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Abstract

In order to to predict regime duration in a given chaotic
system, for a set of output prototypes are available, we
propose to use a clustering technique for the definition of
classes of regime duration, which are then used by a cho-
sen classifier. In this way, the exact boundaries between
classes are allowed to emerge from the data, as long as
prototypical values fall in distinct classes. We investi-
gate the use of both unsupervised and semi-supervised
fuzzy clustering techniques FCM and ssFCM, as well
as the traditional k-Means technique. To classify the
data, we use neuro-fuzzy system ANFIS and two de-
cision trees (J48 and NBTree). We apply the procedure
on the well-known Lorenz strange attractor, having bred
vector counts as input variables.

Keywords: Chaotic systems, fuzzy clustering, bred vec-
tors, Lorenz attractor, neuro-fuzzy systems, decision
trees

1. Introduction

In chaotic systems, small changes in the initial condi-
tions can lead to very different results from the original
system trajectory, what makes the prediction of the fu-
ture state of such systems a non-trivial problem. Many
real-world phenomena present chaotic behaviour and
their prediction, however imprecise, can be crucial in the
prevention (or minimization of impact) of major natural
disasters.

A well-established means for predicting behaviour of
chaotic systems is the breeding vector technique, origi-
nally developed to evaluate the impact from initial per-
turbations on ensemble forecasting in numerical weather
prediction at the American National Center for Environ-
mental Prediction (NCEP) [31]. Bred vectors are a non-
linear generalization of Lyapunov exponents, that are
used to rate the differences of two initially close trajec-
tories of a given chaotic system (see [1] and [15] for
studies on the stability properties of evolving flows for
Lyapunov and bred vectors, respectively).

The authors of [10] derived rules of thumb for pre-
dicting behaviour of the Lorenz strange attractor [23],
a prototypical chaotic system with two regimes, using
visual observation of bred vector values along time. In
a similar manner, the authors of [8] proposed rules for
another chaotic system, the coupled three-waves prob-
lem from solar physics [7, 22, 24]. In [29], bred vectors
were used to automatically predict regime change in the

Lorenz attractor and the three-waves problem using both
Neural Networks [14] (see also [25]) and Neuro-Fuzzy
Systems [21]. In that work, the classes are characterized
by intervals of regime duration, that are either arbitrarily
chosen or established so as to maximize accuracy.

In classification problems, the definition of classes is
usually defined by the end user. However, in certain
cases, the exact boundaries between the classes is not
so important to the user, as long as some prototypical
values fall in distinct classes. The use of prototypes
allows one to let the boundaries emerge from the data
itself, leading to more accuracy and/or interpretability,
while still satisfying the user needs. One of the means to
obtain such boundaries is by the use of clustering tech-
niques.

Here we propose a procedure for the prediction of
regime change/duration in chaotic systems: a classifi-
cation algorithm is trained to make a first dichotomous
prediction about regime change (yes/no), a clustering
algorithm is used to determine the boundaries for the
classes using prototypical values and a last classifica-
tion algorithm is trained to make the final regime dura-
tion class prediction. We present the application of the
proposed procedure on Lorenz strange attractor, using
the breeding vector method to derive the input variables.
The main focus of this work is the comparison between
unsupervised and semi-supervised fuzzy clustering tech-
niques, here represented by Fuzzy C-Means (FCM) [5]
and Semi-Supervised Fuzzy C-Means (ssFCM) [4, 26].
These techniques are compared with the well-known k-
Means algorithm [6].

To make the first and the last classification, we have
used decision trees induction algorithms C4.5 [28] and
NBTree [19], by means of their Weka implementations
[33] (C4.5 is then called J48 [34]), and neuro-fuzzy sys-
tem ANFIS [30].

This paper is organized as follows. In Section 2 we
briefly present Lorenz chaotic systems and bred vectors.
In Sections 3 and 4, we address the clustering techniques
and the classifier systems used in this work. Sections 5
and 6 respectively present the procedure proposal and
experiments. Section 7 finally brings the conclusion.

