DCWA

method.
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Figure 11 shows the phase difference between oscillators

of the Kuramoto model in a M€obius strip, with intensity of noise

a¼ 0.30, considering in (a) the theoretical KM, (b) arctangent

method, (c) Hilbert transform, and (d) our DCWA method.

Beyond this level of noise a¼ 0.30, our DCWA method

does not detect correctly phase slips and phase synchroniza-

tion only for a¼ 1.6, not shown here.

C. Kuramoto model in the Double strip

We discuss now the results of the Kuramoto model em-

bedded in a Double strip.

In this case, higher values of diffusion coefficient were

found, characterizing a system with more non-coherent

phase, as discussed in Ref. 6, The values for each oscillator

FIG. 9. In (a), the zoom of phase dif-

ference between oscillators when a¼ 0

considering our DCWA method and

the interval t¼ [1350, 1450] of the

time series of the oscillators in (b) 1

and 2; (c) 1 and 3, (d) 2 and 3.

FIG. 10. The phase difference between

oscillators, of the Kuramoto model in

M€obius strip, with intensity of noise

a¼ 0.20, considering in (a) the theoret-

ical KM, (b) arctangent method, (c)

Hilbert transform, and (d) our DCWA

method.
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are ~D1 ¼ 0:0894731; ~D2 ¼ 0:159167, and ~D3 ¼ 0:11774.

The average diffusion coefficient is ~Daverage ¼ 0:12213.

Figure 12 shows (a) the global wavelet spectrum and the

phase difference between oscillators, considering (b) the

Kuramoto model in the Double strip without noise (a¼ 0),

(c) arctangent method, (d) Hilbert transform, (e) CWT trans-

form, and (f) our DCWA method.

Considering without noise and with the presence of

noise, from a¼ 0.10 to a¼ 2.0, the method based on arctan-

gent detects erroneously the phase slips between oscillators

1 and 3 and oscillators 2 and 3 in intervals t� 1550,

t� 1780, and t� 2210. The phase slip in intervals t� 1550

and t� 1780 are detected erroneously between oscillators 1

and 2.

Considering without noise and with the presence of

noise a¼ 0.10 up to a¼ 2.0, the method based Hilbert trans-

form detects erroneously the phase slips between oscillators

1 and 3 and oscillators 2 and 3 in intervals t� 650, t� 1100,

t� 1550, t� 1750, t� 2210, and t� 2420. The phase slip in

intervals t� 650, t� 1100, t� 1550, t� 1750, and t� 2420

are detected erroneously between oscillators 1 and 2.

Applying the CWT, considering without noise, the

phase slip in intervals t� 1400 and t� 2400, are detected

erroneously between oscillators 1 and 2. Again, the method

detects the intervals at which phase slips occur, but does not

correctly detect the value of it.

Considering the case without noise and with the pres-

ence of noise a¼ 0.10 up to a¼ 2.0, our DCWA method cor-

rectly detect the phase slips between oscillators 1 and 3 and

oscillators 2 and 3 and the phase synchronization between

oscillators 1 and 2.

V. CONCLUSIONS

In this work, we introduced a new approach, based on the

DT–CWT, for phase detection. This approach is not just able

to measure the phase difference between oscillators, but also

presents sensitivity enough to track instantaneous variation in

the phase difference between them, even in the presence

of noise. The main advantage of our approach is that it can

be applied directly to scalar experimental time series.

Furthermore, our methodology allows us to work with time

series with a large number of points and it presents a low com-

putational cost (order of 2N, where N is the number of points).

In order to compare different techniques, we also intro-

duced an innovative testbed. Three test sets based on

FIG. 11. The phase difference between oscillators, of the Kuramoto model in M€obius strip, with the intensity of noise a¼ 0.30 considering in (a) the theoretical

KM, (b) arctangent method, (c) Hilbert transform, and (d) our DCWA method.
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embedding of the Kuramoto model in R3 were discussed,

which are a by-product contribution of this work.

The evaluations reported allow us to claim that our pro-

posed approach, the Discrete Complex Wavelet Approach—
DCWA, is very effective in accomplish the task for which it

was conceived.

The next step in the research will be to extend the

method to enable the analysis of energy over time, as well

as other filters in the analysis. The applicability of our pro-

posed method will also be tested in chaotic dynamic sys-

tems, such as R€ossler and Lorenz systems, and sets of

experimental data, possibly under different time-scale syn-

chrony regimes.
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APPENDIX A: OTHER METHODS

1. Arctagent method

It is the most common method for measuring phase if it

is possible to project the underlying attractor on a plane so

that the projection looks like a smeared limit cycle67 with

well-defined rotation center.

In this and other similar cases, the phase /ðtÞ presents

coherent phase and can be measured as the angle in the polar

coordinate system on the plane (x, y), as proposed by Ref. 1,

as follows:

/ tð Þ ¼ arctan
y

x

� �
: (A1)

FIG. 12. Results of the Kuramoto

model embedded in a Double strip. In

(a), the global wavelet spectrum and

the phase difference between oscilla-

tors, considering in (b) the Kuramoto

model in Double strip, without noisy

a¼ 0 (c) arctangent method; (d)

Hilbert transform; (e) CWT transform;

and (f) our DCWA method.
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In the case where the system displays non-coherent

phase, the phase can be defined using the projection of the

attractor on the plane of the derivative, as proposed in Ref.

