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ABSTRACT

We present here the linear regime of the Einstein’s field equations in the
characteristic formulation. Through a simple decomposition of the metric variables
in spin-weighted spherical harmonics, the field equations are expressed as a system
of coupled ordinary differential equations. The process for decoupling them leads
to a simple equation for J - one of the Bondi-Sachs metric variables - known in
the literature as the master equation. Then, this last equation is solved in terms of
Bessel’s functions of the first kind for the Minkowski’s background, and in terms of
the Heun’s function in the Schwarzschild’s case. In addition, when a matter source
is considered, the boundary conditions across the time-like world tubes bounding
the source are taken into account. These boundary conditions are computed for
all multipole modes. Some examples as the point particle binaries in circular and
eccentric orbits, in the Minkowski’s background are shown as particular cases of this
formalism.

Keywords: General Relativity. Characteristic Formalism. Gravitational Waves.
Linear Regime.
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NO REGIME LINEAR DA FORMULACAO CARACTERISTICA DA
RELATIVIDADE GERAL NOS FUNDOS DE MINKOWSKI E DE
SCHWARZSCHILD

RESUMO

Nos apresentamos aqui o regime linear das equagoes de campo de Einstein na
formulagao caracteristica. Através de uma decomposicao simples das variaveis
métricas em harmonicos esféricos com peso de spin, as equagoes de campo sao
expressas como um sistema de equagoes diferenciais ordinarias acopladas. O processo
de desacopléa-las leva a uma equacao para J - uma das variaveis da métrica de Bondi-
Sachs - conhecida na literatura como equacao mestre. Entao, esta ultima equacio é
resolvida em termos de fungoes de Bessel do primeiro tipo para o fundo de Minkowski
e em termos de func¢oes de Heun no caso de Schwarzschild. Além disso, quando uma
fonte é considerada, as condig¢oes de contorno através do tubo de mundo limitando
a fonte é levada em conta. Essas condi¢des de contorno sao calculadas para todos os
modos multipolares. Alguns exemplos como binarias em orbita circular e excéntrica
no fundo de Minkowski sdo mostrados como casos particulares deste formalismo.

Palavras-chave: Relatividade  Geral. Formalismo  Caracteristico.  Ondas
Gravitationais. Regime Linear.
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1 INTRODUCTION

The high complexity of the Einstein’s field equations, given their non-linearity, makes
impossible to find analytical solutions valid for all gravitational systems. However,
in addition to the exact solutions, which are valid for some restricted geometries
and situations, the perturbative methods and the numerical relativity are two of
the most promising ways to solve the Einstein’s field equations in presence of strong

gravitational fields in a wide variety of matter configurations.

The holy grail of numerical relativity is to obtain the gravitational radiation patterns
produced by black hole - black hole (BH-BH), neutron star - neutron star (NS-NS)
or neutron star - black hole (NS-BH) binary systems, because of their relevance in
astrophysics. Actually, there are highly accurate and strongly convergent numerical
codes, capable of performing simulations of binaries taking into account the mass
and momentum transfer (FABER et al., 2006; LEHNER; PRETORIUS, 2014; KYUTOKU
et al.,, 2015), the hydrodynamic evolution (TANIGUCHI et al., 2005; BAUMGARTE et al.,
2013; MONTERO et al., 2014), the magneto-hydrodynamic evolution (FONT, 2008),
the electromagnetic and gravitational signatures produced by binaries (PALENZUELA
et al., 2013b; PALENZUELA et al., 2013a; KYUTOKU et al., 2015); and recently, the spin-
spin and the spin-orbit interactions in binary systems have been also studied (DAIN
et al., 2008; TORIO, 2012; ZLOCHOWER; LOUSTO, 2015).

All these advances were possible thanks to the Lichnerowicz, Choquet-Bruhat and
Geroch works (LICHNEROWICZ, 1944; FOURES-BRUHAT, 1952; CHOQUET-BRUHAT;
GEROCH, 1969), which opened the possibility to evolve a space-time from a
set of initial data; putting the principles of the Initial Value Problem (IVP)
(GOURGOULHON, 2007; ALCUBIERRE, 2008; BAUMGARTE; SHAPIRO, 2010) and
checking that this is a local and a global well-posed problem, that are necessary

conditions to guarantee stable numerical evolutions.

A different point of view to carry out the evolution of a given space-time was
proposed by Bondi et. al. in the 1960s decade (BONDI et al., 1962; SACHS, 1962). They
studied the problem of evolving a given metric, from the specification of it and its
first derivatives, by using the radiation coordinates, assuming that the initial data is
given on a null initial hypersurface and on a prescribed time-like world tube. This is
known as the Characteristic Initial Value Problem (CIVP) (STEWART; FRIEDRICH,
1982) and was effectively proved as a well-posed problem when the field equations
are written in terms only of first-order derivatives (FRITTELLI, 2005).



In the literature, there are essentially three possible ways to evolve space-times and
sources from a specific initial data, see e. g. (COOK, 2000; LEHNER, 2001; MARTT;
MULLER, 2003; GUNDLACH; MARTIN-GARCIA, 2007; WINICOUR, 2012; CARDOSO
et al., 2015) for detailed descriptions and status of the formalisms available in
numerical relativity. The first one is the Regge calculus, in which the space-
time is decomposed in a network of 4-dimensional flat simplices.! The Riemann
tensor and consequently the field equations are expressed in a discrete version
of such atomic structures. It extends the calculus to the most general spaces
than differentiable manifolds (REGGE, 1961). The second are the Arnowitt-Deser-
Misner (ADM) based formulations in which the space-time is foliated into space-
like hypersurfaces which are locally orthogonal to the tangent vectors of a central
time-like geodesic (ARNOWITT et al., 1959; ARNOWITT et al., 1960a; ARNOWITT et al.,
1960b; YORK JR., 1971; YORK JR., 1979). The third are the characteristic formalisms,
which are based on the Bondi et. al. works in which the space-time is foliated into null
cones emanated from a central time-like geodesic or a world tube, and hypersurfaces
that are related to the unit sphere through diffeomorphisms (BONDI et al., 1962;
SACHS, 1962; WINICOUR, 1983; WINICOUR, 1984; WINICOUR, 2012).

Most of the recent work have been constructed using the ADM formalisms,? whereas
the null cone formalisms are less known. One of the biggest problems in these last
formulations is their mathematical complexity. However, these formalisms result
particularly useful for constructing waveform extraction schemes, because they are
based on radiation coordinates. Impressive advances in the characteristic formulation
have been carried out recently, in particular in the development of matching
algorithms, which evolving from the Cauchy-Characteristic-Extraction (CCE) to
the Cauchy-Characteristic-Matching (CCM) (BISHOP et al., 1996; BISHOP et al., 2005;
REISSWIG et al., 2007; BABIUC et al., 2009; BABIUC et al., 2011; REISSWIG et al., 2011).

A cumbersome aspect of the null-cone formulation is the formation of caustics in
the non-linear regime, because at these points the coordinates are meaningless.
The caustics are formed when the congruences of light beams bend, focusing and
forming points where the coordinate system is not well defined. This problem is not

present in the CCM algorithms because the characteristic evolution is performed

ISimplices (Simplexes) are the generalisation of triangles for bi-dimensional and tetrahedron for
three-dimensional spaces to four or more dimensional spaces. In the Regge calculus these simplices
are supposed flat and the curvature is given just at the vertices of the structure, just like when a
sphere is covered using flat triangles.

2These formalisms are known also as 341 because of the form in which the field equations are
decomposed.



for the vacuum, where the light beams not bend outside of the time-like world
tube (WINICOUR, 2012). Therefore, the characteristic evolutions have been usually
performed only for the vacuum, considering the sources as bounded by such time-
like hypersurface. Inside of the time-like world tube, the matter is evolved from the
conservation laws. However, there are some works in which the gravitational collapse
of scalar fields, massive or not, are performed using only characteristic schemes,
but obeying restrictive geometries and taking into account the no-development
of caustics (GOMEZ et al., 2007; BARRETO, 2014a; BARRETO, 2014b). At this
point it is worth mentioning that the finite difference schemes are not the unique
methods to solve efficiently the Einstein’s field equations. There are significative
advances in the spectral methods applied to the characteristic formulation using the
Galerkin method, see e.g. (RODRIGUES, 2008; LINHARES; OLIVEIRA, 2007; OLIVEIRA;
RODRIGUES, 2008; OLIVEIRA; RODRIGUES, 2011)

One way to calibrate these complex and accurate codes is to make tests of validity in
much simpler systems and geometries than those used in such kind of simulations. In
order to do so, toy models for these codes can be obtained with the linear version of
the field equations. Depending on the background, the linearised equations can lead
to several regimes of validity. One example of this is that the linear regime of the field
equations on a Minkowski or on a Schwarzschild’s background leads to waveforms
and behaviours of the gravitational fields completely different. There is a great
quantity of possibilities to perform approximations to the field equations. Among
them, there are different orders of the Post-Newtonian approximations, the post-
Minkowskian approximations, the approximations using spectral decompositions,

and so on.

Despite lack of real physical meaning near to the sources, the linear approximations
of the characteristic formulation of general relativity exhibit an interesting point of
view even from the theoretical perspective. It is possible to construct exact solutions
to the Einstein’s field equations for these space-times in a easy way. It allows us
to reproduce at first approximation some interesting features of simple radiative
systems. In the weak field limit, it is possible to write the field equations as a system

of coupled ordinary differential equations, that can be easily solved analytically.

Here we present exact solutions for space-times resulting from small perturbations
to the Minkowski and Schwarzschild’s space-times. Also, we construct three simple
toy models, a thin shell, a circular point particle binary system of unequal masses,

and a generalisation to this last model including eccentricity. These gravitational



radiating systems were treated and solved from the formalism developed from
the perturbations for the metrics mentioned above. In order to present that,
perturbations to a generic space-time at first and higher order are shown in chapter
2. Gravitational wave equations for these orders are obtained as well as their
respective eikonal equations. Additionally, chapter 2 introduces the Green functions
and the multipolar expansion. In chapter 3, the eth formalism is explained in detail,
separately from the characteristic formulation. It is an efficient method to regularise
angular derivative operators. The spin-weighted spherical harmonics are introduced
from the usual harmonics through successive applications of the eth derivatives.
In chapter 4 the initial value problem, the ADM formulation and the outgoing
characteristic formalism with and without eth expressions are shown. In chapter 5
the linear regime in the outgoing characteristic formulation is obtained, the field
equations are simplified and solved analytically. In order to do that a differential
equation (the master equation) for J, a Bondi-Sachs variable, is found. This equation
is solved for the Minkowski (Schwarzschild) background in terms of Hypergeometric
(Heun) functions. Finally in chapter 6, two examples are presented, the point particle
binaries without and with eccentricity. At the end, the conclusions and some final

considerations are discussed.



2 LINEAR REGIME OF THE EINSTEIN’S FIELD EQUATIONS AND
GRAVITATIONAL WAVES

This chapter explores the linear regime of Einstein’s field equations and the
gravitational waves. In general, the linearisation of the Einstein’s field equations
is performed assuming a flat background (BUONANNO, 2007; CATTANI, 2010a;
CATTANTI, 2010b; CATTANT, 2010c). However, this approximation turns inapplicable
to the cases in which strong fields are involved. Eisenhart in 1926 and Komar in
1957 made perturbations to the metric tensor at the first order showing how the
gravitational waves are propagated away from the sources (REGGE; WHEELER, 1957).
Regge and Wheeler (1957) considered small perturbations in a spherical symmetric
space-time to explore the stability of the Schwarzschild’s solution, obtaining a
radial wave equation in presence of an effective gravitational potential, namely the
Reege-Wheeler equation, which appears for odd-parity perturbations. On the other
hand, Zerilli (1970) made even-parity perturbations obtaining a different radial wave
equation, namely the Zerilli equation obeying a different effective potential. After
that, by using the vector and tensor harmonics, Moncrief extended the Zerilli’s
works to the Reissner-Nordstrom exterior space-time and to stellar models by
using a perfect fluid stress-energy tensor (MONCRIEF, 1974c; MONCRIEF, 1974d;
MONCRIEF, 1974b; MONCRIEF, 1974a). Brill and Hartle (1964) explored the stability
of the Geons, which are objects composed of electromagnetic fields held together
by gravitational attraction in the linear regime of the field equations, off the flat
space-time, but considering spherical symmetry and asymptotically flat space-times.
[saacson found a generalisation to the gravitational wave equation when an arbitrary
background is considered. He proved that the gravitational waves for high and low
frequencies are found by performing perturbations to distinct orders in the metric
tensor (ISAACSON, 1968a; ISAACSON, 1968b).

Here some of the aspects of the linearisation approximation to first and higher
orders are examined. By using the Wentzel-Kramers-Brillouin approximation
(WKB) the eikonal equation is found, relating the tensor of amplitudes to the
metric perturbations with its propagation vector. After that, in the Minkowski’s
background, the gravitational waves are expressed in terms of the Green’s functions.
In addition, a multipolar expansion is made as usual. Finally, following (PETERS;
MATHEWS, 1963), the quadrupole radiation formula is used to find the energy lost

by emission of gravitational waves by a binary system of unequal masses.

The convention used here with respect to the indices is: z* represent coordinates,



i = 1 for temporal components, u =i, j, k,--- for spatial coordinates. The adopted

signature is +2.

Finally, it is worth mentioning that the linearisation process of the Einstein’s
field equation presented in this section and the general results shown here are
important because we linearise the characteristic equations in the same way, by just
perturbing the Bondi-Sachs metric. The equations obtained for these perturbations
(See Chapters 5 and 6) are equivalent to those obtained in this section. For this
reason it is not surprise that in the characteristic formulation we obtain radiative

solutions and that they are characterised by the Bondi’s News function.
2.1 First Order Perturbations

In this section, we will explore in some detail the linear regime of the Einstein’s
field equations when an arbitrary background is considered. Despite the derivation
of the wave equation at first order does not differ from that in which a Minkowski’s
background is taken into account, additional terms related to the background
Riemann tensor and the correct interpretation of the D’Alembertian is shown.
We follow the same convention and procedures exposed by Isaacson (1968a) and
subsequently used in (MISNER et al., 1973)

0
As a starting point, perturbations to an arbitrary background (g,)w at first order are
chosen, i.e.,

(0) (1)
9w = Guv + €9uv, (21>

where € is a parameter that measures the perturbation, satisfying e < 1. It is worth
stressing that it guaranties that the second term is smaller than the first, because
the characteristic length of such perturbations, A\, must be very small compared to
the characteristic length of the radius of curvature of the background, L. This limit

is known as the high frequency approximation (ISAACSON, 1968a).

Considering that the inverse metric g"” is given as a background term plus a first

order perturbation with respect to the background, i.e.,

©
g =g" +eg", (2.2)

0) (0)
and that g,,¢"" :(g]LVg"” =4, then

o (0 O () I EO I
909" = Guog “(g Yo + Guog”” | + O(€%). (2.3)



Therefore, the perturbation of the inverse metric is given by

® 0
9" = —9u:9""9""" (2.4)

As a result, the Christoffel’s symbols of the first kind, reads

1
F,uu'y - 5 (guu,v + yuy — gumu) ; (25)

where the comma indicates partial derivative. These symbols can be separated as a

term referred to the background plus a perturbation, namely,

(0) (1)

Lyvy = Ty + €Ly, (2.6)
where "
: L /G (3) (3) ‘
Lyny = 3 (gwj,7 + Gy — g,,%u> , 1=0,1. (2.7)

Thus, the Christoffel’s symbols of the second kind,

" = g" Ty, (2.8)

vy
can also be separated (ISAACSON, 1968a) as,

(0) (1)

_ 2
v, =T +e*, + O(e?), (2.9)
where,
O ©© NN COCI RN
I, =9"Ts, and I, =g¢"T,+ ¢ T, (2.10)

Consequently the Riemann’s tensor is written as a term associated to the background
plus a term corresponding to a perturbation, i.e.,

(0) (1)

R', s=R"', s+eR", s (2.11)

vyd
where the background Riemann tensor is given by

(O)u (OL (0)0 (0)“
R vyé =2r v[é,7] + 2r V[5F o <212)



and the term associated with the perturbation reads

(1) (1) (1) (0) 1 ()

R*,.5=2T"  +2T" % +207,," (2.13)

As usual, the square brackets indicate anti-symmetrisation, i.e.,

1 Bn
Alay-an) = aﬁal...anﬁl O Agy o (2.14)
where €, 1,,,%51“'5” is the generalised Levi-Civita permutation symbol (MISNER et al.,
1973).
1)
From I'¥;_, where the colon indicates covariant derivative associated with the

0
background metric (g)W, one obtains

(1) (1) ©) @) o @ 0 @

s = sy = Do o + T I + D 10 (2.15)

Thus, substituting (2.15) into the Riemann’s tensor (2.13), one immediately obtains

1) (1)

From (2.8) it follows that

W,y o, 0w © 0o
r viby] T Fau[5g ] +9 Fau[és'y] - Fo’ll[ég o g Fau[é:'y]

©) 1) (0) OLU M (0)
= gM FUV[S:'y] - Fau[§g Al T gﬂ Fm/[é:'y]- (217)

Then, substituting (2.17) into (2.16)
1) 0) (1) 0) (1) © @ 0 @

RPJ 8 :guarauézv - gugrauv:é - Fau69“0;7 + Fauwg‘ua;(s

1) (0) 1) (0)
- gMUFUV&’y + g“grmj'y:é‘ (218)

In order to compute the Riemann’s tensor for the perturbation (2.18), it is necessary



to calculate

@ L/ (1) (1)
Faud:'y = 5 (gm/,é:w + 9so,v:y — gV5,0:7> ) (219)
where

(0) (0)
(1) 1) (1) (1)
Jov,s:y = (gm/:5 + F)\aég)\u + F/\ 61/90)\)
oy

(0) (0) (0) (0)
(1) (1) (1) 1) (1)
= Gov:éy + FAUS:'ygAV + F)\Uég)\l’i’Y + F)\ 51/:790)\ + FA sv9ory- (22())
Substituting (2.20) into (2.19) it is found that
() 1/ W) W O w9
FUV(S:'y = 5 <gch:6'y + 9oy — gu(S:Uv) + FAV(S;'ygU/\ + Fkyégo)\:'y- (221)

Therefore, substituting (2.21) into (2.18) one obtains that the Riemann tensor

corresponding to the perturbations is given by

(1)# 1 (12L (1)# (1) B (1) " (1L (l)u
R vy0 :i g v:dy + 9s wy + gl/’y: 5§ — Yus: v g viyd g’y wo |- (222)
Now, writing the field equations as
1
Ruu = 8w (Tw/ - zgul/T> ; (223)

where, T}, and T" are the energy-stress tensor and its trace respectively, and using

(2.9) then
o Q |
Ry, + €R,, = 87 (T,W - ngT> . (2.24)

Assuming that the background satisfies the Einstein’s field equations

(0) 1
R/J,V =37 <TMV - 29uuT> 5 (225)

i.e., disregarding perturbations on the stress-energy tensor, we found that the

perturbation to the Ricci’s tensor satisfies

0
R, =0. (2.26)



Contracting (2.22), and substituting in (2.26)

(1) (1) (1) (1)

1
5 (guz/:zslu, + géuzl/y - gyé:#,u - gp‘u:y6> =0 (227>

which corresponds to a first order wave equation for the metric perturbations.

It is worth stressing that (2.27) can be re-written as

© (oW (1) (1) (1) 8 (1)
g“ (2 Jov:[6u) + Jov:us +2 G50:[vp) + Yso:pvy — Gus:op — g;m':V5> = O, (228>
where

(0) (0) (0) (0)
1) (1) 1) 1 (1) (1)
Gov:[5u] = Yov,[6:] — F)\O'[ézu]gl/)\ - gv}ﬂ[ur)\zﬂg - F/\V[é:,u}g(ﬂ\ - gU&[MF)\J]V' (229>

Explicitly, (2.29) is

(0) (0) (0)
(1) (1) (1) (1) (0)
Yov:[5u] =Youv,[6u] — g)\u,[(sl—‘)\u}a - ga)\,[(SFAu]y —I [6p)Jov A

(0)A (0)A (0) (0) (0)A (0) (0)A (1)
| Uoud T Ve 510 = Dol e1e = sl oe | 90

(0) 0 (0 0) (0
(1) ¢ () . ()
- QVA,[NFAJ}U + F)\O'[(SF plvdex T F)\o'[éF uaJve

(0)A (0)A (0) (0) (0)A (0) (0)A 1)
= U T Ul sy = ol e = Tl oe | 9on

o O o ©
(1) ¢« e (D
- gU)\,[,U«F)\(S}V + F)\V[(SF M]O'g€>‘ + FAV[(SF M])\gaEa

or
(0) 0) (0 (0) ) (0
(1) NS e |
Jov:[op] = — (FAU[M] + FAe[HF 5}(;) Gux — (FAV[M + FAE[;LF sv | o,
1O o O
= (Rxmgw R | (230

10



Substituting (2.30) into (2.28)

(1)M (1)# 1 " (1)#
+9 v:pd +9g Sy 9us: wo g wvd
(0) (0) 0) () 0) () (0) (0)
1) Ve (1) o
- R)\Juégl//\gu - R)\Vuégu/\ - R/\(Suygu)\ - R)\a,uyg(”\.gu =0, (231)

or

G ) o O O o0 @O
[z [z Iz w BA A A
g v:pd +9 S:pv Yus: no g wvd + 2R)\V5ug + R/\Vgﬁ + R)\5gu =0. (232)

Defining now a reverse trace tensor h,, as

(1) 1 (1)(0)
hyw = G — 59 G (2.33)

and contracting (2.33) one obtains h = —(gly). Therefore,

(1) L ()
Juv = h,uu - §hg;w' (234)

Substituting (2.34) into (2.32) one obtains

E
2

) ©

0) ©)
WY s+ W5 — sty — Sh gus + 2Ry5, R + Ry, by + Rysh,)} = 0. (2.35)

Under the transformation of coordinates
%= 7%(2?), (2.36)
the metric transforms as
gr" =g AN, (2.37)

where g"” and g"¥ are referred to the 7% and x® coordinates respectively and the
transformation matrix AEH is given in terms of partial derivatives, i.e.,
AF = ot (2.38)

B S

Additionally, from the transformation (2.37) and the perturbation (2.1), it follows

11



that
0 gl = AmAY, ((0)+€g(;>y)7

which implies that the perturbation obeys the transformation rules for tensor under

Lorentz transformations, namely

= AL AV G, (2.39)

In particular, considering an infinitesimal boost, i.e.,
T4 =1x"+e(, (2.40)
where |e(?| < |z%| are infinitesimal displacements, then the matrices (2.30) become

Thus, substituting (2.41) into (2.39),

o) o
g7 (@) = g™ (%) + e ( e, + gttt ) +0(¢%), (2.42)

expanding the metric around (,
g (x%) = g"" —€e(7g" (2.43)

and substituting it into (2.42), one obtains

G 2 g = (g = g, = g (2.44)

Now, from the covariant derivative of the inverse metric one has

gl'”/ 5 - _gO'I/FN«U(; - guarygg. (245)

12



Substituting (2.45) into (2.44), one obtains

g7@) = g (aP) + € (¢TG4 (g, g, + g
~ g7 (%) + e (g7 (¢ + CT7,,) + 97 (T + T,
~ "7 (2P) + 2T, (2.46)

where, as usual the round brackets indicates symmetrisation. The symmetrisation

is defined as .
A(al-an) = E Z Aaal Qo ) (2.47)

where the sum is performed over all index permutations.

Thus, the metric is invariant under such transformation whenever

Cp) = 0, (2.48)

in which ¢(* are just the Killing vectors associated with the background space-time
(LANDAU; LIFSHITZ, 1975).

Lowering the indices of (2.46) with the metric, and using (2.1) one immediately

obtains a gauge condition for the perturbations, i.e.,

L 1)
g/W(lﬂ) = guu(lﬂ) + 2C(V:u)- (249)

From this last equation, one immediately reads

Doy wge 2.50
g;w guy + C(u:,u) ) ( : )

)
where the overline indicates the metric in the new coordinate system, i.e., g,, =

(gll)w (z*) which allows to impose

M
G =0. (2.51)

This gauge is known as De Donder or Hilbert gauge.

The form of the gauge for h,, is found when (2.33) is substituted into (2.49), it

results in

13



- o 1o s (0
h,uu =G — 5 9 9uv + 2C(V:u) - ( .o Juvs
o (0)
= h,w/ + 2§(VZ}L) - C o Yuvs
which implies that its trace is given by
h=h+2¢", — (%, 0",
=h—2¢" .

Therefore, computing the covariant derivative of (2.52), one has

v v v o v
h,uu: = h,ul/: +2 C(V:u) - C o Guvs

= h‘,uz/:y + 2 C(I/:u)y - CO;O'/N

= h,uzl:l/ + C,u:ylz +2 CU:[UM :

Considering that

then,

Thus, (2.53) and (2.56) can be re-written as

_ (0) _
h! =Ny —CF— Rt h=h~+2C%,,

14

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)



only if the following conditions are met,

L, o -
h;w: = C,u: v + RAMCAa h = _ZCN# (259)

Substituting (2.58) into (2.35), one obtains

© 0 o
h’zjé:'u:u_2}—{)\1/6/4}1‘u _R)\Z/h’é _R/\zShV :07 (26())

which is just a wave equation for h,s (ISAACSON, 1968a). This equation includes the

terms related to the background’s curvature.
2.2 Higher Order Perturbations

At this point, there appears the question how are the forms of the higher
order perturbations to the Ricci’s tensor. Different approximations can be made
considering different expansions for the metric g, or for the inverse metric g"”. The
perturbation method can vary depending on which quantity is expanded and how
it is done. In particular Isaacson (1968a) shows the Ricci’s tensor for higher order
perturbation, expanding only the inverse metric g""; however, other perturbation
schemes were explored with interesting results, for example Choquet-Bruhat (1969)
expands the metric and its inverse supposing ab initio that both quantities depends
on two parameters, a frequency and a phase, which leaves to different versions of

the perturbed Ricci tensor.