2. Bred vectors and Lorenz strange attractor

A strange attractor is a particular kind of chaotic dy-
namic system, in which the system trajectory is confined
within a bounded region and orbits are never repeated.
Lorenz introduced a chaotic dynamic system [23] de-
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scribed by the following equations:

dx/dt = σ(y − x) (1)
dy/dt = ρx− y − xz (2)
dz/dt = xy − βz (3)

With parameters σ = 10, ρ = 28, β = 8/3, the resulting
system is a strange attractor with two regimes (see Fig-
ure 1). Although described by three simple equations, it
is hard to identify exactly when a regime change in such
a system will happen and how long it will last.

Figure 1: Trajectory of the Lorenz strange attractor
(adapted from [10]).

The breeding method [31] consists in periodically
running a chaotic model twice, one with the original
data (control run) and the other with a small perturba-
tion added to it. After a fixed number of time steps,
the results obtained in each trajectory are subtracted; the
difference is rescaled and then used as the new pertur-
bation. The difference between the two model runs is
called a bred vector.

Bred vectors can be calculated using a simple proce-
dure:

1. Define a perturbation parameter ε, and the number
of time-steps n to propagate the perturbation (final
time is defined as: tn = n∆t).

2. Compute the perturbed field:

δh(x, tn) = h(x+ε, tm → tm+n) .

3. Calculate the bred vector:

b(tn) ≡ ∆h(x, tn) ε

‖∆h(x, tn)‖ ,

∆h(x, tn) = [h(x, tn) + δh(x, tn)]− h(x, tn)

where ‖ · ‖ is an suitable norm. The bred vector
b(tn) can be used to evaluate how far a prediction
can be from a true value in a dynamical system.

The bred vector technique has been applied for
the error analysis in the dynamical systems [9], and
this methodology has also been compared with other
schemes, such as Lyapunov vector [16]. The amplifi-
cation of the bred vectors can be used to identify regions
of high error growth within an attractor [10]. Figure 2
illustrates bred vectors growth.

Figure 2: Bred vectors growth illustration (adapted from
[29])

In [10], Evans et al derived rules for predicting be-
haviour of the Lorenz strange attractor upon visual ob-
servation of 4 intervals of bred vectors (see Figure 3a).
The presence of a red star indicates that the bred vector
growth in the previous 8 steps was greater than 0.064,
the blue stars indicate a negative growth rate and the
green and yellow stars stand for intervals [0, 0.032) and
[0.032, 0.064] respectively. Figure 3b) depicts only one
axis of the system trajectory: the abscissa (time) sepa-
rates the two regimes; each inflection point indicates the
beginning of a new orbit of the system.

a)

b)

Figure 3: Lorenz attractor painted with 4 bred vector
classes: a) in 3-D and b) for X(t) (adapted from [10])

Table 1 presents a database with Lorenz strange at-
tractor trajectory in terms of bred vectors counts, where
each row corresponds to a time step. The first column
brings the number of bred vectors in classes blue, green,
yellow and red (see Figure 3) and the second column
indicates whether the regime changes after the current
orbit (yes/no). The third column is obtained from the
second column: positive (respec. negative) numbers are
associated to "yes" (respec. "no") and indicate the dura-
tion of the next (respec. current) regime.

In [29], bred vectors were used to automatically pre-
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Table 1: Fragment of training database
(b,g,y,r) change #orbits
(3,0,0,0) yes 1
(3,1,2,3) yes 2
(6,4,2,0) no -1
(4,0,1,2) yes 1
(4,2,2,2) yes 2
(6,3,2,1) no -1
(2,1,0,4) yes 3
(8,3,1,0) no -2
(4,2,3,1) no -1
(2,1,0,4) yes 3

...

dict regime change in the Lorenz attractor and the three-
waves problem using a Multilayer Perceptron Neural
Network with 3 layers [14] and Neuro-Fuzzy System
ANFIS [21], with a fixed set of data for training and
another one for testing. In that work, three kinds of ex-
periments were performed to predict Lorenz strange at-
tractor behaviour. In the first experiment, the goal was
to predict only whether the trajectory would remain in a
regime after the current orbit was finished. In the other
two experiments, it was also tested how long the trajec-
tory would remain in a regime after the current orbit was
finished, either when it changed regimes or not, charac-
terized by positive or negative outputs. The number of
orbits, for either positive or negative outputs, was parti-
tioned in intervals (classes), arbitrarily chosen.

