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Abstract

The rotorcraft dynamic behavior is very important issue. Such
simulation can be used identify many real- world situations, such as
ground resonance. The latter phenomenon can lead to the total de-
struction of the rotorcraft. It is usually occurring during helicopter
landing, take-off and ground manoeuvres, and is caused by the in-
teraction between the flow air from the main rotor blades and the
fuselage structure. The prediction of this behavior is usually very dif-
ficult, mainly in cases which the rotorcraft parameters are obtained by
measurement instruments, frequently subject to acquisition errors.

Simulation of dynamical phenomena is a fundamental tool nowa-
days. The study to identify zones, or time periods, where the simula-
tion can give a good or bad representation of the dynamical process is
named predictability.

In this paper, the predictability of the rotorcraft dynamic behav-
ior can be formulated as a classification problem. Bred vector is the
difference between a reference dynamics and a perturbed dynamics, af-
ter some time-steps. The procedure is applied on a ground resonance
simulation.
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1. Helicopter Dynamics Characterization

Helicopters are highly nonlinear apparatus and it is interesting investi-
gate how the variety of nonlinearities can affect their behavior. One phe-
nomenon clearly nonlinear is a particular mode of helicopter vibration known
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as ground resonance. This phenomenon may occur over a range of rotor
speed, and it is attributed to the coupling of lead-lag frequency of the rotor
blades to natural frequencies of the dynamic system constructed together
with fuselage and landing gears [1]. It has been observed since the inception
of helicopter development, and several helicopters and autogyros have been
destroyed or badly damaged as a result of its effects, as you can see in Figure
1.

Figure 1: Ground Resonance [7]

The pioneer work on ground resonance was done by [2]. Some other con-
tributions were made by lee who propose a method to predict the vibration
and unstable range of rotor speed, including the nonlinear characteristics
in the landing gear and [3, 4] studies both air and ground resonance. Fur-
thermore, [5] analysis a rotor helicopter on the basis of a set of nonlinear
differential equations taking into account the forces and moments produced
by landing gear.

2. Dynamical Model Equations

A three-blade helicopter is modeled by a simplified multibody system.
The basic hypotheses are the following ones: (1) the movement occurs only
in (x, y) plane, (2) the blades are rigid bars, (3) the rotor head is a rigid
cylinder with constant rotational speed, and (4) only the first axial/lateral
modes of the helicopter are taken into account. With such hypotheses, the
system has five degrees of freedom (DOF): the x and y displacements of
the center of mass of the rotor head, and the blade angles βi (i = 1, ..., N),
where N is the number of blades, which is three in the present model. Using
the mathematical model developed by the authors [6], Figure 2 shows the
general scheme of the proposed model.

The blades are attached to the rotor head through a point called link,
distant d from origin O, the geometric center of the rotor head. At each
link, there is a linear torsional spring and damping.



Figure 2: System Coordinate and Degrees of Freedom [6]

Let us consider a inertial frame of reference, with basis {n1,n2}, and a
Cartesian coordinate system with origin O. The position of the center of
mass of the rotor head H∗ with respect to the origin can be written as:

OrH∗(t) = [x(t) + e cos(ε+ Ωt)]n1 + [y(t) + e sin(ε+ Ωt)]n2 (1)

where x is the displacement of the geometric center of the rotor head in the
direction of n1, y is the displacement of the geometric center of the rotor
head in the direction of n2 , Ω is the rotor head constant rotation speed, e
is the eccentricity of the rotor head, ε is the angle of the eccentricity (figure
3).

Considering that each blade has a phase angle (φi), or azimuth, the
position of the center of mass of the blade Bi with respect to O can be
written as:

OrBi(t) = [x(t) + d cos(φ+ Ωt) +

(
hBi

2

)
cos(φ+ Ωt+ βi(t))]n1

+[y(t) + d sin(φ+ Ωt) +

(
hBi

2

)
sin(φ+ Ωt+ βi(t))]n2 (2)



Figure 3: Blade Dynamics Scheme [6]

where hBi is the length of the i-th blade and βi is the angle of the i-th blade
in the direction of n3 with respect to a frame that rotates with the rotor
head.

2.1 Newton Second Law

Applying Newton’s second law (figure 4), we have:

F =
dGT

dt
(3)

where GT is the total linear momentum of the system and the derivative
is with respect to the inertial frame of reference. The vector with external
forces F acting on the system due to the tower stiffness/damping and due
to gravity are written as:

F = [−cxẋ(t)− kxx(t)]n1 + [−cy ẏ(t)− kyy(t)− (NmBi +mH)g]n2 (4)

where g is the acceleration of gravity, kx, ky, cx, cy are the stiffness and damp-
ing coefficients related to the helicopter, in the n1 and n2 directions. The
i-th blade mass is mBi , and mH is the sum of the mass of the rotor head.