As a starting point, the procedure exposed by Isaacson (1968a) is followed. Thus,

the metric is expanded as
(0) (1)
G = Guv + € Juv, (261>

whereas its inverse metric, g"¥, is expanded as

© o)
g =g" + 3 € g + O, (2.62)

i=1

Thus, from (2.61) and (2.62)

v (0) (02/5 . i [© (i)ué (1) (i_z/lé) n+1
99" = Guwgd”’ + > € | 9ug” + g ¢° | +O(e), (2.63)

=1

15



which implies
@ © (-1
9= —guw 9 9”°,  i=12 (2.64)

then,

T I R C RO
9= =g 9" ¢°, 9 =—gu 9" ¢° ¢°=—gu g" ¢° - (2.65)

Substituting recursively the last equations, one finds

(1) © () @) © (o) O
(1) 9 (1) (1) av
9° = —gw 9" g°°, 9°° = G Gas 9" 9™ 9",
®3) 0) (o) (0 (0
NI )
9°° = =G Gag Gyn 9" 9™ 977 g7, (2.66)

In this approximation, the Christoffel symbols of the first kind can be separated just
as in (2.6) where each addend is given by (2.7). Using (2.62) to raise the first index
in (2.6), it is found

(0) noo ()
D%y =%, + ; €T%, + O("), (2.67)
where
© ©) (0) *) k=D () (k) (0)
5y = 9" L\, I = gL+ 9%T 5, k=1,2,---, (2.68)

which is just one of the possibilities to generalise (2.10). The separation of the

Christoffel’s symbols of the second kind allows to write the Riemann’s tensor as

0 n_ ()
R, s=R' s+ R s+O0("), (2.69)

vy
i=1

(0) (@)
where R, 5 is given in (2.12) and R’ s corresponds to

®), k), k (ki) (@)
R, s =2T" 5 42 ; T Do (2.70)

Computing the derivative of (2.68) and anti-symmetrising it, one obtains

®), M Gl - o ®® o
Do) = gy 01+ 97 Dogps) + Vg 975y T 97 Dy (2.71)

16



Noting that

@) ) ) (1) @,
8y = GnBy T Gym:g — 98y + 217, 5 Gon, (2.72)

then,

1) (1) (1) (1) @ @ 1 O
Fnﬁ[yzé] Inp:(vs) T Glyin:B18) — 9Bly|mle) + 2 e Bly:5) Yon T 2Gons T 418" (2.73)

The first term in (2.71) is

) k=D gy k-l (kD) (h=1) (4 k1) ©)

Losty 0" 51 = npty 9" 5 + 9" 15 Gyims — 97" s 916 + 29™" 5 T8 9o, (2.74)
and the second term in (2.71) is

(k:—01”)7 (1) (k—é% (1) (k’—al?)7 (1) (k é) (1)
9" Uogs) = 9% Gnpive) T 9% Gl — 977 981 lmle)

(k al) (O)U (1) (k—al) (1) (0)0
+2 ¢ %5 Gon +2 9" Gonis175- (2.75)

Therefore the first term in (2.70) is

® m G & e ol @@
21" 5y =20m8:0 97 ) T 297" (5 Gims — 29" 15 Iyign + 497" (5 115 9o

k=1 ) k=1 () k=1 ()
+2 % gugive) +2 9% Givmsie) — 2 9% a1

(-1 © 1) 1) © 0 k)
+4 g Fﬁ[n/é} Yon +4 g gan[ér 7]/3_}'21—‘ ['yg :0]

(k()l (0)
—|— 2g m Fnﬁ[v:zﬂ‘ (276)

Using (2.72) the second term in (2.70) is given by

k (k—i) (i) (k—i— 1)(1 1) 1 (@ (k—i—1) & () (1)
2 TV, I%, =2 Z ( 9" 9% Tooty Tt = 9" 9% Tevts Dol
=1

(k—i) (i U> o @ (k—i) <> oo
+ 9" 9% ool Do + 9" 97 Toopy D | - (2.77)

One wave equation for the vacuum for each perturbation order is obtained

contracting (2.70), i.e

(k) (k)u k (k—i) (i)
R5=21"; 1 +2 ; . %, =0. (2.78)

17



where, the first term in (2.78) is obtained from the contraction of (2.76)

w), m G B o =0 () O o
217 5.0 =290 9 5 T 297 15 Gumes — 297 5 Gl + 497 5108 Gom

k=1 k=1 () k=1 (1)
+2 9% guue) 2 9% Gl —2 97" 9alulmlol

k=D © o =Dy © @ ()
+ 4 g F ﬁ[ﬂ:é] ga'n + 4 g gan:[dr :U'LB + QFT]ﬁ[,ug :5}

*) (©)
+ 2g n Fnlg[u:(ﬂ. (279)

and the second term results from the contraction of (2.77)

k (k=i) (i) E o [(k—i-1)GE-1) 1) () (k—i—1) @ (© @
2y IV, %, =23 ( 9" 97 Toou Do+ " 97 Teuts Dol
=1 =1

(k—i) <i—jf>§ o @ (k—i) <i>ac(o> 0)
+ " 9% Tuolu Do + 6" 97 Lol Diciap | - (2.80)

It is worth nothing here some of the most important aspects of this last results.
First, observe that (2.66) expresses the perturbations (gI;L" in terms of power of the
perturbations %2“, Thus, each order in (2.78) corresponds to a wave equation related
to such powers. Second, (2.78) can be read as inhomogeneous wave equations because
the second derivatives for the metric becomes from the first term, thus the second
term, formed from products of Christoffel symbols, contributes like a barrier that
affects the frequency of the waves. Third, different eikonal equations are obtained

from the substitution of solutions like g, := A,,e" with ¢, = k,, namely WKB
(k)
solutions. Note that high order non-linear terms will appear given the factors g"”.

As an example, substituting the WKB solutions into (2.60) one obtains

(

©) (0) 0)

and from Equations (2.58) one has

(0)
AMM _ g'uVAuu —0 and AMV:V = _ik;”Alw =0 (2.82)

The last equation implies that these waves are transversal. Assuming that the

gravitational waves are propagated in geodesics, i.e., that the wave vector is null,
E'k, =0, (2.83)

18



one finds immediately

" . i (0) A (0) , O N
AV(S: o + 2ZkMAV(SZ - QR)\VJHA - R)\VA5 - R)\éAu =0 (284)

that corresponds to the Eikonal equation, which relates the tensor of amplitudes
and the wave vector for space-times perturbed to first order (see (ISAACSON, 1968a;
ISAACSON, 1968b)). Space-times corresponding to higher order perturbations include
the terms appearing in (2.84).

Finally, given that the higher order perturbations are linked with the first order
perturbation for the metric, then the TT gauge can be imposed only from a
simple coordinate gauge, as shown for the first order perturbation in the precedent
section. It implies that these infinitesimal coordinate transformation leads to
gauge conditions which simplify the uncalibrated wave equation (2.78). Other
approximations, in which higher order perturbation in the metric and in its inverse,
without considering averages on the stress-energy tensor have been carry out
(CHOQUET-BRUHAT; GEROCH, 1969).

2.3 Green’s Functions for the Flat Background and Perturbations of
First Order

In this section, the Green’s functions are introduced with the aim to perform a
multipolar expansion. Also, the decomposition of the wave functions in terms of
advance and retarded potentials is needed to explain the back reaction effects, which
appears in the presence of curvature in the non-linear as well as in the linear case.
However, here it is considered only the flat case, where only the retarded Green

function is not null.

From (2.60), the inhomogeneous gravitational wave equation in the TT gauge for a

Minkowski’s background reads
Uhy, + 1677, = 0, (2.85)
where the d’Alembertian is given by
O=-0?+ V2 (2.86)
Therefore, the wave equation for the flat background takes the form
(=0} + V*)h,, + 167T,, = 0, (2.87)
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where, the perturbations and the source term are functions of the coordinates, i.e.,
Py = hy(t, %), Ty =T,,(t,x). (2.88)

In particular, the perturbations and the source can be described in terms of the

Fourier transforms

1 -
by (t,x) = Ton /_Oo dw By (w, x)e™",
1 o - 4
T (t,x) = \/%/ dw Ty, (w, x)e ™", (2.89)

where, it is assumed that the inverse transformation exists. Consequently, it is
possible to return again to the original variables. Thus, the inverse transform is

given by

~ 1 o0 .
hW(w,X) :\/%/ dt huy(t’x)e“’-)t’

~ 1 o0 )
T (w,x) :27T/ dt T, (t,x)e™". (2.90)

Substituting (2.89) into (2.87) one obtains
1 o ~ - A
e /_OO dw {(wz + V) hy (w0, x) + 167TTMV(W,X)} e =0, (2.91)
which will be satisfied only if the integrand is null, i.e.,
(W 4+ V) (W, x) + 1677, (w, x) = 0. (2.92)

This equation is known as a Helmholtz equation (JACKSON, 1962). Redefining the

second term in the last equation, as 471,,(@0, x) = F},,, then,

(W? + V)R (0, x) + 47F,, (w0, x) = 0, (2.93)
and from the fact that the wave vector is null, one has

(kik' + V)R (0, x) + 47F,, (w0, x) = 0. (2.94)
The Green’s function used to construct the solution must satisfy

(kik' + V) Gp(x; %) + 4nd(x — x') = 0, (2.95)
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where x indicates the observer position and x’ indicates each point in the source.

The Laplacian can be decomposed as a Legendrian plus a radial operator, namely

10 0
2 _ 2 2
Vi = 35, (7’ 87‘) + L7, (2.96)

where, the Legendrian is explicitly defined as

o L O ,OY, 1 &
L= ano00 "M% ) T snza o (297)

and r = |x — x|. Assuming that x’ = 0, i.e., the source is at the coordinate origin,
then
L2Gr(x;x) = 0. (2.98)

Since far enough from the source the gravitational waves must be spherical, then
(2.95) is reduced to

LT (1Gufr) + KRG (1) + dmi(r) = 0. (299)

Then, for all points in the 3-space except for the origin, we have that the

homogeneous version of (2.99) is given by

2

O GA(r) + KK (Gu(r) = 0, (2:100)

whose family of solutions is
Oy c. .
Gp(r) = —Le*r 4 ==k, (2.101)
r r

where, k = |k| = Vk;k* and Cy are arbitrary constants. The physically acceptable

solutions must satisfy

. 1
klggo Gi(r) = o (2.102)
Therefore, the solutions take the form
C 1-C _,
Gr(r) = —e 4 ——e 7, (2.103)
r r

Now, we notice that the inverse Fourier transform of (2.95) leads immediately to
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the wave equation for the Green’s function

OG(t,x;t',x") + 4md(x — x")o(t — t') = 0, (2.104)
with
G(t,x;t',x') = L~ dw Gr(x,x")em )
y Ry by o . k& )
C 1-C
— (5 _ _ !/ (5 _ /
e (1 —|x X\)—|—|X_X/| (14 |x =),

= CGP(t,x;t',x)+ (1 - )G (t,x; %), (2.105)

where, 7 =t — t’ and

GO (t,x; ', x') = S(TF |x—x1). (2.106)

[x — x|

Note that the solution for the Green’s function (2.103) is written in terms of two

functions, one for the advance time G(*) and the other for the retarded time G(-)

If the second term in the wave equation (2.87) is written as

16771, (t,x) = 4nF,,(t,x)

. / / A Fo(t',x)5(x — X)5(t — 1), (2.107)

where V is the source volume, then h,, must be

/

(a®) = 4 / dha’ T (2% )G (% ), (2.108)

where the integral is defined for all times and for the volume occupied by the source.
Substituting (2.105) into (2.108), one has

By (%) = 4/d4x’ T (z) (C’G(+)(xa; ) + (1 - )G (a2, xa/)) . (2.109)

Now, observing the structure of the Green’s function (2.106), the delta distribution
argument is
ty =t Flx—%|. (2.110)

This means that the Green’s function is describing two travelling waves, one
outgoing and other ingoing. However, the advanced Green’s function is physically

unacceptable in the flat background because of the causality principle. Thus, the
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solution is restricted only to the retarded Green’s function, which indicates that one
wave will be detected at the point x in a time ¢ after generated at a point x’ in a
time ¢’. This wave propagates from x’ to x with velocity c¢. Therefore (2.109) takes

the form

By () = 4/d4x' Ty (2°)G ) (2 2

). (2.111)
Substituting explicitly the Green’s function (2.106) one obtains the expression for
the wave function in term of the sources

h oo T I ! oy o
huw (8, %) = 4/ / dt'd®x’ w(t,x)o(t—t' + |x —X'|)
o Jv

|x — x|

Tyt_ o~ !/
- 4/d3:z:’ ot =[x = xT), ') (2.112)
v |x — x|

It is worth mentioning that the advance Green’s function in the presence of curved
space-time must be taken into account, because both terms, advance and retarded,
appears in back reaction phenomena. As a consequence of the effective potential
in the radial equations, for example, when the Schwarzschild’s space-time is axially

perturbed, two radial waves will travel between the source and the spatial infinity.
2.4 Multipolar Expansion

A series expansion is a way to compute the contribution of the sources to the
gravitational radiation in Equation (2.112). This kind of procedure is known in

the literature as multipolar expansion.

Note that
1 1

x — x| (r2 — 2x;2" + xémi')l/w

(2.113)

where, 72 = x;2%. The observer, at x, is far from the source, then |x|| > ||x/|, as
sketched in Figure 2.1.

Thus, 72 > 2/z", then,
1 1

|X — X/| - (7“2 _ 2371'1'7;,)1/2. (2114)
Expanding in McLaurin series for 2%,
11 aah 13ajal k™ -
x—x/| r3 92 5 (2.115)
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€3
Observation Point

€2

Source

Figure 2.1 - Source and observer’s position.

Then, whenever » — o0, i.e., whenever the observer is far from the source,

~

1 1
|x — x/| T

and therefore (2.112) can be written (CATTANI, 2010a) as follows

4
Pt %) = /Vd%' Tt — | — /|, X)),

r

On the other hand,

i\ 1/2
|X—X/‘:T’<1—2xfz> :
”

which, can be expanded in McLaurin series for z°

! !
T lz.x
’X—X/‘:T’< _ink_i k lnknl+--->,
r

2 r2

where,

T
nk = —, nFny, = 1.

Therefore, far from the gravitational wave sources

t—|x —x|=t—r+azn",
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(2.116)

(2.117)

(2.118)

(2.119)

(2.120)

(2.121)



which, implies that

Tt — [x = X|) = T, (t — r + z}n"). (2.122)

Defining ¢ =t —r, (2.120) can be written in the form
T (t =[x = X|) = T, (¥ + zjn"). (2.123)

Thus, the stress-energy tensor can be expanded as

'k

Tt + 24n™) = T (V') + Tt () )" + 51 L (t "y xinkn/

2!
1
+ 3'Tw, () zizirn ‘nin® 4 (2.124)

where is assumed that the source is moving slowly with respect to the speed of light
¢, or in other words, r > A\/2m, with A the gravitational wave length. Substituting

the last equation in the expression for the wave function (2.117), one obtains

Ty (t, %) =
4 3./ ! Nk 1 1ok g
. de T () + Tppp ()20 +2,TV11( Naaintn
1 .
+ 3,Tuu111( Nl njnk+---> (2.125)

Thus, it is possible to define the following momenta of the stress-energy tensor
(PETERS, 1964; SCHUTZ; RICCI, 2010)

Mo = [ da 1", M) = [ o T ama
v v
MY (t) = / B T (2™ r'ed, ML) = / &’z TH(t, 2™ )a's! 2,
Vv |4
Pi(t):/dgx TY(t, ™), Pij(t):/d?’x TY(t, 2™) 2!
v v
Pijk(t) :/d3x Tli(t’xm)xjxk’ Sij(t):/d% Tij(t,xm)>
Vv \4
sk = [ a e, M0 = [ a1
v v
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Using the conservation equation
™. =0, (2.127)
that in the case of the linear theory reads
™ =-T",. (2.128)

Since T | = =T it is possible to re-express

Mo = [ da T
= —/ d*x T ,(t,2™),
V ?
= —% d*x T (t, 2™)n;,
ov
—0, (2.129)

where, OV is the source surface and n' is its normal vector. Thus, one has

Mi(t) = (/Vd:gx T“(t,xm)xj) :
1
= /d% T1171(t,mm):£j+/ d*x T (t, ™),
v v
= —/ dx TV i(t,xm):cj+/ >z T (t, 2™)i?
1% ’ 1%
= /dgx TY(t, 2*)8,7,
v

= Pi(t). (2.130)

Also, the following relation between the momenta for the stress-energy tensor 7},

are established

MY = pi 4 pit Nk = pik 4 piki  pkij (2.131a)
Pl=0, P9=g59  Pit=giky gl (2.131b)
Nk = o8k R — 3196k (2.131c)
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Thus, from (2.125) it is obtained that

11

h

4

4 . 4 .. 4 ...
= —M+ —P'n;+ -S9nmn; + -Snmng + -,
T T r

,
4 . 4 .. 4 ...

= P4+ -Sn;+ -S*pmp+ -
r r r
4

4
= —§U 4 Gk,
r T

(2.132)

which is known as the multipolar expansion (SCHUTZ; RICCI, 2010). From the gauge

condition (2.49), one obtains

from which, the changes in the different components of the metric result as

New Old

P =B 4 2gm) e o

11

5E = 51’1 + fl K
5513’ _ 51,j +£j,17
ijl il 1.j i
oh" = 4 ghi—giien

One can select the gauge functions

£ =
£ =

1 . 1. 1., . 1

-P' + fP”lnjnl + =S5"n + =Sijknininy,

r r r r

4 . 4. 1 . . 1. 4
—M'+ —PYn; — —P’n' — — P nen’ + = S9%nmy,
r r r r r

1 1 .
— =St nfnt — 28T nnen’
2 Uk , j ’

such that in the T'T gauge, the components 7" take the form

ETTH _ 4]\47
‘ T
ETTlZ — 0’
—TTij 41 i L kol ak
h = —|1"17 Slk+2J_J(SleL7’L—Sk)]
T

(2.133)

(2.134)

(2.135)

(2.136)

Observe that i’ is not a radiative term, it corresponds to the Newtonian potential

which falls as ~ 1/r. From 7" we see that the radiative terms have quadrupolar

nature or higher. The projection tensor L% is defined (WEINBERG; DICKE, 1973;
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BUONANNO, 2007) as
19=§9 —nin (2.137)
so that
19 n; =0, LI =1 (2.138)
Since, 2" does not depend on the trace of S, then one can define
<t ij Lo
ST =5 — g&gs s (2.139)

which is the trace-free part of S¥. In the same manner, the trace-free part of M¥ is
defined as

1 SRR W
MY = MY — 351 M,. SV = §M]. (2.140)
Therefore
—TTij 2 ik il S 1 i == Ik
T

which depends strictly on the quadrupolar contribution of the source.

Returning to the weak field approximation, it can be shown that another form to
expand the left side of (2.113) is in spherical harmonics (JACKSON, 1962), i.e

l

s 21+1 Vi (0,6 Yin(6,9), (2.142)

=0 m=—1

X —

where, r~ = max(|x[, |x'|) and r~ = min(|x/|, |x’|). Hence, (2.112) can be written as

_ ‘ 1 !
P (1) = 167r/ &3’ Ty (t — [x — x|, 27 )Z Ym0, ¢)Yim(0, ¢),
v 20 + 174
(2.143)
where, the volume element is
P’ = rdr'dqY, (2.144)

and d€’ = sin® #'df'd¢’, and the symbol 3, ,,, represents the double sum that appears
n (2.142).
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It is worth noting that (2.143) can be written as

- S 1 Yi(0,9)
B (%) = 16 m tm 2.145

where the multipolar moments are defined as
Q" = / @’ 1T (t— [x = x|, 2 )i (0, ), (2.146)
v
which are equivalent to those multipolar moments defined in (2.126).

2.5 Gravitational Radiation from Point Particle Binary System

It is worth recalling the main steps given by Peters and Mathews (PETERS;
MATHEWS, 1963) to obtain the well-known and widespread equation used for the

power radiated by two point masses in a Keplerian orbit.

As it is well known in the literature, in the weak field limit of the Einstein’s
field equations, i.e., when the metric can be written as a perturbation h,, of the

Minkowski metric 7,,,, namely
G = NMuw + s || < |0y (2.147)

the power emitted by any discrete mass distribution in the limit of low velocities,
as shown, e.g., in Ref. (PETERS; MATHEWS, 1963), is given by

1 1
P = g <QUQ” - BQiinj> ) (2'148)
where the dots indicate derivative with respect to the retarded time u and

Qij = Y MalaiTaj, (2.149)

a

in which a labels each particle of the system and z,; is the projection of the position
vector of each mass along the  and y axes. Particularly, for a point particle binary
system of different masses in circular orbits, when the Lorentz factor is considered

to be v =1, one can write
Tgl = Tq COS(VU — Tha2), Tz = Tgsin(vu — myee), a=1,2 (2.150)

as shown in Figure 2.2
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M,

Figure 2.2 - Binary system as viewed from the top. The coordinates x,; of the particles
are indicated, as well as the angle vu with respect to the x axis.

Here, 7, is given by (6.12), v by (6.13), and the Kronecker delta discriminates each

particle. Then, the components of @);; read

0, — pd3 cos?®(vu) pd3 sin(vu) cos(vu) (2.151)
Y\ pd? sin(vu) cos(vu) pd? sin?(vu) 7 '
thus,
43 pd3 sin(2vu)  —4v3pud? cos(2vu
Qi = Yo (2vu) . o ()} (2.152)
—4vPudg cos(2vu)  —4viudg sin(2vu)
Finally, substituting the above equation in (2.148), one obtains
32 32my%my?
P="20p20gh = 22X (75”1 +ma) (2.153)
5 5d}

where Kepler’s third law is used in the last equality.

If the eccentricity of the orbits are taken into account, the expression for the power

lost by emission in gravitational waves (PETERS; MATHEWS, 1963) become

8 m12m22(m1 + mo
pP=—
15 a(1—e)p

) (1 + ecos &)4 <12 (1 + ecos &)2 + €% sin? q~5> . (2.154)

where

(1 +mo)a(l =€)t a(l—€)
d? 1+ecose’

where d is the separation of the particles, a is the semi-major axis of the ellipse

¢ = (2.155)
described by the particles and ¢ is the angle between the line that connects both
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particles and the z axis.
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3 THE Eth FORMALISM AND THE SPIN-WEIGHTED SPHERICAL
HARMONICS

Before introducing the outgoing characteristic formulation of the general relativity,
it is convenient to consider a standard tool to regularise the angular differential
operators, namely the eth formalism, which is based on a non-conformal mapping
of the regular coordinate charts to make a finite coverage of the unit sphere. This
kind of mapping was originally used in global weather studies (WILLIAMSON, 1970;
SADOURNY, 1972; RONCHI et al., 1996), and is based on the stereographic and
gnomonic projections. It is worth mentioning that these projections that make the
finite coverage of the unit sphere, remove the singular points related to the fact that

the sphere can not be covered by only one coordinate chart.

The eth formalism (NEWMAN; PENROSE, 1966; GOLDBERG et al., 1967; GOMEZ et al.,
1997; STEWART, 1993; TORRES DEL CASTILLO, 2007) is a variant of the Newman-
Penrose formalism. As such in this last formalism, scalars and associated functions,
and operators related to the projections onto the null tangent vectors to the unit
sphere are present. The projection onto the tangent vectors to a topological sphere

(a diffeomorphism to the unit sphere) can also be generalised.

In order to present the eth formalism, the non-conformal mapping using
stereographic coordinates is given. After that, a decomposition to the unit sphere and
the transformation of vectors and one-forms are shown. These transformation rules
are extended to the dyads and their spin-weights are found. It is worth mentioning
that the spin-weight induced into the scalar functions comes from the transformation
rules associated with the stereographic dyads. However, this property is not exclusive
of this kind of coordinates, and appears as a transformation associated with the
coordinate maps needed to make the finite coverage to the unit sphere. Then the
spin-weighted scalars are constructed from the irreducible representation for tensors
of type (0,2) and then, the general form for a spin-weighted scalar of spin-weight
s is shown. The rising and lowering operators are presented from the projection of
the covariant derivative associated with the unit sphere metric and the Legendrian

operator is then expressed in terms of these rising and lowering operators.

Subsequently, some properties of spin-weighted scalars are shown and the
orthonormality of such functions is defined. It is shown that the spin-weighted
spherical harmonics .Y}, constitute a base of functions in which any spin-weighted
function on the sphere can be decomposed. The spin-weighted spherical harmonics

sY;n and the action of the rising and lowering operators in them are constructed.

33



Finally, another base of functions to decompose spin-weighted functions on the
sphere, composed by the spin-weighted spherical harmonics 7, is defined as linear

combinations of the .Yj,,.
3.1 Non-conformal Mappings in the Sphere

There are infinite forms to make up finite coverage of the sphere. The principal
aim here is to show an atlas, with at least two coordinate charts, in which all
points in S? are mapped. In the context of the global weather studies diverse
useful schemes were proposed, from the numerical point of view, to make finite
coverages to the sphere (SADOURNY et al., 1968; WILLIAMSON, 1970; SADOURNY,
1972; THACKER, 1980; BAUMGARDNER; FREDERICKSON, 1985; CHEONG; KANG,
2015). Only two of these schemes become important in numerical relativity. The
first one is the stereographic projection in two maps and the second one is the
gnomonic projection in six maps, also known as cubed sphere. Both offer great
numerical advantages, as the simplification of all angular derivatives, in the case of
the stereographic coordinates and simplification in the numerical computation as in
the case of the cubed sphere projection. It is worth stressing that the eth formalism
is totally independent on the selection of the coordinates, as we will show in the
next sections. However, given the simplification in some of the calculations and its
use in those numerical computations, we present in details the connection between

the stereographic coordinates and the spin-weighted scalars.
3.2 Stereographic Coordinates

This section starts with the description of the construction of the stereographic atlas
which covers the entire sphere. As an example, a point (in green) in the equatorial
plane is projected into the north hemisphere from the south pole as sketched in

Figure 3.1

The coordinates on the equatorial plane (the green point) are represented as the
ordered pair (¢,p) and the point to be represented in the sphere P as the ordered
triad (x,y, z). From Figure 3.1, one has

p = tan (Z) , q = pcos o, p = psin ¢. (3.1)
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Equatorial Plane /

South Pole

Figure 3.1 - Stereographic coordinates construction: the equatorial plane is projected from
the south pole to the surface of the unit sphere. The interior points to the
equator are projected to the north hemisphere, whereas the exterior points
are projected to the south.

