Real-Time Cubesat Thermal Simulation using Artificial Neural Networks

José D. Reis Junior^{a1}, Ana M. Ambrosio^a, and Fabiano L. de Sousa^a

^aNational Institute for Space Research, São José dos Campos, SP, Brazil Received on 2016 / accepted on *****, 2016

Abstract

In space systems engineering, the Operational Simulator (OS) is a computational tool that can be used to test and validate the ground control system, to train the flight control operators, and to support the operation of spacecrafts. In order to accomplish these tasks, the OS must produce data of all the spacecraft subsystems in real-time. Among these subsystems, the thermal control subsystem is one of the most demanding in terms of computational cost. In this work we use Artificial Neural Networks (ANN) to learn the thermal behavior of a simple CubeSat model, generated by a thermal analysis software, and then apply it to reproduce that behavior and to generalize for scenarios not presented during training. The results show that the ANNs can simulate the temperatures of the CubeSat with good fidelity and very low computational cost.

Keywords: artificial neural networks, real-time simulation, space systems engineering, CubeSat, thermal control subsystem.

24

1

2

3

5

8

9

10

11

12

13

14

15

16

17

18

19

20 21

22

23

25 **1. Introduction**

The recent advancements in information technology and the increasing 26 necessity to reduce cost and time has led to a new model of space systems 27 engineering, in which computational modeling and simulation has become 28 essential tools for design, development and operation of such systems. One of 29 the main advantages of modeling and simulation is the reduction in the num-30 ber of hardware models built during the development of a spacecraft. Other 31 advantages include lower costs, shorter times of development, adaptability 32 to design modifications, no problems with transport or logistics, reusability 33 in successive projects, etc. [1]. 34

Modeling and simulation can be used extensively during all the life cycle of a spacecraft, from the conception and design, to development and operation. In this work, we are interested in a software tool that supports the

¹E-mail Corresponding Author: daniel.reis@inpe.br

operations phase of satellites, called Operational Simulator (OS). This simulator can be used before the launch of the satellite, to validate the ground
control system, to train the ground operators and to test the operation plans,
before applying them to the real system in orbit [2–4].

The OS must be capable to be integrated with the ground control system and respond as if the actual satellite is being operated [5]. To meet this requirement, the simulator needs to run in real-time. Given the complexity of space systems, this can be very challenging.

The design of the thermal control subsystem is usually supported by 46 specialized software used for modeling and analysis [6]. In this software, the 47 thermal system is discretized into a network of nodes (a few thousands for a 48 medium satellite) and differential heat equations are integrated to compute 49 the temperatures of these nodes for a specific scenario and at a given time. 50 For this reason, high fidelity thermal simulations are computationally very 51 expensive, which makes it difficult to use directly in an OS. So it is necessary 52 to seek an alternative capable of providing data on the thermal behavior of 53 the spacecraft in real-time with little loss of fidelity compared to the actual 54 system. 55

In the literature, there are basically two approaches to solve this problem 56 [7-10]. The first one is to carry out an interpolation over a finite set of 57 selected typical scenarios for which the thermal behavior is known. The 58 disadvantage of this method is the uncertainty of the output for nonstandard 59 scenarios. The second method consists in a simplification of the thermal 60 61 model, reducing the number of nodes and interactions to save processing time in the integration of the differential equations. The drawback is the 62 loss of accuracy, especially for the standard scenarios. 63

Artificial Neural Networks (ANNs) have been successfully applied for the 64 solution of problems in various fields of engineering [11–13]. Recently, we 65 proposed the use of ANNs as a potential real-time quantitatively high fidelity 66 estimator of the thermal behavior of a satellite in Earth orbit. This approach 67 was utilized to reproduce the thermal behavior of a simple hypothetical 68 nanosatellite [14] and of the Amazonia-1 satellite [15]. Here we return to the 69 nanosatellite model, also called CubeSat [16], to investigate the capability of 70 ANNs to generalize to scenarios not presented during the training process. 71

72

73 2. Methodology

The thermal model of the CubeSat was built using AutoCAD[®] and Thermal Desktop[®] software. This thermal CAD model, which can be seen in Fig. 1, consists of a square aluminum box of 10 x 10 x 10 cm, with three printed circuit boards (PCBs; in green), each one containing one dissipative
component (in red). The front walls are obscured so that the interior can
be seen.

The orbit used in simulations is polar (inclination equal 90°) at 500 km of altitude. This gives a period of 6000 s or 100 min. The attitude is stabilized

 $_{\rm 82}$ $\,$ in 3-axis with one side always facing the Earth.

m 11

m

83

84

Figure 1 - Thermal CAD model of the CubeSat.

