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Resumo: Neste trabalho, mostramos uma nova Superficie de Energia Potencial (SEP)
para o complexo Hes. A SEP foi obtida em termos das coordenadas hiperesféricas. O
potencial empregado tem uma forma analitica bem definida e muito simples. A
dependéncia radial é obtida considerando trés configura¢des principais, para as quais
as energias foram calculadas usando os niveis CCSD(T) e MRCI e seis diferentes
conjuntos de func¢des de base (aug-cc-pVXZ (X = D, T, Q, 5, 6) e d-aug-cc-pVQZ) e
ajustada a uma funcdo de Rydberg Generalizada.
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Abstract

In this work, we show a new Potential Energy Surface (PES) for the He; complex. The
PES was obtained using hyperspherical coordinates. The potential employed has a well
defined and very simple analytical form. The radial dependence was obtained by
considering three “leading” configurations whose energies, computed at CCSD(T) and
MRCI levels and six different basis sets (aug-cc-pVXZ (X=D,T,Q,5,6) and d-aug-cc-pVQZ),
were fitted by a Rydberg function.
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1. Introduction

Helium has long been considered to be
one of the most promising candidates for
seeing Efimov physics since the *He dimer has
a large scattering length larger than 200 a.u..
The theoretical treatment of triatomic *He
systems is simple compared to other atomic
species because there exists only one dimer
bound state which has zero orbital angular
momentum [ = 0.’ Efimov states are highly
exotic as they result when there is a zero or
near-zero energy two-body bound state.”®

Several studies appeared in the last
decades employing different approaches and
computational  levels.>*?  Hyperspherical
methods have been applied extensively to a
wide range of dynamical problems for
nuclear, atomic, and molecular systems

involving three or more particles.*™ Helium
clusters are a subject of great interest and
constitute a growing challenge for the
theorists.>1%141°

Throughout the experiment conducted by
Schoéllkopf and Toennies with helium dimer,
was also observed the existence of the He
trimers."® The Cencek et. al. found an
equilateral configuration with R,= 2.9634 A
(5.6 agy) near the minimum of the total
potential, the nonadditive three-body energy
calculated at the FCI level amounts to 88.5
mK (0.0612 cm™),"” compared to 98.5 mK
(0.0666 cm™) at the coupled cluster with
single, double, and noniterative triple
excitations CCSD(T) level .*®

Since the first work on He; in 1972,%
several theoretical papers have been
published using variety of methods and
coordinate systems: Monte Carlo,?®** specific
functions,”” and hyperspherical coordinates.”
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Nevertheless, unfortunately, an analytic form
of the Potential Energy Surface - PES simple
enough to be used for all the purposes is still
missing.g‘lo

In this paper, to fill the above gap, we
present a very simple and accurate analytical
expression of the PES.This function, which is
express in terms of a hyperspherical
coordinate system, is capable of treating
reactive systems,™ vibrations of three body
systems,"** molecules of ABA type,** as well
as van der Waals complexes.™

The paper is organized as follows. In
Section 2 theoretical and computational
details are given. In Section 3 results are
presented and discussed. Conclusions follow
in Section 4.

2. Theoretical and Computional
Details

1.1. Analytic Function For The Three-
Body potential

The coordinate system is made by three
variable, the hyperradius and two
hyperangles. The hyperangle ® represents

Vo

the area of the triangle and the hyperangle @
is related with the shape of it, the
hyperradius, p, is the vector pointed out from
the center-of-mass (CM) of the system, see
Figure 1. In this figure, the vectors
r;(x;,y;z)(i =1, 2 and 3) representing the
interatomic distances in space. A full
description of hyperspherical coordinates
was presented in 1986 by Aquilanti et. al.*
and then, these coordinates have been
extensively used to described several
SiStemS.20'23_26'28_30

In previous works we used the spherical
and hyperspherical coordinates for the
representation of the potential energy

surface for various van der Waals H,0,---X
and H,S;--X, with X = He, Ne, Ar, Kr and Xe

and for H,0--X,, with X=H, N and O
systems.”>?® Using the same methodology,
we propose here a new PES for the He;
complex. More in detail we have obtained
the PES using the mass unscaled
hyperspherical coordinates, see Figure 1,
p>0, 0 <0 s}, Osd)sg. Note that the ranges of
® and @& are lower than their standard
values. Symmetry restrictions are indeed
needed to account for the exchange of
identical particles.