3. Fuzzy Systems for supervised and unsupervised
tasks

Fuzzy systems [11] aim at emulating some of the human
capacity of reasoning with vague information. Member-
ship to a fuzzy set is measured by a number between 0
and 1 in the real scale, instead of simply 0 or 1 as in its
classical counterpart.

Most of the systems created using fuzzy sets theory
are based on rules of thumb of the type “If condition then
conclusion”, where the variables in both the condition
and conclusion parts are associated to fuzzy sets. These
rules can be either given by the user or learnt from data
in a supervised process, using methods such as the so-
called neuro-fuzzy systems.

Fuzzy systems have also been used for clustering, an
unsupervised task. In this case, the system assigns to
each element in a given universe of discourse a mem-
bership degree between 0 and 1 to each cluster. A sub-
sequent step usually is undertaken in which the element
is assigned to the class with the highest membership de-
gree, as in the classical clustering counterpart.

In the following we describe the fuzzy algorithms
used in this work for clustering (FCM and ssFCM) and
classification (ANFIS).

3.1. Fuzzy clustering: original Fuzzy C-Means and
semi-supervised method ssFCM

Inductive machine learning is traditionally divided in
two main categories: supervised, making use of classes
information (labels) to perform the learning process, and
unsupervised, which makes use of intrinsic information
within input data instead of pre-existing labels. Cluster-
ing methods are traditionally unsupervised techniques.
The objective of clustering is to divide data elements
into clusters so that similar data are allocated in the same
cluster and dissimilar data are allocated to different clus-
ters. The similarity/dissimilarity between objects can be
measured by several different forms, the most common
one being based on the Euclidean distance.

Clustering is usually said to be either hard, in which
any object belongs to a single cluster, or soft, in which an
object may belong to several clusters. One of the most
traditional hard clustering methods is k-Means (see [6]),
in which a set of objects is partitioned in k clusters and
each object is allocated to the cluster with the smallest
average distance.

In fuzzy clustering, a type of soft clustering, any ob-
ject has a membership degree to each cluster, all adding
up to 1. One of the most widely used fuzzy clustering
algorithms is Fuzzy C-Means (FCM) [5]. Given a set
of n objects where each object is described by a vec-
tor of attributes, the algorithm returns a set of k clus-
ter centers C = {c1, c2, . . . , ck} and a partition matrix
W = wi,j ∈ [0, 1], 1 ≤ i ≤ n, 1 ≤ j ≤ c,

∑
j , where

each element wij gives the degree to which element xi

belongs to cluster cj . The fact that the number of clus-
ters to be found must be given as an input parameter to
the algorithm is very frequently pointed out as its main
drawback.

Although supervised and unsupervised methods have
been widely and successfully investigated, the idea of
adapting methods to share the advantages of labeled and
unlabeled data has gained increasing investments in re-
search. These methods may be particularly interesting
when dealing with the difficulty to interpret large data
sets, where manual interpretation and labeling would be
of high cost. Semi-supervised learning refers to the use
of labeled and unlabeled data within the learning process
[18, 35].

Semi-supervised clustering approaches commonly
make use of pre-existing information in two different
formats: seeds [28, 27, 2] and pair-wise constraints
[32, 3, 12]. Seeds are labeled examples within a mostly
unlabeled data set that can be used in the restriction of
the clustering process and the definition of the number
of clusters and cluster labels. The pairwise restrictions
indicate that a pair of examples must belong to the same
cluster (must-link) or that they should belong to different
clusters (cannot-link). An example of semi-supervised
clustering is the Semi-Supervised Fuzzy C-Means algo-
rithm (ssFCM) [4]. This method adapts FCM to con-
sider information in the form of seeds and improve clus-
tering performance.

The modifications of FCM by ssFCM were made aim-
ing to solve three problems from the application of orig-
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inal FCM: the difficulty in defining the number of clus-
ters, the difficulty in defining appropriate labels to each
cluster after the clustering process and the tendency to
equal the number of members in each cluster.

