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ABSTRACT

In the solar corona, heat flux is one of the key processes of energy transport. Since
the coronal plasma can be described as weakly collisional, classical formulation for
the heat flux might no longer be the most accurate description. In a medium with
fewer collisions, the heat flux will have contributions not only from neighboring
particles, but also from particles coming from other regions along the magnetic field
line. Hence, a better description of the heat flux in this context might be offered by
a nonlocal formulation. We have implemented a non local heat flux in a 3D MHD
model and we investigated its effects on the thermal evolution of the system. We
simulate the evolution of plasma and magnetic field using this model and considering
two different formulations for heat flux: classical (local) and nonlocal one. The initial
magnetic field was obtained from a potential extrapolation of the observed line-of-
sight component of photospheric magnetic field for AR11226. We evolved the system
by imposing a field velocity at the bottom of the simulation box which shifted
footpoints of the magnetic field lines. Then we compared the differences in the
evolution of plasma obtained using the two different formulations for the heat flux.
The inclusion of a nonlocal formulation for heat flux leads to considerable differences
in the average temperature profile of the lower atmosphere and transition region
compared to classical formulation. There are also remarkable differences concerning
the contributions from energy transport and from source terms to the temperature
depending on the formulation used. Our results suggest that a different heat flux
formulation affects considerably the heating dynamics and temperature evolution of
the plasma.

Keywords: Solar corona. heat flux. heat transfer. plasma heating. magnetohydro-
dynamics. simulation.
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SOBRE A INFLUÊNCIA DO FLUXO DE CALOR NÃO-LOCAL
SOBRE O TRANSPORTE E BALANÇO DE ENERGIA NA

ATMOSFERA SOLAR

RESUMO

Na coroa solar, o fluxo de calor é um dos principais processos de transporte de ener-
gia. Uma vez que o plasma coronal pode ser descrito como fracamente colisional, a
formulação clássica para o fluxo de calor pode não ser a descrição mais precisa. Em
um meio com menos colisões, o fluxo de calor terá contribuições não apenas de par-
tículas vizinhas, mas também de partículas provenientes de outras regiões ao longo
da linha de campo magnético. Assim, uma melhor descrição do fluxo de calor neste
contexto pode ser oferecida por uma formulação não-local. Implementamos um fluxo
de calor não-local em um modelo 3D MHD e investigamos seus efeitos na evolução
térmica do sistema. Nós simulamos a evolução do plasma e campo magnético usando
esse modelo considerando as seguintes formulações para o fluxo de calor: clássico (lo-
cal) e não-local. O campo magnético inicial foi obtido a partir de uma extrapolação
potencial da componente observada da linha de visada do campo magnético fotosfé-
rico para AR11226. Nós evoluímos o sistema impondo deslocamento dos footpoints
das linhas de campo magnético. Ao final, comparamos as diferenças na evolução do
plasma obtido utilizando as distintas formulações para o fluxo de calor. A inclusão
de uma formulação não-local para o fluxo de calor conduz a diferenças consideráveis
no perfil de temperatura média da atmosfera inferior e da região de transição em
comparação com a formulação clássica. Há também diferenças notáveis quanto às
contribuições do transporte de energia e dos termos de origem para a temperatura
dependendo da formulação utilizada. Nossos resultados sugerem que uma formula-
ção de fluxo de calor diferente afeta consideravelmente a dinâmica de aquecimento
e a evolução da temperatura do plasma.

Palavras-chave: Coroa Solar. Fluxo de calor. Transferência de calor. Aquecimento
do plasma. Magnetohidrodinâmica. Simulação.
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1 INTRODUCTION

The Sun is an ordinary star whose importance relies on its proximity to Earth and
on its crucial role on the existence of life in this planet. For being the only star which
is close enough to allow collecting data with sufficient detail, the Sun represents a
unique opportunity to investigate stellar properties.

Other important fact about the Sun is that physical conditions in both solar interior
and atmosphere have a direct impact on planetary outer atmospheres and magneto-
spheres. Those impacts are specially relevant when considering all technology that
can be affected by solar activity. In fact, there is a research field called space weather
dedicated solely to study the effects of energetic particles and fields from the Sun
on ground and space technology, see for example (SCHWENN, 2006).

Phenomena like coronal mass ejection (CME), that may strongly interact with the
environment of Earth, take place in the outer solar atmosphere, a region called solar
corona. A good prediction model for solar activity requires studying how plasma
dynamics is settled and evolved in the solar atmosphere. Hence, it is necessary to
understand the role played by plasma processes and by electromagnetic fields in
the plasma dynamics. Another important question regarding the Sun is about the
mechanisms that sustain a million kelvin corona, known as the "coronal heating
problem" (PARNELL; MOORTEL, 2012).

Magnetohydrodynamic (MHD) theory can be a powerful tool to perform numerical
experiments and therefore have a better clue on the physical processes responsible for
the phenomena observed in the solar atmosphere (GOMBOSI et al., 2004). The MHD
simulations have been used to describe a myriad of events both in space plasmas and
in the Sun. Depending on the nature of the plasma, some of the terms in the MHD
equations may not be the most appropriate description of the physical properties of
the medium. For example, the coronal plasma is weakly collisional and the classical
theory prediction for plasma resistivity, derived under the assumption of a collisional
medium, cannot reproduce the observed explosive phenomena (SCHRIJVER et al.,
2011). Therefore, it is necessary to improve the description of the terms in the
MHD equations in order to characterize more accurately the solar plasma behavior.
This thesis is aimed at of improving the understanding of the processes of energy
transport and balance in a weakly collisional plasma and how they could affect the
evolution of a solar active region.

In the following sections, it is given a brief introduction on the structure of the Sun

1



with a particular focus on the solar atmosphere features.

1.1 Solar interior and energy transport

The interior of the Sun is not directly observed and its properties are studied using
helioseismology (GIZON et al., 2010). The solar radius, R�, is around 695 Mm and it
is defined as the distance from the center of the Sun to its surface. The solar interior
is usually divided into four regions: core, radiative zone, tachocline and convective
zone (PRIEST, 2014). The classification relies on the processes happening in each
layer and how the energy is transported outwards. The tachocline classification is
different, it is a transition layer that plays an important role on magnetic field
generation. In Fig. 1.1, the interior layers and their average properties like density
and temperature are illustrated.

Figure 1.1 - Illustration of the structure of the solar interior showing the density and the
temperature in each of the four interior regions.

Source: Kelvinsong (2013).
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The core is the region in the center of the Sun with a radius about one quarter of
solar radius (0.25R�). The standard model for the solar interior predicts that half of
the mass of the Sun is concentrated in the core presenting a temperature of about 15
million K and a density around 1.6× 105kg/m3. This model assumes that variables
like pressure, density and temperature drop as a function of the radial distance from
the center of the Sun.

All solar energy is produced in the core by thermonuclear reactions that fuse Hydro-
gen into Helium releasing energy in the form of γ ray photons. The dense core is a
highly collisional medium where the photons will bounce a million times before they
can reach the next layer. Mitalas and Sills (1992) have estimated that the photon
takes ∼ 2× 104 years to cover the distance from the center to the outer limit of the
core.

At 0.25R� from the center of the Sun starts the radiative zone, with a temperature
of about seven million K and ∼ 87% less dense then the core. Once the photons reach
this layer they continue to be transported outwards by the process of absorption and
re-emission and lose their energy. The radiative zone goes up to ∼ 0.7R� from the
center where the density has dropped to only 0.1% of the initial density.

Around 0.7R�, the temperature has decreased to around two million Kelvin allowing
part of the electrons and protons to recombine and form atoms again. That increases
the opacity which in turn makes the energy transport by radiation no longer efficient.
Thus, hot bubbles containing low density material are created and as they go up
they get cooled down to 5700 K as they get close to the surface of the Sun. Therefore
the energy is transported by the convective flux set by temperature gradients. Once
the plasma reaches the surface, it finds a transparent region and photons can travel
free outwards into space.

At the base of the convective zone the helioseismology predicts the existence of
an interface layer where the solar magnetic field is believed to be generated by a
dynamo mechanism (CHARBONNEAU, 2014). This region, called tachocline, is a thin
layer (∼ 0.04R�) where the rotation changes from uniform in the radiative zone to a
differential rotation in the convective zone. Therefore the tachocline presents strong
shear velocities. That velocity field stretches the magnetic lines which intensifies the
magnetic field before the field emerges due to plasma instabilities.
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1.2 Solar Atmosphere

The convection motions in the threshold of the solar interior accelerate the plasma
radially outwards and it ends up leaving the interior. As the plasma is carried out
by the magnetic field, the solar atmosphere is settled. The plasma surrounding the
interior of the Sun has different properties and therefore it is divided into four
regions: photosphere, chromosphere, transition region and solar corona.

The photosphere is a thin layer of plasma (around 500km thick) that lies just above
the convective region. Its plasma density is around ∼ 10−3kg/m3 and it is the atmo-
spheric layer from where most of the visible light is emitted. The warm plasma that
was accelerated into the atmosphere eventually cools down to around 5000 K and
go into a descending motion. Therefore, one can see the top of those convective cells
covering the entire solar surface. They are called granules and have a typical diam-
eter of 1 Mm. (PRIEST, 2014). In visible light the granules are observed as shown in
Fig. 1.2. The center of the granule is brighter because of the hotter plasma and the
boundaries are darker as the plasma has cooled down.

Figure 1.2 - Granules in the photosphere.

Source: Freedman et al. (2013).

The convective motions continue up in the solar atmosphere with larger convective
cells (L ∼ 20 to 70 Mm) known as supergranules. Those larger scale cells are not
observed in visible light, but rather tracked down by other methods like local corre-
lation track and measurements of the Doppler shift. Just above the photosphere lies
a rarer and highly non uniform medium, the chromosphere. The plasma tempera-
ture in chromosphere rises monotonically with height and at the top of this layer,
the temperature starts to rise drastically. In the chromospheric temperature range,
4400K ≤ T ≤ 2 × 104 K, the main emission process is the H-alpha emission which
gives the chromosphere a red color in solar eclipses observations in visible light as
seen in Fig. 1.3(a). The main structures observed in chromosphere are the spicules,
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displayed in Fig. 1.3(b). The spicules are large jets of plasma that reach thousands
of kilometers height and then fall down. The spicules originate in the boundaries of
the supergranules and their mass flux is considerable large.

Figure 1.3 - Observations of chromosphere made by Hinode mission

(a) Solar eclipse displaying the chromosphere as a reddish ring. (b) Observation of
spicules in chromosphere.

Source: (a) HINODE (2016), (b)Judge and Carlsson (2010).

Between the chromosphere and the corona there is the Transition Region (TR) layer.
The main characteristic of this layer is that it presents high temperature and density
gradients in a small height width. The TR can be subdivided into a lower transition
region, where it shows a network structure similar to one found in chromosphere,
and an upper transition region, which displays some features similar to the ones
observed in the corona (PRIEST, 1992).

The outer solar atmosphere layer is called the solar corona. The plasma in this layer is
very tenuous, hot and practically collisionless. The solar corona is always expanding
in the form of a solar wind. The fluxtubes from photosphere have lost their confining
pressure and emerge as individual flux tubes fulfilling the corona with a magnetized
plasma. The solar corona can be observed in visible light during an eclipse as a
tenuous halo surrounding the moon, Fig. 1.4(a). There are myriads of phenomena
taking place in the corona due to the presence of magnetic fields there. An example
of structure observed in the corona are the coronal mass ejections (CME). As the
name suggests, CMEs consist of large amounts of plasma and magnetic field being
ejected towards the interplanetary space. In Fig. 1.4(b) we see a coronal mass ejection
leaving the Sun as captured by SOHO (Solar Heliospheric Observatory) spacecraft.