Figure 1. Definition of the hyperspherical coordinates (p, ©, ®@). The vector r;(x;, y;, 2;) (i = 1,
2 and 3) representing the internuclear distances of Helium atoms, p is the vector with
representing the distance between the center-of-mass of the molecule system
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Using the symmetrical system conditions,
the hyperradius(p) and hyperangles (0, ®)

p:

(ri+ri+r3)

Albernaz, A. F.; Barreto, P. R. P.

are given, in terms of internuclear distance,
by:

(1)

3

(=12 + r2)J 13t + 221217 + 131} — 12(2 + r2)r2 + 3

cos(20) =

cos(P) =

QO +7) =)0+ + 1)

(7”12 - Tzz )

\/(7”12 - 7”22)2 + 3(_2(7"12 + 7”22) + r32)2

and, conversely, the internuclear distances are given by:

1 = py/ (3 + 3c0s(20)cos(P)) (2)

r, = pJ(3 + 1.5c0s(20) (cos(db) + \/§sin(¢)))

r3 = p\/(3 — 1.5c0s(20) (cos((b) - ﬁsin(d))))

Using the above coordinates, the PES can

functions multiplied by radial coefficients
25-27

be expanded into a series of angular (expansion moments).

V(p; 0,P) = Zl,m,n Umn (p)Frfl,n(G' ) (3)
where the v,,(p) coefficients are the The truncation of the set of basis
expansion moments depending on the functions to a certain value of the index [

p coordinate and F,ﬁl'n(G), @) are angular
functions which can be written as the real
Wigner D-functions, where the D-function is
given by
Dy n(0,®,y) = e™™0dy, o (®)e™™ (I =
0,1,2,...; m=n==Il) anddfn,n((ﬂ)e_"m’,
were d}, () is tabulated function.”**

FLa(0,@,y) = |2

depends on the number of fixed atom-
molecule configurations for which the
potential energy is known as a function of p
from ab initio calculations. In terms of the
Wigner D-functions that are complex-valued,
the F,ﬁl,n(G),CD,y) are found to be simple
real-valued linear combinations:

(Db (0, @,7) + €DL (0,0, 7)) (4)
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F—lm,—n(er D,y) =i

where e=(—-1)m™ For
1=0, F{o(0,®,¥) =DJy=dly=1 and
1 =1,d},,(0) can be obtained from egs. (4)
and (5) are listed in Table 1.

Vo

o (eDhn(0,®,7) + DLy (0,0,1)) (5)

Truncation equation (3) at [ = 0and 1,
consequently m=n=0and *+ 1, and
considering the y= 0, which is enough to
represent a three body system, we have:

V(p,6,®) = \/E{Uo,o (P)d8,0(4¢’) + v0,1(p) [d(11,0(4‘q)) + d(lJ,1(4cD)] + (6)
+ v11(p)cos(60)[d] o (4®) + di ; (4D)]}.

Table 1. Real Hyperspherical Harmonics - di,,,n((i), o, y)forl=1

mi, 1 0 -1
1 1+C‘j/2f6¢)(cos(6®)cosy — sin(60)siny) —sin(6®)cos(60) 1_C‘\’/SE(“D)(cos(6€))siny — sin(60)cosy)
0 sin(6®)cosy cos(6d) —sin(6®)siny
-1 1_(::)/SE(M))(COS(6G))cosy + sin(60)siny) —sin(60)sin(6P) 1+C(i/si(m:’)(sin(6(?))cosy + cos(60)siny)
The eq. (6) shows that three not @ = 7“/36). The isosceles  triangle
dependent radial functions are needed for V, configuration (an isosceles triangle

thus we considered three configurations of
the Hesz complex: the linear disposition
corresponding to ® = @ = 0;the equilateral
triangle (@ =T/, independent of the value

of ®); and a scalene triangle (® = 1T/6 and

corresponding to ® =T/, and ® =T/,)
was choose as a test configuration to verify
the quality results of the method, see Table 2
for details.