The dataset in ssFCM is a union of the labeled data,
Xl, and unlabeled data,Xu. The number of clusters c is
set to the number of different labels represented in Xl.
The pertinence of each labeled example is defined as 1
to their respective clusters and that value is not altered
during the updates of the algorithm. As the pertinence
of each labeled example never changes, these examples
strongly influence the calculation for new cluster proto-
types.

3.2. Neurofuzzy systems

The two most well-known kinds of fuzzy systems are
the Mamdani and Sugeno models (the later one is also
known as Takagi-Sugeno or Takagi-Sugeno-Kang) [11].
Both frameworks use fuzzy terms to model the condi-
tions on the left-hand side of the rules, but differ on the
modeling of the conclusions on the right-hand side of the
rules. In Sugeno fuzzy systems, a conclusion of a rule
is modeled as a (usually linear) function of the values of
the input variables. In Mamdani systems, fuzzy sets of
the output variables are used in the conclusions of rules,
a characteristic that make these systems interpretable,
contrary to what happens with Sugeno systems.

The term neuro-fuzzy is nowadays used to name any
system that somehow involves the joint use of neu-
ral networks and fuzzy systems paradigms to solve a
problem. A particular class of neuro-fuzzy systems,
proposed in [21], derives a fuzzy rule based system,
whose defining parameters (fuzzy terms and rules) are
learnt through training performed in a neural network-
like learning process upon the presentation of a set of
pairs (input, desired output). The main representative
of this class is ANFIS (Adaptive-Network-Based Fuzzy
Inference System) [30], that learns the parameters of a
Sugeno fuzzy system. It uses backpropagation to learn
the fuzzy terms on the rule left-hand side and the LMS
algorithm (Least Square Means) for calculating the pa-
rameters on the right-hand side of the rule.

4. Decision Tree Based Classifiers

Decision trees are powerful models of supervised induc-
tive machine learning, which can be applied to classifi-
cation tasks. Decision trees are widely used as learning
algorithms due to several reasons. Besides being built
by an understandable and intuitive process, the induced
model can be expressed graphically as a tree structure,
as well as a set of rules. Despite their simplicity, they are
usually competitive with more costly approaches. Deci-
sion trees are usually robust, scalable and can be applied
to datasets including a large number of examples.

Classic decision trees structures are composed by
leaves, representing classes, and intermediary decision
nodes, which are associated to attributes and repre-
sent tests according to the values of their respective at-
tributes. The automatic construction of a decision tree

can be made from a labeled dataset of representative ex-
amples by means of a recursive process that partitions
the data set as each node is created.

The C4.5 algorithm, proposed by [28], is one of the
most popular algorithms for the induction of decision
trees. C4.5 uses entropy and information gain measures
to decide on the quality of the input attributes and then
select one of them to be associated to each node. More
specifically, the information gain rate of an attribute is
defined by the entropy reduction. C4.5 performs a post
pruning method aiming at generalizing the final model
and preventing it from becoming too adherent to the spe-
cific training examples (overfitting). After the induction
of the tree, the model can be used to classify any exam-
ple whose class is unknown. The inference (classifica-
tion) process starts from the root node and, depending
on the attribute values of the example being classified,
follows one of the branches leaving that node, until a
leaf node is reached. The class in this leaf is defined as
the class of the example.

NBTree [19] is a hybrid algorithm which induces
decision trees with intermediary nodes containing at-
tributes (as regular decision trees) but in which leaf
nodes contain Naïve-Bayesian classifiers instead of just
single classes. Naïve-Bayes classifiers [20] are gener-
ally easy to understand and present accurate results in
many classification tasks. Besides that, they are very
robust to irrelevant attributes and the induction of the
model is very fast. On the other hand, Naïve-Bayes clas-
sifiers require making strong independence assumptions
that, when violated, may not improve accuracy as the
database size increases. The NBTree approach attempts
to take profit of the segmentation capabilities of clas-
sic decision trees and evidence accumulation of Naïve-
Bayes classifiers. The J48 implementation of the clas-
sic C4.5 algorithm, and the implementation of NBTree,
both available at the WEKA framework [34], was used
in our experiments.