The total linear momentum is composed by the linear momentum of the
rotor head plus the linear momentum of the blades. The linear momentum
of the nacelle/tower is given by:

GH = mHvH∗ (5)



where vH∗ is the velocity of the center of mass of the rotor head, which
is the derivative of the position OH∗ with respect to the inertial frame of
reference. The linear momentum of the i-th blade is given by:

GBi
= mBi

vBi
(6)

where vBi is the velocity of the center of mass of the i-th blade, which is
the derivative of the position OrBi with respect to the inertial frame of
reference. The total linear momentum of the system, if all blades have the
same mass, is then defined by:

GT = GH +

N∑
n=1

GBi
= mHvH ∗+mB

N∑
n=1

vBi
(7)

Figure 4: Acting Forces [6]

After some manipulations, we get the first two equations of motion of
the system:

(NmB +mH)ẍ(t) + cxẋ(t) + kxx(t) = emHΩ2 cos(ε+ Ωt) +

dmBΩ2
N∑

n=1

cos(φi + Ωt) +mB

(
hB
2

) N∑
n=1

[β̈i(t) sin(φi + Ωt+ βi(t)) +

(Ω + β̇i(t))
2 cos(φi + Ωt+ βi(t))] (8)



(NmB +mH)ÿ(t) + cy ẏ(t) + kyy(t) + (NmBi +mH)g =

emHΩ2 sin(ε+ Ωt) + dmBΩ2
N∑

n=1

sin(φi + Ωt) +

mB

(
hB
2

) N∑
n=1

[−β̈i(t) cos(φi + Ωt+ βi(t)) +

(Ω + β̇i(t))
2 sin(φi + Ωt+ βi(t))] (9)

where the over dot is the derivative with respect to time.
Unfortunately, these equations are not sufficient to analyze the system

because the system has (N + 2) DOFs. One possibility is to develop three
equations of motion for each rigid body, and end up with 3(N + 2) equations;
but, fortunately, we do not need so many equations. Since we are not
interested in the interaction forces among the rigid bodies, we will calculate
the angular momentum with respect to each link, so that only N more
equations are required to analyze the system. The price to pay is that the
link is a moving point not coincident with the center of mass, therefore,
attention is required because M 6= dH/dt.

2.2 Euler Law

Applying the Euler’s law, we have:

MBi

Li
=
dIBi

Li
ω

dt
+ (mBi

)LirBi
∗ × aLi (10)

where MBi
Li

is the vector of external moments acting on the i-th blade with
respect to link Li. The angular inertia tensor of the i-th blade with respect
to link Li is IBi

Li
, LirBi is the position of the center of mass of the i-th

blade with respect to Li , and aLi is the acceleration of Li. Note that the
additional term on the right of the above equation appears because the point
Li has an acceleration which is not zero. The vector of external moments
acting on the i-blade is given by:

MBi

Li
= [−ciβ̇i(t)− kiβi(t)−mBig

(
hBi

2

)
cos(φi + Ω(t) + βi(t)]b3 (11)



where ki and ci are i-th blade stiffness and damping coefficients. The posi-
tion of the center of mass of the i-th blade with respect to Li can be written
as:

LirBi(t) =

[(
hBi

2

)
cos(φi + Ω(t) + βi(t)

]
n1

+

[(
hBi

2

)
sin(φi + Ω(t) + βi(t)

]
n2 (12)

and the acceleration of the link is given by:

aLi
(t) = [ẍ(t)− dΩ2 cos(φi + Ω(t)]n1 + [ÿ(t)− dΩ2 sin(φi + Ω(t)]n2 . (13)

Again, after some manipulations, we get the extra N equations of motion
of the system (i = 1, ..., N):

1

3
mBih

2
Bi
β̈i(t) + ciβ̇i(t) + kiβi(t) +mBi

hBi

2
dΩ2 sinβi +

mBig
hBi

2
cos(φi + Ωt+ βi(t)) = mBi

hBi

2
[ẍ(t) sin(φi + Ωt+ βi(t))−

ÿ(t) cos(φi + Ωt+ βi(t))] (14)

Setting N = 3 (three blade system), the five equations of motion of the
proposed model are given by Eqs. (8), (9) and (14), which form a set of
coupled, nonlinear, second order ordinary differential equations, that must
be solved numerically.

