An Approach for Verification of a Satellite Simulator
— an evolving system

Paulo Diego Barbosa da Silva
Emilia Villani

Brazilian Aeronautics Institute of Technology, ITA
Sdo José dos Campos, Sdo Paulo, Brazil
paulodiegol@gmail.com, evillani@ita.br

Abstract— Satellite simulators are developed in the context of
a space mission lifecycle to represent the real behavior of a
satellite during operation and may be used for different
purposes. To attend a particular purpose new functions are
added or modified according to the mission phase needs,
requiring models re-adaptation in a system evolving concept.
The process of verification of satellite simulator software
requires high-efficiency in accomplishing realistic functional and
behavioral requirements. Based on the complex set of
requirements the satellite behavior is represented in the
simulator through software models specified by tables of cause-
effect rules. Considering that the Satellite Simulator is an
evolving systems and it needs to assure that the logic
implemented in the simulator conforms to the requirements, the
manual verification process becomes impracticable, therefore
demanding a compatible verification approach. The approach
suggested here unifies two techniques Conformance and Fault
Inject (CoFI), constructed on Model-Based Testing and Model
Checking added to a method so that it can translate the tables of
cause-effect rules into finite state machines. This paper presents
the verification approach illustrating it with the Data Collection
Subsystem (DCS) model of the CBERS satellite simulator being
developed at National Institute for Space Research (INPE).

Keywords—Satellite simulator; Test automation; Verification;
Validation;  Formal methods; Model checking; Model based-
testing.

I. INTRODUCTION

As part of a space mission, an operational satellite
simulator plays an important role as a tool for training
operators, for understanding satellite failures in order to solve
them in scenarios as real as possible and for validating
operational procedures before sending them to the real satellite.

Operational Simulators are considered as evolving systems
once they are built using an infrastructure over which models
are added to mimic satellite subsystems, space dynamics and
ground stations. In general, satellite simulators are developed
in the context of a mission lifecycle, with a particular purpose.
Nevertheless, the purpose may change according to the mission
phase needs, requiring models re-adaptation in a system
evolving concept [1].

At the National Institute for Space Research (INPE) the
development of operational simulators has been occurring
since 1991; the first satellite simulator was created for the

Ana Maria Ambrosio
Denise Rotondi Azevedo

Brazilian National Institute for Space Research, INPE
Sdo José dos Campos, Sdo Paulo, Brazil
ana.ambrosio@inpe.br, denise.rotondi@inpe.br

SCD1 (Data Colleting Satellite) part of SCD’s family and has
continued for families of other satellites as China-Brazil Earth
Resources Satellite (CBERS) and scientific French-Brazilian
Micro-satellite [2].

The solution adopted for the CBERS Satellite operational
simulator was to separate a common infrastructure from the
models that represent the satellite, thus, enabling the
infrastructure reuse in several other missions. Concerning the
satellite specification for the simulator, the behavior of each
subsystem is currently documented in cause-effect tables in a
standardized and repeatable way. That was the best solution
found to represent the information understandable by engineers
of the different areas need to build a satellite: orbit and attitude
control, mechanics, thermal, computing, electronic, etc. and for
the software development team [3]. This representation
demands an efficient verification process to guarantee that all
the functional and behavioral requirements are present in the
final software.

The current V&V (Verification and Validation) process
being applied to the simulator subsystems models is ad hoc and
manually executed; therefore, it is cost and time-consuming
and has low efficiency for requirements covering verification.
So, the need for an approach that guarantees the conformance
between the functional requirements and the satellite software
implementation is mandatory. This approach should have a
development-in-progress and reusable characteristic so that it
can fit the necessity of constant evolution of the satellite
simulator software.

The adoption of a particular standard to represent the
CBERS 3&4 satellite simulator functional and behavioral
requirements through tables of cause-effect rules has facilitated
the models understanding, for both, the software development
team responsible for implementing the subsystem behavior
specified by the cause-effect tables and the verification team.