68 using the equation

/ tð Þ ¼ arctan
_y

_x

� �
: (A2)

Note that, to calculate the phase using these methods it

is necessary to know the two state variables, namely, x and y.

But, this is not always available.

In this approach, the arctangent function is defined as a

four-quadrant operation.

In this work, the phase difference using the phase calcu-

lated via the method based on arctangent function considering

oscillators 1 and 2 are denoted by D/ t
12; between oscillators

1 and 3 are D/ t
13 and oscillators 2 and 3 are D/ t

23.

2. Hilbert transform

A consistent way to define the phase for an arbitrary sig-

nal is known in signal processing as the analytic signal con-

cept.5 This general approach, based on the Hilbert transform

(HT), unambiguously gives the instantaneous phase /ðtÞ and

amplitude A(t) for a signal s(t) via construction of the ana-

lytic signal fðtÞ, which is a complex function of time defined

as (for details see Ref. 5)

fðtÞ ¼ sðtÞ þ i sHðtÞ ¼ AðtÞ ei /ðtÞ: (A3)

Here, the function sH(t) is the HT of s(t)

sH tð Þ ¼ p�1 P:V:

ð1
�1

s sð Þ
t� s

ds (A4)

where P.V. means that the integral is taken in the sense of

the Cauchy principal value.

In this work, the phase difference using the phase calcu-

lated via the method based on Hilbert transform considering

oscillators 1 and 2 are denoted by D/ hilbert
12 ; between oscilla-

tors 1 and 3 are D/ hilbert
13 and oscillators 2 and 3 are D/ hilbert

23 .

3. Continuous wavelet transform

The CWT is a tool that allows to decompose the time se-

ries into different components of frequencies. This transform

considers that the translation and scale parameters are con-

tinuous, and transforms a one-dimensional time series (time)

in a two-dimensional representation (time, scale) that can be

highly redundant.

The CWT in L2ðRÞ of a time series f(t) can be defined

as

W s
n tð Þ ¼ 1ffiffi

s
p
ð1
�1

f tð Þw	 t� n

s

� �
dt; (A5)

wherein s; n 2 R; s 6¼ 0; 	 denotes the complex conjugate

and the term 1ffiffi
s
p is a normalization factor of the signal

energy.

The wavelet spectra, also called scalograms, represent

the squared amplitudes of the module of wavelet coefficients,

which can be interpreted as the distribution of signal energy

in time t by its scale.69

The global wavelet spectrum is the time integration of

scalogram, or

SwðsÞ ¼
ð
W s

nðs; nÞ dt: (A6)

The Morlet wavelet consists of a plane wave modulated

by a Gaussian function that is expressed by

wMorletðtÞ ¼ e�i x0 t e�t2=2; (A7)

wherein x0 is a non dimensionless frequency. This wavelet

function is a complex function, which allows to analyze the

phase and the modulus of the decomposed signal.

In this work, the phase difference using the phase calcu-

lated via the method based on CWT considering oscillators 1

and 2 are denoted by D/ cwt
12 ; between oscillators 1 and 3 are

D/ cwt
13 and oscillators 2 and 3 are D/ cwt

23 .

APPENDIX B: DISCRETE WAVELET TRANSFORM

The DWT presents four important attractive characteris-

tics, namely, good compression of signal energy, perfect

reconstruction with short support filters, no redundancy, and

very low computation cost (order N operations).49 As this

transform is a real transform, we cannot use it to compute

the phase. However, it will be used here as a tool to compute

the DT–CWT.

The DWT is implemented in discrete values of scale j
and localization n, and provides a time-scale analysis of any

finite energy signal x, where j; n 2 Z. Mathematically, the

signal x can be decomposed in terms of basis functions, as

for instance, the scale function u. However, we can represent

this signal also in a multi-scale way using a multi-resolution

analysis (MR) tool.

A MR is constructed by using embedded spaces Vj 

Vjþ1 that have as basis functions u j, which are a Riez basis;

the union of these spaces are L2ðRÞ; the intersection of these

spaces is zero; their functions have scalability proprieties.

The difference between two spaces Vj and Vjþ1 is the detail

space, where the wavelet functions are Riesz basis, as

described in detail in Refs. 69 and 70. Thus, we can represent

x in a multi-scale way considering just one scale function u
and its associated wavelet functions w as

xðtÞ ¼
X
n2Z

c j
nu

j
nðtÞ þ

X
j;n2Z

d j
nw

j
nðtÞ; (B1)

wherein c j
n are scale coefficients, c j

n ¼
Ð

xðtÞu j
nðtÞ dt; and

d j
n are wavelet coefficients d j

n ¼
Ð

xðtÞw j
nðtÞ dt: These coeffi-

cients are calculated by using a very efficient, linear com-

plexity algorithm based on convolutions of the analyzed

signal x with a discrete-time low-pass filter h0 and a high-

pass filter h1 with downsampling operations # 2. This is

called the Mallat algorithm or Mallat-tree decomposition69,70

and it is the DWT. The c j
n and d j

n are associated to h0 and h1.