The solar atmosphere can be represented as a first approximation by the VAL (Ver-
nazza, Avrett, Loeset) model (VERNAZZA et al., 1981). It is a standard one dimen-
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Figure 1.4 - Solar corona observations.

(a) (b)

(a) Solar corona observed during the eclipse of November 13th of 2012. (b) A
coronal mass ejection leaving the Sun.

Source: (a) Emmanouilidi (2012), (b)SOHO (2016).

sional model and based on a semi-empirical approach that describes the tempera-
ture (solid line) and density (dashed line) as a function of height as shown in Fig.
1.5(a). The VAL model predicts a fast density decrease in all layers except in the
corona where it decreases slowly. The temperature presents a different behavior,
with smooth variations in photosphere where it decreases to a minimum of 4400
K and then grows also slowly until it reaches 2 × 104K in the upper part of chro-
mosphere. Then the temperature presents an exponential growing in the transition
region which is around 100 km thicker in this model. In the corona the temperature
gradients are smoother and the temperature reaches millions of Kelvin.

Although the VAL model is very useful to understand the general distribution of
temperature and density as a function of height, it actually gives the wrong idea
of a stratified atmosphere which it is not the true nature of the dynamic plasma
surrounding the Sun. As the plasma is heated and cooled due to different processes,
it leads to exchange of materials between the layers and then those layers might
be going up or down. Also, because of the plasma confinement in the magnetic
fluxtubes, one finds quite different thermal conditions across the solar atmosphere
which also contributes for a non-stratified atmosphere. For example, in Fig. 1.5(b),
we see that material with chromospheric properties can be found in coronal heights
in the phenomena of prominences as the magnetic field isolates the material from
the surrounding medium.
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Figure 1.5 - The solar atmosphere.

(a) (b)

(a) VAL Model for the solar atmosphere. (b) Solar atmosphere layers process
illustrated.

Source: (a) Priest (1992), (b) Garber (2013).

1.3 Composition of solar atmosphere

The solar atmosphere is basically composed by hydrogen and oxygen, 91.2 % and
8.7% respectively. Although the percentage of other elements are small, they actually
have an important role in some aspects of the solar atmosphere such as thermal
emissions and solar brightness variability.

Figure 1.6 - Logarithmic distribution of the abundance of the elements relative to hydro-
gen where the elements found in corona are the ones labeled.

Source: Aschwanden (2005).
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Measurements of elemental abundances in the solar atmosphere are obtained through
atomic spectroscopy and they indicate that the abundances for corona and photo-
sphere are similar for most of the elements. However, due to the highly dynamic
nature of corona, elements with low first ionization potential (FIP) (K, Na, Al, Ca,
Mg, Fe, Si) can have enhanced coronal abundances with respect to photospheric ones
(ASCHWANDEN, 2005; COOK et al., 1989). In Figure 1.6, a logarithmic distribution
of the abundance of the elements relative to hydrogen is given as a function of the
atomic number Z. As displayed in Figure 1.6, only elements with Z < 30 have been
detected in corona.

1.4 Plasma β

The elements found in the corona are ionized and therefore show an effective interac-
tion with magnetic fields. A very important feature of solar corona is the influence of
the magnetic field on the plasma dynamics. This influence is described by the plasma
β which gives the ratio between gas pressure (p) and magnetic pressure (B2/8π),

β = 8πp
B2 . (1.1)

As shown in Figure 1.7, the plasma β changes with height. In the lower layers of
the solar atmosphere, we see that the value predicted for plasma β is close to unit,
indicating that the gas pressure value is around the same value as the magnetic
pressure. In the corona, the plasma beta is usually smaller than unit which means
that the magnetic field energy prevails against thermal energy for most coronal
regions. In other words, low plasma β means that magnetic field dictates the plasma
dynamics and particles are only allowed to move along field lines.

1.5 Solar magnetic fields

The magnetic field that was created by dynamo action in the solar interior is carried
out to the surface by magnetic buoyancy and convective motions. The fluid motion
of the convective cells concentrates the magnetic field creating strong flux tubes at
their boundaries. Therefore, photospheric magnetic fields are isolated in fluxtubes
surrounded by free field or weak field plasma. As the fluxtube rises it encounters
a rarer medium and expands, decreasing from thousands of Gauss in the base of
photosphere to only a few hundred Gauss around the height of the temperature
minimum close to the top of the photosphere.
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Figure 1.7 - Plasma β as a function of height for different regions of the solar atmosphere.
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Source: Aschwanden (2005).

The magnetic field also presents different length scales and intensity. Depending on
the magnetic flux carried out by the emerging magnetic field loop, one might have
granular magnetic loops (1016Mx1), ephemeral regions that appear in the interior
of supergranules (1019Mx) and the active regions (up to 1023Mx). The dynamics of
the later is independent of supergranules and they are observed in visible light as
dark regions in photosphere called sunspots. In Fig. 1.8 we see a sunspot, the darker
region, surrounded by granules.

Depending on the dynamic and nature of magnetic field lines, the solar atmosphere
can be subdivided into three different classes: quiet sun, active regions and coronal
holes. In figure 1.9, the wavelength of the observation allows to have a clear image
of the coronal holes (darker regions) and active regions (brighter).

The quiet regions are defined as the regions presenting ephemeral or granular fields
and closed field lines. The coronal holes main feature is to display open field lines
that allow the plasma to be ejected from the solar corona as a high speed solar wind.
This kind of process leads to a lower plasma density which in turn is observed as
darker areas on images made in extreme ultraviolet (EUV) or X-ray frequencies.

11 Maxwell(Mx)=10−8Weber(Wb)
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Figure 1.8 - Observation of granules and sunspot in the photosphere.

Source: Scharmer and Langhans (2003).

Figure 1.9 - Sun in EUV showing different classes of the solar corona.

Source: STEREO (2012)

Finally, we have the Active Regions (AR), which present a high magnetic flux and
are extremely dynamical regions where several solar phenomena take place. The
magnetic fields of the active regions are so strong that actually interfere in the
convection cells, as depicted in Fig. 1.8, and inhibits the convection leading to a
cooler plasma in that region. The sunspots actually appear in pairs as the opposite
polarities of the magnetic field.

In UV images, the sunspots are seen as brighter regions connected by emitting
plasma trapped in magnetic field lines. Figure 1.10 displays the observations of a
flare that occurred in an active region in three different wavelengths (171, 304 and
335 Ångstrons) and also the associated photospheric magnetogram. In the image
on the top left, we see the Sun in 171 Å and in that wavelength it is possible
to identify clearly the structure of the loops as the plasma emits along the field
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Figure 1.10 - Observations of a solar flare occurred on October 22th in 2012.

The top left is the Sun in 171 Åwavelength; the top right is light in 335 Å. On the
bottom left is the the Sun for light in the 304 Ångstrom wavelength and on the
bottom right is the magnetogram.
Source: SDO (2012).

lines. The observation in 335 Å shows the active region brighter. The magnetogram,
bottom right panel, displays the measurement of the line-of-sight (LOS) photospheric
magnetic field. The white regions in the magnetogram have the field pointing towards
the spacecraft observatory and the dark regions have the field directed away from
the observer. The active region has stronger field and therefore is seen as a more
concentrated field region.

1.5.1 Mathematical models for magnetic field extrapolation

Comparisons between simulations and observations for coronal magnetic fields have
shown that active region magnetic fields can be approximated by current free or
potential field model, ∇×B = 0, e.g. (MACKAY; YEATES, 2012). The choice of the
model relies on the length scale of the phenomena being modeled and also on the
computational cost. The potential field model is widely applied as it manages to de-
scribe the main features of the observed magnetic field and has a low computational
cost. This model can be applied to describe some non global events as the magnetic
loops.

Globally, potential field model fails as it can be seen from Fig. 1.11. Also, most of
the observed EUV and X-ray structures cannot be reproduced by a potential field,
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indicating that must exist a system of currents (∇×B 6= 0).

Figure 1.11 - Comparison between (a) the drawing of a real observed corona field during
an eclipse and (b) a current free corona model.

Source: Mackay and Yeates (2012).

Other common approach is to consider force free models for coronal regions,

∇×B = κB, (1.2)

where κ is some scalar function that depends only on the local geometry of field
lines. The expression presented in Eq. (1.2) can lead to a linear force free model if
κ is a constant. A nonlinear scenario is obtained by solving the coupled equation
system,

~B · ∇κ = 0, (1.3)

∇× ~B = κ~B. (1.4)

Obtaining solutions for this system is a mathematical challenge and there is no
final word on whether there is an unique solution or not. Comparisons between
simulations and observations shows that coronal field seems to have better fit with
nonlinear force-free field model (MACKAY; YEATES, 2012).

1.6 Heating in solar atmosphere: Nanoflares

The solar magnetic field creates structures as the magnetic loops seen in Fig. 1.12.
The footpoints2 of the loops are continually shifted around by photospheric plasma
motion. That process is called footpoint motion and it may forces parts of the loop

2The footpoint is defined as the intersection of the magnetic field with a given solar atmospheric
layer. If there is no mention to the layer, the intersection occurs in photosphere.
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with different polarity to interact. As a result, the magnetic field lines may reconnect,
leading to the formation of new magnetic configurations. Magnetic reconnection can
be defined as a quick change of the topology of magnetic field lines. Such process
involves the creation of intense thin current sheets and the dissipation of those.

Figure 1.12 - Coronal loops in soft X-ray observation.

Source: SDO (2012)

Solar flares are related to reconnection of large scale magnetic field lines which acts
as a mechanism of converting non potential magnetic energy into other energy forms.
A typical flare releases ∼ 1021 up to 1025J of energy in form of emission (thermal and
nonthermal 3) and kinetic energy (SHIBATA; MAGARA, 2011; ASCHWANDEN, 2005).
Part of that energy is also used to heat up the plasma, leading to plasma emitting
in high frequencies. Observationally, flares are defined as an abrupt enhancement of
emission in different wavelengths. In Fig. 1.13 we have the observation of an energetic
flare in different wavelengths showing that the length scale of such phenomenon can
be quite large.

The role of magnetic field lines in the heating of the solar atmosphere is important
to explain the temperature profile observed in VAL model (Fig.1.5(a)). There we
have a cooler photosphere, around 6000 K, that could not sustain a hotter upper
atmosphere by heat flow. Comparisons between magnetograms from photosperic

3If the characteristics of the emitted radiation do not depend on the temperature of the source,
the emission is known as ’non-thermal emission’.
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Figure 1.13 - First moments of a X-class flare in different wavelengths.

Source: SDO (2014).

magnetic field and image in different wavelengths of the solar corona suggest hotter
loops connect regions in photosphere having strong magnetic field region. Therefore,
it is believed that the energy for heating the plasma comes from the magnetic en-
ergy. It is agreed that this magnetic energy is generated by shuffling and dragging
the footpoints of the magnetic field lines. There are still open questions regarding the
mechanism responsible for transporting that magnetic energy to upper atmosphere
and also how it would be converted into thermal energy (PRIEST, 2014). Besides,
there are discussions on where in the atmosphere the primary heating (the conver-
sion from magnetic to thermal energy) would occur: corona or chromosphere and
transition region (ASCHWANDEN et al., 2007). The problem of explaining how the
upper atmosphere is heated is one of greatest problem in solar physics also referred
to as "the coronal heating problem".