In this paper we present the exercise of an approach for
verification of models of a satellite simulator with evolutionary
features that is yet under development. In short, the approach
consists of translating cause-effect rules into Finite State
Machine (FSM) combining Model Based-Testing according to
CoFI methodology [4] and Model Checking [5]. From a set of
FSMs the approach will make possible the automatic creation
of a concise abstract set of test cases, which may be re-used
and evolve to ensure conformance between the satellite



simulator software and the requirements that describe its
behavior. The approach is illustrated with the Data Collection
Subsystem (DCS), a model of the CBERS satellite.

This paper is organized as follows: Section II describes the
complete approach adopted in this work. Section III describes
the techniques and tools used, presents the case study and the
proposed translation method. Section IV discusses the
application of the approach to the DCS subsystem and its
results. Section V presents the related works and finally,
Section VI presents the conclusion and final considerations.

II. THE APPROACH OF VERIFICATION ADOPTED IN THE WORK

A. The Approach Overview

This section presents an overview of the verification
approach of the satellite subsystem model based on cause-
effect rules. This approach considers the following activities:
(i) translate the cause-effect tables into FSMs, via our
Translation Method; (ii) apply the CoFI methodology creating
a CoFI set of FSMs, (iii) create CoFI-Total FSM, (iv) check
the CoFI-Total FSM properties with the UPPAAL tool [6], (V)
update the CoFI Set models, (vi) automatically generate a set
of Abstract Test Cases applying the updated CoFI Set of FSMs
to MME [7] and Condado [8] Tools, (vii) transform the Set of
test cases from abstract to concrete, (viii) execute the concrete
test cases against the Model implementation in the Satellite
Simulator and (ix) compare the outputs observed during the
test execution with the expected outputs foreseen in the
abstract test cases. A schematic view of verification process is
depicted in the Figure 1:

CoFl
Application
Finite State CoF! Set Creation
Machines (ii)

DCS Model Translation
Spec. Method (i)
Cause-effect  ——— (|
Tables |Semwrim—=
e
= ]

Specification
Transformation

o Updated
] CoFl Set

i % Dol
t ~=0,77  Updating PR AT Check of Transformation | ~</*0, =%
S| [IE| psatin Properties COFI-Total | _into CoFl-Total ~7 -
9 20 ) ] Modeling * () | Model (@ 7 %o
£ oo =
3 L % t
: CoFl Set
s Updating Model

. .

5 G:Eeratlr;g | Automatic
% E strac MMEand | Giperation
25 Tes: VCi)ases Condado ——— > (o

& ‘ Tools Test Cases

ConcretTestCase | Transformation into
Tool Executable Test
" Generation of sen;:::el: L
SUT  |,_Test Excution Executable 4——=enddatall.)
(viii) Test cases (vii)

DCS Model
Implem. Obtaini

Final Results

(ix) l

=

Test Results

Comparison
of Results

Obtaining Final
Results from
recdata (L, )

“—

Test Cases Execution

Fig. 1. Overview of the V&V approach.

B. Activities Definition

The following is a brief description of each approach
activities:

(1) Translate the cause-effect tables into FSMs: This step
consist of the application of a method developed to translate
the system requirements, arranged in cause-effect tables, into
FSMs. Here the DCS model specification was used to
exemplify the method application.

(i) Apply the CoFI methodology: The second step
describes the CoFI Methodology application which results in
the creation of four classes of models that helped to cover the
entire system requirements behavior described in tables.

(iii)) Create CoFI-Total FSM: Aiming to represent the
complete SUT in one FSM all FSMs produced from the
application of CoFI Methodology were combined in a single
Timed Automata that represents the complete behavior. This
single automata is called here as CoFI-Total.

(iv) Check of properties of CoFI-Total model with
UPPAAL tool: In this step is performed the complete check of
properties of the CoFI-Total model using the UPPAAL tool.

(v) Update the CoFI set’s models: The results of the
properties that were analyzed in the previous step became
feedback for CoFI Set and for CoFI-Total FSM model. This
step may be done several times.

(vi) Automatically generates abstract test cases: This
activity intended to introduce the FSMs from the CoFI Set in
MME tool and then generate the abstract test cases using the
Condado tool.

