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Synchronization versus neighborhood similarity in complex networks of nonidentical oscillators
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Does the assignment order of a fixed collection of slightly distinct subsystems into given communication
channels influence the overall ensemble behavior? We discuss this question in the context of complex networks of
nonidentical interacting oscillators. Three types of connection configurations are considered: Similar, Dissimilar,
and Neutral patterns. These different groups correspond, respectively, to oscillators alike, distinct, and indifferent
relative to their neighbors. To construct such scenarios we define a vertex-weighted graph measure, the total
dissonance, which comprises the sum of the dissonances between all neighbor oscillators in the network. Our
numerical simulations show that the more homogeneous a network, the higher tend to be both the coupling
strength required for phase locking and the associated final phase configuration spread over the circle. On the
other hand, the initial spread of partial synchronization occurs faster for Similar patterns in comparison to
Dissimilar ones, while neutral patterns are an intermediate situation between both extremes.
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I. INTRODUCTION

Some social and biological studies about multiagents
reveal that units tend to select similar peers with which to
interact [1,2]. However, there are systems which behave in
an opposite manner, where their components preferentially
choose to connect themselves to others with some distinct inner
characteristics [3]. In fact, nature seems to favor the former
or the latter construction, which we respectively call Similar
or Dissimilar (neighborhood) patterns, to achieve different
agendas [4]. This article explores ideas inspired by these
scenarios within the nonidentical-phase-oscillator Kuramoto
model, which is one of the main paradigms to describe
collective behavior and synchronization [5]. This model is
also interesting because, under weak mutual interaction, it
approximates dynamics of a large class of nonlinear oscillators
near limit cycle [6]. Besides, this is an active research field
with a number of applications from different areas [7–10],
highlighting the fundamental role that synchronization plays.

Our numerical approach is based on a novel vertex-
weighted graph measure: the total dissonance. This quantity
can be regarded as a generalization of the classical concept
of dissonance, that is, the natural frequency difference of two
coupled oscillators [6]. So we define Similar and Dissimilar
patterns as the assignments of nonidentical oscillators into
the coupling graph which yield, respectively, significantly
lower and higher total dissonance values. Otherwise, if a
pattern has no strong bias related to this quantifier, then we
call it Neutral. Given a fixed choice of inner properties for
each oscillator and a fixed coupling graph, we search for
Similar and Dissimilar patterns via an optimization algorithm
interchanging oscillator’s positions into the graph nodes.
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Clearly, oscillator swapping over nodes of fully coupled
networks have no influence over synchronization, since they
can be solely seeing as an index reordering. We focus in
this work on networks whose quantity of edges is much
smaller than the all-to-all case. Regular, scale-free, random,
small-world, and community networks are considered [11] to
provide evidence about the ubiquity of our argument. Finally,
massive numerical simulations are performed to grasp the
influence of these three different neighborhood patterns over
phase-synchronization quantifiers.

About related material, Refs. [12] and [13], respectively,
explore first- and second-order Kuramoto model versions,
both including local correlations between oscillator’s natural
frequency and node degree. They report an explosive syn-
chronization in the first case and cascade synchronization,
according to the node degree, in the second. Our methodology
introduces a diverse relationship between natural frequencies
and coupling graph, as will be discussed and illustrated in the
text.

Optimization studies also have laid the foundation for
our research. In Ref. [14], an algorithm is proposed to
construct optimized networks related to a combination of
local and global synchronization measures. Their objective
function is computed and refined after successive numerical
integrations. Although we follow a different approach, we
point out that our results also support that “the early onset
of synchronization and rapid transition to the phase-lock
are conflicting demands on the network topology” [14].
Reference [15] associates a percolation process to the spread of
synchronization. In addition, they consider node interchange in
the graph based on a vertex-weighted graph measure. However,
their characterization takes into account only the phase sign of
neighbor oscillator. Even so, we also found a similar explosive
synchronization.

It is common sense that a way to achieve more homo-
geneous neighborhood patterns is to gather members with
closer intrinsic dynamics into communities. Thus, articles
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that investigate this framework can also benefit from our
findings. Reference [16] addresses a Kuramoto model of
identical oscillators showing that, as the transient time dies
out, synchronization occurs in stages matching the granular
communities of the coupling graph. Reference [17] deals
with communities of oscillators having essentially different
natural frequencies. The authors of this paper discuss ways to
promote or suppress synchrony on individual subgroups. Ref-
erence [18] introduces a dynamic feedback control to produce
intracommunities synchronization regarding communities of
identical nonlinear oscillators. Accordingly, Similar, Neutral,
and Dissimilar patterns can be used as an additional tool to
tune synchronization properties.