Moreover, they have a scale relation
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c j
n ¼

X
k2Z

h0ðkÞc j�1
n�k; d j

n ¼
X

k

h1ðkÞc j�1
n�k;

where one possibility is to choose h1ðkÞ ¼ ð�1Þkh0ð1� kÞ.
Therefore, the following relations can be obtained:

u j
nðtÞ ¼

X
n

h0ðnÞu j�1
n ðtÞ; w j

nðtÞ ¼
X

n

h1ðnÞu j�1
n ðtÞ:

Figure 13 shows a scheme of the DWT decomposition

in three scales of the real signal x. The signal is analyzed in-

dependently and simultaneously by using the filters h0 and h1

and then decimated by a factor of 2 (denoted as # 2), generat-

ing two 1-scale coefficients given, respectively, by the fol-

lowing convolutions:

c 1 ¼ ½x 	 h0� # 2; d 1 ¼ ½x 	 h1� # 2:

Note that for j¼ 2 and j¼ 3 we have

c 2 ¼ ½h0 	 c 1� # 2; d 2 ¼ ½h1 	 c 1� # 2;
c 3 ¼ ½h0 	 c 2� # 2; d 3 ¼ ½h1 	 c 2� # 2:

APPENDIX C: DT–CWT DECOMPOSITION

A schematic representation of the DT-CWT decomposi-

tion is illustrated in Fig. 14. The real time series x is decom-

posed in Jmax¼ 3 scales, i.e., j¼ 1, j¼ 2, j¼ 3, and the

notation ? is included in the first scale filters, i.e., h ?0 and h ?1.

In Ref. 49, it is shown that the implementation of the

DT–CWT requires that the first scale of the dual-tree filter

bank be different from the succeeding scales. A schematic

representation of the DT–CWT decomposition is illustrated

in Fig. 14. The real time series x is decomposed in Jmax¼ 3

scales, i.e., j¼ 1, 2 and 3, and the notation ? is included in

the first scale filters, i.e., h ?0 and h ?1.

FIG. 13. Scheme of the DWT decomposition of the signal x in three scales,

j¼ 1, 2 and j¼ 3).

FIG. 14. Schematic multi-scale representation of three scales DT–CWT

decomposition of the real time series x in three levels, where the filters h ?0
and h ?1 are considered in the level j¼ 1. In levels j¼ 2 and j¼ 3, the filters

of the upper and lower tree are �h 0; �h 1 and h 0; h 1, respectively.

TABLE I. Non-zero near-symmetric (13, 19) and Q-Shift (14, 14)-tap filter coefficients. Credits N. G. Kingsbury, Appl. Comput. Harmonic Anal. 10, 234–253

(2001). The coefficients are multiplied by 10�2.

Q-shift

Near-symmetric Upper tree Lower tree

n h?0 h?1
�h0

�h1 h 0 h 1

1 �0.17578 �7.0626 � 10�5 0.32531 �0.45569 �0.45569 �0.32531

2 0 0 �0.38832 0.54395 �0.54395 �0.38832

3 2.22660 0.13419 3.46600 1.70250 1.70250 �3.46600

4 �4.68750 �0.18834 �3.88730 �2.38250 2.38250 �3.88730

5 �4.82420 �0.71568 �11.72000 �10.67100 �10.67100 11.72000

6 29.68800 2.38560 27.53000 �1.18660 1.18660 27.53000

7 55.54700 5.56430 75.61500 56.88100 56.88100 �75.61500

8 29.68800 �5.16880 56.88100 �75.61500 75.61500 56.88100

9 �4.82420 �29.9760 1.18660 27.53000 27.53000 �1.18660

10 �4.68750 55.9430 �10.67100 11.72000 �11.72000 �10.67100

11 2.22660 �29.9760 2.38250 �3.88730 �3.88730 �2.38250

12 0 �5.16880 1.70250 �3.46600 3.46600 1.70250

13 �0.17578 5.56430 �0.54395 �0.38832 �0.38832 0.54395

14 2.38560 �0.45569 �0.32531 0.32531 �0.45569

15 �0.71568

16 �0.18834

17 0.13419

18 0

19 �7.0626 � 10�5
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APPENDIX D: DUAL-TREE FILTERS

In this work, we have chosen the Q-shift (14, 14) tap-

filters where scales j> 1, which has provided a group delay

of either 1=4 or 3=4 of a sample period, while also satisfying

the usual 2-band filterbank constraints of no aliasing and per-

fect reconstruction.71 For the first scale (13, 19) tap-filters

were used, which are bi-orthogonal and near symmetric.

Table I presents the analysis filters coefficients used in

this work.
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