(vii) Transform the test cases from abstract to concrete
using the ConcreteTestCase tool: In this  step,
ConcreteTestCase tool was used to transform the abstract test
cases in concrete, i.e. test cases able to be executed by the
System under Test (SUT).

(viii) Execute test case on SUT: In this step, the concrete
test cases are executed in the DCS subsystem implemented as
part of the satellite simulator.

(ix) Compare the results: Obtain the final test results with
ConcreteTestCase tool. This tool performs the comparison of
the outputs generated by Condado and the outputs produced by
the simulator, and then gives the verdict of the resulting tests.

III. TECHNIQUES AND TOOLS, CASE STUDY AND THE
TRANSLATION METHOD

This section describes the approached techniques and the
tools used to support our proposal as well as the case study that
motivated this research and the Translation Method that
allowed to apply the existing tools and the model-base testing
concepts to an evolving system.

3.1 Techniques and Tools Adopted

The two techniques adopted as guide for the development
of this work and the four tools used for supporting them are
described in the sequence.



A. CoFI Methodology and MME and CONDADO Tools

CoFT (Conformance and Fault Injection) is a model-based
testing methodology (MBT) developed to address conformance
and fault injection testing systematization of embedded
software in space missions [9]. CoFI guides the construction of
a set of Finite State Machines (FSMs) representing the
expected behavior of services provided in requirement
specification. From FSM test cases may be automatically
generated. The methodology advises the tester to represent the
system behavior into different and partials FSMs avoiding the
explosion of states and consequently the number of test cases.
Classes of models should be established for normal behavior,
specified exceptions, sneak paths and fault tolerance. These
models cover possible scenarios that can occur in a space
system as found in.

The MME tool enable on to edit FSMs, while the Condado
tool automatic generates test cases using the Transition Tour
algorithm [10]. Both tools were developed in the context of the
Project ATIFS in a partnership between the Campinas
University and INPE [11].

B.  Model Checking and UPPAAL Tool

Model checking is a prominent formal verification
technique for assessing functional properties of information
and communication systems that requires a model of the
system under consideration, modelling a system with a desired
property and systematically checks whether the given model
satisfies this property. Model checking is a technique that
allows verifying finite state concurrent systems [12].

The UPPAAL model checking is a computational tool that
allows the modeling of timed automata. This tool was
developed in a partnership between two universities, the
Uppsala University, at Sweden and the Aalborg University, at
Denmark. UPPAAL Tool allows the modeling, system
simulation and the properties verification in the implemented
models. In the verification process performed by UPPAAL, the
CTL language (Computational Tree Logic) for properties
specification was used. When a property is false, the tool
provides traceability path to achieve the state where the
property is not true [13].

C. The ConcreteTestCase Tool

The ConcreteTestCase is a tool developed in the research
context of this work in order to help in the process of
automating the test execution of the CBERS simulator. The
tool has two main functions: (1) translating the test cases to a
format suitable for execution in the CBERS simulator and (2)
comparing the simulator outputs with the correlated test case
generated by Condado tool. Details of these two functions are
given below:

1) The generation of executable test cases

In the generation of executable test cases for the simulator,
the input is a file produced by Condado, named “.seq” that
contains the set of abstract test cases. Each test case described
in this file is defined with an input event "senddata (L, xx)" and
an output action "recdata (L, yy)", the xx parameter of the
senddata means the input event and yy in recdata means an
output of a transition in the FSM. The ConcreteTestCase tool

obtain xx from "Senddata (L, xx)" to generate an executable
test sequence, as illustrated in. Figure 2.

ConcreteTestCase
Transformation

senddata @, 1c01)

Condado File

Executable
Test Cases
File
TCO0L

.seq

senddata (,Tco1)|
recdata ¢.TM01)

recdata @, Tvon

Fig. 2. Generation of executable test cases.