One plausible scenario to explain the higher temperatures found in solar atmosphere
is to consider flares in smaller energy and size scales, known as nano or microflares
(PRIEST, 2014). The nanoflares would release up to 1017J of energy in the atmo-
sphere, locally heating the plasma. Part of that energy is then transported to other
regions in the atmosphere by heat flux. An average active region would require
around a thousand nanoflares in a time interval of 15 minutes in order to explain
the observed temperatures (SCHRIJVER et al., 2011). Unfortunately, current solar
observatories lack of the necessary spatial and temporal resolution to study directly
the nano and microflares. The most recent evidence is based on the trace of such
events found at the coronal footpoints (TESTA et al., 2014).

Understanding the process of plasma heating in the solar atmosphere implies in
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describing properly the exchange of material and energy between the atmospheric
layers. In this thesis we have considered the effect of low collisionality of coronal
plasma on the energy transport. As there are considerable less collisions in the
medium, the fast electrons are able to travel longer distances. Therefore, thermal
evolution of the plasma is no longer determined by the thermal conditions in the
vicinity regions but also by thermal energy brought by electrons coming from distant
regions. In other words, the thermal evolution of a weakly collisional plasma is
determined by nonlocal energy transport. Thus, we have implemented a nonlocal
heat flux transport and also thermal emissions losses in the energy equation of
MHD applied in the investigation of the thermal evolution problem of active regions.
The form of the MHD equations used in this work, are presented in chapter 2. In
this chapter we also introduce the formulations used for both classical heat flux
and nonlocal heat flux and present previous work done by other authors (KARPEN;

DEVORE, 1987; KARPEN et al., 1989; CIARAVELLA et al., 1991). The MHD equations
were solved by numerical methods described in chapter 3. In chapter 4 we present
the methodology followed in this work. The effects on plasma dynamic and thermal
evolution from considering different heat flux models are presented in chapter 5. In
the last chapter, we present our final thoughts on our numerical experiment.
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2 MODELING ENERGY TRANSPORT AND BALANCE IN A FLAR-
ING ATMOSPHERE

2.1 MHD equations

Physical processes in space plasmas can usually be well described by MHD the-
ory combined to appropriate boundary and initial conditions. This theory describes
the existing mutual interaction between electromagnetic fields and the flow of a
conductor fluid such as plasma. The fluid behavior is described by transport equa-
tions obtained by taking moments from the Bolztmann equation, see for example
(BITTENCOURT, 2003). Those equations are quite similar to the Navier-Stokes ones
except for the presence of currents and magnetic field. The properties regarding
the magnetic field interacting with the plasma are described by induction equation,
obtained from approximations1 applied to Maxwell’s equations and Ohm’s law.

For the investigation of energy transport and balance, we have considered the fol-
lowing set of MHD equations:

Mass conservation : ∂ρ̃

∂t
= −∇ · ρ̃ũ, (2.1)

Momentum equation : ∂ρ̃ũ
∂t

= −∇ · ρ̃ũũ−∇h̃γ + j̃× B̃− ν̃ρ̃(ũ− ũ0), (2.2)

Energy equation : ∂h̃

∂t
= −∇ · (h̃ũ)− (γ − 1)

γh̃γ−1
L, (2.3)

Induction equation : ∂B̃
∂t

= ∇× (ũ× B̃− ηj̃), (2.4)

where the variables ρ̃, η̃, ũ, ũ0 and B̃ stand for normalized (and therefore dimen-
sionless) density, resistivity, plasma velocity, neutral velocity (for chromosphere) and
magnetic field. The variable h represents normalized enthalpy and it is related to
thermal pressure p by h = (p/2)1/γ with gamma standing for ratio of specific heats.
Since we have considered a fully ionized hydrogen plasma, we have γ = 5/3. The
variable L is the energy loss function and is discussed in the following section.

Equations (2.1-2.4) are also known as resistive MHD equations because they consider

1The following approximations are made: the characteristic plasma velocity is considered to be
non relativistic; assuming a non relativistic plasma allows neglecting the displacement current term
in comparison with the term ∇ × B in Maxwell-Ampére Law; it is also considered that pressure
dyad divergent are weak; density charge is assumed to not vary significantly with time and it is
considered that Hall effects are unimportant.
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dissipation effects on the induction equation. Typical values of plasma resistivity for
coronal and chromospheric regions are, respectively, 109T−3/2 and 8×108T−3/2 with
T being the temperature of the plasma. The induction equation, Eq. (2.4), was
obtained from Maxwell’s equations and it couples magnetic fields to fluid dynamics
through velocity field of the flow.

We have considered a velocity flow by neutrals, u0, in the bottom of chromosphere
that produces the footpoints displacement. The dynamic in the rest of the atmo-
sphere was settle by collisions between those neutral and ions as one can see by the
term ν̃ρ̃(ũ − ũ0) in the momentum equation. The neutrals are only used to apply
dynamic into the plasma. We also have not considered the gravity forces in order to
simplify the problem.

The parameters for normalization used in this model are typical system values as:

• lenght scale: L0 = 1Mm;

• ρ0 = n0mp with mp being the proton mass and n0 = 2.0× 1015m−3 typical
(number of particles)/volume;

• B0 = 1× 10−3T , magnetic field strength;

• Velocity is normalized with Alfvén speed uA0 = B0/
√
µ0ρ0 = 488km/s;

• Time scale is also normalized based in Alfvén speed, τA = L0/uA = 2.05s;

• Resistivity is normalized with the parameter η0 = µ0L0uA0 = 3.066 ×
106Ωm.

Besides the above equations, it is also applied to the system the condition ∇·B = 0,
which assures that there is no magnetic monopoles in plasma. Other condition con-
sidered in order to have the necessary number of equations to solve for all variables
is ideal gas law,

p = nkbT (2.5)

where kb is the Boltzmann constant and it was considered a full H ionized plasma
with particle density n. We considered both ions and electrons to have the same
temperature and same particle density.

For the current density, we have considered

j̃ = ∇× B̃. (2.6)
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Although a lot of assumptions were made in order to obtain Eqs. (2.1- 2.4), the
equations are still nonlinear and cannot be analytically solved. Also, despite all the
approximations, the equations thereby obtained are still very accurate to describe a
lot of important processes.

This project was dedicated to working with Eq. (2.3), more specifically understand-
ing the influence of energy transport by heat flux on the thermal evolution of the
system. The solution of MHD equations considering two different heat flux formula-
tions helped to evaluate the importance of finding a right heat flux formulation for
the weakly collsional plasma found in the Sun.

2.2 Energy loss function

The energy loss function L considers the energy sources, sinks and the transport by
heat flux for the solar plasma. We have considered the following form:

L = ∇ · q + Er − ηj2, (2.7)

where the first term in Eq. (2.7) stands for energy transport by the heat flux (q),
the second term (Er) is the total net radiation and the last term (ηj2) is the heating
source due to current dissipation, also known as Joule heating. In the following
subsections we will address each of those processes with a special focus on the heat
flux formulation.

2.2.1 The radiation term

Electromagnetic emission can provide information about the physical processes tak-
ing place in the solar atmosphere. Part of the emission is due to thermal plasma
radiation and it is the main way of observing heating signatures for solar atmospheric
plasma.

Coronal plasmas can be approximated by an optically thin medium and thus all
the energy radiated is practically lost. Therefore, radiation plays an important
role in coronal plasma cooling. The solar corona is mostly composed by hydro-
gen and helium. The major cooling atomic processes due to radiation for H/He
plasmas are collisional excitation, collisional ionization, recombination and free-free
(bremsstrahlung emission) (WEINBERG, 2013). Both collisional excitation and ion-
ization are mechanisms of radiation due to a free electron running into a bound
electron. Recombination happens when a free electron recombines with an ion cre-
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ating a neutral atom or ion in the next lower ionic state. In all those processes, part
of the electron’s energy is radiated after it interacts with an ion or a bound electron.

In the case of optically thin plasmas, a general loss rate for different thermal emission
processes can be described by (COOK et al., 1989):

Er = nenpαFIPQ(T ) Jm−3s−1, (2.8)

where ne and np stands or electron and proton particle density, respectively. The
αFIP term is a correction factor that takes in account the enhancement of FIP
elements. The approximation for the loss rate in Eq. (2.8) is valid for T > 2 × 104

K. The function Q(T ) is defined as "the power P per unit volume, per electron per
unit volume and per hydrogen atom per unit of volume radiated by an equilibrium
low-density optically thin plasma" (COOK et al., 1989).

Therefore, Q(T ) is called radiative loss function. Many authors have calculated Q(T )
as a function of temperature (COOK et al., 1989; ASCHWANDEN, 2005) and its form
depends on the elemental abundance estimation. Each curve in Fig. 2.1 shows how
Q(T ) varies with temperature for a certain estimation for elemental abundances.
When considering the presence of iron, it is obtained for the region above logT = 5
an increase of the radiative loss function as shown by the dash-dot curve.

Most of the observed emission in microwaves and soft X-rays from chromosphere
and corona are due to the free-free emission mechanism. During solar flares, free-
free emission is also the major contributor to radiation observed in hard X-ray
wavelengths (ASCHWANDEN, 2005). This emission results from the interaction of
an electron with the micro electric field of an ion. For a collisionless plasma, the
total power irradiated by a thermal free-free emission is approximated by (BOYD;

SANDERSON, 2003):

P = 8π
3
Z2neni
mc3~

(
e2

4πε0

)3 (
kBTe
me

)1/2

= 5.34× 10−37Z2neniT
1/2
e (keV )Wm−3. (2.9)

The total irradiated power is proportional to the plasma density and temperature.
Comparing Eq. (2.8) with Eq. (2.9), we see that in the free-free emission case Q(T ) =
5.34× 10−37Z2T 1/2

e if we consider αFIP ∼ 1. An important aspect is that since P ∝
Z2, impurities in the coronal plasma may contribute to radiative losses despite of
their concentrations. This is the reason for the different curves obtained for radiative
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Figure 2.1 - A compilation of radiative loss function for different elemental abundances.

Source: Aschwanden (2005).

loss function for logT > 5. That part of the curve is where free-free emission starts
to prevail (WEINBERG, 2013) and, from Eq. (2.9), it is possible to verify that the
coronal abundance assumed will considerably affect the curve for the radiative loss
function.

2.2.2 Joule heating and anomalous Resistivity

The main existing model for heating of the solar corona is based on the dissipation
of currents given by ηj2. The classical plasma resistivity for a collisional hydrogen
plasma was obtained by Spitzer (1956) and can be written as

η = 65.36 lnΛ
T 3/2 Ω.m, (2.10)

where ln Λ is the Coulomb logarithm, see for example (BITTENCOURT, 2003; HE-

LANDER; SIGMAR, 2002; GOEDBLOED; POEDTS, 2004). For a electron-ion collision,
Λ may be written as (BITTENCOURT, 2003)

Λ = 12πneλ3
D.
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Thus,

ln Λ ∼ 1.24× 1010T
3/2

n
1/2
e

.