Table 2. Definition of Leading Configurations, in terms of the ©, ® and internuclear angles

Hyperspherical
Configuration Coordinates Internuclear Angles
® )
Equilateral 45¢ Ind 602
Linear 02 0e 1802
Scalene 302 35¢ 63.71° 37.342
Isoceles 302 602 71.572 36.872
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The expansion moments are then configurations. The moments v,,,(p) are
obtained by a linear combination of the related to the potentials of the leading
potential profiles calculated for the leading configurations by:

2170’0—2170‘1

Veq = 7z (7)
2v90 + <\/§ — 1> Vo1
VS‘C = \/i
2vV90 + 2v91 + 2v1 4
Vlin = \/i

where, the indices eq, sc and lin above system of equations for vgq, vy and
corresponding to equilateral, scalene and v, gives:
linear geometries, respectively. Solving the

_ (VB3=v2)Veq(p)+2v2Vsc(p)

vo,o(p) = 2478 (8)

22 (Veq (0) = Vic(0))
2++6

Vo,1 (p) =

(3v2 = V3)Veq(p) — 4V2Vsc (p) + (V2 + V3)Vyin (p)

U1,1(P) = 2+ 6

Therefore, by substituting eq. (8) into eq. is express in terms Vi, Voq and Vi
(6) the potential energy surface (V(p, 0, CI))) potentials, gives:

_ 2V2( Ve —Vsc
V(0.0,0) = vZ {((@ ﬁ)veq(pmﬁvsc(p)) +< (Veq (o) (p))) (2, (4) +

2+6 2+V/6
3V2—V3)Veq (p)—4V2Vsc(p)+(V2+V3 Viin(p)
ds, (49)] + (( L Ll e )cos(ae)[dio(w) + d§,1(4q>)]}

(9)

The analytical form of the potential following fifth degree generalized Rydberg
energy surfaces, for each of the leading function®®?®**®into the ab initio points:
configurations, are constructed by fitting the
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U(p) = De Xi-1 (1 +ai(p - peq)i) exp[=ai(p — peq)] + Erey

where Dg, a;, peq and E,.r are parameters
obtained by the fitting procedure.

In the discussion of the results, the
energies of an isolated helium atom, the

AEHez = EHez — 2Ep,

AEH33 = EHe3 — 3Eqe

DYq
(10)

dimer, and the trimer are denoted asEy,,
Eye, and Ey,,, respectively. Differences in
energies, which are the corresponding
binding energies, are denoted

(11)

(12)

The term E\,on—add, the nonadditive part of the total energy, is denoted

AEyon-add(11,72,73) = AEHe3 - AEHez-

Consequently, the construction of an
interaction model to be used in a subsequent

calculation consists in selecting proper
functions representing the two-body
(EHe2 (rHe_He)) and three-body

(AEHe3 (7‘1,7‘2,7‘3)) potentials.

We have not considered the counterpoise
correction, as suggested by Varandas et. al.
what concluded that energies calculated with
a cost-effective extrapolating basis set
combined with extrapolated levels what
include high corrections, as CBS, CCSD(T) and
FCl, as a promising route for accurate
potentials, even when CP is not used; this
may help to avoid correcting for BSSE, which
presents formal difficulties when more than
two fragments or more than one electronic
state are involved.™

3. Results and Discussion

All the ab initio calculations were carried
out by using the Molpro2010 program.** The
CCSD(T) and MRCI levels of theory were
adopted in conjunction with the aug-cc-pVXZ

(13)

(X=D,T,Q,5,6).32"35 Moreover, to assess the
role of doubly augmented cc-pVQZ Basis, we
tested the d-aug-cc-pvQz.* We will use
short-hand notation d-aQZ for these base,
and similarly aXZ (X=D, T, Q, 5 and 6) for the
singly augmented ones.

We have computed the energies of 101
energies to different values of R for the He
dimer. A non linear least-squares procedure
was used to obtain the values of the
adjustable parameters that minimize the
differences between the analytical energies
obtained with the fifth degree generalized
Rydberg function. The D, a;, Req, Eres
adjustable parameters and rms error to He,
are listed in Table Al of the Appendix.