2) Comparison of the Test Results

In order to obtain the verdict of the final results for the tests
applied in the simulator, the ConcreteTestCase tool works with
three separated input files. The first one is the “.seq” file, using
the recdata (L, yy) the tool compares it with the merged
simulator output files. The simulator output files list the
sequence of input events while the other lists the sequence of
output actions. If a match occurs between the output action
presented in the Condado file and the merged simulator output
files, the tool lists the results as “OK”, it means that there is
Conformance between the outputs, otherwise the result is “N-
OK”, which means faults. Figure 3 illustrates the artifacts
handled by this function:

] Condado File Simulator Output Files
©
5%
K=
w2 Input Output
‘g‘_ E seq Events Actions
EE cdatad) File File
=
I}
5]

ConcreteTestCase
Processing

utput of

ConcretTestCase

com

Fig. 3. The schematic for obtaining the test veredict.
3.2 The Case Study and the Translation Method

In order to better describe this activity was first exposed the
Case Study adopted in this work, then a description of the steps
of the Translation method.

A. Case Study: The DCS Subsystem

The case study adopted to illustrate the approach was the
logical behavioral specification of the Data Collection
Subsystem (DCS). The DCS comprises six pieces of
equipment: UHF-band and S-band antenna, diplexer, S-band
transponder, UHF transmitter and the oscillator. It is designed
to receive signals from the Data Collecting Platforms (DCP)
and transmit them to the Ground Station in the S and UHF



communication bands. In general, the DCS provides the
following functions: (a) Receive signals from the DCPs. (b)
Convert the signals to an intermediate frequency band (c)
Modulate the signals for S-band and UHF-band antennas. (d)
Transmit the modulated signals to the ground station at S-band
and (e) UHF-band antennas.

Among the devices that comprise the subsystem there is a
set of ON/OFF switches, which allows to change the operating
channel, activate or deactivate redundant equipment, turn on
and off the equipment. The switches positon combination
defines the subsystem behavior depicted in the subsystem
specification document. The subsystem behavior specification
is given through a set of rules represented in different cause-
effect tables. These cause-effect rules can be understood as
follows.

Telecommands (TCs) that change the DCS switches (SWs)
position are the only kind of input events considered in the
subsystem. The combination of switches defines a Working
State (WKs) and consequently the combination of Working
States defines the Equipment Operating Mode (OMeq).
Finally, the combination of the equipment operating modes
gives the DCS Operating Mode.

When a SW is changed according to the sequence of TCs,
the corresponding telemetries (TMs) and Power Consumption
values (PWs) are updated. Figure 4 shows how a sent TC
changes a SW, the TM and correlated PW.

Effects

changes

Cause

|
|
changes |
TC »| SW p » TM
an
I —>pPw

Fig. 4. The relation between input event and output action in DCS
specification.

Table 1 shows how the TCO1 and TCO2 interact with a
SWO1: turning ON and turning OFF the switch affect its state.

TABLE I. TELECOMMANDS VS SWITCH CONFIGURATIONS.

Conditions Effects
Telecommands SWo1
TCO1 ON
TCO02 OFF

Table 2 shows how the combination between the switches
SWO01 and SWO02 affects the working states of the transponder
in channel 1 (WKA1 01) and the transponder in channel 2
(WKA2 01). If the switch SWOI is ON and SWO02 is in
Channel 1 then, the equipment working states WKA1 01 will
be ON and WKA2 01 will be OFF.

TABLE II. SWITCH CONFIGURATIONS VS. WORKING STATES.

Conditions Effects
WKA1_01 WKA2_01
Swoi Swo2 Transponder 1 | Transponder 2
CHI1 ON OFF
ON
CH2 OFF ON
OFF cHl OFF OFF
CH2
X X OFF OFF

Table 3 presents the manner as the combination between
the transponder (WKA1 01) and the oscillator (WKA1 02)
provides the changes in the equipment OMAL1 (the operating
mode for the transponder in the channel 1).

TABLE III. WORKING STATES VS. EQUIPMENT OPERATING MODES.

Preconditions Effects
WKA1_01 WKA1_02
Transponder 1 Transponder 2 OMAL
ON Operating
ON OFF No oscillator
ON Stand-by
OFF
OFF Powered off

3.3 The Translation Method

From the given specification of the subsystem behavior in
cause-effect rules to the use of the testing techniques and tools
there is a great challenge, to develop a method to translate the
subsystem behavior models in FSM that will serve as input to
the application of the complete proposed verification approach.