The approximate values for the Coulomb logarithm and the classical resistivity for
the conditions found in the solar atmosphere are displayed in Table 2.1. The low

Table 2.1 - ln Λ and plasma resistivity for solar regions

ln Λ η(Ω.m)
Solar Corona 30− 37 10−6 − 10−7

TR 20 10−6

Chromosphere 15 10−3

values obtained for plasma resistivity in the solar corona are not enough to justify
the observed energy release by current dissipation. One of the reasons the classical
value for resistivity is so low is that in a weakly collisional plasma, the particles
collisions are not an effective interaction. Therefore the value given by (2.10) might
be no longer accurate. In fact, the values predicted by Spitzer (1956) for plasma
resistivity are not able to reproduce the features observed in active regions and flares.
Therefore, it is believed that other interactions like particles and electromagnetic
fields might enhance the value predict by the Spitzer -Braginsky theory returning
the so called "anomalous resistivity" (PRIEST, 2014).

An appropriate description for η would require a kinetic treatment at the length
scale of the dissipation which is 107 smaller then the length scale of coronal fea-
tures that are resolved by MHD simulations. This gap between scales imposes the
problem of finding a correct parametrization for the resistivity. Simulations by Peter
et al. (2004), Peter et al. (2006) using MHD models as described by Gudiksen and
Nordlund (2002), Gudiksen and Nordlund (2005) have shown that ηj2 can match
the observed heating rate if much higher resistivity values are used then the ones
predicted by classical transport theory. Since in the length scales where dissipation
occurs the magnetic Reynolds number is close to one, Bingert and Peter (2011)
have established that η can be set to provide a Rm ∼ 1. We applied the resistivity
values as described by Bingert and Peter (2011). Their parametrization do not rely
on density or pressure as other existing models for enhancing the plasma resistivity.
Therefore, the only variable determining the quantity of energy being deposited is
the electric current. For typical length scales and velocities found in our simulations,
establishing Rm = 1 gives η ∼ 104Ω.m. This higher anomalous resistivity provides
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the amount of heating expected from the nanoflare heating model. The only issue
with this approach is that the magnetic fields are being considerably more dissipated
in our MHD model.

2.2.3 Heat flux formulation

Heat flux is by definition the flux of thermal energy across a surface and it is de-
scribed in plasma kinetic theory as (BITTENCOURT, 2003):

qα =
∫
v

mαv
2

2 fα(v)d3v , (2.11)

where f(v) is the distribution function and the subscript α represents the types of
particle species.

The classical description for heat flux was first computed by Spitzer and Härm
(1953). They considered an electronic distribution function which consisted in a
Maxwellian distribution function, f 0, plus a perturbation f 1

f = f 0 + f 1. (2.12)

The distribution function of Eq.(2.12) was then substituted into Boltzmann equation
with collision term of Fokker-Planck type. The higher order terms of perturbation
function were neglected and a second order differential equation was obtained for f 1.
Since the solar corona has a very small plasma beta, one can ignore the contributions
from heat diffusion across magnetic field lines given by ions -ions collisions. Using
the result obtained for f 1, Spitzer and Härm (SH) found an expression similar to
the Fourier law:

qsh = −κ||∇||T , (2.13)

where T is the plasma temperature and κ|| is the parallel component of thermal
conduction tensor,

κ|| = 1.8× 10−10T
5/2

lnΛ .

The expression in Eq. (2.13) is purely local, describing the heat flux qsh at a given
point in terms of the temperature gradient in that point. It is a suitable description
of thermal transport in collisional plasmas where the energetic electrons are not free
to travel long distances.
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2.2.3.1 On the validity of classical thermal conductivity

The collisionality of plasma can be described through the ratio between the electron
mean free path (λmfp) and the thermal length scale (LT ).Using the collisional time
as giving by Helander and Sigmar (2002) and applying quasineutrality condition,
Zni ∼ Zne, the electron mean free path can be written as

λmfp = 12π3/2ε0
2k2
b

Ze4
T 2
e

ne ln Λ . (2.14)

Although classical thermal diffusion description is valid for a considerable range of
plasmas, Gray and Kilkenny (1980) showed that the linear approximation in Eq.
(2.12) for the distribution function fails in the limit of weak collisionality, i.e. :

λmfp
LT
≥ 10−3 , (2.15)

Experimental data has shown that whenever the condition defined in Eq. (2.15)
is obeyed, heat flux values are much smaller than the one predicted by the clas-
sical expression in Eq. (2.13), a process called inhibition of heat, see for example
(BRANTOV; BYCHENKOV, 2013; GRAY; KILKENNY, 1980). Another issue concerning
Spitzer- Härm model is that it fails to predict plasma pre heating by hot electrons
with large mean free path.

Values for the ratio λmfp/LT in quiet sun and flare conditions are summarized in
table 2.2. As expected, the dense and collisional plasma of chromosphere is within
the limit for classical treatment. However, for upper transition region and corona,
Spitzer-Härm approach may already be out of its validity range.

Table 2.2 - The ratio λmfp/LT for solar regions in both quiet and flaring conditions. The
values for quiet Sun conditions were calculated from the initial data profile
used in the code GOEMHD3D. Values resulting from numerical simulations of
(ABBETT; HAWLEY, 1999) were used to compute λmfp/LT .

Quiet Sun Flare
Solar Corona 10−3 10−2

TR 10−3 10−2

Chromosphere 10−9 ∼ 10−6 10−13
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2.2.4 Nonlocal thermal transport

The possible inaccuracy of classical Spitzer-Härm heat flux when describing thermal
transport in regions where λmfp/LT ≥ 10−3 imposes the problem of finding an
alternative description for heat flux. Results from fusion plasma experiments have
demonstrated that other approaches to physically justify heat flux inhibition, such
as turbulent transport and generation of suprathermal electrons, do not explain the
observed heat flux (BRANTOV; BYCHENKOV, 2013).

The main problem of classical thermal transport theory is that it ignores contribu-
tions from electrons having large mean free path which would naturally occur in a
weakly collisional plasma. The lack of collisions leads energetic electrons to travel
longer distances and to contribute to heat flux on distant regions along the magnetic
field line. Therefore, a good description for heat flux in coronal plasma would have
to consider a nonlocal treatment. In the nonlocal treatment, the contributions of
energetic electrons are computed and the heat flux is no longer solely determined
by the local gradients of temperature as described in Eq. (2.11).

Unfortunately, a nonlocal transport theory is not yet available. Thus, as an approx-
imated approach, it is considered a linear method of perturbation to higher orders
in the kinetic theory in order to mimic a nonlocal behavior. From results of kinetic
simulations, Luciani et al. (1983) were able to approximate a nonlocal heat flux by a
convolution integral. That expression describes the desirable properties of a nonlocal
heat flux and can be applied to a fluid description of the plasma. In this approach
the nonlocal expression for the electron heat flux is

q(x) =
∫ +∞

−∞
dx′qsh(x′)w(x, x′). (2.16)

This expression tells that the heat flux computed at the point x is calculated by tak-
ing into account that the thermal condition in x might be affected by the condition
in a point x’ along the magnetic field line. The kernel, w(x, x′), acts by weighting
the influence of the x’ points on x. Equation (2.16) describes the desirable properties
of a nonlocal heat flux such as limiting heat flux and pre heating of certain regions
of the plasma. Another advantage of Eq. (2.16) is that it can be applied to a fluid
description of the plasma. There are different delocalization kernels available in the
literature (BRANTOV; BYCHENKOV, 2013). Most of the expressions for the kernels
were obtained assuming conditions for the plasma that would not be applicable for
the upper solar atmosphere. The one that has a better fit to Fokker-Planck simula-
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tions in conditions closer to the ones found in the plasma of the solar atmosphere is
the one presented in Luciani et al. (1983):

w(x, x′) = 1
2λ(x′)exp

[
−
∣∣∣∣∣
∫ x

x′
dx′′

n(x′′)
λx′n(x′)

∣∣∣∣∣
]
, (2.17)

where λ(x′) is the effective distance electrons of temperature T (x′) can travel. It can
be written in terms of the electron mean free path as:

λ(x′) = a(Z + 1)1/2λmfp(x′) (2.18)

with Z being the atomic number and the constant a being ∼ 32 in order to better
fit the results from Fokker-Planck simulations. Since the main contribution for heat
flux is from electrons with velocity at least three times larger than the thermal
velocity, one has that λ(x′) > λmpf (x′). The term (z + 1)1/2 is due to the scattering
collisions before those electrons lose their energy. Therefore, delocalization kernel
acts weighting the points x′ that will influence the thermal conditions in the point
x where the heat flux is being computed. The influence region has an approximated
size of 2λ.

Figure 2.2 displays the kernel curves for two different regions of the loop: x =
0.15Z/Zmax and x = Z/Zmax. The horizontal axis displays the values for the points
x’ and in both plots this axis is normalized by the maximum loop height, Zmax. The
vertical axis displays the values for w(x, x′) and it is in SI units, 1/m. In the plot
of Fig. 2.2(a), we see that the kernel presents a similar behavior of a δ-function for
when the influencing point, x′, coincides with the point where the thermal conditions
are evaluated, i.e, x′ = x = 0.15Z/Zmax. Thus, there are no other points influencing
the thermal conditions at x = 0.15Z/Zmax. In other words, in a medium with a small
mean free path and low temperature and density gradients such as the chromosphere,
the Eq. (2.16) will provide nonlocal heat flux values very close to the one obtained
by the Spitzer-Härm (SH) expression. In Fig. 2.2(b), the kernel curve for coronal
plasma is shown. We see that the influencing points x′ that are important for the
point x = Z/Zmax are in the interval range x′ > 0.6Z/Zmax. This is expected since
the large coronal mean free paths implies in broader influence regions. The larger
mean free paths also causes the values of w to become considerably smaller and we
may have an inhibition of the heat flux.

In Fig. 2.3(a) the divergence of classical (SH) and nonlocal heat flux are plotted for
the first half of the loop with a temperature profile given by 2.3(b). Again, the height
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Figure 2.2 - Plot of kernel w(x, x′) where x’ goes from 0 to L with L being the total length
of the loop.

(a)

(b)
(a)Kernel in the upper

chromosphere, x = 0.15Zmax. (b)Kernel at the loop top, x = Zmax
Source: Produced by the author.

of the loop is normalized by its maximum height (Zmax) and the values in vertical
axis are in international system of units, W/m. Figure 2.3(a) indicates that nonlocal
heat flux gives significantly different values than SH model for both transition region
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and corona. In the beginning of the coronal part of the loop, around Z/Zmax = 0.65,
classical heat flux values are considerably larger than nonlocal values. That occurs
because in regions of high temperature gradient, the kernel leads to a suppression
of the thermal conduction where classical formulation gives the maximum value.
For regions where the temperature gradient is relatively smaller and the mean free
paths are still large, the contributions of fluxes going from x to x’ points will lead
to higher values in nonlocal heat flux. Therefore, one has slightly higher values for
the divergence of nonlocal heat flux in the coronal region, Z/Zmax ≥ 0.7. In the
lower transition region/ upper atmosphere, 0.35 ≤ Z/Zmax ≤ 0.55, the kernel takes
into account the contribution of the electrons coming from corona and thus the
predicted value for ∇ · q is higher in the nonlocal case. Another interesting feature
displayed by Fig. 2.3(a) is that both the maximum and minimum value of ∇ · q
are slightly displaced to the left in the nonlocal case. The displacement implies that
the heat transported by nonlocal heat flux is being transported from/to different
regions compared to the classical model. Also, the narrow peaks obtained by using
the classical formulation compared to the broader curve peaks in nonlocal shows
that Spitzer-Härm heat flux predicts a narrower location for both input and output
of heat.

Figure 2.3 - Energy transport and temperature along a magnetic field line.