The Table 3 show one resume of these
results compared with experimental and/or
theoretical data. We notice, in particular, that
the best theoretical dimer interatomic
potential result is 7.9905 cm™ to MRCI at the
distance 2.9631 A and 8.9019 cm™ to
CCSD(T) at the distance 2.9894 A; both using
the d-aug-cc-pVQZ basis set. In a
corresponding calculation, using an exact
Monte Carlo procedure, Szalewicz and
Monkhorst  obtained the value of
(7.6439+0.033) cm™ at the distance 5.60 a,

Rev. Virtual Quim. |Vol 8] |No.2| |338-355|
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(2.9634 A).*’ In the very recent work by
Rgeggen on the fcc and hcp structures of
helium it was demonstrated that the EXRHF
model yields a dimer interatomic potential

Albernaz, A. F.; Barreto, P. R. P.

equal to 7.5866 cm™ at the distance 5.60 a,
when a practically complete basis set
isadopted.*®

Table 3. The energy and distance fitting of the He dimer

. Ef€ [em™] Re [A]
Basis Set
MRCI CCSD(T) | MRCI | ccsD(T)
aDzZ 8.7050 9.1897 3.0039 3.0158
alZ 6.3466 7.0490 3.0097 3.0389
aQZz 6.0756 6.8941 2.9877 3.0161
d-aQz 7.9905 8.9019 2.9631 2.9894
a5Zz 6.2894 7.1538 2.9857 3.0164
abZ 6.2990 7.2006 2.9799 3.0114
(7.6437+0.033)%
38
References 7'5866393 2.9634%"40
7.6106%
7.4230%°

® Based on ab initio 78-MRCI with 10301 basis set calculations by Ref. 39.
® Obtained with CCSD(T)/[6s,5p,4d,3 f,2g,1h] level by Ref. 40.

Our results to energies and distances are
good agreement with Szalewicz and
Monkhorst®” for the d-aQZ basis set to both
levels. For distance our results are below
0.1% to both levels. For energy, discrepancies
are below 5% to MRCI level and 16.5% to
CCSD(T) level. In comparison to energy of the
Bovenkamp and Duijneveldt,* obtained with
78-MRCI with 10301 basis set calculations,
the discrepancy is ~5% to MRCI level. While
compared with results of Koppler and Noga,*
obtained with CCSD(T)/[6s,5p,4d,3 f,2g,1h]
level, the discrepancy is ~20% to CCSD(T)
level.

It is well-known that the MRCI methods
allow one to reproduce the wave function in
the valence region (describing static and
nondynamic correlation effects) more reliably
in general than the single-reference coupled-
clusters ones in complicated cases. It is not
less known that the dynamic correlation
effects (with explicit treatment of outer core
shells, etc.) are much better described by the
coupled-clusters approaches. This explained

the difference between MRCI and CCSD(T)
results obtained in this work.

3.1. Potential Energy Surface Fit

We have computed the energies of 101
single potential energy points on the surface
to different values of p for each
configuration, and then we have fitted the
energies vs p by means of a nonlinear least-
square procedure. A nonlinear least-squares
procedure was used to obtain the values of
the adjustable parameters that minimize the
differences between the analytical energies
obtained with the function (equation 10) and
the MCRI and CCSD(T) to several basis set
data. The D,, a;, peq, Erer adjustable
parameters and rms error to the MRCI and
CCSD(T) potentials are listed in Table A2 of
the Appendix.

The smallest difference between the
distance corresponding to the minimum
energy in the leading configuration when

Rev. Virtual Quim. |Vol 8| |[No.2| |338-355|
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comparing the CCSD(T) and MRCI results is
found for the equilateral configuration at
aug-cc-pVDZ (aDZ) level, amounting ca
0.0098 A, and the largest is obtained for the
linear configuration at aug-cc-pV6Z level, ca
0.0327A  becoming 0.0333A for the test
configuration.

As to the interaction energies, the largest
difference is encountered for the d-aug-cc-
pVQZ basis set, in correspondence of the
equilateral triangle configuration, 3.5254
cm™ and the smallest one is for the scalene

Vo

triangle at aug-cc-pVDZ, 0.8334 cm™. For the
test configuration the difference is 0.8050
cm™.

Since the adopted basis set in this work
yields a dimer potential which is in rms by
less than 0.001 (see Table Al) to MRCI/d-
aQZ, it should be accurate enough to
describe the changes in the double pair
correction terms due to the presence of a
third subsystem, i.e., its contribution to the
three-body potential.