Then, it is possible to represent the coordinates through a complex quantity (
(NEWMAN; PENROSE, 1966), in the form

¢ = tan (Z) e'?; (3.2)

thus, $(¢) = ¢ and I(¢) = p. It is worth stressing that it is not possible to map all
points in the spherical surface into the equatorial plane, even if the plane is extended
to the infinity. Thus, it is necessary to appeal to at least two coordinate charts. One
possible way to do this is by selecting one for each hemisphere north (N) and south
(S) (GOLDBERG et al., 1967), namely

0\ . 0 .
= a i@ - = —i¢ N = (N DN ;
(N = tan <2>e : (g = cot (2>e : QS gy +apy; (3.3)

such that
lgn] <1, lpv| <1, (3.4)

which defines a rectangular domain in the plane to be mapped into the sphere.

From the definition (3.1), one immediately has
0 0\ .
g = tan 5 | cos o, p = tan 5 | sin o. (3.5)

35



Taken into account that

(9) sin 6 ( ) (9))
tan | = | = l1+tan“ (=] ],
2 2 2

then the relationship between the rectangular and the ¢, p reads

29 2p
r=—7, = —_—
@+ VT p

This allows to write the z coordinate as

z = cosf,
- 1_q2_p2
1+ @ +pr

(3.6)

(3.7)

(3.8)

With equations (3.7) and (3.8) the coordinate lines (¢,p) on the surface of the

sphere are constructed, as shown in Figure 3.2, which shows how the atlas

{{a~n,pn},{qs,ps}} for the unit sphere is constructed.

Figure 3.2 - Coordinate atlas in the sphere. Coordinate lines as result of the mapping of

the plane maps contructed from the equator of the sphere.

From (3.3), for all points except the poles,
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or

(s
(v =2 (3.10)
CsCs
In terms of the ¢ and p coordinates, (3.10) reads
ds —DPs
qN = 53 DN = 535, 3.11
g% + ¥ g% + P (310)

which define the relationship between the north and south coordinates, and therefore
it defines the transformation between the corresponding charts. Thus, the form of
the coordinate lines (gy,pn), corresponding to the north map when pg or gg are
considered as constant, can be traced (see Figure 3.3). It is particularly useful when a
discretisation scheme of the angular operators in the sphere is implemented, because
it shows clearly that a bi-dimensional interpolation is needed to pass information

from one to another coordinate map.

1. =] e
A 1
X N1

0.5 ZAEHE S

2 0
~05 SR ms
N 7 I
N i
i i
1 1 S

—1 —0.5 0. 0.5 1

ds

Figure 3.3 - Coordinate lines of north hemisphere into the south region. The equatorial
line is indicated as a circle in black.

37



3.3 Decomposition of the Metric of the Unit Sphere

The square of the line element that describes the S? manifold (the unit sphere) in

spherical coordinates is given by
ds® = db* + sin® 0d¢>. (3.12)
Now, from (3.2) the total differential of ¢ and ¢ are computed, namely
d¢ = Cpdf + Cpdp and  d¢ = ( 4df + Zﬂd)dqﬁ. (3.13)

Here the absence of the indices N or S means that the results are equal for both

hemispheres. Thus, from (3.13) one obtains that

dGdC = € gd6? + (CoC 5 + CoC ) derdd + C 4C 4d6?
_ i (1+¢0)° (a0 + sin 6dg?) .

Therefore, the unit sphere metric in terms of (,( takes the non-diagonal form
(STEWART, 1993),

4 _
(1+¢C)
Expressing the total derivatives d¢ and d( as
d¢ = dq + idp, d¢ = dg — idp, (3.15)
then
d¢dC = dg* + dp®. (3.16)

For this reason, the element of line (3.14) can be written as (GOMEZ et al., 1997),

d6? + sin® 0d¢?* = (dq2 + dpQ) . (3.17)

(1+¢)

Now, it is considered that the metric (3.17) can be decomposed in terms of a new
complex vector field ¢4 (NEWMAN; PENROSE, 1966; GOLDBERG et al., 1967) as follows

4AB = q(AQdpB)- (3.18)
These vectors are related to the tangent vectors to the unit sphere along the
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coordinate lines. These two vector fields, ¢4 and G4, that allow to decompose the
unit sphere metric, are known as dyads and it is said that the metric is written in

terms of dyadic products. The metric and its inverse are related as
qapq"C =6,°, (3.19)
then, in terms of these dyads one obtains
04 = qadp)a"7?. (3.20)

Imposing that
quB = 27 quB = 07 (321>

the expression (3.20) is reduced to

04¢ = quag”. (3.22)
From (3.17) and (3.18)
4
772(5,43 = Q(AgBy (3-23)
(1+¢)
one obtains A A
IQ3|2 =———>5 and ’%’2 = 2
(1+¢0) (1+¢0)

Thus, it is possible to make the choice

q:L and q:L
Q) )

For this reason, the complex vectors g4 can be written (NEWMAN; PENROSE, 1966;
GOLDBERG et al., 1967) as,

g4 = (15“) (0%, +id"y) and 7, = qu) (6%, —ios). (3.24)

Raising the index of ¢4 with the metric ¢ one obtains

¢ = (1—;(0 (5A3 + ¢5A4) and g = (1+2CC> ((5A3 — i5A4) . (3.25)
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If the spherical coordinates are used, then (3.18) can be written as

1 0 _ q3qs Q394 + G394 (3 26)
0 sin?6 4394 + G394 q4qs 7

which implies that the spherical dyads (TORRES DEL CASTILLO, 2007) take the form

qA:5A3+iSin05A4’ QA:5A3—Z'SiIl¢9(5A4, (327&)
g =645 +icscho?, gt =64, —icschs?t,. (3.27Db)

3.4 Transformation Rules for Vectors and One-forms

In order to establish the transformation rules for the dyads, it is necessary to
understand how the differential operators transform between one map to another.
Thus, as ¢y := qn(gs, ps) and pn = py(gs, ps) as shown explicitly in (3.11), then

the one-forms J,, and J,, transform as

Oqy = (aqqu)aqs + (8qus)(9ps, (3.28a)
a:DN = (aqus)aqs + (aprS)8PS' (3'28b)

Computing each coefficient in Equations (3.28), one obtains

2 2
PN — 4N 2qNpN
Ogn s = —o—a—, PSS = o5,
w (a3 + p%)? w (a% + p%)?
2qNpN PR — dx
a = — 5 5 <5 a = .
ST TR+ ) S T2 R

It means that the differential operators (3.28) become

Ogy = M ((p?v — q?v) Ogs + 2quN8pS) : (3.29a)
Oy = S — <—QCJNPN3qS + (p?v — qJQV) 8p5> . (3.29Db)

(% +p¥)’

Now, the transformation rule for the vectors will be examined

day = stBxf\‘,dm‘g. (3.30)
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Specifically, the transformation rules for the vectors dg and dp are given by

dgn = Ogsqndqs + Opsqndps, (3.31a)
dpn = Ogspndgs + OpgDNADs. (3.31b)

Here, it is important to point out that the equations (3.11) are symmetrical with
respect to the interchange of indices NV and S, i.e., the same expressions are obtained

if gg and pg are considered as functions of gy and pg, therefore

By = PE — 45 oy — 2P
o (g2 +p3)?’ o (¢ +p2)?’
2qsps PE — g%
8 e — 5> 8 — & .
PN T TR T Ry PPN 2 Ry

Then, the vectors (3.31) transform as

1
dgn = m ((pé - q?g) dgs — 2qspsdp5) ) (3.32a)
1
dpn = m <QQSPSdQS + (P% - qé) dps) . (3.32b)
S S

Notice that, by virtue of the interchangeability of the indices in (3.11), the relations
(3.29) and (3.32) for one-forms and vectors are symmetrical with respect to the
interchange of the indices N and S. Therefore the same rules are applied to construct

the inverse transformation from north to south.
3.5 Transformation Rules for the Dyads and Spin-weight

Any vector field v can be expanded in terms of a basis of one-forms e,, namely

’U:UA

e 4. Thus, for each hemisphere

vy =vaes, and wvg=vie,,. (3.33)

In particular for a local coordinate basis {04, } and {044}, the complex vectors g

and gg can be expressed as the linear combinations, i.e.,

ay =qy0ay and gy = q§0as. (3.34)
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Using the explicit expression for the dyads components g4 given in (3.25), (3.34)

take the explicit form

_ (1 ady)

qy = 5 (Ogy + 10,y - (3.35)

Then, transforming the basis in (3.35), using for this (3.29), one obtains

s

CS an (336)

dy =

which is the transformation rule for the dyads. It is worth stressing that, apparently,
this transformation appears as induced by the stereographic mapping used to make
the finite coverage to the unit sphere. However, it is a vector property that appears
by the fact that the atlas is constructed from two local charts, whose centres are

diametrically opposed. This result can be written in terms of components, as

qn = €qs, (3.37)
where the complex factor B
e = —C—S, (3.38)
Cs

is the spin-weight associated with the transformation of coordinates (NEWMAN;
PENROSE, 1966; GOLDBERG et al., 1967; STEWART, 1993).

From (3.37) it is obtained immediately the rule for the complex conjugate dyads
components, namely
Iy =€ Ts. (3.39)

In order to complete this description, it is necessary to examine the transformation
rules of the covariant components of the dyads. Thus, expressing the dyads as linear

combinations of the vectors

qy = qaye™ and  gg = qaze’s. (3.40)

Then, using a local coordinate basis, one has

gy = m (dgn + idpy) . (3.41)
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Using the transformation rules (3.32), one obtains

ay =—2qs.
N CSS

This shows that these transformation rules are completely consistent. Thus, it allows
one to lower the index with the unit sphere metric, i.e. from (3.37) and (3.39), one

has

Jay = eio‘qAS and Gy, = e’quS. (3.42)

It is worth mentioning that the unit sphere metric (3.18) has spin-weight zero,

namely

qN(A9NB) = eiQQS(Ae_mqu)

= 4s(a9sp)-

The spin-weight of a finite product of these tangent vectors depends on the number
of qa, G4, ¢* and @* considered. For example, if the product [[", ¢4; of tangent
vectors is considered, then its transformation from north to south hemisphere is

given by
T ava = (¢)" T asa (3.43)
i=1 i=1

which implies that this product has a spin-weight of s = n. As another example, if

the product [[i; qai [Tj%, 11 74, is considered, then it transforms as

n m . i) 2n—m
[Tava: 11 INAj = (e )
i=1

Jj=n+1

)HQSAZ‘ II Qs aj- (3.44)
i=1 j=n+1
which means that its spin-weight is s = 2n — m. Therefore, if scalar quantities
involving products like those given above are considered, then these scalars must
have spin-weight induced by these products. Thus, the scalar functions constructed
through the projection of the tensors onto these dyads, inherits the spin-weight

carried by these dyads. This crucial point will be clarified in the next section.
3.6 Spin-weighted Scalars and Spin-weight

Here, we will show that any tensor field of rank 2 of type (0,2), namely wap, in
the tangent space of the unit sphere admits a irreducible decomposition in spin-
weighted functions (STEWART, 1993; GOMEZ et al., 1997). In order to show that, it is
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first considered that wsp can be decomposed into its symmetric and anti-symmetric
part, i.e.,

WA = W(AB) + WaB|- (3.45)
The symmetric part can be separated in two parts, one trace-free and other

corresponding to its trace

waB) =tap + qATBW, (3.46)

where t = ¢4Pt,p = 0, i.e., tap is the trace-free symmetric part of wup, and the

second term is its trace, i.e.,

AB
W = wapq

= 2wapqg?). (3.47)

Thus, wap can be written as

Gas

wap = tap + 5

W + WiAB]- (3.48)
The anti-symmetric part can be expressed as

W[AB] = WCD5C[A5DB]

where using (3.22)

wWep [ _ _ _
W[AB] = o (Q(CQA)Q(DQB) - q(CQB)q(DQA))
_lwep [ _ C-D —C.D
—42((qu3—qu3) (¢“7” -7°¢") |,
i.e.,
1
wiAB] = 5@[,4([3]“7 (3.49)
where
u = wepg“gP. (3.50)

For this reason, (3.48) can be written as

w 1
wap = tap + EqAB + 5{7{,4(]3}16. (3.51)

Here, it is important to notice that w and w are scalar functions with spin weight

zero, as given in (3.47) and (3.50) respectively. The symmetric traceless part, tap
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admits a irreducible decomposition in scalar spin-weighted functions as follow
I =tapq’q”, L = tap7"7", S =tapg'q", (3.52)

where, if it is considered that t45 € R, then L =1, and S = S.

Consequently, any tensor field of type (0,2), say wap, is completely determined by a
linear combination of spin-weighted scalar fields of weight 0, 2 and —2 (GOLDBERG
et al., 1967; STEWART, 1993). In general, it is possible to construct spin-weighted

scalars from tensor fields into the tangent space to the unitary sphere, in the form

n T m S

- By g AL An An g1 Ay

U= quAi ,HH 74, kﬂqukl II 1qu\p e A BB (3.53)
i= j=n = =m+

Then, it is possible to compute the spin-weight of (¥ taking advantage of (3.44).
Considering the expression (3.53) for the north or south hemisphere, and making
the transformation from one region to another, one obtains that the spin-weight for

the (W function is,
s=2(n+m)—r—3s. (3.54)

3.7 Raising and Lowering Operators

Here it will be shown the action of the differential operators induced by the projection
of the covariant derivative of the tensor field defined in (3.53). In order to do this,

it is useful to compact the notation in the form

b } b
Az, =] Aa, Ao =TT A%, (3.55)

and for the tensor field
W = W (3.56)

Thus, (3.53) will be written as

U =Ry AdmgBin (3.57)

in

The eth operator 0 is defined through the projection of the covariant derivative of

\IfBl'"BmAl,,,An associated with g4p noted by

AA\I/Blv.-BmAl'”A — \IjBl..'BmAl...AnLAv (358)

n
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onto the dyads g, i.e.,

0.,V = qD S\II|D

_ qD]\Blm]\fhn\I,Blm AnalD? (359)

where the symbols Ap, and the A are defined as

it i<
A, =P =" (3.600)
gp, it i>x

and
S B
At =1 =Y (3.60D)
gy it j>y
for 1 <z <mand 1 < y < n. In this case, the spin-weight of this function, in
agreement with (3.54), will be

s=2x+y)— (m+n). (3.61)
On the other hand, the eth bar operator is defined as
9,0 =gPhy, Adngbim (3.62)

A |D”

After some algebra, it is shown that the d and 0 operators acting on a spin-weighted

function ;¥ can be expressed as
0,0 =q¢"0p ,U+sQ,¥ and 0,V=g"0p ,V—sQ,U (3.63)

(see Appendix A for further details). It is worth stressing that from (3.63) the 0 and
0 operators can be written in general (NEWMAN; PENROSE, 1966; GOLDBERG et al.,
1967; GOMEZ et al., 1997) as

d=¢"0p+sQ, d=7q"0p—sQ. (3.64)

where (2 is defined from (A.9), i.e.

1
0= §qA§BqAB. (3.65)

Note that, (3.63) allows to operate directly on the spin-weighted functions.

Furthermore, they put in evidence their character to raise and lower the spin-weight
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of the function ,¥. Under a transformation of coordinates between north and south

hemispheres, one has
(8 0)y =@ W)y, and  (3,0) =D (F0) . (3.66)

Despite using the stereographic coordinates in each chart, this property does not
depend on the coordinates chosen to be used in each coordinate map. The last
equations show that 0 ;¥ and 0 ,¥ are functions with s + 1 and s — 1 spin-weight,
then

0 VW=A,, .,V and 0, ¥V=A,_, , VU, (3.67)

where Ay, and A, are multiplicative constants.

The explicit forms of the @ and @ operators in spherical coordinates (TORRES
DEL CASTILLO, 2007) read

J=0y+icscli, —scotf and 0 =30y —icschdy+ scotb, (3.68)

where (3.26) and (3.27b) were used. Using these last equations we found that (3.65)
results in

Q= —cot. (3.69)

3.8 Transforming the Coordinate Basis

Here we will show the explicit form of the d,, d, and J,, operators in terms of the
0, 0 operators and its commutator [0,9]. Also, we will show that the commutator

[0, 0] satisfies an eigenvalue equation, fixing the algebra for the eth operators.

Developing explicitly (3.63) and substituting the tangent vector components (3.25),

one has

R 12“ (U, +i40,)+sC V. (3.70)
and

5.0 *2“ (W, —i0,)— sC 0. (3.71)
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Then, from (3.70) and (3.71), one obtains

DU +D W —s(( ()T

U — , 3.72a
q 1 +<< ( )
o, —-0,U () W
U, =i Fslet+0).? (3.72b)
1+¢C
which written in terms of ¢ and p result in
0,040,V —2isp ¥
V= , 3.73
»q 1+q2+p2 ( a)
6‘9“:[1_63\1/4—25@ S\Il
U, = . 3.73b
p =1 1+ q2+p? ( )

Thus, the base vectors (or conversely the differential operators) 0, and d, can be

written as
1 _ _
0, = v (B+3-s(-0), (3.74a)
1 — _
é%—1+CC®—6+s@+§». (3.74D)

It is worth stressing that, in these expressions appear the spin-weight s associated
with the functions. Consequently, these operators must be applied carefully in future

computations, in order to avoid errors.

From (3.70), (3.71) and (3.72) it is possible to obtain immediately the expressions
for Oy, Oyp and 0,. Here, we will start with J,,. There are at least two forms to do
it. Here, we follow two ways with the aim to check the resulting expressions. First,
the action of the derivative with respect to g on ;¥ , will be considered. Thus, using
(3.72a) one obtains

am:< ! ) ®+8—s@—CD+< ! )&&5+8—d§—0% (3.75)

1+¢¢/, 1+¢C
where
1 (+¢
S I L T 3.76
(=), i o
and
0, (043~ 5(¢C—C)) = 9,0+ 9,0 — s(¢ — ), (3.77)
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because (¢ — (), = 0. The first term in (3.75) is given by

U gy OO (4T 5(¢-T)
<L+@>g®+6 s(¢-0) = @+f@2 . (3.78)

Each derivative in (3.77) is computed considering (3.67) and (3.72a). Then

480~ (s +1)(C -~ )0

0,0 L ce , (3.79a)
and
— 72 P
95— 20+09 = (s=Dle=¢)O (3.79b)
1+¢¢
Thus, substituting the relations (3.79) into (3.77) one obtains
0y (043 —s(C—0)) =—— (0 + 5+ (3,8) — (25 + 1)(C — )0
1+¢C
—2s—1)(C - OF + (¢ - 0), (3.80)
where we used the anti-commutator
(9,9) W =00,V +00 V. (3.81)
Then, the second order differential operator d,, can be written as
1 = _ _
Og = 2<¥~+¥+&im+2G<—w+ﬂx)6
(1+¢C)
—2@(—@—4x)6+s@@—cf+(&—(ﬂ)). (3.82)

After that, 0, is computed using (3.72b), thus

a,,p:i(< ! )(6—6+s<<+<))+< ! )ap(6—6+s<g+<))>,(3.83)

1+¢C), 1+¢C

where | . _
( ) - “C_EL. (3.84)

1+¢¢/, (140
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Then the first term in (3.83) is given by

2

(C=0F—(C-08 +s(2 =)

1 - _
— 0—0 =1 3.85
() @-orscroy=: o 3:5)
The second term can be spanned as
0p(0—0+5(¢C+¢)) = 0,0 — 9,0+ s(C + ()0, (3.86)

where it is considered that (¢ + (), = 0.

Each term in the last equation can be computed by using (3.67) and (3.72b), thus

(3.87a)

and

0,0 =i _ . (3.87h)
The substitution of (3.87) into (3.86) yields

7 _

1+CC(62+8 —(0,0) + (s —1)(C+)D

0,0 =0 +s(C+()) =

—(s+ )¢+ O+ s(C+ D —s(C+ )T+ 5°(¢ +<)2)-
(3.88)

Then, substituting (3.85) and (3.88) into (3.83) one obtains the second order

operator J,,, which is given by

Opp = — L 2(62+62—(8,6)+2(s§+(s—1)g)5

(1+¢0)
—2(sC+ (s+ 1))+ (s ((+Z)2+ (C2—C2)))- (3.89)

Now, we compute the mixed operator d,, by means of (3.67) and (3.72), i.e.,

1 = - 1 - _
Dy = <1+<g>p (B+3-s(C-0)+ e (B+3-s(c-0).  (3.90)
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The first term in the last equation is given by

1 _ - . ) B N
(1—1—({)71)(5—0—5—8@_0)—M((C—C)é-i-(C—C)ES_S(g_O ),

(3.91)

where (3.84) has been used. The second term is computed making use of equations
(3.72) and (3.87), thus

;ap(iwﬁ—s((—@) (1:@)2(5252+[6,8]+((25+1)<+§)6

+ (25 =1)C=¢) T — s (201 + Q) + s(¢? —c2>)>,

(3.92)
where we use the commutator
3,9 =90 — 0. (3.93)
Consequently, it is possible to write the operator d,, as
Ogp = i2<z~52 — 0%+ [0,0]+2(s+1)¢ B +2(s —1)C D
(1+¢C)
—s(2+ 2+ +s(¢P-0)) ) . (3.94)

In order to test the consistency of this formalism, and with the goal to confirm

(3.94), we will compute the mixed operator d,,, i.e.,

, 1 = - 1 _ _
By =i ((1 n CC),Q (0-9+s(C+0) +Waq (0-0+s(C+ <))) . (3.95)

The first term in the last equation is given by

<1+1c<>,q(5‘5+3<<+0) ——M((Hc)é— (c+D)a+s(c+0)).

(3.96)

where (3.76) was used. The second term in (3.95) is computed taking into account
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equations (3.72a) and (3.79)

1 1
—0
1+¢C

0-0+s(C+0)=7——3
( ) s

(62 — 0% +[0,0] + ((25s — 1) +¢)0

+ (25 +1)¢ = OB+ (21 +¢0) — s (¢ _CQ))).

(3.97)
Then, substituting (3.96) and (3.97) into (3.95) one obtains
Opg = ———— (62 — 9%+ [0,8] +2(s — 1) T+ 2(s + 1)¢D
(1+¢0)
+s(2—¢2—g2—s(<2—g2))). (3.98)
Now, noting that
04, 0p] ¥ =0, (3.99)

because ,W¥ is supposed to be a complex function with at least continuous second
derivatives. Then, using (3.94) and (3.98), one has

Oimxpa_@ﬂ_%%m

A
which implies that
(5.9 - [0.5] — 45) v =0
i.e., the commutator of the & and 0 satisfy an eigenvalue equation,
0,0 v =250 (3.100)

It is worth stressing that by using (3.67) one obtains

6,0] W =00,v-00.0
= 6(AAs-i-l s+1\II) -0 (As—l 5—1\11)
= As+1§ (s—&-lqj) - AAs—l5 (s—l\p)
= As (A5+1 - Asfl) S\Ij, (3101)
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which defines the constant of structure for the group of functions that satisfy (3.100),
i.e.,

As (AS+1 — As—l) = 2s. (3102)

Thus, the explicit form for the partial derivatives d, ;¥ and J, ;¥ as expressed
in equations (3.72) was obtained. With these expressions, the explicit form for the
second order operators Ouq, Opp, Oy and Jd,, were expressed as in (3.82), (3.89),
(3.94) and (3.98) respectively. However, it is important to highlight that 9, and 0,
are commutable. With this last fact the commutation rule for & and 8 was derived,
which is given in (3.100). The last relation is particularly important because from

it, the eigenfunctions for this eigenvalue equation are constructed.
3.9 Legendrian Operator

This section is dedicated to the treatment of the Legendrian operator and its
relationship with the spherical harmonics oY},,. Here this operator is expressed in

terms of the raising and lowering spin-weighted operators 0 and 0.

As it is well known, the Laplace equation
V20 =0 (3.103)

can be written as . |
—Opp (V) + — L2V = 0, 3.104
r (T’ ) T2 ( )

where the Legendrian operator £2 is given by

1 89 (sin 98@) + L

sin sin? @

L=

D (3.105)

The partial differential equation (3.103) is hyperbolic and hence their solutions can

be written as

P(0)Q(¢), (3.106)

which yields a set of ordinary differential equations for the functions R(r), P(f) and
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Q(¢), namely

d*R(r) N [(L+1)R(r)

dr? r2 =0, (3.107a)
*Q(9)

G TmR0)=0. (3.107h)

1 d (. dP(0) m2 -

The solutions for (3.107c¢), for any I € Z* and m € Z in which — (I + 1) < m < [+1,
are the associated Legendre polynomials, P/"(z), which satisfy the orthogonality

relation

/1 de P (x) P () = 252+1 E;fﬂmli:all (3.108)

With these polynomials and with the solution of (3.107b), i.e.,

Q(¢) = ™, (3.109)

a base for all angular functions are constructed. Such base is called spherical
harmonics (JACKSON, 1962), which read

2041 (1 —m)! ,
Ylm(9,¢):J 4—; El+:§!ﬂm(cose)e’m¢. (3.110)

Thus, particular solutions for the Laplace equation can be constructed in the

following form

\Ijlm = Rl(r)

Yim(0,9).