5. The proposed approach

Here we are interested in guiding the selection of output
classes of regime duration in chaotic systems, character-
ized by intervals. We investigate the case in which the
user, instead of furnishing the exact definition of the in-
tervals, only provides output prototypes, around which
the intervals are to be automatically determined.

We propose to use clustering as the basis for the auto-
matic determination of classes of regime duration, that
are later used in classification methodologies. We inves-
tigate the use of both unsupervised and semi-supervised
fuzzy clustering techniques on Lorenz strange attractor,
using the breeding vector method to derive the input
variables.

We propose to divide the construction of the model
of classification of regime duration in four phases, as
follows:

1. dichotomous classification: a classifier is trained to
predict regime change (yes/no) at the end of an or-
bit;
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2. clustering: the database is divided in two parts ac-
cording to regime change (yes/no) and a clustering
algorithm is applied on each one, with the number
of clusters furnished by the user;

3. determination of output classes: a decision algo-
rithm is used to obtain the output classes, charac-
terized by intervals on the number of orbits a sys-
tem will remain in the alternative (respec. present)
regime in case it changes (respec. does not change)
regimes at the end of an orbit;

4. final classification: a classifier is trained using the
classes obtained in the previous phase.

For different types of chaotic systems, the definition
above has to be slightly changed. In the coupled three-
waves problem [7, 22, 24], for instance, the output are
intervals of elapsed time steps before regime change in-
stead of the number of orbits.

The first and second phases of the proposed proce-
dure could be a single one, i.e. the clustering would be
performed with both negative and positive outputs, but
experiments in [29] indicate that the hierarchical pro-
cess with the dichotomous classification occurring prior
to clustering provides superior overall results.

In the second phase, a clustering algorithm is applied
separately on the positive and negative outputs database.
At the end of the clustering process, each point in the
training data is assigned to a cluster in the associated
database. Figure 4 depicts the distribution of elements
with positive outputs of a dataset with three clusters.
This figure shows that the clustering procedure itself
may be unable to partition the number of (either positive
or negative) outputs in interval classes in a straightfor-
ward manner.

In the third phase, a decision procedure derives the in-
terval classes from the clusters. One can obtain the inter-
val classes from the clusters by simply optimizing accu-
racy, as done in [29]. Here, however, we are specifically
interested in interval classes, which are such that the
positive (respec. negative) prototypical outputs P (re-
spec. N ) furnished by the user fall in different classes.
Here the non-prototypical outputs are then allocated to
the clusters so as to maximize global accuracy, but en-
suring the three constraints: i) there exists one prototype
per class and ii) the classes partition the output space
and iii) each class is an interval (the classes are con-
tiguous). For example, let us consider the distribution
of elements with positive outputs of a dataset with three
clusters depicted in Figure 4. If the user choice of proto-
types is P = {1, 3, 5} (respec. P = {2, 4, 6}), the max-
imal accuracy (so that the restrictions are satisfied) is
obtained with classes {{1, 2}, {3}, {4, ..., 12}} (respec.
{{1, 2}, {3, 4}, {5, ..., 12}}).

Once the classes are established in phase 4, the last
phase simply is used to train another classifier to do the
final prediction for regime change/duration.

6. Experiments

Following [10], the breeding method was applied on the
Lorenz model, integrated with time steps ∆t = 0.01,

Figure 4: Distribution of positive outputs in 3 clusters

and a second run started from an initial perturbation
(δx0, δy0, δz0) added to the control at time t0. Here,
however, as in [29], the same perturbation was used in
the subsequent runs.

The data consists in 559 positive (the regime changes)
and 715 negative (the regime does not change) data
points, with 4 input variables (blue, green, yellow
and red) determined by [10], each one accounting for
the number of bred vectors in pre-established intervals
found in a given orbit (see Section 2). We have used
5-fold cross-validation with stratification to verify the
quality of the results.

6.1. Dichotomous classification

In the first phase, we have employed ANFIS and de-
cision trees J48 and NBTree, to classify whether the
regime changes at the end of the present orbit. Table
2 brings the average result for both methods.

Table 2: Dichotomous classification accuracy
J48 ANFIS NBTree

95.44% 94.50% 91.60 %

We see that the results for ANFIS and J48 are similar
and that it is natural to expect at least a 5% overall error
from the whole procedure. Note that the results from
this phase do not interfere with the remaining training
process.