II. MODEL AND METRICS

We consider a system of N phase oscillators, whose
dynamics for the ith oscillator is

θ̇i = Wi + ε

di

N∑
j=1

Aij sin θj − θi, (1)

where W = W1, . . . ,WN ∈ RN are the oscillator’s natural
frequencies. We consider W with zero mean [19], randomly
drawn from the uniform distribution over [−π,π ]. A single
choice of W is drawn for each network size N studied.

The coupling strength ε � 0 is the system parameter
that adjusts the intensity of attractiveness between neighbor
oscillators. The symmetrical coupling graph is expressed
by its adjacency N × N matrix A, so Aii = 0; Aij = 1 if
oscillators i,j are neighbors (adjacent), and Aij = 0 otherwise.
We assume connected graphs, meaning that there is a sequence
of edges joining any two vertexes in the graph. Also, di :=∑N

j Aij stands for the ith vertex degree. The Laplacian matrix
is defined as L := diag d1, . . . ,dN − A and its eigenvalues are
0 = λ1 � λ2 � . . . � λN . The first nontrivial eigenvalue λ2,
the algebraic connectivity, is greater than zero if and only if
the graph is connected [20].

On one hand, analytical results [21] guarantee convergence
to a unique (modulus 2π ) stable phase-locked regime, where
phase differences between every two oscillators becomes
constant. Precisely, this convergence occurs if the coupling
strength ε is large enough in comparison with ‖W‖λN/λ2

2,
where ‖.‖ denotes the Euclidean norm in RN . Because λ2

increases when the graph diameter D is decreased and λN

decreases with its maximum degree dmax [22], phase locking
can be achieved for smaller values of ε mostly with the
reduction of D but also with smaller values of ‖W‖ and dmax.
On the other hand, if we consider a system with only two
phase oscillators, then it is well known [6] that the relation
between its dissonance ν := W1 − W2 versus the coupling
strength ε determines the synchronization regime [23]. So we
introduce the total dissonance measure for vertex-weighted
graphs as

νTotal := 1

N

√√√√ N∑
i,j=1

AijWi − Wj
2. (2)

Since we consider symmetrical and connected coupling
graphs, it is straightforward to check that νTotal = 0 if and

only if all oscillator are identical. If we write νTotal = νTotalW ,
then this measure quantifies how far W is from a condition
where all natural frequencies are identical. Therefore, νTotal

encompasses information about the total spreading of W by
summing up individual dissonances over the coupling graph
edges.

The norm of the global mean field, the order parameter, will
be denoted by Rθ = |1/N

∑N
i=1 eiθi |. This quantity R ranges

from 0 to 1, respectively, indicating that the ensemble gradually
changes from null global mean field, where all phasors eiθi

cancel out, to full synchronization, where θ1 = . . . = θN . One
also makes use of the edge partial synchronization index
between two oscillators i,j ,

Sij = Sji :=
∣∣∣∣ lim
�t→∞

1

�t

∫
tr tr + �tei[θi t−θj ]t t

∣∣∣∣,
where tr is a large enough transient time [24]. Oscillators
i,j are phase locked, that is, θi t − θj t converges to a constant
value if and only if Sij = 1. Moreover, if this index is decreased
towards zero, then weaker forms of synchronization and later
uncorrelated trajectories occur [25]. We average contributions
of all neighbor oscillators in the network to define the partial
synchronization index

S := 1

Ẽ

N∑
i,j=1

AijSij , (3)

where Ẽ := ∑N
i,j=1 Aij is the quantity of directed edges in the

graph. Of course, the number of undirected edges is E := Ẽ/2.
Thus, S = 1 means that the whole ensemble is phase locked,
while S ≈ 0 yields very low coherent ensemble behavior. Note
that R[θt] converges to a constant value [26] if and only if
S = 1.

An Adams-Bashforth-Moulton method for numerical inte-
gration is applied. A transient time of at least 2 × 103 units
of time was suppressed from the data, while the convergence
of approximations of S over successive time windows of 103

units of time was the criterion to interrupt the integration. The
mean value of R[θ (t)] after the transient is denoted by 〈R〉.
For a given choice of parameters and initial conditions, we
indicate by εPL the smallest critical coupling strength ε > 0
inducing phase locking, i.e., S = 1 and R[θt] converges to a
constant value, which we denote by RPL.

Several complex networks topologies [11] with N nodes
and E (undirected) edges are considered: 4-Regular (N
RE), Barabási-Albert (N BA), Erdős-Rényi (N ER), and
Watts-Strogatz [27] (N WS). Experiments with relatively
small networks with N = 50 are performed for the sake
of easy visualization. Larger ones, with N = 500, are also
addressed to illustrate graphs closer to the theoretical degree
distribution [11], yet feasible to massive numerical integration.
To diminish computational cost and to allow comparison
among network topologies, we consider graphs with Ẽ =
4N directed edges, which yields mean node degree 〈d〉 =
Ẽ/N = 4.