The thermo-physical properties can be seen in Table 1 and the optical properties in Table 2. It was considered that the external surfaces are covered with Solar Cells and the internal surfaces painted with black paint. The dissipative components are composed of Silicon and covered with Graphite Epoxy.

Table 1: Thermo-physical properties					
Material	Density	Thermal Conductivity	Specific Heat		
	$(\mathrm{kg}/\mathrm{m}^3)$	$(W/m^{\circ}C)$	$(J/kg^{\circ}C)$		
Aluminum Alloy	2710	168.0	963.0		
Fiberglass (PCB)	2440	1.1	737.0		
Silicon	2320	148.8	712.0		

1

1

90

The thermal modeling is based on a nodal or lumped parameter method. In this method, the satellite is divided in a number of regions, assumed isothermal, which are called nodes. These nodes exchange heat among each

Material	Absorptivity (α)	Emissivity (ε)	α/ε
Fiberglass (PCB)	0.75	0.89	0.843
Graphite Epoxy	0.93	0.85	1.094
Black Paint	0.95	0.87	1.092
Solar Cells	0.90	0.80	1.125

 Table 2: Optical properties

other by conduction and radiation and with outer space by radiation. Also,

⁹⁵ they can receive heat loads from external sources or from electronic compo-

⁹⁶ nents. The temperature of each node is the result of these interactions.

The thermal software package SINDA/FLUINT (SINDA), which is a tool 97 for heat transfer design and fluid flow modeling of complex systems, was ap-98 plied to calculate the temperatures of the satellite in various scenarios. The 99 first one is an operational scenario with all the components working nor-100 mally and space environment parameters at its maximum values (hot case). 101 In the second one, the components are in standby and the space environment 102 parameters at its minimum values (cold case). The other scenarios consist 103 in variations of each parameter individually alternating from its maximum. 104 minimum and medium values while maintaining all other variables in its 105 maximum or minimum values. This approach was employed in order to the 106 ANN learn the influence of each parameter in the thermal behavior of the 107 CubeSat. We also simulated two additional arbitrary scenarios, A and B, to 108 test the generalization capability of the ANN. The simulated scenarios can 109 be seen in Table 3. 110

First, the steady state was calculated and then the transient tempera-111 tures were stabilized for 10 orbits. Afterwards, the ANN was trained with 112 two data sets. The first one consists of the last orbit from the scenarios 1 to 113 14, and the second comprise the last 5 orbits from the scenarios 1 to 27. The 114 thermal model contains a total of 21 nodes, but only the data of 9 nodes 115 were used for training. These 9 nodes relate to the 6 external surfaces and 116 the 3 internal components. The remaining nodes (PCB's nodes) are impor-117 tant in the computation of the temperature distribution in the satellite, but 118 they are not required in the OS, since the satellite telemetry usually does 119 not contain such information. 120

To perform training, it was utilized a classical Multilayer Perceptron ANN with supervised learning [17]. The structure of the network consists of 7 elements in the input layer; two hidden layers, with 30 to 50 neurons each; and 9 neurons in the output layer. The elements in the first layer

#	Scenario	Comp.1	Comp.2	Comp.3	Solar	Albedo	Earth
		(W)	(W)	(W)	(W/m^2)	(W/m^2)	(W/m^2)
1	Hot	0.80	0.40	0.60	1418	595.56	233
2	Cold	0.20	0.10	0.15	1326	450.84	208
3	MaxCp1	0.80	0.10	0.15	1326	450.84	208
4	MaxCp2	0.20	0.40	0.15	1326	450.84	208
5	MaxCp3	0.20	0.10	0.60	1326	450.84	208
6	MaxSol	0.20	0.10	0.15	1418	450.84	208
$\overline{7}$	MaxAlb	0.20	0.10	0.15	1326	595.56	208
8	MaxER	0.20	0.10	0.15	1326	450.84	233
9	MinCp1	0.20	0.40	0.60	1418	595.56	233
10	MinCp2	0.80	0.10	0.60	1418	595.56	233
11	MinCp3	0.80	0.40	0.15	1418	595.56	233
12	MinSol	0.80	0.40	0.60	1326	595.56	233
13	MinAlb	0.80	0.40	0.60	1418	450.84	233
14	MinER	0.80	0.40	0.60	1418	595.56	208
15	Medium	0.50	0.25	0.375	1372	523.20	220.5
16	MedCp1a	0.50	0.40	0.60	1418	595.56	233
17	MedCp1b	0.50	0.10	0.15	1326	450.84	208
18	MedCp2a	0.80	0.25	0.60	1418	595.56	233
19	MedCp2b	0.20	0.25	0.15	1326	450.84	208
20	MedCp3a	0.80	0.40	0.375	1418	595.56	233
21	MedCp3b	0.20	0.10	0.375	1326	450.84	208
22	MedSola	0.80	0.40	0.60	1372	595.56	233
23	MedSolb	0.20	0.10	0.15	1372	450.84	208
24	MedAlba	0.80	0.40	0.60	1418	523.20	233
25	MedAlbb	0.20	0.10	0.15	1326	523.20	208
26	MedERa	0.80	0.40	0.60	1418	595.56	220.5
27	MedERb	0.20	0.10	0.15	1326	450.84	220.5
28	А	0.63	0.12	0.48	1345	551.45	229
29	В	0.26	0.31	0.19	1398	503.28	214