Although this method is still under development, its first
execution in the DCS case study has proved to be effective.
The method has been divided into eight steps that serve as
guidance for obtaining FSMs from the tables of cause-effect
rules present in the behavioral specification of a satellite
simulator model. The steps described below use the DCS case
study for the sake of a better understanding.

Step 1 - The first step is to identify and understand what are
the OMs (DCS Operating Modes) and the state of the switches
in each OM are.

Step 2 - Step two aims to analyze how each input event
(TC) enables and disables the SWs and thus changing the
working states (WKs) of each piece of equipment that
composes the subsystem, and thus modifying TMs, PWs and
OMs. The DCS Model Technical Specification [14] gives us
the definition of the events (TCs), different valid outputs and
the rules of how they are related.



Step 3 - The third step defines the valid initial sequence of
activation for a complete operation' of the subsystem. This
sequence is composed of TCs and respective TMs as specified
in [15], [16].

Step 4 - This step lists all valid sequences of operation, but
only those that are accepted as standard procedure of the
subsystem, i.e. a partial activation of the system operations
when not all of the subsystem equipment is working.

Step 5 — In this step we draw the first FSM for the main set
of equipment, taking into account the sequence of events (TCs)
and states (active devices) established in step 1 and 3. (For
DCS, we considered only the channel 1)

Step 6 — This step is for drawing a FSM for a set of
redundant equipment (channel 2).

Step 7 — The seventh step represents a FSM to make the
connection between the main and redundant FSMs, using the
TCs for that.

Step 8 — For stablishing the degraded states is necessary
combine the telecommands, in different sequences from those
present in the DCS engineering book. Degraded sequences
need to be confirmed to experts, since the subsystem
engineering handbook may not describe all combination of
such sequences and their expected behavior. Part of this work
will be covered by the CoFI methodology.

Figure 5. FSM for the telecommands sequence described in
Step 3.

TCLOY/
TML001=23dBm,
TMLO06=ON, TMLO07=CH1 -
TMLO13=ON, TMLO14=ON, g . TML003=29.9dBm,
PWL=3.04 TML008=CH1, TMLO09=ON, TMLO05=ON, TMLO10=ON,
. PWL=8.11 PWL=18,9

TCLO7/ TCLO5 /

_ — ~_ T T — T
ToLos . o ~ ~
= - = .
PWL=0 A A
s OMLO2 /OMLo- /OMLO3 "\ /OMLO1 ™
[ S-BAND [ oo ) (’ S-BAND ON ) [ seanpon \
\ UHF OFF | v o o / \ UHFOFF | uHFoN )
CH1 CH1 / \_ CH1 / \\ CH1 /
— / ~ -
e o~ —

S ~_ - —~ -

TcLosl
TMLO13=OFF, TMLO14=OFF,
PWL=(

TCLO2/ TCLOS/
TMLO01=0dBm, TMLO003=0dBm,

TMLO06=OFF, TMLOO7=CH1, TMLO05=OFF, TMLO10=OFF,
TMLO008=CH1 TML009=OFF, PWL=8,11
PWL=3,04

Fig. 5. FSM of the sequence stablished at step 3.

IV. DCS MODELING AND TESTES EXECUTION

This section describes the Modelling for Testing, using
CoFI and model checking, the transformation of CoFI-Total
model and also the utilization of MME and Condado tools.

4.1 Applying CoFI Methodology

The first activity on using the CoFI methodology was to
analyze what the specification defines as normal functioning of
the subsystem, to, next, create a FSM to represent the “normal”
behavior of the subsystem operation. For this case, we used the
complete FSM illustrated in Figure 5.

In the following, an FSM was modeled to "specified
exceptions". According to the DCS behavioral model this
specified exception occurs when one channel changes to

' A complete operation is defined here as the activation of all the equipment
that comprises the system, including main and redundant equipment.

another. Although the DCS subsystem can work normally in
both channels, their modeling is accepted as an exception
behavior - stop operating on Channel 1, starting work on
Channel 2. This occurs because the DCS can operate
continuously on Channel 1, no need to switch to Channel 2.