Substituting the last equation into (3.104) and using (3.107a), one obtains that the
spherical harmonics are eigenfunctions of the Legendrian operator, corresponding to

the eigenvalues —[(l + 1), i.e.,
LY = 11+ 1)Y. (3.111)
Now, it is possible to write (3.105) in the following form

1

1 tan?(6/2) ?
2 tan (6/2) cos? (6 /2)) D6

L= 2tan (0/2)

Oy + Opo + < (3.112)

where,
1—tan?(0/2)  1-(C
2tan (0/2) 9 (Cz)lm7 (3.113)
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and

1 ? (1+—CZ)2
(2 tan (6,/2) cos? (e/z)) T 4C (3.114)
The operator Jy can be written as
Oy = (]798(1 -+ p,gap, (3.115)
where the factors ¢ and py are computed using (3.1), namely
+¢) (1+¢C (C—¢) (1+¢C
qo = (C C>< 73 CC), and  py = : <C C)( 7 CO. (3.116a)
4(¢0) 4(¢0)
Using Equations (3.116), (3.115) takes the form
(1+¢0) _ _
h = ~———5 (((+C) 0, +i(C—C)D,). (3.117)
e 9asG-ga)

Since the spherical harmonics defined in (3.110) have spin-weight s zero, then the

operators d, and J,, given in (3.74), are reduced to

65::1%}4_(64—8), and 65::44fli:(§-6). (3.118a)

Then, the operators given in Equations (3.118) allow to re-express (3.117) as

(04(0

- 12
(<)

In order to compute the second order derivative Oy, it is necessary to make the

By (3.119)

calculation of the quantities g g9 and pgg. Thus, from (3.116) one has

400 = <C * Z) 4<1 ’ CZ) , and  pgg = —1i <C - Z> 4(1 il CE) : (3.120a)

The second order operator Oy is directly computed using (3.115), thus
090 = 0004 + P,000p + q,000q + D,000p,
where

Q,Gaeaq = Q?eaqq + Q,Gpﬂapqa
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and
0000, = D,04.605p + PyOpp-
Consequently, the second order operator Oyy reads
Ao = 4,0005 + D000y + T90uq + 20,60.004p + D90pp- (3.121)

The commutator for the @ and @ given in (3.100) for zero spin-weighted functions
becomes

8,9] o¥ =0, (3.122)

then the anti-commutator for these functions takes the form
(3,9) o =200 (0. (3.123)

For functions of this type, the second order differential operators 0,q, 0,y and Oy,

given in (3.82), (3.89) and (3.94) respectively, are strongly simplified to

O =y (07 + 8 4290 — 25— 2 B, (3.124a)

(1+¢C)
Opp = —% (8°+9 —200— 200 —2¢ ), (3.124b)

(1+¢C)

Op=———3 (0~ +200-20D). (3.124¢)

(1+¢0)
Thus, the two first terms in (3.121) are obtained using (3.120) and (3.118), namely

1 - _

40004 + D,000p = 3 (C 0+ ¢ 5) ) (3.125)

The third term in (3.121) will be obtained by using Equations (3.116) and (3.124),

namely

N2
2 _ (C - C) 2 =2 = -

%04y = BT (32 +3 +295 - 2¢ 920 D). (3.126)

The fourth term in (3.121) is obtained when (3.116), and (3.124) are employed, i.e.

2 (C +1§2<§C - Z) (52 — 3 +20-2 3) . (3.127)

2q,9p,08qp ==
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After substituting (3.124) and (3.116), the fifth term in (3.121) reads

—\ 2
20 =(C_C)(62+62—266—2§6—2§6).

p,@ pp 16CC

Thus, adding (3.126) and (3.128) one obtains

(3.128)

A TS ( ((C +O) + (¢~ 4)2) (0*+3° —2¢ 020 D)

2 2\ e
; <(<+¢) ~(¢=7) )86).
Using the last equation and (3.127) results in

QQGaqq + p298pp + 2q,0p,004p

16§C

Then, using (3.129) and (3.125), (3.121) takes the explicit form

16¢¢

Opg = 1 (4¢252 14 + 8{{66) .

Now, the differential operator J4 can be written as
9 = 4,904 + D.60p,

where the coefficients ¢, and p 4 are

q¢ - ;(C_<)7
and
1 —
Do = §(C+Q

Then, using the two last relations and (3.118) one obtains

(040
(1 +¢C)

Op =

o7

( ¢*(3°—200) +4C (92 —2¢ 0) + 8((66) .

(3.129)

(3.130)

(3.131)

(3.132)

(3.133)

(3.134)



The second order partial derivative 044 can be computed as follows
Os0 = Q9604 + P.so0p + 4.608q + D.00pp,

where

069504 = €404q + 0.6D.60pa:
and

P.6060p = D ,$q.60gp + p,2¢)app'
Then, for this reason

O = 4.6004 + P,000p + 45000 + 20,6P.60pq + P’ 0pp- (3.135)

The factor ¢ 4, is computed from (3.132) and with the help of (3.133), thus

qu:—;@+5) (3.136)

The factor p 44 is calculated from (3.133), i.e.,

Do = ;(C - 0), (3.137)

where we have used (3.132). Thus, when (3.136), (3.137) and (3.118) are substituted

into the two first terms of (3.135) one obtains

000+ 1,000y = z(li“) (T+¢) (5+3) + (¢ ~7) (3-9))
(O+CD
e S 3.138
(1+¢0) (3159
The third term in (3.135) is computed using (3.124a) and (3.132), i.e.,
2
000 = —@_02 (8 +3°+205 -2 09— 2( D). (3.139)

4 (14 ¢C)

o8



The fourth term in (3.135) is obtained from (3.124c), (3.132) and (3.133), namely

2(¢=¢) (C+¢)

3 —92+200-2C9). 3.140
e D) ( +2¢ 8 —2( D) (3.140)

2q,6p,¢0pq = —

The last term in (3.135) is computed from (3.124b) and (3.133), resulting in

(C+¢)

Y p—_— 9240 —200-200—2C9). .
ST A .

The addition of (3.139) and (3.141) yields

1 2 _ 2 —2 —
28 26 —_ _ — 62 0 — 0— 0
€y0uq + P00 4(1+<<)2(<(C O) + (C+¢)) (2 +8°—2¢ 02 )

+z«o<f—@+oﬁw)
which added to (3.140) gives

q,2¢aqq - piﬁapp +24,6P.60pq
(3 -200)+C (82— 2¢ 3) —2¢ C FD

= — (3.142)
(1+¢0)
Substituting (3.138) and (3.142) into (3.135) one has
CO+¢0+¢2(0°-C0)+C (0?—C0)—2¢ D
w:_c +¢0+¢2(0-C0)+C (32 —-¢D) -2 ¢ | 5113)

(1+¢)°

With these results, the explicit form of the Legendrian given in (3.112) in terms of
the 0 and 0 operators will be computed. The first term is obtained directly from
(3.113) and (3.119), namely

1, 4(C9-¢C0+¢T-¢XD)

tanf 16¢¢ (3.144)
Also, using (3.114) and (3.143), the third term in (3.112) reads
1 CO+¢0+¢*(5—C8)+C (82— ¢8)—2 (B0
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Then, substituting (3.130), (3.144) and (3.145), one has
L* = 0. (3.146)
This result implies that, the eigenvalue equation (3.111) can be written as
00Yy, = —1(l + 1) Y. (3.147)

Notice that the functional dependence of the spherical harmonics was not written.
This was made intentionally because it is valid independently of the coordinate
system. We show that through the passage to stereographic coordinates, the
expressions of the angular operators 0y, 0y, Opg, Opy and Oy in terms of the O
and 0 were obtained. The spin-weight of the functions in which these operators
can be applied was disregarded. Thus, at least for O-spin weighted functions an
equivalent expression of the Legendrian was found. This relation can be extended
to s-spin weighted functions and therefore a Legendrian operator for these functions
can be constructed. There are at least two ways to do this in a completely consistent
manner. One of them is by expressing the operators @ and 0 in spherical coordinates
and with them construct the second order operators 82, 8, 30 and 89, and then

compute the eigenvalues of the commutator [3,0]. Another way is by expressing

these operators in stereographic coordinates and then construct the commutator

[6,9].
3.10 The 0 and 0 in Spherical Coordinates

A further generalisation of all the last results can be done, by extending the operators
0 and 0 to the case when function with spin-weight different from zero are considered.
In order to do so, it is necessary to consider the operators defined in Equations (3.68),

which can be written as

d = (sinf)’ (0p + i csc 0Dy) (sinh) ™", (3.148a)
and

0 = (sinf) * (0p — i cscHOy) (sinf)”. (3.148Db)

It is worth stressing that the operations in (3.148) are referred to operators, not to

scalar functions.
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From (3.68) one obtains the expressions for dp and 04, namely

0+0 1sin@
8 = — a =
(/] 9 ; ¢ 9

(30— 2scot ), (3.149)
and the expressions for dgg, Jpy and Oy, namely

&+ (3,0)+9

899 = 4 s (3.150&)
sin? 6 9 — —2 9 9
Opp = — 1 (5—(5,3)+E§)—s cos” 6
—sin@cos@((s—l—;)E}— (s—;) 5), (3.150Db)
ising ., =2\ . d+0
Ogp = — 1 (3 —ﬁ)—zscos@ 5
icos 6 s(cot? @ + csc? 6)

(5 — 0 — 2scot 9) +isinf (3.150c)

2 )

(see Appendix B for further details of the derivation of these expressions).
These operators can be used to transform the field equations projected onto the
dyads, in terms of the angular variables 6 and ¢ into the eth form, without using

the stereographic version of the eth operators. However, most of the characteristic

codes use stereographic and gnomonic projections.
3.11 Integrals for the Angular Manifold

In order to compute the inner product of the spin-weighted functions, we will need
useful expressions for the integrals involving angular variables, when the (¢, p), (¢, ¢)

and the (0, ¢) coordinates are used. These integrals are for example of the type

[ # d0F(0, ), (3.151)

Q

where 2 is the solid angle. In spherical coordinates these quantities are expressed as

I Q// dédosin0£(0, ). (3.152)

The domain of these integrals can be decomposed into two parts, involving each
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hemisphere, north and south, in the form

]:(/[dqﬁd@sin&f(@,gb)—k//ﬁs dedfsin0f (0, ¢),

I//d(}ﬁNdQNSiHQNf(eN,QﬁN)—F//Q d¢sd9581ﬂ95f(95,¢5), (3153)
On s

where 2 and (g, label the north and the south regions in which the unitary sphere
was decomposed. Both domains share the same boundary that is the equator line.

Now, from the transformation of coordinates (3.1), it is possible to write that
g=tan(6/2)cos¢ and p = tan(0/2)sin¢. (3.154)

Thus, the transformation of coordinates from spherical (0, ¢) to stereographic (g, p)

can be performed. First, (3.152) is expressed as

I ://qude sinOnJ(qn, o) f(an, pN)
Qn

+ //dQSdPS sin0s.J(gs, ps) f (s, Ps), (3.155)

Qs

where J(q,p) is the Jacobian of the transformation of coordinates!, which is given
by

0, 0
Jap) =" "
¢7q ¢717
From (3.154), the derivatives in the Jacobian read
 2q(q% + p?)? 2p(q* + p?)/?
4T T L 22 P T T 2 2
I+q¢ +p I+g¢ +p (3.156)
p q
e
then , 12
5 _
J(q,p) = Ag )7 (3.157)

1+¢*+p?

'Here the indices to indicate the hemisphere is suppressed in the Jacobian, because it has the
same form in both.
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Note that

2((]2 +p2)1/2

sinf = T E (3.158)
thus, the substitution of (3.157) and (3.158) into (3.153) yields
4 4
I = //qude flan, p) ot //dq dpsTas:ps) (3.159)
(1+ % + i) (1+q3 +p2)’°

Qn

This last expression is particularly useful when a numerical evaluation of this kind
of integrals is performed. From (3.159), it is possible to obtain the expressions for
the same kind of integrals in terms of the complex stereographic coordinates (¢, (),

namely

//dCNdCN (G, Cy) L om En) Af(Cn: C)

(1 + CNCN)2
//dCSdCS (Cs, Cg)—2o8) 4f(¢s, Cs) (3.160)
(1+¢sCs)

where, the Jacobian of the transformation of coordinates is given by

= q¢ 47
J(C, Q=" 4.

p’C pvz

The derivatives in this Jacobian are
1 1
qc¢ = 57 qz = 57
(3.161)

1 )

b¢ = —57 b= 5

Then the integral (3.160) in terms of (¢, () is transformed as

= 2f CN,CN = 2f C&Cs)
I_//dc iz 2o O). b ) +//d< d(s v (3.162)

The inner product of two functions that depend on the angular variables is defined
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as

(f.g) = qbdQfg. (3.163)
/

Thus, the inner product { (Y, oYim), where oY, = Yj,,, can be computed in

spherical coordinates as usual, namely

21 ™
< OY’m’> OY}m> = / d¢/ df sin 6 Ovl/m’(ea ¢) OYEm(Q?QS)
0 0

= 5ll’ 6mm/. (3 164)

The explicit form of this inner product in stereographic coordinates (g, p) reads

' Visa 4 oY Ny Y,
< OY/m’a Onm> = / d(JN/ de 02 N'm (QN’pN) 0 Nlm<QN7pN)
—1 _ /l_q%v

1+ g% + %)

1 VI=GE 4 Ve Y.
+/ dqs/ dps 0 s (4s,Ds) 0 Szm(QS,ps). (3.165)

(14 g% +p3)°

Now, in order to extend the inner product shown above, to spin-weighted function
with spin-weight different from zero, it is important to observe that the 0 and 0

operators can be written as

0= P'"*0:P*, (3.166a)
and

0= Po.Ps, (3.166b)

where, we have defined the zero spin-weighted function

P=1+(C. (3.167)
Noting that
9 = POL = P, (3.168)
then we have
8P = BOC = 03 ¢ = OPIC = 0. (3.169)
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Also
0¢ = Po:¢ = P, (3.170)
then we obtain
0P = 00¢ = 00¢ = 0P = 0. (3.171)
Thus, equations (3.169) and (3.171) imply that
O(PA) = POA, 0(PA) = PoA, (3.172)
for any spin-weight function A.

Then, if two functions f and g with spin-weight s and s — 1, respectively, are

considered, the inner product of f and dg reads
(f.89) = # 407 dg
// IGdC 2T P00 (Pg)

=2i || d¢d¢ f P~UH90: (Poy).
J

The last equation can be written as
f 69 //dgdc 1+8)P5 > Psg az (? P—(l-i—s))) ’

which results in

(f,0g) = ( // dcdC - f p(1+s) PS // dCdCPsg 1+8>)> . (3.173)
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The first term in this equation corresponds to

//dédq& F P+ peg) _21//d<dgps P g (P P-1+y)

//dCdQPS 15 fP (1+s) )
=2 // d¢dCP ' P95 (F g
Q
= 2 // d¢dCP~?3 (f g)
Q

= (1,8(9)).

Since f has spin-weight s and ¢ has a spin-weight s — 1, then their product fg has

spin-weight s = —1, consequently d(fg) is a zero spin-weighted function. Therefore,

it can be expanded in spherical harmonics in the form

8(?9) = Zalm OYEm-

Im

Thus,

(1,8(f9)) = <1, ;azm oYzm>

- Z alm 7 OYlm

=0.

The second term in (3.173) is given by

2 // d¢dCPg 9: (f P~0+)) = // d¢d¢ gP~' P+t 9 (P~°F PV
Q

(3.174)

= 2i Q// dCd¢ gP~' Pt o (P~F P71,

66



where the integration variables ¢ and ¢ have been renamed, thus
//dgdgps (F p=0+9) _21//d§d§ gP™'3(f P7)
= 2 // dcd¢ gP~*3 ()
Q

—(3f.9). (3.175)

Substituting (3.174) and (3.175) into (3.173) one obtains

(f,99) = —(8f.9). (3.176)

Now, if f and g have spin-weight s and s + 1, respectively, are considered, then the

inner product reads
(,99) = # dQ2f g
Q
=21 s+1 —s
= || dcdC 5P o, (P~g)
Q
= 2 // d¢d¢ FP'o. (Pg) .
Q
This last equation can be written as

(f.8g) =2 || dcdCo, (FP*~'P~*g) = 2i [ d¢cdCP~*gd. (FP*~').  (3.177)
J J

The first term in (3.177) is given by
// d¢dco, (FP*~'P~*g) // dCdCP= D P (P FP )
=2i // d¢dcp=G+Y 5 ?Ps—lg) ,
Q

ie.,

2i // d¢dco, (FP~'P~g) = 2i // d¢dCP~23 (fg)
- (13 (7))
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It is important to observe that, here fg has spin-weight s = 1. Consequently, 9(fg)
must be a spin-weight zero function. Therefore, it admits a decomposition in the

form

0 (?g) = ZGOlm 0Yim,

lym

then

(13(7)) = {15 0am ot

Im

=Y apm (1, oYim)
lym
— 0. (3.178)

The second term in (3.177) is given by
2 // d¢dCP~2ga, (FP*1) = 2i // dCd¢Pgos (FP*),
9) Q
where, the variables ¢ and ( in the integrals were interchanged. Thus
2 // dCdCP g0 (fP*~") = 2i // dd¢ gP~ P! *0; (PFP)
Q Q
= 2i // d¢dcgP~'o (FP)
Q
Y // dcdcg P73
Q
— (0f.9). (3.179)

Thus, substituting (3.178) and (3.179) into (3.177) one obtains

(£.9g) = — (3f.9), (3.180)

It is worth stressing that (3.176) and (3.180) indicate that the 0 operator must be
conjugated and the sign interchanged, when the eth operator is passed from one

member to the other in the inner product.
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3.12 Spin-weighted Spherical Harmonics Y},

When the Legendrian for zero spin-weighted functions (3.147) is derived s-times,
one obtains

9°00 oY = =11 + 1)0° (Vi (3.181)

The left hand side of this equation can be transformed using the commutator (3.100),

namely

000 oYy = (68) 3 oYim
(66 2) 3 oYim
o°~ 1902 — 20° ) oYim

o~
o~
- (0
= (9°72(99) 8” — 20°) Vi
=
(

9°72 (90 — 4) 9 - 20°) (Vi
0°7200° — (24 4)3°) oYim

( 65—221‘68) Y]
000° — s(s + 1)5S> Yim:

thus
(399" — s(s + 1)3°) oYim = —1(l + 1)3° 0¥,

or

000° oYy = — [l(1 +1) — s(s + 1)] 0° ¢Yipn. (3.182)

Then, using (3.67), it is possible to write
0° Oyzm = Cs sYEm, (3183)

where C is some unknown complex quantity; this equation defines explicitly the

spin-weighted spherical harmonics, consequently
Cs00 Yy, = —Cs[l(l+1) — s(s +1)] sYim,

or

59 Yim = — [[(1+1) — s(s + 1)] ,Yim. (3.184)
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Using again the commutator (3.100) one obtains

00 Yim=—((1+1)—s(s+1)+2s) Vi,
=—(l+1)—=s(s=1)) Y. (3.185)

Now, writing the last expression as

85 s—i—lYZm = - (l(l + 1) - S(S + 1)) S—I—lYZm
= 6/45 syimv

one then obtains
A Y =—((1+1)—=5s(s+1)) se1Yim. (3.186)

In order to determine the constant A, the inner product (A0 (Y, AsO Vi) is

computed, namely

(AD Yim, AD Yim) = |As*(0 Yim, 0 Vi)
—|A*(00 Yim, Yim)
A=+ 1) = 5(s + V)] Yim, sYim)
= [[(1+1) = 5(s + DA Yim, Yim)
+1) —s(s + D] A% (3.187)

where, Equations (3.176) and (3.184) were used in addition to the fact that these

basis are orthonormal, i.e.,
< sY}’m’a 5Y2m> = 511/5mm’a Vs € Z.
When (3.186) is used, the same product gives

(AsO Yim, AsO sYim)

(=l +1)=s(s+1)] s1Yim, — [ +1) —s(s+1)] s11Yim)

I(I+1) —s(s+ 1)]2 ( s+1Yim, s+1Yim)

I(1+1) —s(s+1))°. (3.188)

[
[
Then, from (3.187) and (3.188) one obtains

AP =1(1+1) —s(s+ 1),
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or
|Ayle = £ [I(1+1) — s(s+1)]"/2. (3.189)
Making here the choice A; = |As|— and substituting it into (3.186) one has
3 Y = (1L +1) = s(s +1)"? 111 Yim. (3.190)
Also, from (3.185) one obtains

00 s—1Yim = — [l<l + 1) - S(S - 1)] s—liflma
= 314 lma

ie.,
AD Y =—[l(1+1)=s(s—1)] s_1Yim. (3.191)

The inner product <AS§ sYim, A0 3Y2m> can be computed by using (3.180) and
(3.185), namely

<AS§ S}/ITTH 14-86 s)/lm>
:‘AS|2 <6 8%7)173 }/Em
— AP (D Vi, Vi)

— AP (= U+ 1) = s(s = 1)) Yim, sYim)
= A (10 +1) = 5(s = 1)) { sYim, 5Yim)
=|A (10 +1) = s(s = 1));

and from the right side of (3.191) one has

(A Yip, AD Vi)

(=01 +1) = s(s=1)] s=1Yim, — {1+ 1) = s(s = 1)] s-1Yim)
11 4+1) = s(s = D { s1Yim, s—1Yim)

I0+1)—s(s—1)]%.

[
[
Equating the two last relations one obtains

Al = [[(1+1) = s(s = 1)]
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or

Ayl = 11+ 1) — s(s — 1)]Y2.

Thus, making the choice Ay = |As|; and substituting it into (3.191) one obtains

0 Vi =—[l(1+1)—s(s —D]"* .1V

Now, it is possible to re-write (3.190) as

1/2

(l2 — s +1— S) s+1YIm
(
(

I+ —8)+1—9"% 1 Vim
L+s+ 1)1 —s)"? o1 Yim,

(
(

in which one must observe that s < [.
Then, from (3.183) and (3.193) one has

0% oYim
=0°"'0 ¢Yim
=0 (L D) (Vi
—5°2 (1 + 2)(1 + DI — 1) 3Yin,
—0 % (1 + 3)(1 + 2)(1 + DI — 1)1 — 2)) 3V

=((I+s)- - (+2) 0+ DI —1)(1=2)-- (I (s = D) Yin

()"

note that this relation is true if 0 < s <[.
Also, it is possible to write (3.192) as

ﬁslflmz—[lz—s?+l+s]m

I—s)(l+s)+1+5" 1Y
I+ 8) 1 — s+ DY 1 Yim,

571Y2m

=

l
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in which s > —I.
Then, applying s times the 0 operator to (3.195) one has

85 sYim = 58718 sYim
= —[(I+s)(1—s+1]"*F7°F ,_1Vin
= (=1)?[(l+s—1)(1+s)(l—s+1)(—s+ 2)]1/2 3 s—2YIms

thus,

65 s}/lm
= (=13 [(l+s5—=2)1+s—1)(+s)x
(

=s—3

l—s+ 1) —s+2)(1—s+3)]"8"" ,_3Vim

= (-1 [(+1) (U +s=2)(+s— D) +s)l—s+1)- 1" Vi

1/2
= (=1)° [g j i;:] 0Yim.- (3.196)

From (3.194) and (3.196) the spin-weighted spherical harmonics Y}, can be defined
by

—_ N\ 2
U= "5 v, for 0<s<I
(I+s)!
stim — (l 4 8)' 1/27 ) (3197)
(—1)° <(l—s)!) 0 oY, for —1<s<0
in which 97! (5_1) is the inverse operator of 9 (0), i.e.,
90! =1, 33 ‘=1, (3.198)
such that
6,67 v =0, 5.5 ] =0, (3.199)
for all spin-weighted functions.
Also, as an immediate consequence of (3.192) and (3.195) one has
00 Yim =0 (= [1(1+1) = s(s = D] o 1Vi)
= — [0+ 1) = s(s = D] sYim, (3.200)
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and

80 i =0 (10 +1) = s(s + 1) s41Yiw)
= —[(l+1) = s(s+1)] +Yim, (3.201)

which show that the spin-weighted spherical harmonics Y}, are eigenfunctions of
the 00 and 00 operators. It is worth noting that (3.201) are the generalisation of
(3.147) when the spin-weight is considered.

3.13 Spin-weighted Spherical Harmonics 7,

There exists another base of spherical harmonics in which the functions defined on

the surface of the sphere can be expanded, namely (Z7;,,. They are defined as
7

V2

sZim = { sYim for m =0 (3.202)

1
E (Snm + (—1)m 3}/2 ,m> for m > 0.

Since these spherical harmonics are constructed from linear combinations of Y},

((_1)m sYim + 5Y) —m) for m<0

then they are also eigenfunctions of the 30 operator. Also, they are orthonormal
(ZLOCHOWER et al., 2003).

In order to show this, the ,Z;,, are written as
sZim = Aims sYim + Bims sYi —m,  for all m, (3.203)
therefore
( sZim» sZymr) = (ZlmsAl’m’s + lesBl’m’s) O Oy -

Evaluating the constants A,s and By, from (3.202), it is possible to write

< lem> le’m/> = / dQ lem le’m’
Q

== 511’5mm’ .
Also, they are complete, in exactly the same form as the Y}, i.e.,
9] l

S Zin(0.9) $Zin(0',¢') = 6(¢ — ¢')d(cos(8) — cos(8)). (3.204)

=0 m=—1
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This expression is proved in a straightforward way, if it is assumed that any angular

function ;¥ with spin-weight s can be expanded in terms of ;7;,,, i.e.,

00 l
=33 U i (3.205)

=0 m=—1

then, the coefficients ¥, are given by
sUin = /dQ sZim sV. (3.206)

Substituting (3.206) into (3.205) one obtains

00 l
sqj(97¢) = /dQ/ Z Z szlm(glaqb/) lem(97¢) 8‘11(9,7¢/)

=0 m=—1
= /dQ’5(¢— @ )d(cos(0) — cos(8')) (8, ¢). (3.207)
The 7, spherical harmonics will be important because the Einstein’s field

equations can be re-expressed in term of them. The reason to do that, is that the

sZ1m decouple the m mode in the field equations.
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4 THE INITIAL VALUE PROBLEM AND THE NON-LINEAR
REGIME OF THE EINSTEIN’S FIELD EQUATIONS

This chapter considers the IVP (Initial Value Problem) in the general relativity
context. Essentially, there are three distinct kinds of formulations to evolve a
given space-time. The Regge calculus, the ADM (Arnowitt-Desser-Misner) or 3 + 1
formulations, and the characteristic or null-cone formalisms. The null cones in these

last formalisms can be oriented to the past, to the future or in both directions®.

Here only the two last formulations are shown, namely, the ADM based and the
characteristic formulations. In particular the emphasis lies on the null cone oriented
to the future formulation. In order to do that, this chapter is organised as follows.
In the first section the initial value problem is present. Subsequently, some aspects
of the ADM formulations are briefly shown. Finally, the principal aspects of the

outgoing characteristic formulation are present.
4.1 The Initial Value Problem

The initial value problem (IVP) consists, essentially, in the evolution of a space-
time characterised by a given metric g,,. Here, g,, and its first derivatives, g, , are
specified in an initial three dimensional hypersurface corresponding to ¢ = ¢y. The
evolution of the space-time is then performed using the Einstein’s field equations. In
addition, in some cases the matter sources are evolved from the conservation laws.
The conserved quantities are used to constrain the system of equations, reducing in
this manner the degrees of freedom of these physical systems. One example of this

is the imposition of specific symmetries, such as axial or reflection symmetries.