Table 3: Simulated scenarios

refer to time, the power of the 3 components, Solar Radiation, Albedo, and Earth Radiation. The main parameters used for training were learning rate of 0.01; momentum constant of 0.5; error tolerance of 0.0001; and, in case of non-convergence, the execution was interrupted after 10⁶ epochs (complete training iterations). After successful training, the ANN was used to build temperature curves, based on the knowledge acquired. In addition to the data provided by the thermal analysis software, the same procedure could be applied using the data from the thermal tests or from the telemetry of the spacecraft after launch.

134 135

3. Results and Discussion

First, we show the results for the first data set (last orbit). Fig. 2 contains the comparison between the temperature curves generated by the SINDA software (in red) and the ANN (in blue), for two components, in four different scenarios: Hot, Cold, A, and B. The curves are shown as continuous lines and one of the components was omitted for better visualization.

¹⁴² Figure 2 - Comparison of ANN and SINDA curves for the first data set.

For the Hot and Cold cases the curves generated by the ANN show 143 good agreement with the ones produced with SINDA. As for the scenarios 144 A and B, there is a gap between the data from the two sources. The output 145 generated for the cases A and B denote the generalization capability of 146 the ANN, since these scenarios were not used in the training process. The 147 quantitative comparison is listed in Tab. 4. The error for the Hot and Cold 148 cases is less than 1 °C. On the other hand, the max error for the cases A and 149 B are respectively 3.04 °C and 1.79 °C. In thermal control of space systems 150 engineering for generic components an error smaller than 5 $^{\circ}\mathrm{C}$ is acceptable, 151 so we consider this a very good result. 152

		1	
Scenario Mean Error		Standard Deviation	Max Error
	$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$
Hot	0.11	0.08	0.70
Cold	0.11	0.07	0.59
А	1.07	0.29	3.04
В	0.52	0.21	1.79

Table 4: ANN and SINDA comparison for the first data set

¹⁵³ The curves for the second data set (five orbits) are plotted in Fig. 3.

155 Figure 3 - Comparison of ANN and SINDA curves for the second data set.

This time, the figures contain the data of just one component for better 156 visualization. Again, for the Hot and Cold scenarios the curves generated 157 by the ANN present good agreement with the ones produced with SINDA. 158 However, in the cases A and B the ANN result show a greater difference 159 from the curves of SINDA. In our tests, we observed that if we varied the 160 value of one or two input variables, while keeping the others in values used 161 for training, the resulting curves presented the expected behavior, which 162 are five regular oscillations. Otherwise, if we altered three or more variables 163 simultaneously, the curves diverged from the expected behavior, as shown 164 for the A and B scenarios in Fig. 3. 165

Table 5 contains the calculated error for the second data set. As for the first data set, the errors for the Hot and Cold scenarios are very low. For the A and B cases, the mean error is 3.59 °C and 5.59 °C, respectively. What considered alone would be acceptable. Nevertheless, the maximum error observed is greater than 20 °C for some specific points. This is more than the acceptable limit mentioned above and we could not find better results for the range of parameters tested.

T	able 5. Al	in and SINDA	to inparison for the s	econd data set	
	Scenario Mean Error		Standard Deviation	Max Error	
		$(^{\circ}C)$	$(^{\circ}C)$	$(^{\circ}C)$	
	Hot	0.16	0.12	1.16	
	Cold	0.15	0.13	1.06	
	А	3.59	3.14	20.90	
	В	5.59	4.47	21.76	

Table 5: ANN and SINDA comparison for the second data set

One possible reason for the difference from the results of the two data 173 sets is the greater number of information the ANN has to learn in the second 174 one. Besides that, we consider that the results for the second data set are 175 good results, because the mean error is not very high and the scenarios A and 176 B are actually extreme cases where all the variables were modified from the 177 trained values simultaneously. Additionally, for the Operational Simulator 178 we will only need one orbit, due to the cyclic behavior of the temperatures 179 for a given set of parameters as a function of the orbit period. 180

181

182 4. Conclusion

The results for the first data set, containing just one orbit, showed very low error in the data produced by the ANN, not only for the scenarios used for training but also for arbitrary ones. In this case, the ANN provided good generalization, i.e. generated reasonable outputs, for data not used in training.