After that, it was created a FSM to "sneak paths". This is
basically to complete the FSM, make each state treat all the
TCs that can happen in the SUT.

The application of CoFI methodology generated seven
FSMs. The models generated by CoFI methodology received
the name CoFI Set.

4.2 Conceiving CoFI-Total Model

The CoFI-Total model arose from the union of those seven
models, which was very simple, first the establishment of the
connection between channel 1 and 2, in the meantime
removing the intersected states and transitions. Second, the
addition of the degraded states and removing of the intersected
states and transitions.

4.3 Applying Model Checking with UPPAAL Tool

The CoFI-Total model was the input to UPPAAL tool,
which checks whether the model meets properties established
in subsystem requirements. 75 properties were analyzed, the
deadlock absence was the first one analyzed to guarantee that
the system should never reach a situation in which no progress
can be made. Whether the property set was not completely
satisfied, the model was improved and checked again, until all
the properties are satisfied. That means, in a given state, with a
sequence of several TCs, a variable will always present a value
defined by the rules presented in the DCS model specification,
e.g. The variable SYSTEM.OMLO02_CHI implies PW == 0,
this property analyses if in the state OML02_CH]1, the PWL is
0.

During the model checking analysis, we evaluated the
requirements and checked them against the model to identify
misunderstandings and inconsistencies in the CoFI-Total
model, resulting 25 updating in the CoFI-Total model.

Finally, we pointed out that the CoFI-Total model meets
the DCS subsystem requirements, taking into account the
analyzed properties, proving that the model is suitable for the
test case creation.

4.4 Executing the test cases

Condado Tool automatically generated a set of 444 test
cases. During the execution of the first 185 test cases we found
that, 39 test cases passed indicating compliance with the
requirements and 5 critical faults were detected in the
implementation. For continuing the test execution, we need the
correction of the discovered faults to be done by the software
development team. Meanwhile the verification team is working
in the modeling of another subsystem model to be tested.

Concerning the time to execute the 185 test cases we spent
about 10 hours and 9 minutes using a microcomputer with
processor Intel Core 2 Duo and 4GB of RAM, which was
available for testing purposes.



V. RELATED WORKS

Prerogative The related work found in literature focuses on
the uses of Model-based Testing to support automatic
generation of test cases either by the comparison between
simulation approaches or formal approaches. Frequently, the
purpose of the comparison is runtime performance of different
tools in the same verification approach.

Sijtema et al [17] discusses the experience of industrial use
for formal methods applied during the development of a
software bus (Xbus) and its pros and cons. The experiment
were obtained during two phases using formal methods (in
both the design step and the integration testing step): a first
phase in which was developed the XBus at Neopost Inc., and a
second, post-case study analysis phase, where was performed
model checking of the XBus protocol, and measured the
quality and performance of the model-based testing process.

Ambrosio et al [18] presents an ISVV (Independent
Software Verification and Validation) process that applies
reviews for verification and a systematic testing methodology
to guide validation. This process was applied to a pilot project
named Quality Software Embedded in Space Missions (QSEE)
at INPE. These features allowed systematizing validation
activities supported by the test case generation.

Dorofeeva et al [19] presents a comparative analysis of
methods for automatic test suites generation using W, Wp,
HSI, H, UIOv, UIO, and DS FSM-based conformance testing
methods. The experiments here are applied on two
communications protocols.

Tretmans and Brinksma [20] discusses the goal of Cote de
Resyste which is to develop theory, tools and applications for
automatic specification based testing using formal methods.
The ioco-test theory provides a well-defined and rigorous basis
for formal testing with proved test derivation algorithms. The
prototype test tool TorX can completely automatically derive
tests from formal specifications, execute them, and analyze the
results. The successful application of TorX to different case
studies showed the feasibility of the methodology, and the
improvements of the testing process which were gained in
terms of more, longer and provably correct tests.