6.2. Clusterization and determination of output
classes

Three methods have been used for clustering; k-Means,
FCM and ssFCM. For ssFCM, for each prototype,
20% of the data points having it as output were ran-
domly chosen as seeds. Tables 3, 4 and 5 respec-
tively bring the clusters found using k-Means, FCM
and ssFCM in the 5 folds. The notation for the par-
titioning in the tables has been simplified; for exam-
ple, the sequence [1][2 4][5 12] denotes the partition
{{1}, {2, 3, 4}, {5, 6, 7, 8, 9, 10, 11, 12}}.

For ssFCM, the clusters in all folds separated the data
already in intervals so the classes were derived straight-
forwardly. The decision rule was only used in a few
folds in which either outputs 12 and -12 were absent.
For k-Means and FCM, as expected, due to the ab-
sence of seeds, the clusters did not separate the outputs
straightforwardly and the decision rule had to be used in

1423



all experiments. Nevertheless, the resulting classes ob-
tained in the folds did not differ very much from those
obtained by ssFCM.

Table 3: Classes derived using k-Means
clusters prototypes classes

2 {1, 3} [1] [2 12]
2 {1, 4} [1] [2 12]
3 {1, 3, 5} [1] [2 4] [5 12]

[1 2] [3 4] [5 12]
[1] [2 3] [4 12]

3 {2, 4, 6} [1 3] [4 5] [6 12]
2 {-1, -3} [-1 -2] [-3 -12]
2 {-1, -4} [-1 -2] [-3 -12]
3 {-1, -3, -5} [-1] [-2 -4] [-5 -12]

[-1 -2] [-3 -4] [-5 -12]
3 {-2, -4, -6} [-1 -2] [-3 -5] [-6 -12]

Table 4: Classes derived using FCM
clusters prototypes classes

2 {1, 3} [1] [2 12]
2 {1, 4} [1] [2 12]
3 {1, 3, 5} [1] [2 3] [4 12]
3 {2, 4, 6} [1 3] [4 5] [6 12]
2 {-1, -3} [-1 -2] [-3 -12]
2 {-1, -4} [-1 -2] [-3 -12]
3 {-1, -3, -5} [-1 -2] [-3] [-4 -12]
3 {-2, -4, -6} [-1 -2] [-3] [-4 -12]

[-1 -2] [-3 -4] [-5 -12]
[-1 -3] [-4] [-5 -12]

Table 5: Classes derived using ssFCM
clusters prototypes classes

2 {1, 3} [1] [2 12]
2 {1, 4} [1 2] [3 12]
3 {1, 3, 5} [1] [2 4] [5 12]
3 {2, 4, 6} [1 3] [4 5] [6 12]
2 {-1, -3} [-1 -2] [-3 -12]
2 {-1, -4} [-1 -2] [-3 -12]
3 {-1, -3, -5} [-1] [-2 -3] [-4 -12]
3 {-2, -4, -6} [-1 -2] [-3 -5] [-6 -12]

6.3. Final classification

Algorithms J48, NBTree and ANFIS were applied using
the classes obtained by all of our clustering methods (k-
Means, FCM and ssFCM). The average results for this
phase are shown in Tables 6, 7 and 8.

In Tables 6, 7 and 8, we see that, for the configura-
tions used, ANFIS has the lowest average accuracy for
all sets of prototypes and that J48 fares usually better
than NBTree. The highest average accuracy in all ex-
periments is obtained by NBTree for prototypes {1, 4}
using ssFCM for clustering (95.18 %).