Table 4. Hyperradius (p), internuclear distance (R,), total interaction energy (EHe3) and
three-body nonadditive (AEHe3) contributions term obtained, from the PES fit, to equilateral
configuration from the Helium trimer to MRCI and CCSD(T) levels and several basis sets

. R, [A] 1 1
; E cm AE cm
Bsaesés p [A] (ry =15 =13) Hes | ] He3[ ]
MRCI | CCSD(T) | MRCI | CCSD(T) | MRCI | CCSD(T) | MRCI | CCSD(T)
aDZ | 17429 | 1.7331 |3.0187 | 3.0018 | 24.8815 | 26.8902 | 2;35 -0.6791
aTz | 1.7540 | 17325 |3.0381 | 3.0008 | 18.0840 | 20.9573 | | 9'559 -0.1897
aQZ | 17440 | 17231 |3.0208 | 2.9845 | 18.0180 | 21.2052 | | 2;)89 0.5228
d-aQZ | 17289 | 1.7080 |2.9945 | 2.9600 | 22.5988 | 26.1242 | , 3'726 -0.5814
a5Z | 1.7430 | 1.7202 |3.0190 | 2.9795 | 18.1611 | 21.5255 07670 0.0640
a6z | 17410 | 17176 |3.0155 | 2.9750 |18.2744 | 21.7633 | 6'227 0.1614
CCSDT(Q)/d-aQz" 23.07 -0.0614
DMC calculations® -1.26
(MRCI+Q)/[5s,4p,3d,2f]* 0.1756
EXRHF/[19s,7p,6d,5f,4g,2h]*’ -0.0555
CCSD(T)/[7s,5p,3d,2f]* -0.0694
DMC calculations® 22.9 -0.0872
EXRHF/[19s,7p,6d,5f,4g,2h]** 14.94+1.32 0.487+1.5

Table 4 contains the main calculated
results of this work to MRCI and CCSD(T)
levels using several basis set for the
equilibrium  equilateral  triangle.  The
hyperradius is 1.7289 A, with an total
interaction energy of 22.5988 cm™ and the

equilibrium internuclear distance obtained is
2.9945 A for the  MRCI/d-aQZ level; while
to CCSD(T)/d-aQZ the hyperradius is 1.7080
A, with an total interaction energy of 26.1242
cm™ and the equilibrium internuclear
distance obtained is 2.9600 A.

Rev. Virtual Quim. |Vol 8] |No.2| |338-355|
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We present also some results of the most
recent calculations of the three-body
potential of the helium trimer. Among these
calculations, the calculation of Cohen and
Murrell is the odd one.” As pointed out by
Lotrich and Szalewicz,*® there might be two
reasons for this deviation. First, the adopted
multireference  configuration interaction
MRCI method, combined with a size
consistent correctionfor unlinked clusters
MRCI+Q, is not fully size consistent. Second,
in a supermolecule approach it is of
paramount importance to correct for the
BSSE. Cohen and Murrell did not specify if

Albernaz, A. F.; Barreto, P. R. P.

this is done. If they did not, this might be the
main reason for the discrepancy.

Our accurate energy MRCl/d-aQZ for the
trimer Ey,, = 22.5988 cm™ is in excellent
agreement with the Lewerenz** value,
Epe, = 22.9 cm™, with DMC calculations and
Cencek et. al'® value, Eye, =23.01 cm™,
carried out using the CCSDT(Q)/d-aQZ level.
Our result of the AEy,, at MRCI/d-aQZ basis
set is -1.3726 cm™ using MRCI. This result
is good agreement with the -1.26 cm™
obtained used DMC calculations of the Blume
and Greene.”

Sy

Yk
Nl
A

0 [degree]

T LA A

P [degree]

@ [degree]

Figure 2. lllustration of the potential energy surface as a function of the hyperangles ® and
®, using the isotropic distance p to d-aug-cc-pVQZ; (a) for MRCI (p= 1.7289 A) and (b) for
CCSD(T) (p= 1.7280 A). In the (c) and (d) figures we show two-dimensional contours as a
function of the hyperangles ® and ®. In this contours the effect of particle permutations on
the angle @ can be clearly seen through the isoenergetic curves (c) and (d)
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Figure 2 shows a surface plot of the He
trimer potential used in the present study.
For a fixed hyperradius p, 1.7289 and 1.7280
A (MRCI - Figure 2(a) and CCSD(T) - Figure
2(b), respectively) to d-aug-cc-pVQZ basis set,
as a function of the hyperangles ® and ®. We
show the angular range ©® [O, ”/4] and
D [0, ).

The two-dimensional contour (Figures 2(c)
and 2(d)) demonstrated the effect of particle
permutations on the angle ®. Due to the
presence of three indistinguishable particles,
V(p,®,®)is invariant under translation by
7T/3 in the ®-direction. Note that the two-
body coalescent points with ry, =0, r,3=0, and
r;;=0 correspond to (®,®) = (”/4, 7T/6),

(n/4,4”/6), and (”/4, ), respectively.