The results for the second data set (containing five orbits) also showed very low error for the curves produced by the ANN in comparison with the training set. On the other hand, the ANN had more difficulty in generalizing for arbitrary configurations of the input variables, especially when all the variables were modified at the same time.

In summary, the MLP neural network is very efficient in learning from data and reproducing this data after training. However, the generalization ability of this type of ANN is very dependent on the parameters of the ¹⁹⁶ network and on the complexity of the data set.

Considering this fact, our current objective is to further analyze the influence of each parameter in the generalization capability of the ANN. Afterwards, we intend to increase the scale of the problem, including larger satellites, and apply more modern methods of ANNs such as Deep Learning [18].

202

203 **References**

- [1] Hendricks, R. and Eickhoff, J., The Significant Role of Simulation in
 Satellite Development and Verification, Aerospace Science and Technology, vol. 9, 273283, 2005.
- [2] Ambrosio, A.M., Cardoso, P. E., Orlando, V., and Bianchi-Neto, J.,
 Brazilian Satellite Simulators: Previous Solutions Trade-off and New
 Perspectives for the CBERS Program, Proceedings of the 8th Confer ence on Space Operations (SPACEOPS), 2006.
- [3] Eickhoff, J., Simulating Spacecraft Systems, Springer-Verlag Berlin Heidelberg, 2009.
- [4] Zemerick, S.A., Morris, J.R., and Bailey, B.T., NASA Operational Simulator (NOS) for V&V of Complex Systems, Proceedings of SPIE Volume 8752: Modeling and Simulation for Defense Systems and Applications VII, 2013.
- [5] Reggestad, V., Pecchioli, M., and Merri, M., Virtual Reality for Real
 Operations, ESA Bulletin, n. 148, p. 43, 2011.
- [6] Gilmore, D.G., Spacecraft Thermal Control Handbook, The Aerospace Press, vol. 1, 2nd edition, 2002.
- [7] Perpiñán, M.A.C., The Modelling of the Thermal Subsystem in Space craft Real Time Simulators, Proceedings of the 3rd Workshop on Simulators for European Space Programmes, ESA/ESTEC, pp. 69-78, 1994.

[8] Kang, J.Y., Kim, J.M., and Chung, S.J., Design and Development of
an Advanced Real-Time Satellite Simulator, ETRI Journal, vol. 17, n.
3, 1995.

- [9] Martínez-Heras, J.A. and Donati, A., Artificial Neural Networks in
 Support of Spacecraft Thermal Behaviour Modeling, IEEE Aerospace
 Conference Proceedings, 2004.
- [10] Raif, M., Walter, U., and Bouwmeester, J., Dynamic System Simula tion of Small Satellite Projects, International Astronautical Congress
 Proceedings, IAC-09.D1.6.8, 2009.
- [11] Yang, K.T., Artificial Neural Networks (ANNs): A New Paradigm
 for Thermal Science and Engineering, Journal of Heat TransferTransactions of the ASME, vol. 130, 9th edition, 093001, 2008.
- [12] Pei, J.S. and Mai E.C., Constructing Multilayer Feedforward Neural
 Networks to Approximate Nonlinear Functions in Mechanical Engineering Applications, Journal of Applied Mechanics-Transactions of the
 ASME, vol. 75, 6th edition, 061002, 2008.
- [13] Nguyen, N. et al., Repetitively Enhanced Neural Networks Method
 for Complex Engineering Design Optimisation Problems, Aeronautical
 Journal, vol. 119, ed. 1220, pp. 1253-1270, 2015.
- [14] Reis Junior, J.D., Ambrosio, A.M., and Sousa, F.L., Towards Spacecraft Real-Time Thermal Simulation with Artificial Neural Networks,
 Proceedings of the 23rd ABCM International Congress of Mechanical
 Engineering, 0316-21880, 2015.
- [15] Reis Junior, J.D., Ambrosio, A.M., and Sousa, F.L., Reproducing Amazonia-1 Satellite Thermal Behavior with Artificial Neural Networks, Proceedings of the 7° Workshop em Engenharia e Tecnologia Espaciais, São José dos Campos, Brazil, 2016.
- [16] Woellert, K., Ehrenfreund, P., Ricco, A.J., and Hertzfeld, H., Cubesats: Cost-effective science and technology platforms for emerging and
 developing nations, Advances in Space Research, vol. 47, pp. 663-684,
 2011.
- [17] Haykin, S., Neural Networks and Learning Machines, Pearson Educa tion, New Jersey, 3rd edition, 2009.
- [18] LeCun, Y., Bengio, Y, Hinton, G., Deep Learning, Nature, vol. 521, ed.
 7553, pp. 436-444, 2015.