Table 6: Accuracy for k-Means derived classes (%)
clusters prototypes J48 ANFIS NBTree

2 {1, 3} 92.12 90.32 89.80
2 {1, 4} 92.12 88.18 89.80
3 {1, 3, 5} 88.31 82.26 83.89
3 {2, 4, 6} 92.12 86.57 88.90
2 {-1, -3} 88.96 84.77 88.69
2 {-1, -4} 88.96 81.14 88.69
3 {-1, -3, -5} 78.56 69.22 74.54
3 {-2, -4, -6} 82.96 75.97 83.10

Table 7: Accuracy for FCM derived classes (%)
clusters prototypes J48 ANFIS NBTree

2 {1, 3} 92.12 90.16 89.80
2 {1, 4} 92.12 90.16 89.80
3 {1, 3, 5} 85,81 82.82 84.79
3 {2, 4, 6} 92.12 86.58 88.90
2 {-1, -3} 88.96 77.62 88.69
2 {-1, -4} 90.36 77.62 88.69
3 {-1, -3, -5} 80.70 76.78 80.56
3 {-2, -4, -6} 81.11 58.46 80.56

Table 8: Accuracy for ssFCM derived classes (%)
clusters prototypes J48 ANFIS NBTree

2 {1, 3} 92.12 90.16 89.67
2 {1, 4} 93.73 87.83 95.18
3 {1, 3, 5} 88.01 85.50 82.11
3 {2, 4, 6} 92.12 86.58 88.90
2 {-1, -3} 88.96 77.62 87.85
2 {-1, -4} 90.36 77.62 89.79
3 {-1, -3, -5} 78.35 67.41 76.67
3 {-2, -4, -6} 82.96 79.86 83.10

In general, ssFCM fared slightly better than k-Means
and FCM, having obtained the highest scores in 6 out of
8 experiments (against 5 out of 8 for both k-Means and
FCM).

6.4. Computational issues

FCM and ANFIS were run in an Intel Core I5 2.27 GHz,
under Linux operating system, using MATLAB plat-
form. K-Means, J48 and NBTree were run using Weka
Plataform, while we used a ssFCM implementation in
Java. Executions of NBTree algorithm were performed
in an Intel Core I3 3.07 GHz, under Windows 7 oper-
ating systems. Executions of K-Means, J48 and ssFCM
were run in an AMD Phenom II 3.2Ghz with 4GB, under
Windows 7 operation system.

Table 9 brings the clustering time (means and stan-
dard deviation) for algorithms k-Means, FCM, and ss-
FCM. Tables 10, 11 and 12 bring the classification
time (means and standard deviation) with classes de-
rived from clusters obtained by k-Means, FCM, and ss-
FCM, respectively. All values refer to training and test
altogether. We see in these tables that the adopted pro-
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cedures presented low cost for the Lorenz dataset. In
what regards clustering, semi-supervised technique ss-
FCM is as fast as unsupervised k-Means (FCM cannot
be properly compared to these algorithms since another
machine was used to get the results). As for classifi-
cation, J48 is much faster than NBTree (ANFIS cannot
be properly compared to these algorithms since another
machine was used to get the results).

Table 9: Time statistics (in seconds) for clustering:
means (standard deviation)

clst. proto. k-Means FCM ssFCM
2 {1, 3} 0.02 (0.01) 0.11 (0.03) 0.01 (0.01)
2 {1, 4} 0.02 (0.01) 0.10 (0.00) 0.02 (0.01)
3 {1, 3, 5} 0.01 (0.00) 0.16 (0.05) 0.03 (0.01)
3 {2, 4, 6} 0.01 (0.00) 0.14 (0.03) 0.03 (0.03)
2 {-1, -3} 0.02 (0.02) 0.10 (0.00) 0.02 (0.01)
2 {-1, -4} 0.02 (0.02) 0.11 (0.01) 0.02 (0.01)
3 {-1, -3, -5} 0.02 (0.01) 0.15 (0.02) 0.02 (0.01)
3 {-2, -4, -6} 0.02 (0.01) 0.13 (0.00) 0.02 (0.01)

Table 10: Time statistics (in seconds) for processing
classes derived by k-Means: means (standard deviation)

clusters prototypes J48 ANFIS NBTree
2 {1, 3} 0.02 (0.01) 12.48 (0.12) 0.24 (0.09)
2 {1, 4} 0.02 (0.01) 12.72 (0.39) 0.31 (0.19)
3 {1, 3, 5} 0.01 (0.00) 13.05 (0.65) 0.52 (0.10)
3 {2, 4, 6} 0.01 (0.00) 12.49 (0.19) 0.35 (0.13)
2 {-1, -3} 0.02 (0.02) 15.91 (0.10) 0.44 (0.08)
2 {-1, -4} 0.02 (0.02) 16.03 (0.43) 0.45 (0.12)
3 {-1, -3, -5} 0.02 (0.01) 15.64 (0.13) 0.39 (0.16)
3 {-2, -4, -6} 0.02 (0.01) 15.73 (0.07) 0.25 (0.08)