Pontes at al [21] presents a comparative among two
verification techniques that are based on the system modelling
as state machines. The first technique is the formal verification
of the system specification using timed automata and the model
checker UPPAAL. The second technique is the test execution
of the delivered software product. The specification of the test
cases is based on the CoFI methodology.

Enoiu et al [22] describes how test case generation that is
aimed to satisfy logic coverage on function block diagrams can
be solved as a model checking problem, using model checking
tools to automatically create traces. That can be transformed
into executable tests and how a toolbox in which logic
coverage criteria can be formalized and used by a model
checker to generate test cases.

Several works has been done in this area, which
emphasizes on the importance and benefits of the application
of MBT and Model Checking for test automation. However, no

work, to the best of our knowledge, has been done to formulate
a method to generate a finite state machine from cause-effect
tables of evolving system to support as primary input the test
automatic generation.

VI. CONCLUSION

This paper proposes a verification approach for a satellite
operational simulator, which is an evolving system. The
approach is illustrated with the modelling of a real satellite
subsystem, the DCS. The DCS behavior is specified through
cause-effect tables. The challenge was to translate these tables
into a set of FSMs. For that a Translation method that is still in
development, has been defined. Based on a set of FSMs, we
may achieve the automatic generation of test cases to test the
DCS model implementation. The results took into account the
way the rules of the DCS model were represented. The final
result will change whenever the way of representation of the
subsystem rules changes.

The continuation of this work aims to finish the translation
method and seek for generating the test cases directly from the
UPPAAL model.

The DCS subsystem is part of the CBERS Satellite
Simulator. All the 15 other satellite subsystems follow the
standard to specify the subsystem behavior in rule-based tables,
so the presented approach, when ready, will contribute a lot for
reducing time and cost of an evolving system.

We believe that the generic ideas presented here are the
first step towards an evolving verification and validation
approach, which will be compatible with an evolving system.

ACKNOWLEDGMENT

The authors would like to thank the support given by
Coordination for the Improvement of Higher Education
Personnel, CAPES, Brazil, Brazilian National Institute for
Space Research (INPE) and to Brazilian Aeronautics Institute
of Technology (ITA). We would like to thank to Marcio
Branco, Felipe Costa and Italo Rodrigues members of the
CBERS 3&4 satellite simulator developing team at INPE. A
special appreciation to Christopher Cerqueira, post-graduate
student at INPE, Ivan L. Tosetto Junior and Lucius B. Trannin
Cividanes, both Team Engineering Division at INPE and also
Alheri Dakwat, a post-graduate student at ITA.

REFERENCES

[1] EUROPEAN COOPERATION FOR SPACE STANDARDIZATION
(ECSS). Space engineering: System modelling and simulation. ESTEC,
P.O. Box 299, 2200 AG Noordwijk - The Netherlands, apr. 2010. ECSS-
E-TM-10-21A.

[2] Ambrosio, A. M.; Cardoso, P. E.; Orlando, V.; Neto, J. B. Brazilian
Satellite Simulators: Previous Solutions Trade-off and New Perspectives
for the CBERS Program, Spaceops Conference, AIAA, Rome, Italy,
2006.

[3] Tominaga, J., Cerqueira, C. S., Kono, J., andAmbrosio, A. M. (2012).
Specifying satellite behavior for an operational simulator.In
roceedings...Simulation and EGSE facilities for Space Programmes,
(SESP 2012)., SESP 2012.

[4] Ambrosio, AM., CoFl: Uma abordagem combinando teste de
conformidade e inje¢do de falhas para validagdo de software em



B3]
(6]

7

(8]

91

[10]

[11]

[12]
[13]

aplicacdes espaciais, INPE-13264-TDI/1031, Sdo José¢ dos Campos,
2005.

Baier, C.; Katoen, J. Principles of Model Checking. The MIT Press
(April 25, 2008).

Anjo, J.M.S.; Villani, E. Modelagem e Verificagdo de uma Proposta
para Arquitetura de Controle de um Efetuador Robdtico Baseada em
Labview. VI National Congress of Mechanical Engineering, August 18
—21, 2010 — Campina Grande — Paraiba — Brazil.