(a) (b)

(a)Divergent of heat flux for SH and NL model in SI for the first half of the loop as
a function of normalized loop length. (b) Temperature profile for the magnetic

field line as a function of normalized loop length.
Source: Produced by the author.
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In summary, an interesting feature about the nonlocal expression, as given by Eq.
(2.16) and Eq. (2.17), is that it allows to recover the SH expression in the chro-
mosphere where the plasma is highly collisional at the same time that it describes
adequately what it would be expected from the nonlocal properties of heat flux in
the transition region and corona.

2.3 Previous results on nonlocal heat fluxes

A delocalised heat flux was applied to study the thermal evolution of a solar flare
in (KARPEN; DEVORE, 1987) and (KARPEN et al., 1989). The authors performed an
one dimensional two-fluid simulation where initially the system was in hydrostatic
equilibrium. They considered an optically thin fluid and a volumetric heating func-
tion. They also took into account energy transport by convection processes. While
for a quiet solar atmosphere the delocalization only gave a small difference in the
base of transition region, for flaring conditions there were significant departures from
temperature profile obtained when considering the SH heat flux expression as can
be seen in Figs. 2.4 and 2.5 for the times t=15s, 30s and 45 seconds. Note that the
scale in Fig. 2.5 varies in time because the TR is displaced to lower heights in time.
The vertical velocity profile also presents considerable differences as shown by the
curves in Fig. 2.6. Their results can be summarized as:

• Rise phase(t =15s):
nonlocal model predicts hotter/colder temperatures than classical heat flux
at top/middle corona. As a consequence of the delocalised heat flux, upper
chromosphere and transition region are hotter and therefore there is a
smoothing of temperature gradients near the top of the loop. Also, nonlocal
thermal conduction leads to an energy trapping in the upper part of the
loop compared to SH model and consequently a weaker evaporation flow.

• Peak heating (t= 30s):
In that phase, the nonlocal results presented a temperature ten times
higher than the one obtained through classical modeling. Also, in the non-
local scenario the transition region is higher, while the upflow velocities
are half of the ones obtained with of the SH model.

• Decay phase(t= 45s):
Again, the nonlocal model produced a higher TR. Temperature and evap-
oration velocities were the same as when using classical heat flux. But
evaporation of plasma last longer when applying nonlocal thermal conduc-
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tion.

Figure 2.4 - Log of temperature profile for (a)15s, (b)30s and (c)45s after the flare onset.

Source: Karpen and DeVore (1987).

Figure 2.5 - Log of temperature profile for the chromosphere and transition region for
(a)15s, (b)30s and (c)45s after the flare onset.

Source: Karpen and DeVore (1987).

In summary, their results showed that confined solar plasma responds differently
to flare heating depending on the thermal conduction model applied. The most
significant changes being in the preflare and peak heating phase when the conductive
cooling dominates over radiative one. Applying the nonlocal thermal conduction gave
a more accurate model for flares regarding the temperature values in corona and
also provided a more eruptive heating. But there were still some discrepancies when
comparing the nonlocal results to observations (KARPEN et al., 1989). A big issue
is that the evaporation velocities predicted by nonlocal heat flux are significantly
smaller than the observed up flow.
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Figure 2.6 - Vertical velocity profile for (a)15s, (b)30s and (c)45 after the flare onset.

Source: Karpen and DeVore (1987).

Another work by Ciaravella et al. (1991) indicates that differential emission mea-
sures, D, can be increased by a factor of 2 in the temperature range of 2× 104K <

T < 5× 104K when considering a nonlocal heat flux. Also, the models obtained by
them predict higher D values near the base of the loop. For the loop as a whole,
they obtained that a delocalised heat flux leads to changes in D values both at the
base as near the top of the loops.
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3 NUMERICAL FORMULATION

Magnetohydrodynamics theory aims to describe the dynamics of a magnetized fluid.
As presented in the previous chapter, the MHD equations are nonlinear and their
solutions are obtained only by numerical analyses.

MHD have been successfully applied to investigate important processes in solar and
space plasmas, e.g. (GOMBOSI et al., 2004; PRIEST, 2014). The main goal is to under-
stand the physical events that occur in those environments. MHD simulation is an
essential tool both to connect data and theory as well to provide data interpretation.
When applied to problems in solar physics, MHD simulations can also help investi-
gating problems that cannot be addressed experimentally because of limitations of
the instruments and financial costs.

The choice of the numerical method to be applied to obtain an approximated so-
lution relies mainly on the physical event being studied. As example of events that
one may study using MHD simulations are dissipation, diffusion, convection, turbu-
lence, shock waves and other processes. While turbulence demands high resolution
methods, a study investigating physical dissipation needs low numerical dissipative
methods.

A numerical method approximates continuum equations by discrete ones which are
then solved. The form of those new equations and the accuracy of such approxi-
mation relies on the method applied. Regardless of the numerical tool, the solution
obtained will never be an exact description of the physical phenomena because there
will always be errors associated with the numerical approximation. In order to en-
sure that the simulation describes faithfully the physical processes, errors must be
controlled and their effects on the solution understood. A good numerical method
must give a reliable solution which is not compromised by the associated errors. In
this chapter, the main features of the numerical aspects regarding the code used in
this project are discussed.

3.1 The GOEMHD3 code

The GOEMHD3 1 is a three dimensional resistive MHD code which uses finite
difference schemes that are second order accurate in space and time. This code
was developed to give theoretical support to solar scientific investigations and its

1The name of the code is based on the city name acronomy where the Max-Planck Intitut
für Sonnensystemforschung is located, Goettingen (GOE). The other part stands for MHD in 3
dimensions.
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main properties are described by Skála et al. (2015). It is the third version of the
MHD code created by the Theory and Simulation of Solar System Plasmas (TSSSP)
group in the Max-Planck Intitut für Sonnensystemforschung. The first version of the
code was called LINMOD3D 2 and it was used to investigate several different topics
on solar physics such as:

• heating of the transition region (BÜCHNER et al., 2004) and coronal-X-ray
points (JAVADI et al., 2011);

• magnetic reconnection (BÜCHNER et al., 2005) and magnetic null points in
the solar corona (SANTOS et al., 2011);

• electrical currents (SANTOS et al., 2008) and current dissipation (JAVADI et

al., 2011);

• triggering of flares (SANTOS et al., 2011) and the role of helicity evolution
on the dynamics of active regions (YANG et al., 2013).

The second version of the code, called MPSCORONA3D3, was parallelized using
OpenMP (Open Multi-Processing). Parallelization enables using more resources, as
for example a non uniform and more refined mesh, with a lower computational cost.
A better resolution allowed the study of solar processes involving steep gradients.
The MPSCORONA3D version was used to investigate the importance of the resis-
tivity model for Joule heating in the corona (ADAMSON et al., 2013).

The last improvement implemented a MPI (Message Passing Interface) paralleliza-
tion so that the code has now the option of running with hybrid parallelization. It
has enabled the GOEMHD3 code to study problems in smaller scale as for example
turbulence in current sheets (WIDMER et al., 2016).

3.2 Grid properties

The physical domain is discretized using a cartesian grid. The mesh can be uniform
or with enhanced spatial resolutions as in Fig. 3.1. The results presented in this
thesis were obtained using an uniform grid in the x and y direction and a non

2The name of the code is based on the city name acronomy where theMax-Planck Intitut
für Sonnensystemforschung was located, Lindau (LIN). The other part stands for module in 3
dimensions.

3The name of the code is based on the Max Planck for Solar System Research acronomy, MPS.
The following part is the solar atmosphere layer that is studied by the code, Corona. The final
part of the name of the code stands for 3 dimensions.
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uniform grid in z (vertical) direction. The maximum resolution for z was close to
the bottom of the simulation box in order to capture the strong gradients found in
the transition region.

Figure 3.1 - The graph displays how grid resolution in z-direction varies with height Z
above photosphere layer.
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Source: Produced by the author.

The simulations used 258 grid points in z-direction covering 40Mm and 1462 points
in x-y plane covering 49.02 Mm2. The grid spacing in x-y plane was 342km and in
z-direction the maximum resolution was of 100 km.

3.3 Parallelization

The GOEMHD3 has a hybrid parallelization scheme. This means that it can run on
serial, OpenMP, MPI and hybrid (both MPI and OpenMP). For MPI and hybrid
runs, the domain is partitioned in both y and z directions and distributed among
the processors with the number of partitions depending on the number of available
processors. For the hybrid parallelization each partition has the calculation of the
loops parallelized with OpenMP.

Figure 3.2 illustrates the partition of the domain for the case when four processors
are used. Each partition starts at ys+1 (y-direction) and zs+1 (z-direction) and
finishes at ye-1 and ze-1. The points ys,zs and ye,ze are along the yellow lines that
represent the inter boundaries of the sub domains. Those points are called ghost
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cells and they are created together with the mesh generation. At every time step,
the variable values at those cells are MPI communicated. In z-direction, the upper
partitions receive the values for their (y,zs) ghosts from the (y,ze-1) points of the
partition below. The bottom partitions receive the values for the (y,ze) points from
the (y,zs+1) points of the upper partition. As for the y-direction, it follows the same
logic but the communication takes place between the bottom processors (#0 and
#2) and between the upper processors (#1 and #3). The communication processes
are illustrated by the black arrows in Fig3.2. The variables values points ys,zs,ye
and ze outside the yellow line define the boundary of the domain and therefore are
defined by the boundary conditions of the code. Due to the antisymmetric boundary
conditions, all the subdomains must have the same dimensions,D = (ze−zs−1)(ye−
ys− 1)(xe− xs− 1), for a given number of MPI tasks.

Figure 3.2 - Subdivision of the simulation domain for four processors with the variables
colored according to the color of the processor.The black arrows represents
the MPI communication between the partitions.
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3.4 Numerical methods

The MHD equations, Eqs. 2.1-2.4, can be re-written in terms of fluxes, F, and
sources, S,
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∂ϕ

∂t
+ ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
= S, (3.1)

where ϕ stands for a particular plasma variable. Thus, the MHD equations can be
written in a matrix form as

ϕ =


ρ

ρu
B
h

 , F =


ρu

ρu⊗ u−B⊗B + Î(p+B2)
ε̂3×3 · E
hu

 S =


0

νρ(u− u0)
−(∇η)× j

(γ−1)
γhγ−1L

 , (3.2)

The derivatives are numerically solved by using finite difference. The first spatial
derivatives in the interior points are approximately given by the following point
difference operators:

∂

∂x
≈ δx = 1

∆x [()i+1,j,k − ()i−1,j,k] , (3.3)

∂

∂y
≈ δy = 1

∆y [()i,j+1,k − ()i,j−1,k] , (3.4)

∂

∂z
≈ δz = 1

∆z [()i,j,k+1 − ()i,j,k−1] , (3.5)

where

∆x = xi+1 − xi−1 (3.6)

∆y = yj+1 − yj−1 (3.7)

∆z = zk+1 − zk−1. (3.8)

After applying point difference operator on Eq. (3.1), it will take a form of an
ordinary differential equation (ODE) that can be written in a general way by:

∂ϕ

∂t
= f(ϕ, t), (3.9)

where f(ϕ, t) represents the resulting expression from spatial discretization.

Solutions for ϕ are advanced in time by applying the Leapfrog time marching method
to integrated Eq. (3.9). Leapfrog method uses two states to find a solution for vari-
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able ϕ according to:

ϕn+1 = ϕn−1 + 2∆t
[
S −

z∑
d=x

δdFd

]
, (3.10)

where the index n ± 1 denotes the future/past time level, ∆t is the marching step
and the index d stands for x,y and z.