The symmetry lines of the potential
surface ®= n"/6, where n = 1 — 6 can easily
be identified. The contours plot of this figure
is similar to that of Suno and Esry’ for He;
and of Blume et. al. for Nes.”® In both cases,

i (a)

u‘ cesD(T)
—"_‘10—' 1 ::1/4_\4
5 ! i
ey j q Inear
B, b 3
S0
5 SR
7 L Mg NEel

_

linear

Energy [cm’']

Vq

the author show the contours plot at
distance of 7.93766 A, while we use the
distance for the isotropic term.

The rms for the leading and test
configurations present a minimum for the d-
aug-cc-pVQZ basis set and varies from
0.000644cm™ for the equilateral triangle.
This strongly indicates that the most reliable
results pertain to the d-aug-cc-pvQZ basis
set, therefore all the data discussed in the
following are referred to the above basis set.

In Figure 3, we illustrate of the potential
interaction (equation 6) of the He; system as
a function of the hyperradius distance. This
figure compares the ab initio (MRCI and
CCSD(T)) and the fitted results for the leading
(Figure 3(a)) and test (Figure 3(b))
configurations, where the ab initio points are
compared with the results obtained by the
mode (equation 9). Although the isosceles
configuration not be part of the model, it can
play very well the ab initio points.

20

+ abinitio (b)

——~ - - -model

——MRCI - ---CCSD(T)

IS)
L

o
L

Hyperradslus [A]

Hyperradius [A]

Figure 3. Interaction energies as a function of the hyperradius for the equilateral, scalene,
linear (figure 3(a)) configurations. Circles and squares symbols represent the ab initio points
calculated to MRCI and CCSD(T) levels using the d-aug-cc-pVQZ base set, and solid and dash
lines are from Rydberg fitting. The figure 3(b), test configuration (the isoceles triangle with ® =
n/6 and @ = 1/4), was obtained by the model (eq. 9)

The rms between the computed and the
fitted values ranges in (6 - 43)x10™® cm™ to
MRCI and CCSD(T) for all configurations (see
Table A2), thus validating the quality of the
fit. The d-aug-cc-pVQZ basis set presents the

minimum equilibrium distance and the
maximum interaction energy.

Figure 3(b) compares the ab initio points
with results obtained according the model
(equation 9), for the test configuration (see
Table 2 for details). The rms among the
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MRCI data is 2.71403 cm™ while according
the fitting procedure it is 0.000644 cm™. For
the results in CCSD(T) the error is 4.51408
versus 0.000644 cm™. The errors are large in
the small hyperradius than in the region of
bigger hyperradius.

Albernaz, A. F.; Barreto, P. R. P.

Figure 4 compares the isotropic (vy,) and
anisotropic (vy; and v4;) terms at MRCI and
CCSD(T). It has to be noted that the isotropic
term constitutes very important information
because it can be obtained by experimental
determinations and can be used to compare
different systems.

MRCI CCSD(T)
- 7" VOO
- T 01
V11
e
5,
>
S
(0]
C
L
4 '\. /_
-6_ Nt
T T
2 3 4 5

Hyperradius [A]

Figure 4. Energy dependence as a function of the hyperradius for the isotropic and anisotropic
moments of the hyperspherical expansion

The projection of full potential energy
surface in xy-plane, generated properly
freezing the angles ® or @, is showed in
Figure 5. These graphs have been obtained
by using the full potential energy surface
generated by the hyperspherical harmonics

expansion, which produce a smooth
interpolation among the curves
corresponding to the three leading

configurations that we have considered in
this paper.