Melo, P.C.B.; Junior, R.A.P, Modelador de maquinas de Estado — MME
v1.0.0, PIBIC/UFRN/CRN/INPE — 2003, Projeto ATIFS. Available at:
<http://www.inpe.br/atifs/ferramentas/ferramenta_mme.php> Accessed
on: 2016/05/25.

Martins, E.; Sabido, S.B.; Ambrosio, A. M. ConData: a Tool for

Automating  Specification-based  Test Case  Generation  for
Communication Systems. Software Quality Journal, v.8, n. 4, p. 303-
319, 1999.

Matticllo-Francisco, F.; Ambrosio, A.M.; Villani, E; Martins, E; Dutra,
T.; Coelho, B. . An experience on the technology transfer of CoFI
methodology to automotive domain. LADC'2013, April 2-5, 2013, Rio
de Janeiro, Brazil. ISBN 978-85-7669-274-4.

Naito, S and Tsunonyama, M. "Fault Detection for Sequencial Machines
by Transition Tours", Proc. 11th IEE Fault Tolerant Computing
Symposium (1981) pp 238-243.

Ambrosio et al. ATIFS, Ambiente de teste baseado em injecdo de falhas
de software. 2003, Projeto ATIFS. Available at:
<http://www.inpe.br/atifs/index.php> Accessed on: 2016/05/25.

Clarke, E.M; Grumberg, O; Peled, D. Model Checking. The MIT Press;
n edition (January 7, 1999).

Losso, R.; Villani, E.; Saotome, O.; Goes, L.C.S. Modelagem ¢
Verificagdo de Sistemas Operacionais de tempo-real para sistemas

criticos embarcados. XVIII Congresso Brasileiro de Automatica / 12 a
16 Setembro 2010, Bonito-MS, Brazil.

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

Tominaga, J; Ambrosio, AM. RTD-SRS-1006/00. DCD Model
Technical Specification. INPE, Brazil, 2011.

Tosetto, I. RBL-HBK-1030(F4)/00. FM4 Data Collection Subsystem
(DCS) Handbook. INPE, Brazil, 2014.

Tominaga, J.; Gongalves, C. RBL-TRP-1817/00. DCS Subsystem In
Orbit Verification Results. INPE, Brazil, 2015.

Sijtema, M. ; Belinfante, A.; Stoelinga, M.LLA.; Marinelli, L.
Experiences with formal engineering: Model-based specification.
implementation and testing of a software bus at Neopost. Science of
Computer Programming, Volume 80, Part A, 1 February 2014, Pages
188-209.

Mattiello-Francisco, F.; Ambrosio, A.M.; Martins, E. An Independent
Software Verification and Validation Process for Space Applications.
SpaceOps 2008 Conference (Hosted and organized by ESA and
EUMETSAT in association with ATAA).

Dorofeeva, R.; El-Fakih, K.; Maag, S.; Cavalli, A.R.; Yevtushenko, N.
FSM-based conformance testing methods: A survey annotated with
experimental  evaluation.  Elsevier. Information and Software
Technology 52 (2010) 1286-1297.

Tretmans, J.; Brinksma, E. (2003) TorX: Automated Model-Based
Testing. In: First European Conference on Model-Driven Software
Engineering, December 11-12, 2003, Nuremberg, Germany (pp. pp. 31-
43).

Pontes, R.P.; Essado, M.; Véras, P.C.; Ambrdsio, A.M.; Villani, E. A
Comparative Analysis of two Verification Techniques for DEDS: Model
Checking versus Model-based Testing. Elsevier, IFAC Proceedings
Volumes. Volume 42, Issue 21, 2009, Pages 66-71. 4th [FAC Workshop
on Discrete-Event System Design.

Enoiu,E.P.; Caugevié, A.; Ostrand, T.J.; Weyuker, E.J.; Sundmark, D.;
Pettersson, P. Automated test generation using model checking: an
industrial evaluation. International Journal on Software Tools for
Technology Transfer. June 2016, Volume 18, Issue 3, pp 335-353.