Leapfrog is not a self-starting scheme. The code GOEMHD3 applies a Lax-Wendroff
method to initialize the system. The Lax-Wendroff is a scheme that performs all
partial derivatives together and is second order accurate. It is based in Taylor ex-
pansion series in time for a pure convective equation. For the ζ-component of ϕ,
Lax-Wendroff can be expressed in terms of point difference operators, Eqs. 3.3 - 3.5,
as:

ϕn+1
j = ϕnj − ϑ∆tδζ(ϕnj ) + (ϑ∆t)2

2 δζζϕ
n
j , (3.11)

where
∂2

∂ζ2 ≈ δζζ = 1
∆ζ2 [()i+1 − 2()i + ()i−1] . (3.12)

The diffusive terms are solved by using the DuFort-Frankel method. It is a second
order accurate that approximates the second spatial derivatives and advance the
solution in time as follow,

ϕn+1
i = ϕn−1

i + 2∆t
[
ω1ϕ

n
i−1 + ω3ϕ

n
i+1 + 1

2ω2
(
ϕn−1
i + ϕn+1

)]
, (3.13)

where ω1,2,3 are the coefficients for second order derivative in a non uniform grid,

ω1 = 2
∆db∆d

,

ω2 = −2
∆db∆df

, (3.14)

ω3 = 2
∆df∆d

, (3.15)

with "d" standing for x,y or z. The forward (∆df ) and backward (∆db) calculations
of the grid spacing are given by

∆df = dl+1 − dl, (3.16)

∆db = dl − dl−1, (3.17)

where the index "l" can stand for i,j or k depending on if d=x,y or z, respectively.
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Although the Dufort-Frankel method is an unconditionally stable scheme, its con-
sistency relies on the condition that the time step is of the same order as the error
associated with the discretizing equation.

The Leapfrog and Dufort-Frankel methods can be combined to obtain a general
solution,

ϕn+1 = ϕn−1 + 2∆t[Sn +
z∑

d=x
(χHl − δdlF n

d )], (3.18)

where again the index "l" can be i,j or k depending whether d=x,y or z, respectively.
The diffusion term is

Hi,j.k =
k∑
l=i

ω1ϕ
n
l+1 + ω3ϕ

n
l−1 + ω2ϕ

n
l , (3.19)

and χ is a coefficient that allows us to control the numerical dissipation. The former
assure that the important physical processes in the simulation will not be smoothed
by dissipation and that the numerical oscillations will be kept away.

3.5 Null divergence condition

In MHD simulation, a condition that needs special attention is magnetic field null
divergence. There are truncation errors when calculating ~B field and those errors
are not controlled by the induction equation and, therefore, can accumulate. Thus,
a nonphysical magnetic monopole can be created, breaking null divergence condi-
tion. In order to prevent this, a numerical mechanism is implemented in the code.
Basically, in every time step, magnetic field divergent is computed and brought to
machine zero.

In the GOEMHD3 code, the divergence null condition is granted by a projection
scheme (CHORIN, 1967). At each time step, a projected field Bproj is added to the
magnetic field in a way to always have:

∇ · (B + Bproj) = 0. (3.20)

To ensure that this new field Bproj does not alter the dynamics of the plasma, the
Lorentz’s force due to the projected field must be null. Therefore Bproj must be a
potential field,

Bproj = ∇φ, (3.21)

where φ is a scalar function.
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The projection scheme requires the solution of Poisson’s equation, ∇2φ = ∇ ·B, in
the entire domain of simulation for each time step.
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4 METHODOLOGY

An important and crucial aspect when studying phenomena through simulation is to
properly model the physical process. In the solar corona, magnetic field modeling is
a challenge due to its 3D nature and to the fact that coronal plasma is transparent
to most of the available methods for measuring that field, e.g. (WIEGELMANN et

al., 2014). Another important variable is the photospheric velocity field. In several
of the existing theories on flares and coronal heating the motion of footpoint of
magnetic field lines play an important role (PRIEST, 2014). In this thesis, the initial
conditions applied to model the magnetic fields of an active region were obtained
from observational data.

In this chapter, the initial and boundary conditions used in the model are presented.
First we introduce the selected data from where the configuration for the magnetic
fields was obtained. After, the methods for extrapolating the photospheric field are
presented and discussed. It is also discussed the initial configuration for temperature
and density used to mimic the conditions found in the solar atmosphere. Finally, we
introduce the implementations made on the code regarding the nonlocal heat flux
and radiation.

4.1 Data selection

We selected a solar active region where solar flares took place to extract data. The
active region NOAA 11226 1 was chosen due to the presence of small flares and a
class-M flare 2. Figure 4.1 shows an image obtained by AIA onboard of the SDO
(Solar Dynamics Observatory) satellite for a wavelength of 171 Å.

The active region was visible on the solar disk the first time on May 29th around
20:30:00 UT and we extracted the data from June 7th at 05:45:00 UT. We also used
data from the line-of sight (LOS) component of the photospheric magnetic field
obtained by Helioseismic and Magnetic Imager (HMI) aboard of the SDO. The LOS
magnetograms were Fourier filtered retaining the first sixteen modes thus removing
gradients that are not resolvable by the computational grid. In Fig. 4.2, the two
panels display LOS magnetogram obtained for AR11226. The left panel displays
the LOS magnetogram before being Fourier filtered and the right panel displays the

1The number of the active region is designated by NOAA(National Oceanic and Atmospheric
Administration)

2According to the X-ray peak flux (Wm−2) measured near Earth by the GOES satellites, solar
flare can be classified from the less intense peak flux (class A and B) to the most strong peak flux,
class X (VANCANNEYT; et. al., 2014). There are five classes in total: A, B, C, M, X
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Figure 4.1 - Active region number 11226 seen by AIA in SDO.

Source: SDO (2012)

Figure 4.2 - LOS magnetogram before and after applying Fourier Filtering.

Source: (a) SDO (2012). (b) Produced by the author.

result after Fourier filtering.

4.1.1 Magnetic field extrapolation

It is a difficult task to try to replicate with high accuracy the properties of magnetic
fields in corona since the coronal plasma is transparent to most of measurement
techniques and it is hard to recover the magnetic field tridimensional topology,
e.g(WIEGELMANN et al., 2014; ASCHWANDEN, 2005). The photosphere is the only
layer of the solar atmosphere where the magnetic field can be reliably measured. In
this project, the coronal field was obtained by extrapolating photospheric magnetic
field measurements for AR 11226.

The Fourier filtered photospheric magnetic field was assumed to be a potential field
(∇×B = 0) and it was extrapolated according to Otto et al. (2007). The first step in
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the extrapolation process is preconditioning the data from the filtered magnetogram
by imposing both line symmetry and corner field conditions:

Ψmn(−x,−y) = Ψmn(x, y) x = xmin = 0, (4.1)

Ψmn (Lx + x,−y) = Ψmn (Lx − x, y) x = xmax = Lx. (4.2)

Next, it is assumed that the z- component of magnetic field can be written as Fourier
series:

Ψmn = c1 sin
(
πm

Lx
x
)

sin
(
πn

Ly
y

)
+ c2 sin

(
πm

Lx
x
)

cos
(
πn

Ly
y

)

+ c3 cos
(
πm

Lx
x
)

sin
(
πn

Ly
y

)
+ c4 cos

(
πm

Lx
x
)

cos
(
πn

Ly
y

)
, (4.3)

where Lx,y is the size of computational domain in x, y-direction and c1,2,3,4 are coef-
ficients to be determined.

Applying line symmetry to Eq. 4.3 leads to c2 = c3. Therefore, the Bz Fourier
expansion is simplified as

Ψmn = c(1)
mn sin

(
πm

Lx
x
)

sin
(
πn

Ly
y

)
+ c(2)

mn cos
(
πm

Lx
x
)

cos
(
πn

Ly
y

)
, (4.4)

where m and n are positive and the coefficients cmn are given by:

c(1)
mn = 2(d(2)

mn − d(1)
mn), (4.5)

c(2)
mn = 2(d(2)

mn + d(1)
mn). (4.6)

The coefficients d(2)
mnand d(1)

mn are obtained from the filtered discrete magnetic field
data, Ψ(ix, iy), according to:

d(1)
mn = 1

MN

M−1∑
ix

N−1∑
iy

Ψ(ix, iy) exp
(
πkix

M
+ πliy

N
− πl

2

)
, (4.7)

and
d(2)
mn = 1

MN

M−1∑
ix

N−1∑
iy

Ψ(ix, iy) exp
(
−πkix

M
− πliy

N
+ πl

2

)
, (4.8)

where k and l are the expansion modes and M = Lx/∆x and N = Ly/∆y .

In order to find a solution to the force free configuration, it is considered an expansion
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in the form,

Bx = exp(−λz)(c1x sinαxcosβy + c2x cosαxsinβy), (4.9)

By = exp(−λz)(c1y sinαx cos βy + c2y cosαx sin βy), (4.10)

Bz = c1 exp(−λz) sinαx sin βy + c2 exp(−λz) cosαx cos βy. (4.11)

Applying the potential field condition, relationships between those new coefficients
are found. Comparing with Eq. 4.4, the following general solutions for magnetic field
components are obtained

Bx =
∑

m,n odd

c(1)
mn

λ2
mn

exp(−λmnz)(−αmλmn cosαmx sin βny)

+
∑

m,n odd

c(2)
mn

λ2
mn

exp(−λmnz)(αmλmn sinαmx cos βny), (4.12)

By = −
∑

m,n odd

c(1)
mn

λ2
mn

exp(−λmnz)(αmλmn sinαmx cos βny)

+
∑

m,n odd

c(2)
mn

λ2
mn

exp(−λmnz)(αmλmn cosαmx sin βny), (4.13)

Bz =
∑

m,n odd

c(1)
mn exp(−λmnz)(αmλmn sinαmx sin βny)

+
∑

m,n odd

c(2)
mn exp(−λmnz)(αmλmn cosαmx cos βny). (4.14)

Their solutions establish the initial configuration for coronal magnetic field.

The resulting extrapolation was re-sized to fit the simulation box. A 95% reduction
of the x, y-plane area was required. This reduction was done in order to have enough
resolution in the x,y plane without using a high number of grid points which would
lead to high computational cost due to all the integrations performed in the nonlocal
routine.

Figure 4.3 displays the result of the magnetic field extrapolation for AR11226. In
blue are the extrapolated field lines against the field lines seen in 171 Å. As one can
see by comparing the blue lines and the emitting lines, the potential magnetic field
does not provide a perfect match to the magnetic field geometry of corona. But it
certainly is able to reproduce the main features which is sufficient within the aims
and goals established for this thesis.
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Figure 4.3 - Magnetic field extrapolation displayed in blue lines over the SDO image for
magnetic field lines observed by AIA-171 due to emission in the AR 11226.

Source: Adapted from SDO (2012).

4.2 Boundary conditions

The extrapolation method described previously demands that all the boundary con-
ditions used to perform the extrapolation are consistent with the boundary condi-
tions applied to the MHD model (OTTO et al., 2007). That forces line-symmetric
boundary conditions to be applied to the lateral boundaries. Symmetric variables
transforms as f(−x, y, x) = f(x, y, z) and antisymmetric ones as f(−x, y, z) =
−f(x, y, z).