There are several versions of the initial value problem. For example, in the 3 4 1
based formulations, which correspond to Hamiltonian formulations of the general
relativity, the metric and its derivatives must satisfy certain boundary conditions
during the evolution and satisfy some initial conditions in order to start the iteration.
Another example is the characteristic initial value problem in which the initial data
is specified on a time-like world tube and on an initial null hypersurface, for which
u = ug, where u indicates retarded time. A last example corresponds to the CCM
(Cauchy-Characteristic Matching) formalism in which ADM and Characteristic
formulation are used. In this formalism the metric and its derivatives are specified
across a world tube which separates the space-time into two distinct regions. The

initial conditions are given for the interior of the world tube starting an ADM based

Ingoing, Outgoing and Bi-characteristic null-cone formalisms
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evolution, then the boundary conditions generated onto the world tube are used as
initial conditions to start a characteristic outgoing evolution which propagate the

gravitational radiation to the null infinity.
4.2 Arnowitt-Desser-Misner Formulations (ADM)

In this section two of the most used ADM based formulations in numerical relativity
applications are presented, the ADM formalism and the BSSN (Baumgarte-Shibata-
Shapiro-Nakamura) formulation. The ADM/BSSN equations and their derivations
are presented in some detail. In the ADM based formalisms, the space-time is
foliated into space-like hypersurfaces, which are orthogonal to a time-like geodesic,
parametrised by an affine parameter ¢. The BSSN formulation furnishes simulations
that result more stable than those based on the original ADM. The constraints and

the evolution equations for the metric of the hypersurfaces are given in detail.
4.2.1 (ADM) formalism

It is supposed that the manifold M represents the space-time. M is associated with
the metric g,,,. The space-time is foliated into 3-dimensional space-like hypersurfaces
labelled by ¥, which are orthogonal to the vector Q* (at least locally). Q* is defined

as the tangent vectors to a central time-like geodesic, in the form
(4.1)

Here, t can be interpreted as a global time. Also, this time t corresponds to an
affine parameter to the arc length described by the central geodesic (ALCUBIERRE,
2008; BAUMGARTE; SHAPIRO, 2010). Recall that the intersections between the
hypersurfaces ¥ are forbidden. See Figure 4.1

The norm [|€,|| is computed from (4.1), namely
121> = ¢"tut. (4.2)
From (4.2) a scalar function «, the lapse function, is defined such that
9 1

S 4,
= P (4.3)
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Central time-like geodesic

space-like hypersurfaces

Figure 4.1 - Space-time M foliated in 3D - hypersurfaces X.

Thus, @ > 0 means that Q* is a time-like vector. Then at least locally the
hypersurfaces > will be space-like. On other hand, a < 0 means Q* is space-like.
Thus, at least locally, the hypersurfaces > will be time-like. It measures the lapse

between two successive hypersurfaces when measured by an Eulerian observer.

A normalised and irrotational one-form w, = af},, is also defined, i.e.,
WpWu;e = 0. (4.4)

From the 1-forms w, the normal vectors to the hypersurfaces ¥ can be built as

n’ = —g"w,, (4.5)
where the minus indicates that these vectors are oriented to the future, i.e., they are
pointed in the sense in which ¢ increases. Also, the one-forms w, and the vectors n”
satisfy

nw, = —g"w,w, = -1, n'n, =1 (4.6)

The metric v, corresponding to the hypersurfaces >, is the spacial part of g,,,, thus,

Vv = Guv + Ny (4.7)

Note that n#v,, = 0 indicates that n* is a normal vector to X. The inverse metric
" is given by
= g 4+ nfn”. (4.8)

2Namely also Normal observers, which are moving in normal direction to these hypersurfaces
3.
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From (4.7) one obtains the following projection tensor
W, =" 4+ ntn,. (4.9)

Then, the tensor that projects in the normal direction to the hypersurfaces is given
by
N# = —ntn,. (4.10)

The covariant derivative compatible® with ~,,, is obtained from the projection of

V. on the hypersurfaces ¥, namely
W, ="V, (4.11)

These three-dimensional covariant derivatives are expressed in terms of the

connection coefficients associated with the hypersurfaces ¥, i.e.,

1
3F#y5 = 57“0(7011,5 + Yos. — Vwo,0)- (4.12)

On the other hand, the Riemann tensor 3Ry, ., associated to the metric v, is defined
by
2V}, *Vyus = R0, and R, n, =0, (4.13)

which are satisfied by any space-like v, and any time-like 1-forms n,. Then, from
(4.13), the Riemann tensor *R’;,, is defined from the Christoffel symbols *I'*,; as
follows

3R76W _ SF’Y(SM,V _ 3111/1,5 + 307 3:[10'6” S N (4.14)

vp

The expressions for the Ricci’s tensor R, = 3R7WV and for the scalar of curvature
°R = °R*, are obtained from (4.14).

The 3-dimensional Riemann tensor 3R75W contains only pure spacial information.
Then, all quantities derived from it will contain information about the intrinsic
curvature of the hypersurfaces ¥. Thus, it will be necessary to introduce at least
one more geometric object to take into account the extrinsic curvature, K. This
tensor is defined from the projection of the covariant derivatives of the normal vectors

onto the hypersurfaces >. Such projections can be decomposed into a symmetric and

3Compatible means 3V, = 0.
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antisymmetric part, as follows

Vs nas = V5rns + V5% e,
= @(511 + Wev <415)

where Oy, (ws,) corresponds to its symmetric (antisymmetric). ©g,(ws,) is known as
the expansion tensor (rotational 2-form). Note that, given (4.4), ws, = 0. Thus, the

extrinsic curvature is defined as

K,uu = _’7667061/”01;5’
1

— _§£n’y/w: <416)

where £,7,, is the Lie derivative of v,, along the vector field n = n%e,. Here, e, is

any base, which e, = 0, when a local coordinate basis is considered.

Note that the extrinsic curvature is symmetric and only spacial and it furnishes
information on how much the normal vectors to > change their directions. Figure
4.2 shows the change of the normal vectors to the hypersurfaces ¥. These normal

vectors are referred to two distinct and nearly hypersurfaces ;.1 and ;5.

on®

(6%
L)

o
L

Yiyo
i1

Figure 4.2 - Change of the normal vectors to Y. The difference on® only provides
information about the change in the direction of the vectors, because they
are normalised.

The extrinsic curvature K, and the metric g,, give information about the state of
the gravitational field at each instant of time. Consequently, it is possible to do the
analogy with the classical mechanics. K, is analogue to the velocities, whereas g,,,

to the positions in a given set of particles.
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The projection of R,ge, associated with g, on X, are related to K, and 3R,M75,
through
S Rums + K Kos — K5 Ky = Y275 5 A5R (4.17)
uvnd unddvd po ey Y #’Y v nW stlapép- .

which is known as the Gauss equation.

The projection ’y“ufyﬂn’ysyn“’Ragw depends only on the derivatives of K. These

quantities are functions only of v,, and its derivatives, thus
VoK — VK = 1%75751% Ragep, (4.18)
which in known as Codazzi equation.

Both (4.17) and (4.18) lead to the constraint equations, providing the integrability
conditions that are propagated along the evolution. The hypersurfaces ¥ carry the

information about K, and 7.

On the other hand, from the Lie derivative of the extrinsic curvature K, along n®,

one obtains
1
LaKy = na”670u7¢uRa5w — = V. Ve — KO K., (4.19)
«

which is known as the Ricci equation. This equation expresses the temporal changes
in K, as a function of Rng,,, with two of their indices projected in the direction of

the time.

Now, contracting the Gauss equation (4.17) one obtains (ARNOWITT et al., 1959)
IVCW’YBHRQBV;L = 3R + K2 - KU@KG@, (420)

where the trace of the extrinsic curvature is K = 77 K, 5. From the Einstein’s tensor

1
GMV = RNV — §guyR7 (421)
one has
2ntn"G, = ”ya“”y’g”RaﬁW. (4.22)
Therefore (4.20) becomes
2n'n"G,, = "R+ K? — K,,K°%. (4.23)
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If the energy density p is defined as the total energy density as measured by an
Eulerian observer, i.e.,
p =n,n,T", (4.24)

then the projection of the Einstein’s field equations (2.23) on the normal vectors to

the hypersurfaces ¥ reads
R+ K? — K,, K" = 16mp, (4.25)
which is a Hamiltonian constrain equation.

Now, contracting the Codazzi equation one obtains
VLK, ¢ — 3V, K =4 7°"n" Roppu- (4.26)
However, from the Einstein’s tensor one has
Yn'G = YN R, (4.27)
Consequently, the Codazzi equation takes the form
VK¢ — *V,K =8rS,, (4.28)

where
Se = —"n"T,, (4.29)

which corresponds to the momentum density as measured by an Eulerian observer.

Equation (4.28) is usually referred as to the momentum constrain.

Now, defining a vector t* as follows
th = ant + p*, (4.30)

where 3% is the displacement vector. This vector indicates the displacement of the

Eulerian observers between two successive hypersurfaces (see Figure 4.3).

Note that the vector t* is dual to the one-form 2. Thus, from the extrinsic curvature
K, one obtains
»Ct’y/u/ - _QOZKHV + Eﬂ’Y[LV7 (431)

which is the evolution equation for the metric vy, associated with the hypersurfaces

2. Taken the Lie derivative of the extrinsic curvature K,, along t* one has the
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Diyo
i1

Figure 4.3 - Representation of two successive hypersurfaces and the displacement vector
B (red).
following evolution equation

LK,y = aLnK, + LsK,,. (4.32)

However, from the Ricci’s equation (4.19) and from the Einstein’s field equations
(2.23) results

1
n*n’y", 25, Ragse = *Ruy + KK, — Ko K%, — 877°,7%, <TW oY ”“"T> . (4:33)

where T is the trace of the stress-energy tensor 7' = ¢*"T,,. Defining the spacial

part of 7}, and its trace respectively from
S}U/ - fYGMPyEyTO’E a‘nd S - SMM7 (434)

and substituting into (4.32) one obtains

LK, = —°*V,*V,a+a(*R, —2K,,K%, +KK,,)
1
—8ra (SW — 5%,,(5 — ,0)) + LsK . (4.35)

In (4.35) all the differential operators as well as the Ricci’s tensor are associated
to . The evolution equations given in (4.31) and (4.35) are coupled and
they determine the evolution of v, and K,,. These equations together with the
Hamiltonian and momentum constraints contain the same information present in
the Einstein’s field equations. Furthermore, from these equations it is possible to
observe that the differential equations that govern the matter and the space-time
dynamics are differential equations of first order in time. In this sense, they are

different from the original field equations, which are of second order. As in any
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initial value problem, the evolution equations must conserve the constrain equations,
therefore, if v, and K, satisfy the constrain equations, in some hypersurface >,
then the same constrains must be satisfied along the all temporal evolution, i.e. this
conditions must be satisfied for all the hypersurfaces ¥ in which the space-time is
foliated.

At last, specifying the vector t* = (1,0,0,0), and introducing a 3-dimensional basis
vectors e (i) where ¢ indicates each of three vectors and taking into account that
Qe @ =0, then it is possible to make the choice that the spatial components of
n; = 0. Consequently, the displacement vector contains only spacial components,
ie., f* = (0,8"), and therefore the normal vectors to the hypersurfaces read

n* = a~1(1, 8"). Therefore the metric of the space-time can be represented by the

matrix
—a? + BfE B
G = , (4.36)
5;‘ Vij
or in the form of line element
ds® = —a’dt* + v, (dx' + B'dt)(dz? + pdt), (4.37)

which is usually known as the line element in the 3+1 form.
4.2.2 The Baumgarte-Shibata-Shapiro-Nakamura (BSSN) Equations

A variant of the ADM formalism is the Baumgarte-Shibata-Shapiro-Nakamura
(BSSN) formalism (BAUMGARTE; SHAPIRO, 1998; SHIBATA; NAKAMURA, 1995). In
this formalism, the metric «;; associated with the hypersurfaces ¥ is conformal to

the metric 4;; and the conformal factor is given by €%, i.e.,

Vi = €%, 1951 = 1. (4.38)

The fundamental idea is to introduce this conformal factor and evolve both,
separately, the conformal factor and the metric. This procedure simplifies the Ricci’s
tensor and simplifies the numerical codes. In order to obtain the evolution equations,
the extrinsic curvature K;; is decomposed into its trace K, and the trace-free part,

A

ij, namely

1
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In addition, A;; is expressed in terms of a trace-free conformal curvature, i.e.,

Contracting the evolution equation for +;; (4.32), one obtains
o Iny'? = aK + *V,/3, (4.41)
and using (4.38), results in an evolution equation for ¢, namely

D6 — —éaK L a8 + 0. (4.42)

Also, contracting the evolution equation for the extrinsic curvature (4.35) one
obtains
K = —*V?a+ oK ;K" +4r(p+9)) + B' °V.K, (4.43)

where

3v2 — ,}/2] 3V7L 3vj’

such that, substituting (4.39) and using (4.40) one has
oK = —*V’a+a (Aij[xij + ;KQ) +4na(p+ S) + oK. (4.44)
Subtracting (4.42) from (4.32) one obtains the evolution equation for ;;, i.e.,
Oy = —2aAi; + B*OFi; + i 0:8* — g%akﬁ’f, (4.45)
also, subtracting (4.44) from (4.35) results in the evolution equation for A,;, namely

O = € (=(*V: *V;0)™ + a(REF - 8rSF)) + a(K Ay — 24;,A%)

- - - 2 .
+B8%0 Aij + A0 B* + A0, BF — gAija,fﬁ’f, (4.46)

where the superscript TF indicates trace-free, i.e,

1 1
and )
(V3 Vi)™ = (°V; *V50) = 295 Va). (4.48)
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Now, in terms of these variables, the momentum constrain becomes
i3e 35 o L esn  Lsex i L o sgr0 5¢
v 2V, "Ve — g€ R—I—ge AijA]—Ee K* +2me*p =0, (4.49)
where the operator 3V; = ¢ 3V,, is the hamiltonian constrain, i.e.,

~ - 2 ~ . .
BV (A7) — §66¢ SVIK — 8me% 5% = 0. (4.50)

4.3 Outgoing Characteristic Formulation

In this section one of the characteristic formalisms will be described, in which the
space-time is foliated into null cones oriented to the future. In order to do so,
the Bondi-Sachs metric and the characteristic initial value problem are described,
subsequently the non-linear field equations in the characteristic formalism are
presented and we finish this section rewriting these equations using the eth formalism

previously described.
4.3.1 The Bondi-Sachs Metric

Bondi et al. (1962), Sachs (1962) in their remarkable work describe in detail the
radiation coordinates construction. Here, these details are reviewed in order to
understand the metric and its metric functions. Thus, it is supposed that the
manifold M is doted of a metric tensor such that g,, = g.(2*) and have a
signature +2. We assume a generic scalar function that depends on these unknown

and arbitrary coordinates u := u(z*), such that

u = 0. (4.51)
Thus, denoting by k* = u ,¢g"*, one has

k k" = 0. (4.52)
The hypersurfaces for constant u are null; and its normal vectors k* also satisfy

k. k" = 0. (4.53)

Thus, the lines whose tangent is described by k* are called rays (see Figure 4.4).
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World tube I'

u, r_constants

u constant

Null cones

Figure 4.4 - Null coordinates construction. Tangent and normal vectors to the null
hypersurfaces emanated from a time-like world tube I'.

From (4.53), the congruence of rays of null geodesic are also normal to the
hypersurfaces for u constant, thus these rays lie on the hypersurfaces and on the
normal plane to the null hypersurfaces. The parameter u must be such that the
expansion £ and the shear o of the congruences, formed by these rays (the null

cones) satisfy
ofp = ek

[
5:7’7£07 :T—p27ép2, (4.54)

It is assumed that u satisfies these conditions for any coordinate system. The
parameter u will be selected as the retarded time. The scalar functions 6 := 0(z*),
¢ := ¢(x*) can be selected such that

Ouk” = 0k =0, 0.040,059°°97" — (0.059°°) =D #0,  (4.55)

where D > 0. Thus 6 and ¢ are constants along each ray, and therefore, can be
identified as optical angles. In addition, it is possible to choose the scalar function

r:=r(z%), such that
4 1

Pt e —
Dsin26’

in which case r is the luminosity distance, defining hypersurfaces for u,r constants

(4.56)

such that its area is exactly 47r? Defining 2# = (u,r,0,$) as coordinates with
p=1,234 and 2 = (0, ¢) with A = 3,4, then the line element that satisfy above

conditions reads

28
ds? = — (Vi - r2hABUAUB> du? — 2¢* dudr — 2r*h spUP dudz?

+ r?hpda’da®, (4.57)
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which can be written conveniently as

r

28
ds? = — (Ve ) du® — 2¢* dudr + r*hap (U du — da?) (UPdu — dz®) , (4.58)
where

2h ppda’da? = (627 + 625> df* + 4sin @ sinh(y — §)dfdo
+sin? 6 (6_27 + 6_25) d¢?*. (4.59)

Then, ||hag| = sinf, that is just the determinant of the unitary sphere, if § and ¢
can be identified as the usual spherical angles. The line element (4.58) for  constant,
allows us to identify Ve??/r as the square of the lapse function, where V and 3 are
related to the Newtonian potential and to the redshift respectively, and U* is the

shift displacement between two successive hypersurfaces.
4.3.2 Characteristic Initial Value Problem

As already considered, the initial value problem version in the null cone formalism, is
called characteristic initial value problem. In this case, the initial data is specified on
a null cone and on the time-like central geodesic, or on a time-like hypersurface (the
time-like world tube), which is parametrised through the retarded time u, (see Figure
4.5). In the first version of the null cone formalism (Figure 4.5a), some evolutions
can be carried out in a satisfactory form without caustic formation. However, the

second scheme (Figure 4.5b) is usually implemented, in particular to avoid caustics.

Time-like central Geodesic

World tube I

Null cones

Null cones

() (b)
Figure 4.5 - Space-time M foliated in 2D - null hypersurfaces . (a) Null cones emanating

from a central time-like geodesic. (b) Null cones as emanating from a central
time-like world tube.
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The common usage for the characteristic formulation is in conjunction with an
ADM based formalism, in which the matter is considered inside the world tube
I (see Figure 4.6). The matter is evolved through a space-like foliation scheme for

the space-time. The principal application of such scheme is in binary systems with

Space-like hypersurfaces \/\\

/) % Null cones
[/

World tube I

transfer of momentum and mass.

Figure 4.6 - Space-time M foliated in 2D - null hypersurfaces 3. Section showing the
space-like for ¢ constant and characteristic hypersurfaces corresponding to
the retarded time u constant.

The ADM based code determines the initial data needed to perform the
characteristic evolution. Specifying it on the common time-like hypersurface T,
after that a pure null evolution scheme is used, for example in radial cases the null
parallelogram algorithm is applied, or off the spherical symmetry a Crank-Nicolson
or a leapfrog algorithms are used. However, in recent works the time evolution is
performed using a Runge-Kutta integration scheme (see e.g. the references (CAO,
2013; REISSWIG et al., 2013; HANDMER; SZILAGYT, 2015)).

4.3.3 The Einstein’s Field Equations

The Einstein’s field equations in this formalism can be decomposed into

hypersurface, evolution and constraint equations (WINICOUR, 2012), namely

Roy =0, Rou=0, h*BRup=0, (4.60a)
1

Rap — §hABhCDRCD =0, (4.60D)

R*, =0, R’ =0. (4.60c)
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These equations form a hierarchical system of equations, which can be solved

systematically. The first set of equations, (4.60a) gives

1
B, = Em“ hWPPhap, hep.r, (4.61a)
(r4e2ﬁhABUFfr) = ot (r’QB,A> — TQhBChABNC, (4.61b)
2‘/:7’ — GQBR - 262,8/8“AA o 26265||A/6HA + 7"_2 (TAUA) "
4,28
T 62 hapU* U” (4.61c)

for which w is constant, the double vertical lines indicates covariant derivative
associated to hup, and R is the Ricci’s scalar associated to hyp. The evolution
equations (4.60b) take the form

2r T

r3e 28 4 chgpUC.UP
ACQBD T T + 2UB||A

rhap,USe +rUhag o
I© 5 e rhap,h°P (UCHB — UB||C)

=0, (4.62)

(rhAB,u>’r -

+ ThAanUC:T —

in which time derivatives of the J function are involved, and the third set, the
constraint equations, must be satisfied for all null cones in which the space-time is

foliated, or conversely for all time in the evolution.

4.4 The Einstein’s Field Equations in the Quasi-Spherical Approxi-

mation

In this section some results in the quasi-spherical approximation are briefly
presented. Bishop et al. (1996) obtain a decomposition for the field equations using
the stereographic dyads ¢“, separating the linear from the non-linear terms. When
the non-linear terms are disregarded the quasi-linear approximation is obtained. In

order to show this, the field equations (4.60) are projected as

Roy =0, Roug® =0, h*PRup=0, (4.63a)
¢*q°Rap =0, (4.63b)
Ru == O7 R12 = 0, RlAqA = 0. (463C)
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It is introduced a quantity to measure the deviation from the sphericity in terms
of the connection symbols, considering the higher order terms and therefore,
maintaining the non-linear regime without loss of generality.

Thus, the difference between the connexion associated with the unit sphere metric

gap and hap reads

Q% pze = (Va—N04)zp (4.64)
which can be written

heP (hDB|A + happ — hAB\D)
2 Y

Q%5 = (4.65)
where fl4 = A4 f. The following quantity is introduced in order to reduce the order

of the differential equation (4.61b)
Qa =r’e > hygU”. (4.66)
Also, the following spin-weighted quantities are introduced,

hapq'q® o hapq "

J = =
2 ’ 2 ’

Q = QAqAa U= UAQAa (467)

where, the complex scalar J, is a 2-spin-weighted function, and the complex scalar
functions @ and U are 1-spin-weighted functions. The Bondi’s gauge ||hap| = siné,

is translated through these spin-weighted quantities as
K*—JJ=1. (4.68)

where, the overline indicates complex conjugation. Here J = 0 implies spherical
symmetry.
Thus (4.61b) is reduced to the following equations
2 ol (2 27 BC
(Qa) =2 (r28.4) —r*h"Chapc, (4.692)

)T )T

UA = r2e28pABQp, (4.69D)

,T
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and the field equations (4.61) adopt the form

ﬁ,r - NB7
(7“2@) o= —12¢*¢"Chapc + 2r'q¢” (7“_25,,4) T No,
U, = r2e?’Q + Ny,

R
V, = 5 6265”AA _ 6265||A5HA +

r—2 (7‘4UA)
2

125 4 N,

whereas the evolution equation (4.62) becomes

2(rd) u — (’/‘_IV (TJ)J,) =7t (T25U) ot 2r~'efa2ef

r

— (r_lw) J+ Ny,
,r
where the non-linear terms are

1
Nﬂ = EThAChBDhAB,ThCD,M

NQ _ qA (rthC (QDcAhDB,r + QDCBhAD,r) _ 2 (th . qBC’> hAB,r|C) :
Ny =1"2e*q, (hAB - CIAB) B,

o ()0, -

4 )

N, = 10 (-26690 (€)= hacp (r2UP)
J r AB Ic AC®% DB

T

T4€_26hAchDBUC;rU?T

— (hac — qac) (7”2UC)

,r|B 2
r2hap,US hapl
_f’llc — TzUChAB,T‘HC + 27"2hCDhAAD7T‘U[BHC] + AzB > )
_ 2, AB B T\ _ 9.8 (B 274
F=—r?h"", <hAB,u oy ) Ze (e >||A T (7’ v ),THA

T4672BhABU/}TU'€T
5 .

(4.70a)
(4.70D)

(4.70c¢)

(4.70d)

(4.70e)

(4.71a)

(4.71b)
(4.71c)

(4.71d)

(4.71e)

(4.71f)

The quasi-spherical approximation is then obtained when Ng = Ng = Ny = N, =

N; = 0, which is neither a linear version of the field equations, and nor a spherical

version of them. However, this approximation considers slightly deviations from the

sphericity.
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4.5 The Einstein’s Field equations Using the Eth Formalism

Bishop et al. (1997) show that the field equations (4.70a)-(4.70d) take the following

form when the eth formalism is used,

B, = Ng, (4.72a)

U, =17%Q + Ny, (4.72b)

(er) = —r? (3] + 5K) Tt 2r10 (T‘2B) T No, (4.72¢)
7 028 7 P2 77 B

wy=5R—1- 730’ + o (r* (3T + 8U))7T + N, (4.72d)

where the Ricci’s scalar associated to hyp take the form

R =2k — ook 4 LT ORI 200 (4.73)

The evolution equation (4.70e) reads

2(rd) e — (7“_1(7’ + W) (rJ)7T> = r! (T2?§U) T 2r~1efa%ef

— (r'w) LN, (4.74)

where, the non-linear terms in (4.71) become
Ny = (J’TJ’; ) , (4.75a)
Ny = v (Ke ;Q ~79) , (4.75h)

Ng=1*((1-K) (0K, +03J,)+8(JJ,) +3(JK,) - J,0K)

2

+@(6J(J — 2 +0 (1, = TT,)), (4.75¢)
2
N, = % ((1 ~ K) (998 + 965) + ! 85) ; 7(69) )
e — -~ = _ e, 5
-5 (98 (0K —97) + 9B (0K —3.J)) + - (J3° B+ T5%3)
672ﬁ7‘4 — -2 —
- (2KU, U, + U, +JU%), (4.75d)
Ny = 27: Ny + JZi‘;_an- (4.75¢)

i=1
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Here, were defined the following terms

Nj =-— < (K (9738 + 20K38 — 8J93) + J (5. — 20K ) 33
r
— Jo.J33), (4.76a)
(6J (r?T) +3J (TQU),T>
Nyy =— ’r2r ; (4.76Db)
(1 - K)d(rU), - Jo(r?0)
Ny = T’ (4.76¢)
rie=? (K2U2 + 2JKU,U , + J°T,)
Ny = — vy (4.76d)
rJ, (8U +00)
Njys=— : (4.76€)
2
r (U0 +USJ) (ST, —TJ,) _
Nyg = ; +r(JK, — KJ,)UdJ
— U (8J, — 2KOH J, + 2JOKK,,)
—rU (8J, — KOJJ, + JOIK ), (4.76£)
Ny =r(J,K - JK,) (U (8] - 0K) + U (3K — 9J)
+K (9U - dU) + (JOU — JoU)), (4.76g)
and the P, terms in (4.75¢) are defined as
r2 (J,u (TK) +7. (JK)J)
P = K —8V4,, (4.77a)
Py = ¢* (—2K (904 + 0398) — (30K + BB0K )
+7 (3°8+ (38)%) + 7 (3°8 + (38)*) +BJ3B + 5J3p) , (4.77b)
3(r?U), +0(r’0)
= 5 z (4.77¢)
rie® (2KU, U, + JU, + JU2)
P =— ’ N (4.77d)

4

Notice that subsequent reductions to a first order equations were made (GOMEZ,
2001), improving the performance and the accuracy of the characteristic evolution
codes, keeping the problem as a well-possess problem (GOMEZ; FRITTELLI, 2003).