An empirical example of complex network with community
structure, denoted by 105 CO, is included in the simulations:
the Krebs-Amazon Political Books network [28]. This graph
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FIG. 1. Examples of Similar, Neutral, and Dissimilar patterns
related to N -node graphs following network topology: 4-Regular (N
RE); Barabási-Albert (N BA), with E = 100 edges and a community
graph (N CO) with E = 441. Vertex color is presented according to its
natural frequency Wi , ranging from −π (black) to π (white); vertex
size is proportional to node degree. The associate total dissonance
νTotal is displayed.

comprises N = 105 nodes, Ẽ = 882 edges, and two commu-
nities.

Our aim now is to make precise the subjective idea of
Similar, Neutral, and Dissimilar patterns based on member’s
local choice of neighbors. Only oscillator swapping among the
graph nodes are taken into account. Similar patterns should
place oscillators alike into adjacent graph nodes. Thus, a way
to achieve it for RE networks is to assign extreme natural
frequency values, close to ±π , as far as possible in the graph,
filling intermediate nodes with gradual values ofWi ; see Fig. 1
(50 RE Similar).

To consolidate this concept for more general network
topologies, a numerical procedure is chosen as a definition. We
will call the Similar configuration the permutation obtained by
minimizing the objective function νTotalW , which corresponds
to minimize the dissonance Wi − Wj over all edges i,j of the
graph. In contradistinction, Dissimilar configurations will be
associated with maximization of the total dissonance. For this
purpose, a simulated annealing optimization method (SA) [29]
is employed to track permutations of W towards optimal
solutions [30].

The reader must be aware that although the SA returns
permutations enhancing the objective function value, this is
a stochastic scheme, which means that only with infinite
iterations one could expect to achieve the global optima
regarding all N ! permutations. Nevertheless, whether these

numerical approximations of the total dissonance νTotalW
values are the global extremes values is not strictly relevant to
our analysis.

Medium to large networks with a quantity of edges much
smaller than the fully coupled case are the focus of the
present study. Therefore, an initial random assignment of
W into the graph nodes, without any optimization process,
will be called a neutral configuration. We take this approach
by simplicity, because the total number of permutations N !
becomes so massive that the probability of randomly drawing
a permutation such that νTotal is close to the extreme values is
very small, as is numerically confirmed bellow.

In conclusion, we derive from each pair A,W the Neutral
configuration, without optimization, and the Similar and
Dissimilar ones by means of numerical minimization and
maximization of νTotalW [31], respectively. We defer to future
research the study of other values of this metric, between
Similar-Neutral and Neutral-Dissimilar, versus synchroniza-
tion features.

Figure 1 illustrates RE, BA, and CO graphs with the
three neighborhood patterns. As expected, from the RE graph
with Similar configuration of this figure, one realizes a
homogeneous transition of Wi values. Each node presents
indeed natural frequency close to the respective average of its
neighbors. However, this ordering arises differently depending
on the network topology. Hubs of the BA graph were colored
with medium gray tones, corresponding to the overall mean of
natural frequency distribution. But in the CO graph, positive
and negative natural frequency values were placed into distinct
communities, with hubs close to ±π/2 and central nodes (in
between communities) close to null Wi .

Regarding the Dissimilar configurations from Fig. 1, the
opposite organization is found: each node receives natural
frequency far from its neighbors. For the RE network, we
notice sequences of connected nodes with alternating positive
and negatives values of Wi . Moreover, BA and CO graphs
presented connected hubs with larger natural frequencies
and opposite signs. Eventually, the Neutral configuration
can be regarded as a blending between both previous
configurations.

We randomly generate and include in our experiments 100
graphs of BA, ER, and WS network topologies in the next
experiments. Since RE topology is deterministic and the CO
graph was extracted from a data set, these classes contain a
single member to be analyzed.

Figure 2 displays a distribution chart of the total dissonances
νTotal obtained for the categories included in this article.
From this figure, a sharp distinction among patterns is
noticed, since there is no νTotal range overlapping within each
category. Although this three-cluster structure arose from our
data dealing with a variety of networks, it depends on the
network size, topology, and suitable optimization algorithm.
For instance, if the optimization output were not sufficiently
far from the mean of the total dissonance distribution, then
these patterns would have no meaning.