Classical theory generates an unique solution for the potential function if its value on
the boundary is specified or when its derivative normal to the boundary (Neumann
boundary) is specified. The GOEMHD3 code has a Neumann boundary conditions
on the bottom,

∂f

∂n |zmin, zmax
= 0, (4.15)

to guarantee a unique solution for B. The component of magnetic field normal to
the bottom layer is considered to be a potential field, therefore jx = jy = 0. The
upper boundary is open thus we consider flows through top layer in this model.

4.3 Initial model configuration

Although the model does not consider gravity, it mimics the height stratification
observed in solar atmosphere by considering the following initial density profile:

ρ(z) = ρchr
2 [1− tanh(2z − 2z0)] + ρcor, (4.16)
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where ρchr is the chromospheric density and ρcor is the coronal density. Initially, the
transition region is placed at 1.5Mm or z0 = 3.

Pressure is assumed to be initially constant and homogeneously distributed in the
simulation domain. Those conditions along with ideal gas law, T = p/kbn gives the
observed temperature profile. The initial density and temperature vertical profiles
are given in Figure 4.4.

Figure 4.4 - The vertical profiles for normalized temperature and density used as initial
condition in the MHD model.
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Source: Produced by the author.

The dynamic is set by imposing a velocity field for the plasma in the bottom of
the simulation box. The velocity field, u0, was approximated by an incompressible
vortex:

u0 = ∇×
 φ0

cosh
(
x−y+c0

l0

)
cosh

(
x−y+d0

l1

)
 , (4.17)

where φ0, c0, l0, d1, l1 are parameters whose values relies on observations. The
position (xv, yv) of the vortex gives the values of d0 = −(xv + yv) and c0 = −(2yi +
d0). The parameter φ0 is the velocity intensity of the vortex, whereas l1 and l0

determine both size and shape of the vortex. Figure 4.5 displays the initial velocity
field chosen for AR11226. The choice of a vortex to describe the velocity at the
bottom of the simulation domain is due to the fact that a vortical flow would a
priori favors the generation of currents in the system as it rotates the magnetic field
lines. The vertical component of plasma velocity, uz, can be found assuming that the
photospheric magnetic field satisfies at least the vertical component of ideal MHD
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Figure 4.5 - The initial pattern flow for AR11226 on the simulation box bottom modeled
by a vortex located at x = 10.0 and y = 12.5 with φ0 = 0.3 and l1 = −l0 = 2.
The slice is colored by the z-component of the field.

Source: Produced by the author

induction equation:
∂Bz

∂t
= ∇× (vh ×Bz + vz ×Bh). (4.18)

This velocity is imposed to the plasma via collision term in the momentum equation.

4.4 Implementation of the terms in energy loss function

The terms for thermal conduction and plasma radiation have been implemented in
the code to properly simulate energy transport in solar atmosphere. In this section,
we present how the implementation was done for each one of those terms.

4.4.1 Nonlocal (NL) heat flux implementation

The nonlocal heat flux expression, Eq. (2.16), demands computing quantities such
as density and pressure along the magnetic field lines. In order to apply it in a three
dimensional context, for each grid point a magnetic field line path l was traced by
integrating the direction B̂ of the magnetic field,

dl(s)
ds

= B̂(l(s)). (4.19)

The integration was solved by the trapezoidal rule,

∫ Lf

Li
B(l(s))ds ≈

N∑
ii=1

∆s
2 [B(lii+1) + B(lii)], (4.20)
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where the index ii refers to the one dimensional mesh along the field line and we
have choosen ∆l = 0.1dzmin. The tracing starts at the grid point and then first it
goes forward (sg =+1) and then backwards (sg=-1) along the magnetic field line.
In other words, a spatial march with a ∆s step is performed until the line reaches
one of the boundaries,

xl(ii) = xl(ii− 1) + sg∆lBxl
|B|

,

yl(ii) = yl(ii− 1) + sg∆lByl
|B|

, (4.21)

zl(ii) = zl(ii− 1) + sg∆lBzl
|B|

.

Figure 4.6 illustrates this process. We see the original grid point in yellow and the
blue points that were obtained by integrating Eq. (4.19).

Figure 4.6 - The tracing of the magnetic field for the whole domain starting at the yellow
grid point and marching through the blue points.

Δ L

Source: Produced by the author.

The blue points are not necessarily defined by the mesh and thus the values of the
variables at the points along the field line are obtained by a trilinear interpolation.
Tracing a magnetic field line along a domain that it is MPI partitioned implies that
the values in grid points from different partitions have to be MPI communicated to
the partition where the integration is being performed. Due to computational costs,
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the values of the variables needed for both integrating Eq. (4.19) and to do the heat
flux computation along different MPI partitions were communicated only for every
other point as illustrated in Fig. 4.7. The MPI communicated points are in green
and each point has a position G. The point in blue is a point along the magnetic
field line that is being traced and where the properties are going to be interpolated.
The vector position d = xlx̂+ ylŷ+ zlẑ denotes the distance of the blue point to the
origin of the coordinate system.

Figure 4.7 - The blue point along the magnetic field line between the green mesh points
that have been MPI communicated.
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Source: Produced by the author.

The value of the variable ϕ at the blue point is obtained by applying the following
interpolation:

φ(ii) = ([ϕi,j,k(1−∆x) + ϕi+1,j,k∆x](1−∆y)

+ [ϕi,j+1,k(1−∆x) + ϕi+1,j+1,k∆x]∆y)(1−∆z) (4.22)

+ ([ϕi,j,k+1(1−∆x) + ϕi+1,j,k+1∆x](1−∆y)

+ [ϕi,j+1,k+1(1−∆x) + ϕi+1,j+1,k+1∆x]∆y)∆z,
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where

∆x = (dx(ii)−G(i, j, k))
(G(i+ 2, j, k)−G(i, j, k)) , (4.23)

∆y = (dy(ii)−G(i, j, k))
(G(i, j + 2, k)−G(i, j, k)) , (4.24)

∆z = (dz(ii)−G(i, j, k))
(G(i, j, k + 2)−G(i, j, k)) . (4.25)

Thus, the interpolation (4.22) calculates the values of φ by doing a weighted average
of the values in the grid point using ∆x,y,z as the weights. Figure 4.8 displays a field
line obtained as a result of integrating Eq. (4.19) using every other point to compute
interpolated values.

Figure 4.8 - A field line resulting from the integration of Eq. (4.19) for the grid point
(i=70, j=70, k=100).

X
Y

Z

(a) Magnetic field line

X

Y

Z

(b) Magnetic field line as seen from above
Source: Produced by the author.

The trilinear interpolation with just every other point was also able to replicate the
profiles for density and temperature as it can be seen in Fig. 4.9.

Finally, to compute the nonlocal heat flux it was necessary to compute the kernel in
Eq. (2.17) and the classical heat flux (qsh). For each spatial step, the interpolation
in Eq. (4.22) was performed giving the values for density and pressure at the point
(xl(ii), yl(ii), zl(ii)). Then the values for temperature and Coulomb logarithm were
computed so that all the variables needed for the integrations were available. In
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Figure 4.9 - The initial temperature and density profile along the field line traced for the
grid point (i=70, j=70, k=100).
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order to save memory and machine time, we only saved the values for the current
interpolated point, index ii, and the previous point, index ii−1. Again, the integrals
in (2.17) and (4.22) were solved by trapezoidal method. At each interpolated point,
the integral in (2.17), W , was done by performing again a spatial march, i.e, the
values in the summation were added at each point ii along the line:

W (ii) = W (ii− 1)n(ii− 1)λ(ii− 1) + ∆l
2
n(ii) + n(ii− 1)

n(ii)λ(ii)

Then, at each of those points along the field line a spatial march was performed for
the integral in the nonlocal heat flux,

qnl(i, j, k) = q(i, j, k) + ∆s qsh(ii− 1) 1
2λ(ii− 1)e

−|W (ii−1)|. (4.26)

where q(i, j, k) is the array saving the information on qnl(i, j, k) on the previous
ii− 1 point.

The x,y and z components of the nonlocal heat flux in the Cartesian grid were given
by
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(qnl)x = qnl ·
Bx

|B|
x, (4.27)

(qnl)y = qnl ·
By

|B|
y (4.28)

,(qnl)z = qnl ·
Bz

|B|
z. (4.29)

During the routine, we used non-normalized values for computation. In the end of
the routine we normalized the values found for qnl with q0 = 2p0v0

4.4.2 Classical Spitzer-Härm (SH)

The classical heat flux, Eq. (2.13), which we write again here:

qsh = −κ||(∇T )||,

was also implemented in the GOEMHD3 code. First ,the temperature for each grid
point is computed where again non normalized values were used. Then the gradient
of the temperature is calculated in the mesh by applying the central differences:

(∇T )x = δxT , (4.30)

(∇T )y = δyT , (4.31)

(∇T )z = δzT . (4.32)

As the gradient of the temperature was not computed along the line, the vector ∇T
can be written as

∇T = (∇T )|| + (∇T )⊥, (4.33)

where the subscript ⊥ stands for the perpendicular component of ∇T comparing
to the magnetic field. The parallel component of the vector can be obtained by its
projection onto B,

(∇T )|| =
(∇T ) ·B
|B|

B
|B|

. (4.34)

The heat flux was computed and its value was normalized using q0 before calculating
the divergence of the heat flux. In both nonlocal and classical heat flux the divergence
was not computed using points along the field line but in the mesh. Thus, using
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central differences to approximate the derivatives, we obtain the heat flux divergence,

∇ · q ≈ δxqx + δyqy + δzqz. (4.35)

The boundary conditions applied for the heat flux were the same as the ones applied
to the other variables. The divergence and the z-component of the heat-flux are
symmetrical variables and the x−y component of the heat flux are anti-symmetrical.

4.4.3 Radiation terms

For the range of temperatures found in coronal plasma and due to its low collisional-
ity, the most important emission process is free-free emission (ASCHWANDEN, 2005).
However, there are other emission processes that, although prevail in other temper-
ature intervals, are also important to coronal loss budget (COOK et al., 1989). At the
time this thesis was written, the most precise model available for the radiative loss
function is the one given by the CHIANTI code (ZANNA et al., 2015).

We choose 40 equally spaced points for the range 2× 104K ≤ T ≤ 108K along the
curve in Fig 4.10 and extracted the values forQ(T ) and T . The radiative loss function
in the code was calculated by performing a trilinear interpolation for temperatures
among those values. We have only considered the radiative loss function for optically
thin plasmas, i.e., the temperature should be greater then 2× 104 K.

The model configuration hereby presented together with the implementations per-
formed in GOEMHD3 allowed us to simulate the energy transport in a solar atmo-
sphere with parameters for plasma and magnetic field similar to the ones found in
an active region. The simulations were performed in the Max Planck Group cluster
HYDRA and in the cluster GAUSS at the National Center of Super computation
(CESUP) located in Porto Alegre, Brazil. The results obtained are presented and
discussed in the following chapter.
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Figure 4.10 - Radiative loss function in terms of temperature in cgs units obtained for
standard coronal abundance in CHIANTI code.

Source: Zanna et al. (2015).
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5 RESULTS

We investigated how different formulations of heat flux would affect the energy
transport and balance in a modeled atmosphere with plasma parameters similar to
the ones found in the solar corona and having a high gradient temperature defining
a transition region. Two simulations were performed starting from exactly the same
initial conditions, the difference being a different heat flux formulation (NL and SH).

5.1 Temperature evolution and vertical velocities

First we have compared the evolution of the solar plasma as described by the MHD
model used here with the results found by (KARPEN; DEVORE, 1987) for a hydrostatic
1D approach. They have simulated a flaring loop with both classical and NL model
and their main results are concerned to differences found in the temperature profile
and up/down flow velocities.