Also, it is worth mentioning that other approach, for Bondi observers, is obtained
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by considering the projection of the field equations onto the vectors m?, defined as
hap = m(AmB). (478)

This kind of approach is used in the analysis of the gravitational radiation near the
null infinity (BISHOP et al., 1997).
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5 LINEAR REGIME IN THE CHARACTERISTIC FORMULA-
TION AND THE MASTER EQUATION SOLUTIONS

The linear regime of the Einstein’s field equations leads to different approximations
according to how it is made. Depending on the presence of matter, the curvature
of the background can be considered in this regime. The perturbations made to the
space-time are considered smaller enough to contribute to the curvature, propagating
away from the sources. If the curvature is considered then the advanced and retarded

Green’s functions must be taken into account into the gravitational wave solutions.

In this section, we show the Einstein’s field equations in the outgoing characteristic
formalism in the linear regime. These equations result from perturbations to the
Minkowski and Schwarzschild’s space-times. In order to do this, we shown that,
to first order, the Bondi-Sachs metric can be decomposed as a background metric
(Minkowski or Schwarzschild) plus a perturbation, which is expressed in terms of
the spin-weighted functions 3, J, U and K previously defined. After that, the field
equations are computed and a decomposition into spin-weighted spherical harmonics
is performed, leading to a system of equations for the coefficients used in those
multipolar expansions. This system is solved in a completely analytical form, by
solving a specific equation obtained for the J metric variable, which is called master
equation. Using their solutions we compute the analytical solutions for the rest of
the metric variables for all multipolar orders in terms of Generalised Hypergeometric
(Heun) functions for the Minkowski (Schwarzschild) (CEDENO; ARAUJO, 2015a). A
simple example is reproduced using this formalism, that is a static spherical thin
shell (BISHOP, 2005), whose matter distribution is expressed as a function of the

spin-weighted spherical harmonics ;Z;,,.

Here, we put the Bondi-Sachs metric (4.57) in terms of the spin-weighted scalars

J,w and S in stereographic-radiation coordinates, namely

i — (626 (1 + “’) _ R+ U + 2KUU)) du? — 2¢% dudr
T
22 (K + J)U + (J + K)U)
_ dgdu
1+ [¢[?
2ir? (K = J)U + (J — K)U) 22 (J+2K +J)
_ . dpdu + ——dg
1+]¢| (1 +1¢?)
zm?(J—j)dd 2r2<J—2K—|—j)d2 (51)
(TicpE T e |
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In the weak field limit, i.e., when slight deviations from the Minkowski background
are considered i.e., |g,,| < |7 |, and the second order terms are disregarded, the

Bondi-Sachs metric is reduced to

(U+0)
1+ ¢

g - (1 _w_ 25) du? — 2(1 + 28)dudr — 2

r

dgdu

(24 +7)

2

which can be clearly separated as,

2

4
ds* = —du’ —2dudr + —— -
(1+[¢]?)

de? + dp®) + (w + 2ﬁ> du®
T
ABdud 2 (U +T)dg —i(U —T)dp)
—48dudr — ———du — (U —
1+ [P ! Y

) 2r2(J+7)

. 9 2 2

(1 +[¢?)

showing that it corresponds to a Minkowski background plus a perturbation.
5.1 Einstein’s Field Equations in the linear

In the linear regime, the field equations (4.63) are reduced to

87TT22 = 4677,, (54&)
d.J 208 (r'U,)
A T rr
8nToaq” = 5~ 0B, + " + 52 (5.4b)
7 52y (r (3U +00
87 (WP Tap — r°T) = —200 + IO T, ( )>
2 2r2

+ 46 — 2w, (5.4c)
8nTapg"” = ~20°6 + (1%0U) — (r21,) +2r(r)),,. (5.4q)

. (T+T )- 0bw , 005 (87 +30),, LW, Wy

T )= 93 72 2 72 2r

203 4
_ b, 4
. (5.4e)
_ 2 TT =
T Caap (P(U+BU)) o,
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9J, 0U ddU 1 (3w (rU),
87T1aq” = 2’ T + 1 + B} (r) — 0B+ o2 :
2 b
T gu s (5.4g)

which are the field equations corresponding to the perturbed Minkowski or
Schwarzschild space-times depending on how the w metric function is defined. This
system of equations were originally obtained by Bishop in (BISHOP, 2005) and

confirmed by us.
5.2 Harmonic Decomposition and Boundary Problem

Now, an expansion of the metric variables in the form of a multipolar series is
performed, namely
oo 1 5
sf = Z Z R (flmel‘m‘(ﬁ) 0° Zlm, (55)

=0 m=l

where f = {B,w, J,J,U, U}, Zjn, = 0Zim, ¢ is a general function of the retarded
time, i.e., gz~5 = qg(u), fim are the spectral components of the function ,f, m € Z,
m € [—[,1]] and [ > 0 indicating the multipolar order. In previous works similar
expansions were performed, where ¢ = vu (BISHOP, 2005; BABIUC et al., 2009;
BISHOP et al., 2011; CEDENO; ARAUJO, 2015b).

Notice that in (5.5) the spin-weight of the function ,f is contained in the factor
0°Zim. Therefore, substituting (5.5) into the field equations (5.4) one obtains
ordinary differential equations for their spectral components, in which the spin-

weighted factors have been eliminated, namely

s _
Bim,y = 27 / dQ Zy, / dg e~ mor Ty, (5.6a)
Q 0

- - 5lm,r + +
r

2m B
- a0 Z,, / dp e~ MOy 4q%, (5.6b)
0

201+ 1) Bum + (L= DI+ 1)L+ 2) Ty + A

2w B
+ 4B — QWi = 8T / A Zym / dj e (WP Typ — T, (5.6¢)
0

Q
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— 20 + (rQUlm) o (T2Jlm’r)7r + 22’|m|7“gz;5 (rJim),,

2w N
— il /dQ Zlm/ dp e T pg?qP, (5.6d)
JI=Di+1)(1+2) Jo 0

I+ Dwpn 10+ 1B 5 i|m| dwim
- 9,3 - ‘ 2 +Z|m|l(l+ 1>¢Ulm + T
Wimrr  20|M| 0B 2Bimr .
+ l2 — — | |¢ﬁl + ﬁl -+ ﬁlm,rr - 2¢5lm,r
T T T
o 2 ] - /T
— 8 / iQ 7y, / g e-itmls ( + T11> , (5.6¢)
Q 0 2
(1418, 1+ 1) (U, -
_(+2)Bz +( )(2 z),+wl,
T 2r 2r
L 2 ) - /T
— 8r / 40 Zom / d e~ilmid ( + T12) , (5.60)
Q 0 2
1m| (1 +2)(1 = DJimd 1 (wim s 4 Uny)
_dim| (1 +2)( )l¢+(wz) —z\m!¢ﬁzm+( 12),
2 2\ r J, 2r

ilm|r2e

T — s
——— [ d0Z do e~tmle A )
9 Ulm,r + Ulm l(l n 1) /Q lm/O ¢ € 1A9 (5 Gg)

This system of coupled ordinary equations is separable through a simple procedure,
as we will show in the next section. Notice that an alternative procedure is presented
by Médler in (MADLER, 2013).

5.3 The Master Equation

Here, we sketch the explicit steps to obtain a fourth order equation for .J;,,. This
equation is called master equation and allows one to find the explicit solutions for

U, and wyy,.

In order to do that we start making the change of variable z = r~=!, then, the field
equations (5.6a) - (5.6d) become

Bima = = A, (5.7a)
U4+ 2)(I = Vxdim o + 22Bimz + 4Bim — 2Uim e + tUpy g0 = Bim, (5.7b)
— stjlmm — 4i\m|gnglm,x + 42’\m|gz§Jlm + AU — 22U — 42 B,

= 22Dy, (5.7¢)
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where the source terms A, := Ap,(z), By = Bin(x) and Dy, = Dy, (x) are
explicitly defined (CEDENO; ARAUJO, 2015a), namely

2m 5
Ay, = 27 / dQ Zim / do e’”m'%ng, (5.8a)
Lom 5 e—ilmld T, oA
Blm dQ Zlm dqb e m $T2Aq s (58b)
,/ I+1)
> [T imie A B
Dy, = / dQ Zim / do e MOy patq®. (5.8¢)
\/(l—l)l(l+1)(l+2) 0 0

In addition, solving (5.7b) for 4z, and substituting it into (5.7¢), one obtains

— 203 T me — il G i+ 22 (L4 2)(1 = 1) i + 411G T
+ xQUlm,CL‘x - 4xUlm7x + 4Ulm + 2x2/81m,r = x(QDlm + Blm) (59)

Thus, the derivative of (5.9) with respect to x yields a third order differential

equation for J;,, i.e.,

- 2x3<]lm,acac:t - 6x2<]lm,:m: - 4Z|m|q~5x<]lm,ac:c + [E2(l + 2) (l - 1)Jlm,ac:c
+ 21‘([ + 2>(l - 1)Jlm,x + :L‘QUlm,J:a:w - 2xljlm,zz
+ 4x6lm,x + 2x26lm,zx = (2Dlm -+ Blm) + Z’(QDlm@ + Blm,:r:)- (510)

After this, notice that it is possible to obtain 22Uy, 4z by just deriving (5.7b) with

respect to x, namely

P Upmzar = =721+ 2) (1 = 1) Jimze — 2L+ 2) (L = V)i + U e
— 62Bim.e — 22> Bynze + TBim,g. (5.11)

Then, substituting it in (5.10) and simplifying one obtains

- QxSJlm,xa:z - 6$2Jlm,ac:c - 4Z|m|$$Jlm,xz + Qf(l + 2)(l - 1)Jlm,x
— I‘Ulm’xx — 2$Blm,x = 2$Dlm,x + Blm + 2Dlm (512)

Making the derivative of (5.12) with respect to z, and substituting zU,,, from
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(5.11), one finds a fourth order differential equation for J;,,, namely

- 2x4(]lm,:crzz - 12x3<]lm,mma7 - 12x2Jlm,xm - 4Z|m|Q;lem,zm - 4Z|m|q;x2<]lm,mzz
+22(L+2) (1 = DIy + 2221+ 2) (1 = 1) Jimwe + 428z — 22U 2a
= 22 By + 20 Dipp v + 42 Dpp - (5.13)

Finally, solving (5.12) for Uy, ., and substituting into (5.13), a differential equation

containing only J;,, with source terms is obtained, namely

- 2x4<]lm,a:a:$x - 41’2 (QZE + Z|m|¢~5> Jlm,a::rx

Loy <2¢|m|$s i+ 2)(1 - 1)) T = Him(2), (5.14)
where
Hyp(2) = 20 B + 29* Dy e — 82 Bim.e — 2Bim — 4Dy, (5.15)

represents the source terms (CEDENO; ARAUJO, 2015a).

In order to reduce the order of this differential equation, one defines

Jlm - Jlm,;rz; thus,

— 20 e — A2 <2a; + z'|m|¢§> Toma + 21 <2i|m|gg va(l+2)(1 - 1)) Jim = Him.
(5.16)

For the vacuum, this differential equation turns homogeneous, i.e., H;,, = 0, and
hence (5.16) is reduced to the master equation presented by Madler in (MADLER,
2013), i.e.,

O — <2x + z’|m|<5) Jim.e + (2¢|my$ +2(l+2)(1 - 1)) Jim = 0. (5.17)

Making [ = 2, this master equation reduces to that presented previously in (BISHOP,
2005) for the Minkowski’s Background i.e.,

— 23 T ae — 2 (21: + z|m|<§> Jim.e +2 (z|m\q§ + 2x> T = 0.

The derivation of the master equation for the Schwarzschild’s background follows
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the same scheme. In this case the master equation is given by

Jlm,mzzzx‘L(QMx — 1)+ Jimaax (2x3(7Mx —2)— 22':1:2;b |m|)

+ Jimne (2@'3355 |+ (1 — 1) + 2)2% + 16Mx3> — Gym(a), (5.18)

where M is the mass of the central static black-hole and Gy, () represents the source
term, which is given by
Hy,
Gim(z) = 2(“"). (5.19)
It is important to observe that M = 0 effectively reduces (5.18) to (5.14).
Defining Jy,, = Jim.zz, the order of the differential equation (5.18) is reduced

(CEDENO; ARAUJO, 2015a), namely

Jimaet*(2Mz — 1) + Jima (2:63(7]\/[:(: —2) — 212 |m|>

. (gmz |+ (1= 1)(I +2)2” + 16Mx3) = Gi(2). (5.20)

5.4 Families of Solutions to the Master Equation

Now, the families of solutions to the master equations (5.14) and (5.18) associated
with the linear approximation in the Minkowski and the Schwarzschild’s space-times

are explicitly shown.

To proceed, consider that [ is integer and greater than or equal to zero, i.e., | > 0,
the constants of integration C; are complexes C; € C, i = 1..4, and arabic lower case

letters represent real constants, i.e., a,b,c,d,e, f,--- € R

It is worth stressing that the applicability of the present work has some limitations,
since in the context of the characteristic formulation the matter fields must be known

a priori throughout the space-time.

Applications astrophysically relevant for this kind of solutions would be a spherical
thick shell obeying some dynamics. This shell can obey an equation of state for some
polytropic index. This assumption will destroy the analyticity nature of the master
equation and therefore its integration must be numerical. Different polytropic index
can lead to different solutions for J and therefore different gravitational patterns.
Another possible application would be a star formed by multiple thick layers obeying
different equations of state. Also, binaries radiating their eccentricities offers real

possibilities of application of the present formalism. In addition, objects gravitating
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around a Reisner-Norstrom black-holes allows one to explore interesting physics.
Applications in cosmology are also admitted in this formalism, for example, studying
the evolution of gravitational waves in a de Sitter space-time (BISHOP, 2015). There
are other possibilities of applications under a wide spectrum of considerations in
f(R) theories. Finally, it is important to note that numerous studies can be made
in the linear regime considering the numerical integration of the field equations, for
example, the gravitational collapse of a given matter distribution is only one of these

possibilities.
5.4.1 The Minkowski’s Background

First, let us consider the most simple case corresponding to the non-radiative, m = 0,

Minkowski’s master equation without sources (5.17). Assuming the ansatz

k¥ we obtain immediately

Jlm =
(k—1l+1)(k+1+2)=0,
whose roots lead to the general family of solutions,

Jio(z) = Cya' ™! 4 Coa= 12, (5.21)

Thus, integrating the last equation two times and rearranging the constants one

obtains families of solutions to (5.14) of four parameters for the vacuum, namely
Jlo(l') = ClﬂfH_l + 02.17_1 + 03.23 + 04. (522)

When the source term is not null, we find that the non-radiative family of solutions,

m = 0, to the inhomogeneous equation (5.16) reads

- - - - TOHWY' (7, Hyy
J —C -1 C (1+2) (1+2) / d -1 / d
() 1+ Lo T a Y 20+ 1 o b y 204+1 7

(5.23)

where a and b are real constants. Therefore, integrating two times with respect to x

and rearranging the constants we find the family of solutions to the inhomogeneous
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master equation (5.14), for m = 0,

x v w H -1
Jo(z) =012 4 Cox™ + Cs 4+ Cy + / dv / dw w2 / dy m
a b c

T v - w H(y)yf(l+2)
— d dw w!™! dy ———— .24
/d v /e ww /f v TR (5.24)

where it is clear that the analyticity of the solutions depends on the existence and
analyticity of the integrals. If the source term is disregarded, then (5.24) is reduced
immediately to (5.22).

Now, we will consider the case for a radiative family of solutions, m # 0, |m| < for
[ > 0, without source term. In this case (5.17) becomes a Bessel’s type differential
equation. Méadler (2013) previously showed that the general solutions to this master
equation can be expressed as a linear combination of the first and second kind
spherical Bessel’s functions. We find here that the family of solutions to the master
equation (5.17) can be expressed in terms only of the first kind Bessel’s functions,

as

i 252 23/2¢3 Z(ﬂl+2z)I<‘ (% ;)l) (KLF% + LJ%,J
02243 3/2i7= 5 (l + §> (KJH_% + LJZ—%)

I+ 1)(+2) ’

_|_

(5.25)

where the argument of the first kind Bessel’s functions J,, are referred to z, which

is defined as

ml e

= 2
z ” (5.26)
and the coefficients K, L and S are given by
K =—i(l(l—1) + 2iz) — 22(l —iz), (5.27a)
L =—-22(z—1), (5.27Db)
S=11-1)+ 2iz. (5.27¢)

Integrating two times (5.25) and rearranging the constants we find the family of
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solutions that satisfies (5.14), i.e.,

(G Bt R () (22, 450,
(1 -1)
224382 m? 2 1/2e~ 40129 (14 2) (22, + S,
1+ 1)2(+2)

Jlm =

olm|

> .

+ O+ C (5.28)

When matter is considered, we find that the family of solutions to (5.17) becomes

il

p :2%*2123/2 (Cy + D) e+ (5= 1) (KJ_ iy + LJy )
m (- 1)l
122453 2312 (Cy 4 D,) 5T (l + %) (KJH_% + LJl_%>
(+1)(1+2) ’

n (5.29)

where the coefficients K and L were defined above, and the terms representing the

sources are

mlé/z  92=5z71/2e—5im+ 2D (| 4 1) (K J, 1 — LJ, s )
Dlz—/ dz (1+5) (K ZQ)H ¢ Im| ,
|

mid (1 +1)(1 + 2)¢? |m]? z
(5.30a)
and
iml/z  9=A=5 51 2052 (1Y (K] 4 LJ1 5
D2=—i/. dz ( . 2)2( "2 2I)H olml)
Im|é (I —1)1p? |m)| <
(5.30b)

where the argument of the first kind Bessel’s functions .J,, is z, which is defined
just in (5.26). It is worth noting that in this form, it is clear that (5.29) converges

immediately to (5.25), when the sources are not considered.

Integrating (5.29) two times we obtain the general family of solutions to the master

106



equation with sources, which reads

J 028262 [m|? 212D (§ 1) (<220, + 57, y)
m = — 2(12-1)
02225+g<52 |m|2 5~ 1/2p—gi(nl=22)T ([ + %) (2le_% + ?JH%)
- I(1+1)2(1+2)
. , 232532 o5 HED (L ) (KJ , 1+ LJ1_
+/dy/d2 ! (2 )( =3 21)
b ) (I —1)
i22l+g§3/2D26i2_%F (l + %) (KJH_% + L‘]l—%)
I+ 1)(+2)

+

olm|

> .

+C5+C (5.31)

These families of solutions are particularly interesting and useful to explore the

dynamics of matter clouds immersed in a Minkowski’s background.
5.4.2 The Schwarzschild’s Background

Now, we show the non-radiative families of solutions, m = 0, for the vacuum
ie, G(zr) = 0, for equation (5.20). The solution is expressed in terms of the

hypergeometric functions o Fi(aq, as; b; z), as

Jim =(=2)71720, M1 272 R (2 — 1, =1 =21, 2M )
+ (=2)7 oM T Ty (T 1,1+ 3520 + 2;2M ). (5.32)

Integrating two times, we find the family of solutions to (5.18), namely

Cy(—=1)"1271=2(Ma) ™ 3 Fy(—1 — 1,2 — I, —1; 1 — 1, —21; 2M )

Jim =
: [(l+ 1) M2
Co(—1) 12 (M) s Fo(l, 1+ 1,1 + 3,1 + 2,20 + 2; 2M )
C C
+ l(l+1)M + 3£U+ 4,
(5.33)
where, ,Fy (a1, -ap; by, -, by; 2) are the generalised hypergeometric functions.

When we consider the source terms, i.e., H(x) # 0, the non radiative solutions to
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(5.20) reads

Jim =(=1)! 1272 M2 72 (A (= 1) 22 M Ry (L4 1,1+ 3520 + 2;2M )
— A1 Fy (2 — 1, —1; —20;2M2)) 4+ Cy (=2) "2 M 272y B (2 — 1, —1; —21;2M )
+ Co(=2) M T B (L + 1,14 3521 4+ 2;2M ), (5.34)

where A;, A are given by the integrals

(=2 H ()M F (14 1,1+ 3;2(0 + 1);2My)
A= — d , 5.35a
1 /a Yy B, + B, ( )
T (=) T H )My B (2 — 1 =1 =215 2My)
Ay = | d , 5.35b
? /b Y B, + By ( )

and the functions B; and B, are

By =2My —1)((1 —2)2F1(3 =1, —1; =21;2My) o FA (1 + 1,1 + 3;2(l + 1); 2My),
(5.36a)

By =oF (2 —1,—1; =20;2My) (2 FA (1 + 1,14 3;2(1 + 1); 2My)
(1) o Py (14 2,0+ 3;2(1+ 1); 2My))). (5.36h)

For the radiative (m # 0) family of solutions to the master equation (5.20) for the

vacuum, we find that its most general solution is given by
Jim =CiLe=ita™! 4 Co K (2Mx — 1) =210 cair (5.37)
with

L= HC (—4067 57 s 57 €, 7)) and K = HC' <—40é, _57 s 57 €, 77) ) (538>

where Ho (o, 857, 6, €,1m) are the confluent Heun’s functions and their parameters are

given by
a = igmM, 5 =2—4a, (5.39a)
v =2, § =8a(a—1), (5.39b)
2Mzx — 1
e=—(1+2)(l-1)—8ala—1), = e (5.39¢)

Finally, we present the analytical family of solutions to (5.20) in the radiative case,
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m # 0, when the source terms are considered, i.e.,

Jim = — 8Mers (—LMax + M2 L+ L/4) Ajz~" (2Mx — 1)
+2Ments g% (2Mz — 1)* Ay Kot (2Mz — 1)
+ CLetts gzt 4 CoKefs 2710 (2M g — 1) 720 (5.40)

where A; and A, are the integrals

A /%d~ P2H(F)e i K (5.41a)
= T . a
'), U —4ALKMi+8LKaM% — LS +2LMzS + KR—2KMiR
@ Az'ee iz H(Z) (M —1/2)* (2MZ —1)"* L
Azz/d:i“ The i H(z) (MT — 1/2) (M7 — 1) —. (5.41b)
y  —ALKMi+8LKaMi—LS+2LMzS+ KR—2KMiR

where S and R are the derivative of the Heun’s functions, i.e., S = K'(x) and
R = L'(z), in which we suppress all indices except one which gives the functional

dependence.
5.5 Families of Solutions for [ = 2

Now, we show that the families of solutions found here are reduced to those
previously reported in the literature for [ = 2. Thus, for this particular value of
[ we obtain that the family of solutions to the master equation for the vacuum,
(5.17) takes the explicit form

) Egemxlm‘ (6%355 |m| — 62':10252 Im|* — 4x§g3 im|* + 2iqg4 Im|* + 3ix4)
Jlm = Elx + < 5 .
42340 |m|
(5.42)
Now, substituting [ = 2 in the family of solutions (5.25), one obtains
; Gy [ e | 40iC36% m)* e zélml O mfe zélml 8002¢2 jm? 24
i 63 ' a3 ' R x?
|m|
1 ip|m ip|m
—Clewwl 1200
2z
2ig|m| 2i¢|m|
1Cixe™ = e 60iChae” < 60tz
+ == + = 2 +— (5.43)
4glm|  4p|m| o|m) ¢ |m|

Both family of solutions, (5.42) and (5.43), are completely equivalent. Note that,

the transformation between the constants, necessary to pass from (5.42) to (5.43) is
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given by
i (Cy + 240C%)

El - z
4¢ [m|

By = = (C) — 240C,) 6* |ml*. (5.44)

W =

Note that for the Schwarzschild case, when no sources are present, the master

equation (5.20) for the vacuum and [ = 2 takes the explicit form
2 (2Mz — 1) I ge + 20(TMz — 2) Ty o + (16 Mz + 4)Jyy, = 0, (5.45)

whose family of solutions is

G Gy (16M*a* 4 32MP2® — 44M%2® — AMax + 12(1 — 2Mx)*log(1 — 2Mx) 4-7)

g 64MOoz4(1 — 2Mx)? '
(5.46)
Now, specialising the solutions (5.32) for [ = 2, we find a totally equivalent solution,
ie.,
5 D, 5Dy (2Mx (2M32® 4+ 4M?2? — 9Mx + 3) 4+ 3(1 — 2Mx)* log(1 — 2Mz))
Im — .

16]\443:‘0L 8M4rx4(1 — 2Mx)?
(5.47)

Thus, a simple Maclaurin series expansion of both solutions shows that the
relationship between the constants is
. 6401M5 - 702 02

and D2 =

D _ .
! 4M 10M

(5.48)

Finally, given that the known family of solutions for [ = 2 is written in terms of
power series around r = 2M, as shown in (BISHOP, 2005), we expand the radiative
family of solutions for the master equation (5.18) around the same point r = 2M
for [ = 2. Thus, we observe that the Confluent Heun’s function Heo(—4a, 5;7,d,€,1)

is expressed as a Taylor series for the parameters (5.39) around 1 = 0, namely

(da+1)2=5+({—-1)(1+2))n

HC(_4a7 57 Y, 57 €, 77) ~1+

—3+4a
1

256a* +192a® 4+ 32a* (> +1—5

+8(a—1)(4a—3)(( a + a” + a( + )

+ da (402 4 41— 39) + 1' + 20° — 1712 — 181+ 72) ) ,
(5.49)

and for the Confluent Heun’s function He(—4a, —f3;7,6,¢€,1), i.e.,
da + 1% +1 12a — 1* — 213 + 1% + 21) n?