The set of graphs with N = 500 presented values of νTotal

3 times smaller than the set with N = 50. Furthermore, both
sets were qualitatively alike, which is an evidence that we were
capable to produce Similar and Dissimilar neighborhoods in
the large networks, at least as well as the small ones.
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FIG. 2. Total Dissonance νTotal distribution chart of different
topologies with Similar (light gray), Neutral (gray), and Dissimilar
(black) patterns. Data correspond to the single members from
categories 50 RE, 500 RE, and 105 CO and 100 different elements for
the others. Colored bars indicate the overall range of νTotal obtained,
while mean values of each distribution are joined by a black line
within each category.

Because there is only a normalization by the number of
vertexes in the graph, but not by the quantity of edges, in
Eq. (2), the total dissonance decreases with smaller mean
degrees in all categories as expected [32]. BA, ER, and WS
topologies were almost indistinguishable in the Neutral pattern
but were slightly higher in this order for the Dissimilar case.
All patterns of 50 RE and 105 CO graphs yielded smaller but
comparable with each other total dissonance values.

We use notation and also denote by S, 〈R〉, εPL, and RPL the
associated mean values of these synchronization quantifiers
considering all graphs of each category. A fixed random
choice of initial condition θ0 ∈ RN is drawn from a uniform
distribution over the unit circle for each network size N . So
Fig. 3 displays the values of S and 〈R〉, as solid and dashed
lines, respectively, obtained through numerical integration for
the three neighborhood configurations colored like in Fig. 2.
The time variable of both S and 〈R〉 times series are rescaled
to end at the associated mean critical coupling value εPL. The
S lines finish at value 1, within the numerical tolerance, while

the final value of 〈R〉 lines equal to the mean critical order
parameter RPL.

First, one focus on the phase-locking measures εPL and
RPL. Irrespective to network size, overall results were alike.
In general, εPL decreases from Similar, Neutral, to Dissimilar
patterns; while RPL tend to increase in the same ordering.
In all topologies, Similar cases demanded higher coupling
strength to achieve phase locking. In particular, since this
holds true even for RE networks, it shows that total dissonance
patterns induce a different phenomenon than the ones from
Refs. [12,13].

Moreover, even when these networks were phase locked,
R converged to smaller values of RPL. In other words, Similar
ensembles tend to be harder to synchronize and to converge
to regimes where oscillators were more spread around the unit
circle than their counterparts. Neutral patterns required smaller
εPL than Dissimilar ones. RE graphs were the only exception
for these behavior of RPL.

For all topologies, higher values of εPL were measured when
N was multiplied by 10. On the other hand, larger networks
yielded higher RPL for Similar and Neutral neighborhoods but
slightly smaller RPL for Dissimilar ones.

At this point, the influence of Similar, Neutral, and Dissim-
ilar patterns over the emergence of phase synchronization is
investigated, especially related to coupling strengths ε much
smaller than εPL.

Again, except for RE graphs, we verify that Similar patterns
favor weaker synchronization regimes, since the initial growth
of S and 〈R〉 for small coupling strength ε is more prominent.
However, beyond intermediate values of ε, Dissimilar patterns
surpass the Similar ones through an abrupt transition. The
Neutral case is between these two extremes, closer to the
behavior of the Dissimilar group. If we compare network
topologies, BA and ER graphs displayed close values of S,
which were smaller than WS ones for small and intermediate
values of ε.

A parallel of our findings could be made by considering
conflicting ideas, associating communication and agreement
with the emergence of synchronization and phaselocking,

FIG. 3. Mean order parameter after transient 〈R〉 and partial synchronization index S, solid and dashed lines respectively, as a function of
coupling strength ε for different graph topologies. Average values of all graphs simulated within each category are shown. Similar, Neutral,
and Dissimilar cases are respectively plotted in light gray, gray, and black. Lines are drawn to ε equal to the respective average critical phase
locking εPL.
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respectively. In Similar scenarios, interaction mostly occurs
among people with closely related culture backgrounds. Thus,
communication can easily spread locally, but the overall
population, which contains diverse members, will hardly find a
compromise. On the other hand, when networks contain more
heterogeneous neighbors, as in the Neutral and Dissimilar
cases, communication demands higher effort to be established.
But after that, the whole ensemble is capable to rapidly reach
consensus.

In summary, experiments with several network topologies
were analyzed and a strong numerical trend was found. The
Neutral case behaves in general between both extremes, closer
to the Dissimilar case. Except for RE networks, under small
coupling strength ε, Similar patterns yield larger values of

partial synchronization index S, meaning early synchroniza-
tion ongoing. In contradistinction, Dissimilar ones present
smaller values of S but undergo abrupt increment until phase
locking. Moreover, all networks with Similar patterns required
higher values of coupling strength to achieve phase locking,
while Dissimilar patterns converged to regimes closer to full
synchronization.
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