Table 11: Time statistics (in seconds) for processing
classes derived by FCM: means (standard deviation)

clusters prototypes J48 ANFIS NBTree
2 {1, 3} 0.00 (0.00) 13.27 (0.08) 0.52 (0.34)
2 {1, 4} 0.00 (0.00) 13.27 (0.08) 0.24 (0.11)
3 {1, 3, 5} 0.01 (0.00) 12.09 (0.29) 0.54 (0.18)
3 {2, 4, 6} 0.00 (0.00) 12.34 (0.03) 0.28 (0.06)
2 {-1, -3} 0.00 (0.00) 16.21 (0.20) 0.43 (0.11)
2 {-1, -4} 0.00 (0.00) 16.21 (0.20) 0.49 (0.19)
3 {-1, -3, -5} 0.00 (0.01) 16.46 (0.32) 0.15 (0.08)
3 {-2, -4, -6} 0.01 (0.00) 12.33 (0.02) 0.39 (0.26)

Table 12: Time statistics (in seconds) for processing
classes derived by ssFCM: means (standard deviation)

clusters prototypes J48 ANFIS NBTree
2 {1, 3} 0.01 (0.01) 13.27 (0.08) 0.22 (0.08)
2 {1, 4} 0.00 (0.00) 13.48 (0.13) 0.12 (0.04)
3 {1, 3, 5} 0.01 (0.00) 12.00 (0.03) 0.21 (0.05)
3 {2, 4, 6} 0.00 (0.01) 12.34 (0.03) 0.16 (0.03)
2 {-1, -3} 0.01 (0.01) 16.21 (0.20) 0.20 (0.03)
2 {-1, -4} 0.01 (0.00) 16.21 (0.20) 0.18 (0.04)
3 {-1, -3, -5} 0.01 (0.01) 16.37 (0.04) 0.24 (0.06)
3 {-2, -4, -6} 0.01 (0.01) 16.37 (0.08) 0.13 (0.01)

7. Conclusions and future work

We have proposed a procedure for the construction
of a classification model for prediction of regime
change/duration in chaotic systems, built around a set of
output prototypes furnished by the user. In this proce-
dure, first a classification algorithm is trained to make
a first dichotomous prediction about regime change
(yes/no), then a clustering algorithm is used to determine
the boundaries for the classes, using the prototypes fur-
nished by the user, and a last classification algorithm is
trained to make the final prediction of regime duration.
The goal of this approach is to allow the exact bound-
aries between classes to emerge from the data, as long
as prototypical values fall in distinct classes, aiming at
satisfying the user needs while obtaining gains in accu-
racy and/or interpretability.

We have applied the proposed procedure on Lorenz
strange attractor [23], using the breeding vector method
to derive the input variables. The main focus of this
work is the comparison between unsupervised and semi-
supervised fuzzy clustering techniques. For that, we
have used algorithms k-Means [6] and Fuzzy C-Means
(FCM) [5] as well as Semi-Supervised Fuzzy C-Means
(ssFCM) [4, 26], along with a decision rule to guarantee
that the resulting output classes are intervals. To make
the first and the last classification, we have used decision
tree C4.5 [28] by means of its Weka implementation J48
[34], decision tree NBTree [19] and neuro-fuzzy system
ANFIS [30].

The results have shown that the proposed approach
(dichotomous classification followed by clustering fol-
lowed by final classification) is overall very promising,
having produced good results with all techniques used,
with semi-supervised clustering yielding slightly better
accuracy in general than k-Means and FCM.

As future work, we intend to test the proposed proce-
dure in other problems, such as the coupled three-waves
problem [7, 22, 24]. We also intend to study the impact
of the proposed in terms of rule interpretability, both in
terms of the methods used here but also in other, such as
those employing Mamdani-based neuro-fuzzy systems
[11].
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