HC(—40z,—5;%5,6,n)21—(a+ +0n _ (120 R )77' (5.50)

da — 1 8a(4a — 1)
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Then, from (5.49) and (5.50) we obtain that around r = 2M, (5.37) at first order

for | = 2 reads

16e* (4o + 12)nM*

24a+20264a (].60(2 + 16 + 2) 7740471 (ﬁ)

—4a—2

T =C4 ( + 16640‘M4> - y—

4o — 3
2101 et (2560 + 5760% + 38402 + 1320 + 24) i (1)

a(da —1)
2191 Chet® (2560° + 8960 + 105607 + 63602 + 228+ 72) o+t (L)

_|_

—4a—2

3a(da — 1)

+ 240{4—20264017740(—2 <1> o2 (551)
M )

that are just the family of solutions for the master equation obtained using power

series around r = 2M.
5.6 Thin Shell

In this section we examine a static thin shell in a Minkowski’s background, initially
studied in (BISHOP, 2005), as an example of application of the solutions of the master
equation when the system is restricted to [ = 2 and gzNS = (. This example illustrates
the process of solution of the field equations when a static matter distribution such as
a spherical thin shell is considered. The space-time is divided into two distinct empty
regions connected through the jumps imposed into the metric of the space-time and
its first derivatives. Here boundary conditions at the vertices of the null cones, at the
null infinity and on the shell surface are imposed. The master equation is solved for
each empty region, which are then connected through the jump conditions on the
metric and its derivatives. This procedure fixes the constants of integration, thus the
solution to the field equations is found. Physically we are interested in a spherical
distribution of matter of radius ry, centred at the origin of the coordinates for which

its density of energy is given by
P = pod(?” — 7'0) OZQm. (552)
Here, the metric variables are restricted to be represented by

Sf — §R (fo) 83 ng, (553)

where f represents any of the 3, w, U, J functions. Notice that the metric variables

do not depend on time, i.e., sf, = 0.
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Then, substituting (5.53) into (5.4), the system of equations for the vacuum is

reduced to

df

0y, (5.54a)
.
d.J 2 dUy  5d?Up
40 g2 20 4B, =0 5.54b
r dar + 4ar dr +7r dr2 + ﬁO 5 ( )
d d
e (5.54c)
dJy  LdUy,  ,d%Jy
— 27“7dr +r W -r dr? +2rUy — 24, = 0, (554d>
d?w
— 2 dr?‘) + 6w + 1218, = 0, (5.54e)
AUy dPw
6r2—dro +r WO + 121Uy — 128, = 0, (5.54f)
AUy dw a2,
473 dro +7r dro + 7t d7"20 + 2r?Uy — wy = 0. (5.54g)

The master equation (5.17) for this case, is strongly simplified

&2 d
z® y ‘]22 + 4x2dj; —dxJy =0, (5.55)
Xz

where we recall that © = 1/r. Thus, the family of solutions that satisfy (5.55) reads

. C
Jo(x) = Cha + ?j (5.56)

Then, integrating (5.56) two times one obtains the family of solutions Jp, i.e.,

Jo(z) = /dm </ dx Jg(x)> ,
011'3 éz ~ ~

or in terms of r, it can be written as

J(](T’) = Cl + CQT2 + 6713 + %, (558)

where we have done a redefinition of the constants of integration.

Integrating (5.54a), and with the family of solutions (5.58), we solve the equations
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(5.54b) and (5.54c), thus

Blr) = P, (5.59a)
304 C5 203 2ﬁ0
Uo(’f‘) = _TT - ﬁ—F?“‘QCQT‘l‘CG‘i‘Ta (559b)
3 2 6C4 Cs
U)()(T) = —6027‘ — 6C67’ - TT + 12CIT - 7 + C? - 10Tﬁ0' (559C>

When the family of solutions (5.58) and (5.59) are substituted into equations
(5.54d),(5.54d) and (5.54g) the following constraint conditions are obtained

C
6Csr? + —2 =0, (5.60a)
T
20
12Cgr? — 36Cyr + = — 3C7 + 2418y = 0, (5.60D)
T
AC
—4Cyr? 4 - > _Cr =0, (5.60¢)
T

where the constraint given by (5.54f) is satisfied identically. Then, solving Cj in
(5.60a) and replacing it in (5.60b) and (5.60c) the constraint equations are reduced
to

Cs = —6Cg°, (5.61a)
Cr +4(3C, — 2Bp)r = 0, (5.61Db)
—12Cer* = C7; = 0. (5.61c)

Substituting Cj into equations (5.59) we obtain

3C 20! 2
Up(r) = =% +3Cs + > + 2Cor + 2o (5.62a)
T T T
. 60,
wo(r) = —6C,r° — — + 12Cr + C7 — 107 By, (5.62b)

Now, since we are considering a spherical and statically thin shell around the origin,
then we must consider two separate regions of the space-time formed by the world

tube which binds the matter distribution i.e., r < ry and r > ry. (See Figure 5.1).
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Central geodesic

r=To
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-

| J* Null Infinity

Null cone

Thin shell

Figure 5.1 - Sketch of the world tube generated by the thin shell. Here we note the two
regions (r < 9 and r > r9) in which the space-time is divided.

We will start with the interior region. In this case the family of solutions can be

written as

Bo—(r) =Po-, (5.63a)
Cs. Oy
Jo_(r) =Cy_ +r*Cy_ + % + T—i (5.63b)
_ 2C5_ 20—
Uo—(r) = — 36:11 + 3C6- + C’; +2rCy_ + bo : (5.63c)
T T r
wo-(r) == 6r°Cy- — 6(:;“ +12rCy— + Cr— — 1075y (5.63d)

It is expected that the space-time does not have singularities at the origin of the
three space, or in other words at the vertex of the null cones. Then, it is possible to
impose convergence of the metric functions given in (5.5) at this point. To do so, we
can expand the metric functions in power series of r around the vertex of the null

cones and check if they are convergent at this limit.

Substituting (5.63d) into (5.3) one obtains

6C,—
73

Co
g =6r2C,H_ + — 120, — 77 + 1280 + 1, (5.64a)

G- =—1—20p, (5.64b)
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2 , \ Cr
g33— :m |:g% <’f’ Cl_ +r 02_ + 7"03_ + 7"> X

(8°+T") 0Zam + 2 ] , (5.64c)

2 , \ Cr
gsqg— — — méﬁ <7” le +r 027 +7"037 + 7’) X

(82 =0") oZam, (5.64d)
g __ % {?R(rzC +7r*Cy_ + rC: —I—C4> X
44— (1 + CZ)Q 1- 2— 3— r

(62 + 52) 0Zom — 217 ] (5.64¢)

Notice that in this limit, i.e., » — 0, (5.64a) implies that

thus,

lim g1 = lim (6r°Cy- — 12(Ci + fio-) +1).
= —12(Cy_ — Bo_) + 1. (5.67)

Then, if we expect a flat space-time in the null cone vertices, we must have
le - ﬁ(),. (568)

Also, the convergence of Jy_ is required at the vertex of the null cones. Thus, from

(5.63b) we see that

Cy =0, (5.69)
and from (5.63c)

By = 0. (5.70)
Thus, from (5.68) one has

Ci_ = 0. (5.71)

It implies that (5.61b) is satisfied identically, whereas from (5.61c) one obtains
Cs_ = 0. (5.72)

Substituting these constants in the families of solutions (5.63) we obtain for the
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interior region that

Bo-(r) =0, (5.73a)
Jo_(r) =r*Cy_, (5.73b)
Up—(r) =2rCsy_, (5.73c)
wy_(r) = — 6r°Cy_, (5.73d)

which means that the solution for the interior of the world tube depends only on
one parameter. When higher values of [ are considered, analogue expressions for the
interior solutions are obtained. Thus, the reduction of the degree of freedom for the
system at the interior of the world tube is independent on the matter distribution
on the shell.

For the exterior region we have the same set of families of solutions given by (5.63),
but replacing the minus sign in the functions and in the constants by a plus sign,

ie.,

Bo+ (1) =PBo+, (5.74a)
_ 2 Csy | Cuy
Jo+(r) =Cry +1°Coy + T + 3 (5.74b)
_3C 2C’
U (r) = — =5 +3Ces + — +2rChy + 5 o (5.74c)
woy (1) = — 61°Cyy — 6C4+ + 12rC4 + Crp — 101 By (5.74d)

We expect convergent solutions at the null infinity J,. At this limit, i.e., when

r — oo, we see from (5.74b) that

Coy = 0. (5.75)
Thus,
- O3+ Cuy
lim Jot(r) = lim <C’1+ + + 703> :
=C.. (5.76)
We rename this constant as
Ci+ = Jocos (5.77)

indicating that it is the value of the Jy(r) function at the null infinity.
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Using the last results we note that the solutions for Uy, given by (5.74c), are

simplified to

3C4y 205, n 2P0+

U = — 3C; . 5.78
0+(7) - + o064 + 2 . (5.78)
Now, it is required that the shift vector at the null infinity be null, thus
lim Up.(r) =0, (5.79)
then,
Cs = 0. (5.80)
Thus, (5.78) takes the form
3Cy | 2034 | 2oy
= — ) .81
Up () . e (5.81)
The constraint (5.61c) fixes the value for C7,, namely
C7+ - 0, (582)

and the conditions (5.75) and (5.82) simplifies the solution for wy given by (5.74d),

ie.,
6C+

2

woy (r) = — +12rCyy — 10r By, (5.83)

r
When (5.82) is used on the constraint (5.61b) we find the explicit value for Sy,

namely

3
60+ = 51]000 (584)

With these constants, the families of solutions for the exterior region take the form

Cy. C

%+&):J@o+4§t+%ﬁf, (5.85a)
3C 205+ 3Jos

%gm:—rf+-§++ 0 (5.85b)

wo (1) = —6S§+ — 3rJoco- (5.85¢)

It is worth noting that the family of solutions for the exterior region depends only
on two constants. For values of [ > 2, the same situation is repeated, i.e., for each [

greater than two the exterior solutions will depend only on two constants.

Now, in order to fix the constants of integration Cs_, C5, and Cy, we impose the
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jump conditions across the world tube generated by the thin shell, i.e., at r = rq.

These conditions are

T04 TO+

60 o = 271’7'0,00, JO ro_ = 07 UO o = 07 Wo ro_ = _2T060+7
where [y, = Bo(ros), and
dU[" 2B ddy
d?“ - 7"(2) ’ dT ro— N

ro—

From (5.86), (5.73a) and (5.74a) the function 3(r) results in

B(r) = Bo+O(r —ro),
where O(r) is the Heaviside’s function, namely

0 for r<0
O(r) =

1 for 7“>O‘

Evaluating the continuity conditions (5.86) for Jy and wy one has

C C
r2Ch- = Joso + —F + —3-,
To Ty
C C
2r3Cy. = ——+ — 3
Adding them, we obtain
Cur

3rgCor = Joso — 2—5-.
To

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)

(5.91)

(5.92)

Evaluating the continuity conditions for Uy (5.86) and for dUy/dr (5.87) one obtains

205,  3C
220y = 3o + —2& — 2
TO 700
C C
— Bor — 2" 1 62 420, = Boy.
To o

Thus, from (5.91) and (5.93) Cs; is determined, resulting in

03+ = —70J0co0s
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which substituting in (5.94) one finds the following condition

6% — 120 = Jone (5.96)
o
Solving (5.92) and (5.96) we find
L 3
1
Co- = — Joco- 5.98
? 5r3 " (5-98)

Thus, we determine the three constants Cy_, C3, and Cy, for the shell and therefore

we determine completely the solution of the system.

Thus, the solution of the field equations reads

B(r) = 2J0m@(r — 7o), (5.992)
r? ro o
J(r) = 57(2)(]000(1 —O(r—rg)) + Jooo | 1 — 7+ﬁ O(r —ry), (5.99b)
2r 33 2rg 3
U(r) = 57(2](]000 (1 =0(r—r0)) + Jooo (—572 - 720 + 7") O(r—r19),  (5.99¢)
6r 6rs
w(r) = —573JoOo (1 =0(r—r0)) = Jooo (57}2’ + 3r> O(r —ro). (5.99d)

It is important to note that, from (5.84) and (5.86) one obtains

4
JOoo = gﬂ"/’opo, (5100)

which relates the value of the Jy function at the null infinity with the density and
the radius of the shell.

We plot the solutions (5.99) in Figure 5.2, in terms of a compactified coordinate s,

which we define as
r

8:7“—|—R()

(5.101)

where Ry is called a compactification parameter. The transformation (5.101) maps
the luminosity distance, 0 < r < oo, into a finite interval 0 < s < 1. Note that, if
r + Ry = 0, then s would have singular points. Thus, considering that » > 0, the
condition Ry > 0 guaranties that the transformation (5.101) will not have singular

points and therefore it will be invertible.
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Figure 5.2 - Metric variables as a function of the compactified coordinate s for a thin
shell of r = rg, centred at the origin. (a) By := Bo(s), (b) Jo = Jo(s), (c)

Uo := Up(s), (d) wo := wo(s)
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6 APPLICATIONS

Here, we study two novel applications of the solutions to the master equation.
These applications are related to point particle binary systems. The first generalises
a previous study (BISHOP, 2005), now considering point particle binary systems
of different masses in circular orbits (CEDENO; ARAUJO, 2015b); and the second
considers binaries with elliptical orbits (CEDENO; ARAUJO, 2016). In both
applications, the gravitational radiation patterns are obtained from the Bondi’s
News functions. Here, we generalise the boundary conditions (BISHOP, 2005; BISHOP
etal., 2011; KUBEKA, 2012; KUBEKA, 2013) imposed across the world tubes generated
by the orbits of the binaries. The problem of the jump conditions imposed on
the metric and its derivatives across a given time-like or space-like hypersurface,
separating two regions of the space-time is not new (TAUB, 1957; ISRAEL, 1958;
ISRAEL, 1966; TAUB, 1980; BONNOR; VICKERS, 1981; GEORGIOU, 1994; GEORGIOU,
1996).

6.1 Point Particle Binary System with Different Masses

Here, a study found in literature, in which the authors (BISHOP et al., 2011)
considered particles with equal masses is generalised. It is worth stressing that one of
our aims is to study the well-known problem of a system of two point particles with
different masses orbiting each other in circular orbits. In the end, we show that the
Peters and Mathews result for the power radiated in gravitational waves (PETERS;
MATHEWS, 1963) can be obtained by using the characteristic formulation and the

News function.

In our study the particles are held together by their mutual gravitational interaction.
The particles are far enough from each other such that at first order, the interaction
between them can be considered essentially Newtonian. This assumption is valid
if one considers the weak field approximation, in which the Bondi-Sachs metric in
stereographic null coordinates is reduced to (5.3). Note that writing g7 ~ —1+ 2P,
then ® = 4+ w/(2r) represents the Newtonian potential, as usual in this kind of

approximation.

We consider that these two particles are in a Minkowski’s background, in exactly
the same way Peters and Mathews did in their paper of 1963 (PETERS; MATHEWS,
1963) and Bishop et. al. did in (BISHOP et al., 2011). Such a system allows one to
explore in full detail the boundary conditions across the hypersurfaces generated by

their orbits (see Figure 6.1).
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Figure 6.1 - Binary system with the world tubes of each orbit extended along the direction
of the retarded time, separating the space-time into three regions.

The density that describes the binary system is given by

p= LJ/Q) (Mlé(r — T1>(5(¢ — yu) + M2(5<7’ — T2)5<¢ —vu — 77-)) ’ (61>

r

where, r; (M;) are the orbital radius (mass) of each particle and 1 < 7.

The orbit of each mass generates world tubes, which are extended along the retarded
time, allowing the separation of the space-time into three empty regions: inside,

between and outside the matter distribution.

In order to solve the field equations (5.4a)-(5.4g) for the vacuum, the metric variables
are expanded as in (5.5), taking ¢ = vu. Thus, the substitution of equations (5.5) into
(5.4) provides the system of ordinary differential equations (5.6) for the coefficients
in the above expansions. The families of solutions, for [ = 2, satisfying this system

of equations for the vacuum read

Bam (1) =D1gom, (6.2a)
~ 2iDigom  Dijom(vr |m| — 1)(vr im| + 1)
ng(T) = - 3
vr|m| 6r
— iDzJQmeziW‘m‘(Wim| +1)* | Dsjom(vr|m| — 3i)7 (6.2b)
8513 |m)| vr|ml|
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2D 1go(vr |m| +2i)  Dissm (203 |m[* + divr |m| + 3)

Uam(r) = vr? |m)| 674
_ DQJQmGQiVT‘m‘(Ql/T |m| + 3@) _ Z'l)i’)JZm (VQT2 |m|2 + 6) (6 2C)
8o |m|° vr? [m| ’ '
' 3iD2J2m€2in|m|
Wam (1) = — 107Dy goy, + 6r D3 jom (2 + ivr |m|) — 15r2 ]m|5
iD1jom (1 +d)vr |m| — i) (1 + (1 4 )vr |m])
— 5 , (6.2d)

r

where the constants of integration are represented by D, my,; here n numbers the
constant and F' corresponds to the metric function whose integration generates it.
This set of families of solutions depends only on four constants, namely, Djgon,
D3 o, Dijom and Dgjo,,. This is so because the families of solutions for the
coefficients SBop,, Jom, Usp and wsy, resulting from (5.4a)-(5.4d) are constrained by
using (5.4e)-(5.4g). This fact is independent of [, and thus the set of families of

solutions for any [ will have four degrees of freedom.

A unique solution for the whole space-time cannot be determined by only imposing
regularity of the metric variables at the null cone vertices and at the null infinity.
Therefore, additional boundary conditions must be imposed. In particular, this can
be done by imposing boundary conditions on other hypersurfaces, such as in the
case of the thin shells studied by Bishop (2005), in which the additional conditions
are imposed across the world tubes generated by the shell itself. Once the above
constants are determined, one readily obtains the metric functions 3, J, U, and w

for the whole space-time.

As divergent solutions are not expected at the vertices of the null cones, regularity at
these points must be imposed for the metric. In order to do so, an expansion of the
metric variables around r = 0 in power series of r is made and the divergent terms
are disregarded. This procedure establishes relationships between the coefficients,
leading to a family of solutions for the interior that depends only on one parameter
to be determined, where in particular (3,,,_(r) = 0. One obtains, for example, for
=2

62m— (7”) 207 (63&)
Dsjop— . ; .
Jom— (1) S L — = (21/37’3 im|® — 3iv?r? |m|* 2 — 3% |m)?
241513 |m)|
+6vr m| ¢2rml 4 3ie? il — 35 (6.3b)
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Z’D2J2mf

Uppn_ (1) = — —=21=_ (9044 m|* 4+ 60202 |m|* — 6Givr |m| 2™
=) = = e (20 I ml m]
—12ivr[m| + 9¢m — 9) | (6.3¢)
D3 jom— , .
W (1) =L5 <2w4r4 Im|* + 4073 |m|* — 6iv*r? |m|* — 6ur |m]
41512 |m)|

—3ie? I 4 3i) (6.3d)

For the intermediate region, the same structure of the general solutions is
maintained, for the case of [ = 2 given by (6.2a)-(6.2d). That is so because there is
no reason to discard any particular term, or to establish any relationship between
the constants as occurs for the interior region. Since regularity is required at the
null infinity, the coefficient of the exponential factor (exp(2ivr|m|)) must be null
in the exterior solutions. This means that all constants of the form Dy, 1, with
[ = 2,3,---, must be zero. Therefore, the number of degrees of freedom for the
exterior family of solutions is reduced in one parameter. Thus, a family of solutions
for the field equations (5.4a)-(5.4g), with eight parameters to be determined, for
describing the whole space-time is obtained. Now, in order to fix these eight
constants, it is necessary to impose additional boundary conditions in particular

across the time-like world tubes generated by their orbits.

These boundary conditions across the world tubes, i.e. when r = r;, ¢ = 1,2, come

from imposing discontinuities on the metric coefficients, i.e.,

[911],, = 0, [912],, = Agial,., [914],, =0, [g22],, =0,
[924],, = 0, [g3],, = 0, [gap],, =0, (6.4)

and on their first derivatives,

[gl’w} =Ag,,, wv=1,---4, (6.5)

i

where the brackets mean [f(r)],, = f(r)|,. .. — f(r)|,,_.. From the linearised Bondi-
Sachs metric (5.2), and from the two sets of jump conditions (6.4) and (6.5), the

coefficients By, Jim, Upn and wy, are restricted to satisfy

(Wi (1)) = Awjim, — [Bim(r5)] = ABjim,
[Jim ()] = 0, (Ui ()] = 0, (6.6)
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and for their first derivatives

[w2m<rj)] = Aw;’lmu [Bl/m(rj)] - Aﬁélma

[ ()] = A, [Upn ()] = AUjp, (6.7)
where j = 1,2, and Awjim, ABjim, Awjy,,, ABYy,,, AJj, and AU, are functions

to be determined.

Solving equations (6.6) and (6.7), simultaneously for both world tubes, the boundary
conditions are explicitly obtained. We find that

ABjim = bjim,  AWjim = —27;bjim, (6.8a)

where bjy,,, are constants. Note that, this last fact implies that Ag},,, = 0. We obtain
that the jumps for the first derivative of the J;,, and Uy, functions are given by

8U27bjim ]m\z

AJ, = .8b
Tim = T+ D) 12 (6.8b)
1 div|m|
AU, = 2b, - . )
U]lm ilm (7“,? l(l —I— 1)7"l> (6 8C)

Thus, the boundary conditions (6.30b) and (6.30c) fix all parameters of the families
of solutions, providing the specific solutions for the coefficients B, Jim, Upn and

wym. Therefore, these coefficients can be written as

Jin (1) =frm(r) (1 = ©(r = 1)) + fam(r) (O(r — 1) = O(r — 12))
+ faim(r)O(r — 12), (6.9)

where f,,, represents Sy, Jim, Uin and wy,,, with the first subscript on the right hand

side terms indicating the interior (1), the middle (2) and the exterior (3) solutions.

These solutions depend explicitly on two specific parameters, namely bj;,,, with
j = 1,2, which are related to the density of matter. The specific form of these
relationships is obtained by just integrating the first field equation (5.4a) across

each world tube. As a result one obtains

bjim = 277 Djim (1 + UJQ) , (6.10)
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where, pj;, are given by

1 _ ,
Pjtm = /d(VU)/dQ/ dr oZme”Imep, (6.11)
TJs Q I;

in which S = [0,27), v; is the physical velocity of the particle j in the space, and
I; is an interval € around r; that is given by I; = (r; — €/2,7; 4+ €/2), with € > 0.

Before proceeding, it is worth noticing that the above procedure is a generalisation
of Section 3 of the paper by Bishop et al. (2011), in which the binary components
have equal masses. In particular, the boundary conditions are also generalised since
in the present case there exist two independent world tubes. Another interesting

aspect has to do with the fact that our solution is fully analytical.

Figure 6.2 shows some of the coefficients of the expansion of the metric variables in

terms of the compactified coordinate s (defined just below) for [ = m = 2.

M=1 M=} n=% n=} R=2 y-L M=1 M=} n=% n=3 R=2 y=:2
6l 4
O 3
N 4+ -
S 32
€ 5 s
1,
Of— . . . F Ok . . . . A
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
S S
(a) (b)
- =1 -2 =4 - 3
M=t Memhn=f nsf Rm2 vt Mi=1 M=} n=% n=} R=2 ,-af
5t T T T
4t % o—\
SIS Blep 10
T ] D —15}
o 1 )
|
018 ha -20
-1k ‘ ‘ ‘ ‘ = ‘
00 02 04 06 08 10 00 02 04 06 08 10

Figure 6.2 - Real part of some components of the metric functions ( [ = m = 2 ) versus the
compactified coordinate s (see the text) for a binary system with M; = 1/2,
My = 1. The angular velocity is computed by means of Kepler’s third law.
Here 71 and ro are referred to the center of mass of the system.
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In order to include the null infinity, which is reached when r tends to infinity, a

radial compactified coordinate s is defined as follows

r
7”—|-PL()7

where Ry is a compactification parameter. Thus, 0 < s < 1, where s =0 and s =1
corresponds to the null cone vertices and the null infinity, respectively.
Here My = 1/2, My = 1, Ry = 2, and the radius of each orbit is referred to the

centre of mass of the system, namely

rj=do, j =12, (6.12)

J

where p is the reduced mass of the system and d; is the distance between the masses.

The frequency of rotation v is computed by means of Kepler’s third law, i.e.,

[V 619
dy

It is worth noting that the jumps in 5, and wy, functions are present at exactly rq
and ry, whereas for J;,, and Uy, only their first derivatives present discontinuities,

in agreement with the boundary conditions (6.30b) and (6.30c).

To illustrate the behaviour of 5, J, U and w we present them in Figure 6.3 as a
function of s and ¢ for a particular value of the retarded time u. These functions
are constructed by using Equations (5.5), and the solutions for the coefficients for

each [ and m. In this case, we use [ < 8.

As expected, the metric functions § and w and the first derivatives of J and U
show jumps at (r,6,¢) = (r1,7/2,vu) and (r,0,¢) = (r9, 7/2,vu — ), which are
just the positions of the masses, in agreement with the boundary conditions initially

imposed.

Note that since the first field equation for the vacuum 3, = 0 implies that 3,
are constants along r, as sketched in Figures 6.2, and that § is a gauge term for
the gravitational potential. Then, ® can be redefined as ® = w/(2r). These facts
make the choice of the angular velocity v as obeying Kepler’s third law, completely

consistent and natural.
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Figure 6.3 - Snapshots of the metric variables as seen from the equatorial plane (0 = 7/2),
as a function of s and ¢ for v = w/2. Here My = 16, My = 4/3, r1 = 1/13,
ro = 12/13, Ry = 1/2 and v = 24/13/3. (a) S(s, ), (b) J(s, ), (c) U(s, ®)
and (d) W (s, ¢) = w(s, ¢)(1 - s?)/(s*Rg).