These figure show the projection of ®
with fixed ® (a) ®=0 or (b) ® =7 /4. It is
clear the period of the ® angle of m/3 in
figure (a), but in figure 2, as ® = /4 the ®
angle is undetermined, as showed in table 2,
(c) shows the projection of ® with @ = 0 and
(d) with @ = 1t/3, in both part (c) and (d) are
clear the period of /4 for the ® hyperangle.
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Energy [om ']

Energy [om ']

Va

(b)

C)

Energy [om']

Figure 5. View of the potential energy surface for the interaction of He; as ® and ®@, using
the isotropic distance, p = 1.7289 A, and MRCI/d-aug-cc-pVQZ. In (a) ® varies in the xy plane,
with ®=0, (b) @ varies in the xy plane, with ® = t/4, (c) ® varies in the xy plane, with ® =0, (d)

® varies in the xy plane, with ® =1t/3

4. Conclusions

We have used MRCI and CCSD(T) methods
and several basis sets to compute the three-
body nonadditive contribution to the helium
trimer interaction energy and represented
through a hyperspherical harmonic. To
determine the expansion moments, we chose
a three significant (leading) configurations,
thought to be representative also on account
of the symmetries of the systems. This has
allowed us to build up an interaction
potential expansion potentially useful for
dynamical studies by classical or quantum
mechanics.

The hyperspherical expansion appears to
be a powerful tool: it allows implementation
of symmetries and of further information
coming from introduction of additional
configurations. Interpretation of
experimental molecular beam scattering
studies can also be assisted by these
investigations.

We have proposed a very simple,
analytical potential energy surface for the
He; system, using the symmetric, mass
unscaled hyperspherical coordinates. The
trend obtained by others authors for He
trimer and similar systems, where in Ne; and
Ar;, are well reproduced here. The MRCI and
CCSD(T) potentials turned out to be very
similar, give essentially the same results. The
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uncertainties of the nonadditive helium
trimer potential using d-aug-cc-pVQZ basis
sets and from fitting are about 0.004 cm™ to
the trimer minimum. The MRCI/d-aug-cc-
pVQZ level showed is more than adequate to
study this system.

In conclusion, three-body potential for the
ground state of the helium trimer is
determined by an extensive calculation
presented so far. Based on our error analysis
and comparisons with others authors what
different methods to the Helium trimer
potential energy surface, we consider also
these calculations to be the most accurate

Appendix
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ones. The analytic functions for the three-
body potential yield an effective and simple
representation of the potential.
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Table Al. Two-body analytic function to helium dimer obtained to MRCI and CCSD(T) levels

and several basis sets

Basis MRCI
Set | m[AN  alA] aAT  aAY AT " D ReAl rms
[cm™] [em™]
aDZ | 3.415787 1259258 0.55028 0.857928 0687064 0.17462 8.7050 3.0158 0.001147
aTz | 2055895 -1.36529 2.247367 -151887 0.403654 0.380208 6.3466 3.0389 0.002243
a0z |3.558803 185153 17681 1321458 0.536468 0077378 6.0756 3.0161 0.000173
d-aQz |2.758663 -0.27441 1110964 0.215113 0289419 0.3645 7.9905 2.9894 0.000401
a5z | 2569015 -0.94126 130008 -0.32576 0.184523 0.230077 6.2894 3.0164 0.000113
a6Z | 2.53998 -1.07302 1.369963 -0.40424 0152782 0.183669 6.2990 3.0114 1.44E-06
cCs(T)
aDZ | 3.414403 1274788 0550779 0.838421 0686003 0179354 9.1897 3.0035 0.00113
aTz | 2063261 -1.47647 2.303935 -1.4938 0379605 0.366437 7.0490 3.0097 0.002256
a0z | 3.546051 1783883 1669134 1250678 0.531804 0082066 6.8941 29877 0.000171
d-a0z |2.759573 -0.30169 1076766 0.18071 0281098 0373283 8.9019 2.9631 0.00041
a5z | 2570582 -0.96851 1.297542 -0.32951 0175589 0.239808 7.1538 2.9857 0.00011
a6Z | 2535884 -1.11604 1.375317 -0.40688 0.145733 0.193097 7.2006 2.9799 1.69E-06

Rev. Virtual Quim. |Vol 8| |[No.2| |338-355|



Albernaz, A. F.; Barreto, P. R. P.

Vo

Table A2. Three-body analytic function (eq. (11)) for the leading configurations obtained to
MRCI and CCSD(T) levels and several basis sets