3. Bred Vector Approach

The bred vector approach was developed by Toth and Kalnay [8, 9]. It
has been used in the American National Center for Environmental Predic-
tion (NCEP) to evaluate the prediction, and it was also employed in several
nonlinear models [10, 13, 14, 15].

In this methodology, the bred vectors are found out dynamically from
the nonlinear model which is executed twice. First of all, the model is run
with the original data (control run) next another execution is realized with
a small perturbation added to it. After a fixed number of time steps, the
difference between these two executions is the bred vector. A measure of the



Figure 5: Bred vector growth [16]

flow instability could be computed from the growth rate of the bred vectors
[9, 13]. Figure 5 illustrates bred vectors growth.

The bred vector algorithm [11] is described in detail below:

1. Start with a initial perturbation δr0 = r0 + δr0. The initialization is
executed only once

2. Add the perturbation calculated in the previous step to the basic so-
lution, integrate the perturbed condition with the nonlinear model
for a fixed number of time steps, and subtract the original unper-
turbed solution from the perturbed nonlinear integration δr0(t) =
Φ(δr0 + r0, t0 + n∆t)− Φ(r0, t0 + n∆t)

3. Evalute the growth ratio g = 1
n ln

(
‖δr(t)‖
‖δr0‖

)
4. Re-scale the perturbation, and repete the process.

Bred vectors have been used with success to predict the behavior of
chaotic systems such as the Lorenz strange attractor ref and the three-waves
systems ref. Our objective is to extend such methodology to investigate the
predictability for the helicopter dynamical system, with focus on critical
behaviour: the ground resonance phenomenon.

4. Results

Computer tests were conducted in an Intel Core I5 2.27 GHz under Linux
operating system. Our mathematical model was implemented in Matlab
R2011b. For executing the dynamical system, the following parameters
were assumed: kx = ky = 113 lb/ft, mBi = 0.1 slug, mH = 6.8 slugs, Ω =
90 rad/s, and hB = 10 ft. The time integration for the equation system was
the fourth-order RungeKutta scheme with a time-step ∆t = 10−3. Figure 6
illustrates the trajectory generated, representing the movement of the rotor
head, and the dynamics is confined in a bounded region.



Figure 6: Position of the Center Rotor Head

In our study, the dynamics was separated into two regimes. One regime
is identified “turn right” Figure 7(a), and the other regime “turn left”, Fig-
ure 7(b). Similar idea was applied in [10], where the Lorenz system was
identifed embracing two different regimes – the authors named as two sea-
sons (e.g.“warm” and “summer”). The Lorenz system is low dimension
one, but is hard to evaluate when a regime will change and how long it will
return.

(a) Right Regime (b) Left Regime

Figure 7: Right and Left Regime

The breeding was performed on two executions. The first run is called
control. The second run started from an initial perturbation δx0 added



to the control at time t0. The difference δx between the perturbed and
the control run was taken at every 8 times steps. The growth rate of the
perturbation was measured per time step as [10]:

g =
1

n
ln
( ‖δx‖
‖δx0‖

)
. (15)

Figure 8 shows the bred vector after 8 times steps. We used 5 colors to
indicate the bred vector growth intervals, described below:

1. yellow star: g ∈ [−0.0930,−0.0343[

2. green star: g ∈ [−0.0343, 0.0244[

3. blue star: g ∈ [0.0244, 0.0832[

4. red star: g ∈ [0.0832, 0.01419[

5. black star: g >= 0.01419

Figure 8: X(t) for Ground Resonance Model Colored with the Bred Vector
Intervals.

From the observation of the system depicted in Figures 7(a), 7(b) and 8
the following rules can be expressed:

1. The trajectory turn right or turn left, on average, after at each 29
stars.



2. After a period of time appears a dynamical pattern in the trajectory:
turn right five times, one time left and five times right again and two
times left. At the first turn right five times appears a set sequence of
approximately two yellow, one green and seven black stars

For future work, we will describe the dynamics as a classification prob-
lem, mapping a type of dynamics in different classes. The magnitude of
bred vector is the input for a neuro-fuzzy classifier [12]. The bred vector
methodology will be used to generate pairs of input/output required for
Neuro-Fuzzy system ANFIS (Adaptive Neuro Fuzzy Inference System), em-
ployed as a classifier. Formulating the problem as a dynamical classes is a
procedure to address the predictabilty of the dynamical system.
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