6.1.1 Gravitational Radiation from the Binary System

Now, we proceed with the calculation of the power lost by the binary system via
gravitational wave emission. We show that the approach presented here is robust
because we can obtain the well-known result obtained by Peters and Mathews (1963)
for the power emitted by binary systems in circular orbits, now using the News

function.

Following Bishop (2005), the Bondi’s News function in the weak field approximation

is given by

2 2
N = lim <—r ‘2]“ + 0w + 6%) : (6.14)

r—00 2
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Substituting here the metric variables given in (5.5), one obtains the News function
for [ > 2 and —1 < m <[, namely

‘ 2 (Jim .
N = TILIEOZ% ((_Z|m|y’f’2( l ),7“ +ﬂlm+ l(l—i_i)Jlm> ezmuu) 62 OZlm- (615)
Im

Now, substituting the coefficients of the metric variables for the exterior region, one

obtains

N— _le/3 2521 _42\/51/3 [ iV4 2531 82\/>V 2532
B NG 37 7 /30(v — 30) 2v — 3i

92\/71/ 2533 iv® 9S4 81\[7/ 2542

v—1 3\/1_0(1/2—7z'y—14)_3(21/2—721/—7)
B 81iv° 5543 B 2561\[V 2544
V10 (902 — 21iv — 14) 3 (82 — 14iv — 7)
n V5 555, n 16 V 2552
V210 (iv3 + 1202 — 54iv — 90) 43 + 241/2 — 54iv — 45
27,/ 215 585 1024/ 215 5554

+3iy3 + 1202 — 18 v — 10 + 3273 + 961/2 — 108:iv — 45

6251/ V8,8
L (6.16)
25w3 + 601/2 — iy — 18

where we define the spin 2 quantity 25}, as

<§R(D1Jlm+€i|m|yu> O 0Zim + R(Dyji_re™e) 8% 42, 7m)

25im = JU= DI+ 1) +2)

(6.17)

Since the binary system is confined to a plane, then a natural choice to simplify the
problem of expressing the News function, without loss of generality, is to put the
masses to move on the equatorial plane § = 7/2. This means symmetry of reflection
for the density of matter and, consequently, for the space-time. Thus, this choice
restricts the components of the density, obtained from (6.11), to have the following

form
Myr26 (r —r9) + Myr3d (r — 1)

Pim 5 if [, m even
T3

pim 22T = SO T i odd,
i

where py,,, are numerical constants. Therefore, for binaries of different masses, the
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News function (6.16) is simplified to

N = _42‘\/51/3 5 Sy — it 5S35 B 9i\/%V4 2533 82'\/%1/5 2549
3

V30(v — 3i) v—i 3202 = Tiv —T)
2562\/%1/5 2544 V6 2851
3(8v2 — 14iv —7) /210 (iv?® + 1202 — 54iv — 90)
27 %VG 2S53 625\/%V6 2555

e 6.19
+3iy3 + 1202 — 18iv — 10~ 25iv3 + 60v2 — bdiv — 18 * ( )

When the explicit solutions are used, the News functions for the binary system take

the form
27T 3 ]- . ™ 4
N = 8 ? 9L99 (M21 + MQQ) Vo + 31\/; oL <M31 - M32) v
3w 8
- 92\/: 2Lz (Mg — Maz) v* + a3V 27 9Ly (May + Mys) 1V°

128 27 1 m
- \/ K oLy (My + Mys) V517 — 9L51 (M5 — Mso) V0

9 80"V 154
27 37w 625 . |dm
- ZOZHH oLz (M5 — Ms) 18 + BT oLz (M1 — M) 1°
b (6.20)
where,
My = Myt (v? + 1), (6.21)

and 5L;,, are defined as
2Lim = (270 _uR(E™) — R 17, (6.22)

Note that, as consequence of (6.18), for M; = My = My the terms with [ odd

disappear from the News function (6.20). Thus, as expected, one obtains immediately

[2 16
N = 16 gVSMoT(Q] (‘/02 + 1) 2L22 + @ V 27TV5M07’3 (%2 —+ 1) 2L42

256 21 4 (12 32\/% 7 6 (1,2
—7 71/ M()T'O (‘/0 + 1) 2L44 + 1485 14 M()TO (Vb + 1) 2L62

8192 /7 6 (1,2 2092 |2m 6 /12
~ 7295 V1057 Myrg (VO + 1) 9 Lgs + T\/ 15V Morg (Vo + 1) 2 Les
4 (6.23)
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where Vj is the physical velocity of the masses, which is obviously tangent to the

circular orbit.

The energy lost by the system dE/du is related to the News function (BISHOP,

2005), via
E 1
&1 [ anw, (6.24)

% N 47T Q
which results for M; # M, in

iE 32 , ) | 2734 )
T =Y (Mag + Mao)” + 15 Y (Mg — Mso)
57376 4010276
3060 M+ Ma)* + So0mvt® (M — Mia)?
4. (6.25)

Notice that the first term on the right side of the above equation is nothing but the
power lost obtained by Peters and Mathews (1963) for circular orbits and the other

terms stand for the octupole, hexadecapole, etc contributions.
6.2 Eccentric Point Particle Binary System

Here the eccentricity in the binary systems in the characteristic formulation is
introduced, generalising the study of the previous section. From the density of
energy and from an angular velocity that is variable on time, we deduce boundary
conditions at the orbits, generalising those boundary conditions found for circular
orbits. Also, we found the expression for the power emitted by the binary in
gravitational radiation from the characteristic formulation, in agreement with the
Peter and Mathews expression (PETERS; MATHEWS, 1963). In order to do that, we
consider in the News, those terms related to the angular velocity, disregarded in the
circular case (CEDENO; ARAUJO, 2016).

In this case, the density that describes the point particle binary is given by

50 —m/2) ~

p= (M3(r = 11)3(6 — 0) + Mad(r — 12)3(6 — o — 7)), (6.26)

r2

where, r; (M;) are the orbital radius (mass) of each particle, 7, < 75 and ¢ := ¢(u)

is the angular position as indicated in Figure 6.4.
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Figure 6.4 - (a) Eccentric binary system with the world tubes of their orbits extended
along the central time-like geodesic. (b) Top view of the point particle binary
system, where the angular position ¢ is indicated.

The instantaneous radius of the particle’s orbits reads

,Ltd M1M2 .
= == =12 6.27
7’] Mj’ M ]\41 + sz J 3 4y ( )
where the separation between the masses d, is given by
1 — 2
= M, (6.28)
1+ €coso

in which € represents the eccentricity, and a is the semi-major axis which becomes the
radius of the orbits when the eccentricity is zero. For Keplerian orbits, the angular

velocity reads

< Ja(l—e)(M; + My)
6= o ,

which depends on time. Note that (6.27)-(6.29) are the same expressions given in
(2.155).

(6.29)

Using the expansion (5.5) of the metric variables, substituting them into the field
equations and assuming the same boundary conditions presented in (6.6) and (6.7),
one obtains that the boundary conditions (6.8) can be easily extended for a general

function ¢ := ¢(u) and a radial function r; := r;(u), namely

ABjim = bjim, (6.30a)
Awﬂm == _2ijjlm; (630b)
8Q~52ijjlm |TI’L|2

BT = (I—DIl+1)(I+2)

(6.30c)
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;o (1 4igm|
AU = 2bigm (rz Tk (6.30d)

7

where bj;,, are constants, which implies that AB;-Zm = 0. Also, the constants D,, g,

depend on two parameters, namely by, and by,,. As an example, we show D1 jop, 1

for |m| # 0, i.e.

Dirans :ir%blg,ge_2ir1‘£|m| B ’i’l;%b12m N 2rlblime_2ir1‘g|m| N %r1612m
¢ |ml| ¢ |ml| % |m|® ¢* |m|®
3ibigme 2midlml  3p, e-2ndlml  gp, 3ibiom
Bl rdtmlt rdtmlt s
Bibizme 21 Bibion ir2bame 2 ir3hg,
r2¢s [m’ ¢ [m’ & |m| ¢ |m|
2robaome 20 2robg  Bibpame 2 3y,
& m|? ElmP Fmf bt m)’
- 3522m¢*2ir25\m\ . 3¢b22,,?e*2“‘25lm| _ Bibam_ | Biban )
rag Iml* r3¢® [m)” r3¢5 [m|” % jml’

The parameters bjj,,, j = 1,2 are determined directly from (6.30a) and (5.6a). In

particular for the binary system,

2r 71|m|¢~57 2 7 O
bjim = zMj/ d © im(7/2, ¢ & Toa;)
0

j

(6.32)

where it is important to note that the spin-weighted spherical harmonics Z;,, become

real on the equatorial plane §# = 7/2; but in general these functions are complex.

Specifically, the non-null bj;,,, for the firsts [ and m, are given in Table 6.1.

Table 6.1 - First non-null values for the constants b;i,.

l 2 2 3 3
m -2 0 -3 -1

) v (357 | ¢ [21m
Vel 2 22n 2
M? 2 TV 2 2V 2
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Here, these coefficients are written only for m < 0, because the others can be
obtained, recalling that
Zim = (=1 _ 2y ). (6.33)

Thus, for m # 0, one has

bjlm = Z‘bjl(—m) ] = 17 2. (634)

6.2.1 Gravitational Radiation Emitted by the Binary

The power emitted in gravitational waves is computed from the Bondi’'s News

function (6.14). In terms of the coefficients g fi,,,, this function reads

_ir2qg|m|Jlm,r T2¢Jlm,¢~>r

N =) lim R —

4

+ Bm) e"'m"5> 0 Zim, (6.35)

where the sum indicates that the News is constructed from the contribution of several
multipole terms. Here it is important to note that the coefficients J;,,, depend directly
on the source angular position, represented by ¢. For this reason the retarded-time

derivative J,, is re-expressed using the chain rule.

When the solutions to the field equations, for r > ry are substituted in (6.35), for
[ = 2, one finds,

2% id id
N :22\/;¢ (3%(62 ¢D2J22+) 243 2 + %(62 ¢D2J2—2+) 229 —2)
1 /3= 2 1y % 1y
+ B §¢ (%(6 Diyagy) 222 2+ R(€""Dyyy 51) 222 —2> ) (6.36)

where the prime indicates derivation with respect to ¢. It is worth noting that the
Dy i+ depends on 5, just as indicated in (5.17). Given that qg = qg(gz;), then they
are functions of the retarded angular position. Likewise, it is important to note that
the absence of terms for |m| =1 in the News expression is because bjo; = bja_1 =0
as indicated in Table 6.1. In addition, despite bj;g # 0 for [ = 2,3, - - -, the terms for

m = 0 do not enter in the News, which indicates that they are non-radiative terms.

In the limit of low velocities, rng g rggz;ﬁ < cand for | = 2, we find that the power
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lost by gravitational radiation emission reads

-\ 6
dE  32M3EMZ (M + Ms) (1 + € cos gb)

du 5a>(1 —€2)
| 8MEMS (M, + My) € sin® §(1 + ecos 9)° (6.37)
15a5(1 — €2)5 | |

which is nothing but the Peters and Mathews expression for the energy lost by
binary systems directly computed from the quadrupole radiation formulae (2.154)
(see (PETERS; MATHEWS, 1963)).

The agreement between our results and those by Peters and Mathews is in fact
expected, since the system under study is the same. On the other hand, this
agreement shows that characteristic formalism in the linear regime has been properly
applied in the present text. Recall that Winicour in the 1980s decade showed that
the Bondi’s News function in the Quasi-Newtonian regime (ISAACSON et al., 1985;
WINICOUR, 1987) is just

N =0, (6.38)

with
Q =q"7"Quas. (6.39)

Likewise, it is important to note that the first term in the power expression (6.37)
represents approximately 97% of the power emitted by the source. Thus, for € < 0.5

a reasonable approximation is just given by the first term of (6.37).

It is worth noting that, for the case of circular orbits, the two first terms in the News
(6.36), lead directly to

dE _32MPM; (My + My)

T = o (6.40)

which corresponds in fact to the first term of (6.25).
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7 CONCLUSIONS, FINAL REMARKS AND PERSPECTIVES

In this work we report new solutions to the master equation when a flat background
is considered, generalising the results obtained by Médler (MADLER, 2013) with the
inclusion of source terms. Likewise, we re-express the family of solutions for the
vacuum using only Bessel’s functions of the first kind (CEDENO; ARAUJO, 2015a).

We also report for the first time in the literature the exact solutions to the master
equation in terms of the Hypergeometric (Heun’s function) for the non-radiative
(radiative) modes with and without source terms when a Schwarzschild background
is considered. Considering the solutions for [ = 2 we also show the equivalence
between our solution and those reported in the literature (CEDENO; ARAUJO, 2015a).
Thus, this work extends the results shown by Bishop (2005), who already found the
solutions to the field equations in the space-time exterior to a static and spherically
symmetric black-hole. He treats the case for [ = 2, but only by expanding the
metric variables in power series around the coordinate singularity » = 2M, and in
an asymptotic expansion near the null infinity. However, his solutions depend on the

order of the expansion and in this sense they are approximations.

It is worth stressing that the importance of these analytical results is in the fact
that they can be useful in the construction of semi-analytical models for matter
distributions in the linear regime, like thin and thick shells or stars composed of
layers obeying some equation of state. However, as already mentioned, it is important
to bear in mind that the matter fields must be known a priori throughout the space-

time.

Another important aspect is that the solutions when matter is present are valid
only when the light ray bending is negligible and consequently the linear regime
is valid. Out of this consideration, caustics could be formed and, consequently, the
radiation coordinates becomes meaningless and, in this case, the space-time could

not be represented by this kind of metric.

We generalised a previous work by Bishop (2005), in particular that concerned
with binary systems composed of two components of equal masses in a Minkowski’s
background (CEDENO; ARAUJO, 2015b). Here we considered the case in which the
components of the binary systems have different masses, although still in circular

orbits.

We showed that, instead of two regions, as in the case of binaries with equal
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components, the space-time needs now to be separated in three regions, namely,
interior, between and outside the two world tubes. As a result, the matched
conditions need to be applied now for two hypersurfaces generated by the circular

orbits of the two (different) masses.

In that event, it has been necessary to generalise the boundary conditions satisfied
by the coefficients in the spin-weighted spherical harmonics expansion, on the two
hypersurfaces generated by the circular orbits of these two (different) masses. Also,
the procedure developed here allows one to perform calculations for arbitrary values

of the [ and m modes.

It is worth stressing, that one of the most interesting aspects of this study has do
with the development of a procedure that can be applied in problems in which multi

layers are present.

We also calculate the energy lost by the emission of gravitational waves by means
of the Bondi’s News function. Again, we do that for arbitrary multipoles, in other
words, for different values of the | and m modes. The interesting point here is
that for different masses the emission of gravitational radiation occurs for all
values (multipoles) of [ > 2; for the particular case of binary systems with equal

components, the multipole terms for odd values of [ vanish.

We also study for the first time in the literature a binary system composed of
point particles of unequal masses in eccentric orbits in the linear regime of the
characteristic formulation of general relativity (CEDENO; ARAUJO, 2016). This work
generalises previous studies (BISHOP, 2005) ((CEDENO; ARAUJO, 2015b)) in which
a system of equal (different) masses in circular orbits is considered. Also, it was
considered that in general the angular velocity is a temporal function, which allows
the inclusion of the terms responsible for the the contributions of the eccentricity in

the power emitted by the system.

We show that the boundary conditions on the time-like world tubes (6.30) can
be extended beyond circular orbits. Concerning the power lost by the emission of

gravitational waves, it is directly obtained from the Bondi’s News function.

Since the contribution of the several multipole terms (I > 2) to the power is smaller
than the contribution given by mode for | = 2, the terms for [ > 2 are disregarded
in the power expression (6.37). In addition, the second term in (6.37) is smaller than

the first one. For example, for eccentricities € < 0.5 the first term contributes with
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almost 97% of the power emitted in gravitational waves (CEDENO; ARAUJO, 2016).

It is worth noting that our results are completely consistent, because we obtain the
same result for the power derived by Peters and Mathews using a different approach.
Recall that the News function in the Quasi-Newtonian limit corresponds to the third
derivative with respect to the retarded time of the quadrupole moment contracted
with the tangent vectors ¢, i.e., N' = Q, where Q = ¢*7®Qap (WINICOUR, 1987).

Finally, the present study constitutes a powerful tool to construct extraction schemes
in the characteristic formalism to obtain the gravitational radiation produced by
binary systems during the inspiralling phase. This can be done in regions that are

far enough from the sources where the space-time can be essentially considered flat.

This work contributes to extend analytical previous results obtained in (BISHOP,
2005; MADLER, 2013). This new extensions can be applicable to relevant
astrophysical sources as thick shells in which the dynamics obeys particular
equations of state. Also, it is possible to generalise this results to a star formed
by concentric thick layers. With the introduction of the eccentricity and an angular
velocity depending on the position, it is possible to generalise the form of such
layers to spheroidal layers in order to include this into the gravitational signature
of such kind of objects. In addition, from the linear version of the field equations it
is possible to integrate them numerically and reproduce the quasi-normal modes for
Schwarzschild and Reissner-Nordstrom solutions. There are also possible extensions
of this work in cosmology, in f(R) theories, using radiation coordinates and the eth
formalism. Finally, it is worth mentioning that from the linear version of the field
equations in the characteristic formalism and in order to avoid the numerical angular
treatment, it is possible to study the gravitational collapse of a matter distribution

by using the multipolar expansions present here.
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Appendix A - Explicit Form for the d and 3 Operators in Stereographic

Coordinates

Considering that the covariant derivative gBim associated to gap is

A1n|D
Phm g QB gCBm Ly B g PimeC
A1n|D A1n,D Do A1n e A1n
— QO pUP QCAmD\pBlmAl(m_l)c, (A1)
then, when substituted into (3.59) yields
IR :qu\Blmf\Al"\I/BmAmD + qD]\Blm]\AI"QBl DC’\I/CBQMAM -
+ qu\Blmf\Al”QBWDC\I’BI(W”CAM - qDABm]\Al"QcAlD‘I’Bch%
S qD]\Blm]\AlnQCAme;BImAMH)C_ (A.2)
Notice that the first term of the last equation can be written as
qD/N\BmAAl"‘I’B“”Amp =¢" (:¥) , — q"Ap, pAg, AN wPm
—¢"Ap, phg,, AP
_ qDAA1 ,D[\Blm]\AQn \IIB“” -
U (JDAA",D]\BMAA“"’”‘I’Blmgln (A.3)

Thus, substituting (A.3) into (A.2), reorganising the sums and changing the name

of some indices one obtains

in

00 =¢" (;¥) , — 4" (ABl,D — A BID) Ag,, ANmghim
b AB'nuD - ACQC B’mD) ABl(m—l)AAln\IjBlmAln

(
a”

—q” (AA1 DT ACQM C’D) ]\BWAA%\DBMAM -
a”

P (A, + ACQY ) Ay, Ao @B (A4)

in

Recognising the covariant derivatives for the A symbols in the brackets, one obtains

9.0 =¢" (;¥) , — " Ap,php, AP

in
_ D A . NAln Blm
q ABm|DAB1(m71)A N i

DAAL R . AAznyBim
DAAn X KNAjm_ Bim

in in

(A.5)

in
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Now, it is important to observe that

qDAAk|D:q q-q C|D2q q-q C|D’ (A.6)

since

~ ¢*¢“qo1a + ¢*q%qc0)a

*¢“acpn = :
¢ (¢Cg01a + a0q )
N 2
— 0. (A7)

Then, (A.6) reads

Ay, ,D=C
q°*q"q qcip for AAk:qu

2
q*rq7q qdc|p A _A
—————— for A% =7g"
2
Also, since in stereographic coordinates
7'7q01a = ¢"7%q0.4 — "7 402" o
= —2¢, (A.9)
where
QAQCQDQDCA =0, (A.10)

then, (A.8) is simplified to
g for A4 = g%
qDAAk|D — . (All)
—qM* ¢ for AN =g

Thus, from (A.11), lowering the index with the metric 45, one obtains that
qa, ¢ for Aa, =qa,

qDAAHD:: . (A.12)
—qa, ¢ for Ay =7y,
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Writing (A.5) in the form,

6 S\Il :qD (S\Ij>7D - (qDABﬂDABQm + T + qDABm‘DABM,n,U) AAln\IjBl’mAhL
DAL R Ao DaAn XAy & - Bim
—(q A I\DA Mg A ‘DA 1( 1))ABlm\11 1 A (A.13)
one observes that the first bracket corresponds to
qDABl|DA32m 4t qDABm\Df\Bl(mq)
D A. A D A A
=q ABI|DA321AB(E+1)m + -+ q ABZ‘DA31(171>AB(Z+1)W
D A.A D A~ A
+4q ABz+1|DAB1zAB(z+2)m Tty AB’”|DABIIAB(E+1>(W*1)
- C(_qvélqu(x+1)m - qvélzqé(x+l)m
x terms
+ 531163<z+1>m oot ququ(zH)m ) ’
m—x terms
ie.,
" Apphp,, + -+ a"AppAp, = Cm = 22)Ap, ; (A-14)
whereas the second bracket is
qDAA1 ‘DAAQn et qDAAn‘DAAl(n—l)
= _qugqflzyaA(yH)n\pBlmA . quchl(yfmaA(y“)”
in
+ qu+1CqA1yaA(y+2)n \I]BImA _I_ ... _|_ qAan“AlyéA(erl)("*l)
in
y terms
+ Q“Alyéj(y+1)" 44 qglyé’é(ﬁl)" ) ,
n—y terms
or
¢P AN |DAA27L bt qDAAn|D]\A1(n—1) =((n— Qy)]\Al”. (A.15)
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Thus, substituting (A.14) and (A.15) into (A.13) one obtains a simple expression in

stereographic coordinates

0.0 =" (\0) p — ((m — 2z +n —2y)Ay AMTPm
=¢" () p+s¢ V. (A.16)

From the definition for the eth bar operator,

3.0 =g Ag, AMrOPm (A.17)
and using (A.1) one obtains that
J,0=g" (V) p— QDABl\DABm[\AM\DBmAM o
. QDABmID]\BI(m,l)AAM\I’BMAM - qDAAl lD[\Blm[\Agn \I,BlmAln
— qDAAnlD]\BIm]\Al(wU \IJBWAM (A.18)
where
A, = ¢7°7°Acip ;ququCAcw’ (A19)
and
P A — 45,377  Aejp + qDQquCAC\D' (A.20)

2

Thus, the two last equations result in

7"A = K Cﬁ 1 “ (A.21a)
_quC if  AAr — qu

and

QB]CZ for ABk- = 4By

7" Mg, p = (A.21b)

—GBkZ for Ap, = B,
Then, the expression associated with the @ operator acting on the ;¥ becomes

0., U =¢g" (s¥) p— C(2x —m) ¥ —((2y —n) ¥
=q° W p—sC,V. (A.22)
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Appendix B - Angular Operators 9y, Jgy and 9,4 in terms of 0 and O

From

0+0 1sin @
Op = ——, Dy = 5

(5 — 0 — 2scot 9) . (B.1)

and from Equations (3.68), it is possible to obtain the expressions for 0% 32, 00 and
00, which lead to the expressions for gy, Jpy and g, namely

0% = (0p +icscHO0, — (s+ 1) cot @) Oy + i (g + i csc O,
—(s+1)cot#)csch0; — s (Jp +icscliy — (s + 1) cot ) cot 6. (B.2)

The first term in (B.2) is
(Op +icscH0, — (s+ 1) cot0) Oy = Opg + i cscH0pg — (s + 1) cot 60y, (B.3)
the second term in (B.2) is given by

i (0p +icscl0y — (s+ 1) cotf)cscho,
:i( — cscf cot 00, + cscB0py + i esc® 0045 — (s + 1) cot 0 cse 98¢), (B.4)

finally the third term in (B.2) reads

—5(0p+icscf0y — (s+1)cotf)cotd
=—3 (— csc? 0 + cot 00 + i csc cot 0y — (s + 1) cot? 6’) . (B.5)

Thus, the substitution of (B.3)-(B.5) into (B.2) leads to

02 =0y — csc? 004 + 2i csc 0049 — (25 + 1) cot 0y
—2i(s + 1) cotfcsc 00, + s ((s + 1) cot® § + csc? 9) . (B.6)

From (3.68) we construct 3 as follows

3 =0, [Og —icsc B0, + scot O] —icscl0, [0y — icschOy + s cot b
+ (s —1)cotf [0y —icscfOy + scot ). (B.7)

The first term in (B.7) corresponds to

Op [0p — i csc 00y + s cot 8] =0gg — i csc B0y + 1 csc b cot 00,
— scsc 0 + s cot 00y, (B.8)
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the second term in (B.7) is given by

—1¢sc 00, [0p —icsc0y + scot b
=— [CSC 000 — i csc® 00,4 + s csc B cot 98¢] ; (B.9)

finally the third term in (B.7) is given by

(s — 1) cot @ [0y — icschO, + scot b
=(s—1) [COt 00y — i cot § csc 00, + s cot? 9} . (B.10)

Thus, substituting (B.8)-(B.10) into (B.7), one obtains

3 = Dgp — csC? 00y — 20 csc80py + (25 — 1) cot 00,
—2i(s — 1) cot B csc 00, + s ((s — 1) cot? § — csc? 9) : (B.11)

Also, from (3.68) one obtains

00 =0gg + csc® 00,4 + cot 00y + 2is csc cot 0y — s (s cot® 6 + 1) : (B.12)
and

00 =0pp + csc® 00, + cot 00y + 2is cot § csc 00, — s (s cot® 6§ — 1) : (B.13)

In order to check the above expressions, the commutator {5, 5} is computed, resulting

in the well-known result

[3, 5} = 2s,

and its anti-commutator reads

(5, 5) =2 (899 + csc? 00,4 + cot 00y + 2is cot O csc 00, — s? cot? 9) ) (B.14)
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Thus, from (B.6), (B.11), (B.12), (B.13) the explicit form of the second order angular

operators in terms of the spin-weighted operators are given by

32+ (3,9) +5

00 — 4 )

0 = — 0 (32— (5,0) + ) — 2 cos?0

o 4 )
. 1 1\ =

—81n90089<<5+2)5—(8—2)5>,

isind ., =2 , 0+0

Ogp = — 1 (5 —5)—230086’
i cos s(cot? @ + csc? 0)

(5—5—2300t9)+isin0 5
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