. ) . MRCI
BasioSet | Conflgurations o A a A7) as[AY  a[AY  as[A7]  Ewlem] Delem] pegAl  rms
abz Equilateral 5.670953 2.390386 1.960427 6.50082 8.629325 -0.0533 24.881 1.7429 0.010615
Scalene 3.933895 0.910421 0.583547 0.918886 1.348534 0.0197 10.297 2.3898 0.003098
Linear 4.141615 1.747257 0.844911 1.670518 1.716155 0.0100 17.601 2.4615 0.004839
aTZz Equilateral 3.654171 -4.26685 11.17461 -10.9549 4.047226 0.0772 18.084 1.7540 0.020626
Scalene 2.578739 -2.41127 4.685046 -3.53893 1.118343 0.3196 7.993 2.3889 0.001959
Linear 2.506939 -1.9741 4.174734 -3.30061 1.110273 0.7327 12.969 2.4814 0.007901
aQz Equilateral 4.931535 -0.83734 5.954968 2.079468 1.792079 -0.0537 18.018 1.7440 0.003696
Scalene 3.974911 0.991242 2.321968 1.490864 0.835723 -0.0156 7.478 2.3849 0.000348
Linear 4.073514 1.65558 2.568822 2.02979 1.045606 -0.0326 12.039 2.4668 0.001151
d-aQz Equilateral 5.131096 0.925939 6.06384 4.931025 4.069759 -0.0593 22.599 1.7289 0.004334
Scalene 3.610234 -0.06035 1.684517 0.598157 0.930568 0.0476 10.032 2.3552 0.001039
Linear 3.654758 0.404937 2.092028 1.049145 0.843774 0.0804 15.494 2.4392 0.002013
a5z Equilateral 4228244 -3.80604 7.398114 -3.885 2.120015 -0.0168 18.161 1.7430 0.000746
Scalene 3.333332 -1.12986 2.295152 -0.5349 0.478334 0.0218 7.527 2.3851 6.84E-05
Linear 3.226953 -1.19952 2.297333 -0.59601 0.424293 0.0565 12.175 2.4666 0.00041
a6z Equilateral 4.118929 -4.30912 8.000636 -4.9618 2.310861 -0.0101 18.274 1.7410 6.64E-05
Scalene 3.243004 -1.45174 2.505748 -0.82469 0.452678 0.0225 7.556 2.3820 3.73E-06
Linear 3.146586 -1.50271 2.460465 -0.84125 0.414186 0.0577 12.261 2.4632 5.90E-06
CCSD(T)

abz Equilateral 5.655238 2.395923 1.958542 6.282626 8.562892 -0.0595 26.890 1.7331 0.010583
Scalene 3.935259 0.950148 0.622091 0.896162 1.34246 0.0179 11.131 2.3754 0.002969
Linear 4.136003 1.76724 0.862102 1.633511 1.717742 0.0054 18.920 2.4484 0.004696
aTZz Equilateral 3.658618 -4.5929 11.3192 -10.6032 3.807974 0.0759 20.957 1.7325 0.020697
Scalene 2.58046 -2.60883 4.773108 -3.45783 1.050971 0.3247 9.223 2.3597 0.001989
Linear 2.510863 -2.1917 4.302849 -3.24909 1.045385 0.7344 14.892 2.4510 0.008017
aQz Equilateral 4.606487 -2.36907 6.274802 -0.30339 1.318736 -0.0477 21.205 1.7231 0.003824
Scalene 3.937203 0.823851 2.176859 1.301218 0.794199 -0.0167 8.811 2.3554 0.000356
Linear 4.028938 1.451091 2.354986 1.781898 0.983421 -0.0345 14.171 2.4374 0.001216
d-aQz Equilateral 5.098626 0.645625 5.671055 4.309398 3.875399 -0.0646 26.124 1.7089 0.004358
Scalene 3.608028 -0.0824 1.63236 0.495209 0.905512 0.0479 11.530 2.3287 0.001022
Linear 3.64486 0.320311 1.988101 0.921185 0.816067 0.0795 17.888 2.4117 0.001956
a5z Equilateral 4.207787 -3.97902 7.430486 -3.94956 2.053953 -0.0174 21.526 1.7202 0.000746
Scalene 3.322466 -1.2089 2.300483 -0.57125 0.463306 0.0238 8.929 2.3531 6.61E-05
Linear 3.214423 -1.28558 2.305526 -0.62997 0.411718 0.0616 14.420 2.4346 0.000408
a6z Equilateral 4.101965 -4.48049 8.038834 -4.93787 2.210977 -0.0110 21.763 1.7176 7.32E-05
Scalene 3.229211 -1.54908 2.521989 -0.85079 0.439513 0.0250 9.012 2.3492 4.52E-06
linear 3.133871 -1.59372 2.476261 -0.85986 0.399194 0.06223 14.593 2.4305 6.80E-06
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