The vertical profile of the temperature averaged along x-y plane is displayed in Fig.
5.1 at three different instants of time (20 s, 410 s and 820 s) for the classical SH
(dash-dot-dot red line) and for NL (dotted blue line) models. The evolution in Fig.
5.1 shows a heating front propagating from the base of the corona towards the base
of TR, widening the transition region and smoothing the gradient of temperature
there. As the energy is transported downwards, the base of the corona cools down. In
general, both models were able to replicate the main characteristics of the standard
temperature profile for solar atmosphere. As the base of TR is getting heated, it
goes to lower heights moving from 3 Mm to around 2Mm. The base of the corona is
also moved to in lower heights over time in both models.

From the results presented in Fig. 5.1, we see that the main differences between the
models are found in the region comprised by the upper chromosphere, transition
region and lower corona in the height range 0 Mm < H < 5 Mm . Therefore, we
choose to have a closer over view of that region as shown in Fig. 5.2. The main effect
of NL heat flux formulation is to produce a both colder and smoother TR compared
to classical heat flux. Due to the delocalization effect, the energy output from the
corona is initially considerable smaller then the classical one, which in turn gives a
hotter lower corona as it can be seen in Fig.5.2(a). Another consequence that comes
from the features of nonlocal transport is the earlier start of rising in temperature
for upper chromosphere for the NL simulation as depicted in the middle panel, Fig.
5.2(b). As the energy is being distributed more evenly compared to SH, the NL
predicts a smoother TR meaning also a slower temperature rise. The tendencies
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Figure 5.1 - Average log of temperature in x-y plane as a function of height, H. The dash-
dot-dot red curves show the Spitzer-Härm (SH) results and dotted blue lines
nonlocal (NL) the results by heat flux models.
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observed in the middle of the simulation for TR and upper chromosphere are kept
through the end of the simulation as it can be seen in Fig. 5.2(c). Although both
model predicts that by the end of the simulations the TR would in average starts
at same height, H ∼ 2Mm, the nonlocal places the beginning of the corona around
500 km higher then the SH formulation. Therefore the delocalization kernel not only
smooths the TR, it also expands the thickness of that layer as the nonlocal predicts
a slower growing of temperature.
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Figure 5.2 - Average log of temperature in x-y plane as a function of height for the interval
0 Mm < H < 5Mm. The dash-dot-dot red curves show the Spitzer-Härm (SH)
results and dotted blue lines nonlocal (NL) the results by heat flux models.
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The panel in Fig. 5.3 shows the relative percentage difference in the temperature val-
ues between NL and SH formulations using the classical heat flux values as reference.
There we confirm that the main differences between the two formulations appear in
the upper chromosphere-transition region-lower corona, with NL producing a hotter
upper chromosphere, cooler transition region and slightly hotter temperatures for
upper corona.

The heat flux sets pressure gradients in the simulation domain and the plasma
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Figure 5.3 - Relative percentage difference for the Temperature using SH values as refer-
ence.

Source: Produced by the author.

responds with flows along the field lines. The averages for vertical velocities in the
x-y plane as a function of height are displayed in Fig.5.4. The positive values for the
vertical profile of the z component of the velocity indicates that plasma is moving
upwards in the atmosphere and the negative sign denotes down flows. Both models
present a quite similar behavior with the differences appearing in TR and corona. At
t=20 s there is a strong plasma upflow from upper chromosphere up to the transition
region, and a strong plasma downflow in the lower corona. This velocity distribution
makes a mix of plasma coming from both upper chromosphere and lower corona in
the transition region. The SH predicts quite higher vertical velocities compared to
NL, up to 50% higher.

Figures 5.4(b) and 5.4(c) show that for the selected later times there are lower values
for upflows and no visible downflows with the highest values in the height range
5 Mm < H < 10 Mm. We see that the differences between the models considerably
diminishes and the NL gives slightly higher upflows velocities in corona. From the
middle of simulation towards the end, the average vertical velocity is dominated by
upflows above the TR and there are small upwards/downwards velocity flows in the
chromosphere region.

The evolution in time of averaged vertical velocity for each model can be seen in the
panels of Fig. 5.5. The results for classical heat flux are displayed in the left panel,
Fig. 5.5(a), and the nonlocal in Fig. 5.5(b). The panels are colored by the averaged z-
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Figure 5.4 - Average vertical velocity, Uz, in x-y plane as a function of height, H. The
dash-dot-dot black curves show the Spitzer-Härm (SH) results and dotted
green lines nonlocal (NL) the results by heat flux models.
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component of velocity as a function of height, abscissa axis, and in function of time,
coordinate axis. The panels confirm the tendency shown in Fig. 5.4 of a similar
behavior for the models. In the corona, the nonlocal predicts some slow downflows
from the upper part of atmosphere, H>15 Mm, earlier then the SH model. Both
models predicts an initial adjustment of the system consisting of upflows and down-
flows seen in the panels initially at the upper TR and base of the corona and then
going up until they reach the top of simulation box. After t=300s, the panels shows
again the tendency in the corona for the averaged vertical velocity to be consisted
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of upflows. The only exception would be some small downflows predicted by SH
formulation around t=350s for 33Mm < H < 38Mm. Since the results displayed in
Figs. 5.4 and 5.5, are actually describing the average behavior for vertical velocities,
the fact that the corona is dominated by upflows only indicates that when adding
up the upwards velocities and the donwflows together, the contribution of the later
is greater and prevails in the average.

The averaged temperature profiles are in agreement with the predictions made by
(KARPEN; DEVORE, 1987) for a flaring loop. In our work the main differences re-
garding the models were found in lower atmosphere with the nonlocal predicting a
smoother transition region. As for the averaged vertical velocities, the results for the
velocities in corona and TR are also in agreement with the results from (KARPEN;

DEVORE, 1987). The SH model gives higher upwards/downwards flow velocities ini-
tially and with NL model gives higher upflows coming from slightly different regions
as different parts of the atmosphere are being heated. Therefore, the model we de-
veloped for the nonlocal calculation as described in chapter 4 is a valid approach.
In the next section we investigate further the differences found in the models.

Figure 5.5 - The averaged vertical velocity in meters per second as a function of time in
seconds (horizontal axis) and height (vertical axis).

(a) SH model (b) NL model
Source: Produced by the author.
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5.2 Energy transport and energy source contributions to the tempera-
ture

The differences found in temperature profile can be better understood by analyz-
ing how the choice of the heat flux formulation may affect the processes of energy
transport and losses in the plasma. In order to do that, we rewrote energy equation
in terms of the plasma temperature:

∂T

∂t
−∇ · (Tu) = −(γ − 1)T∇ · u + (γ − 1)

kbn
(ηj2 −∇ · q +R). (5.1)

As we did before, we compute the average vertical values for all the terms on the
right side of Eq.( 5.1) along x-y plane.

The curves for energy transport by heat flux (∇·q) and convection (∇·u) are shown
in Figs. 5.6 and 5.7, respectively, for the instants of time t=20s, 410s and 820s. The
high values for the curves in Fig. 5.6 compared to the values in Fig. 5.7 indicates
that heat flux dominates the temperature evolution in both models. As the heat
flux transports energy to the middle/low TR (3Mm ≤ H ≤ 4Mm), part of that
energy is used to heat the plasma which leads to plasma expansion and consequently
local energy loss by the (γ − 1)∇T · v term. As for the coronal plasma in the upper
part of the simulation box, H ≥ 5Mm, the heat flux is transporting the energy
outward and the plasma gets colder and compresses. The main differences of energy
transport between the models appear in the lower solar corona, transition region
and chromosphere as indicated by Fig. 5.6 and 5.7. The curves show again a similar
behavior for the models in all instants of time.

Figure. 5.6(a) shows a considerable contribution from heat flux to the temperature.
It comes from the corona/upper TR and goes to lower regions. The contribution gets
smaller over time as displayed in Fig. 5.6(b) and 5.6(c). As the average contribution
from the heat flux decreases, it starts to come from higher parts of the corona and
to reach lower regions over time. Initially, the heat flux in SH model supplies twice
the energy input for temperature increase in lower TR than NL model, as it is
indicated by the peak around 3.0 Mm in Fig. 5.6(a). In the following times, the
difference between the models for the quantity of energy being transported to this
area diminishes whereas the peaks are getting broader and displaced with respect
to one model to another almost 500 km as it can be seen in Fig. 5.6(c). As for the
corona, 5Mm ≤ H ≤ 40Mm, the average heat flux indicates that a small quantity
of energy is being transported outwards and that quantity increases over time as
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Figure 5.6 - Averages contributions from heat flux to temperature evolution, −(γ − 1)∇ ·
q/(kbn), as a function of height for SH (black lines) and NL(red lines).
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indicated by the small plots on the right corner of the plots in Fig. 5.6. For the middle
of the corona in our domain, 7Mm ≤ H ≤ 18Mm, the lower temperature gradients
together with great mean free paths lead NL model to predict higher values for
temperature loss due to heat flux transport with values reaching 30% higher then
the ones in SH formulation. That is due to delocalization of the heat flux that wides
up the region from where the energy is coming from, reaching not only the lower
corona, but having contributions also from higher regions. In the upper part of the
simulation box, the temperature gradients get larger over time and therefore the
contributions from SH model are greater.
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Figure 5.7 displays the average temperature gain/loss by plasma contrac-
tion/expansion. We see that initially, Fig. 5.7(a), there is an expansion of the plasma
in upper chromosphere and lower transition region. In the upper part of TR and in
the base of the corona, the plasma is getting colder because of energy transport from
there by heat flux. As the plasma gets colder, the pressure in that region decreases
and the external pressure compresses that plasma. The compression of plasma con-
tributes to temperature gain. The compression in the base of the corona leads to a
plasma expansion that makes the corona in the height range of 7Mm ≤ H ≤ 11Mm
to lose energy. The curves in later times, Figs. 5.7(b) and Fig. 5.7(c), indicate smaller
plasma expansion and compression.

Just like as for the contributions from heat flux, the peaks for each model are
displaced relative to each other going from an initial difference of 300 km to 400
km by the end of simulation. Initially, SH model predicts a plasma compression in
chromosphere, around 2.3Mm, that gives temperature gain values that are a 100%
higher than the gains by compression of plasma in NL model as indicated in Fig.
5.7(a). For TR and coronal plasma, 3Mm ≤ H ≤ 5Mm, the models predict quite
different values for temperature loss/gain by convection with the NL model obtaining
values that are 10% to 79% smaller then SH values. Figures 5.7(b) and 5.7(c) shows
a tendency for NL model to predict higher values for plasma compression/expansion
in the base and lower corona (5Mm<H<20Mm).

The contribution coming from radiative cooling and ohmic heating terms are dis-
played in Figs. 5.8 and 5.9 respectively. The curves in Figs. 5.8 show the average
temperature decreasing due thermal emissions for the region H ≤ 10Mm. Again,
we see a similar behavior for both models. There are basically no differences except
for the curves displayed in Fig. 5.8(b) where we can see that SH model predicts a
higher temperature loss. There are no differences in the temperature decrease due
radiation when comparing the prediction by both heat flux models in the upper part
of the simulation box, H ≥ 10Mm.

The average contribution of current dissipation to plasma heating as a function of
height is displayed in Fig. 5.9. We see that the higher values for current dissipation
contributions are found in the region comprising the upper chromosphere, TR and
lower corona: H ≤ 10Mm. The current dissipation starts stronger for SH, as shown
in Fig.5.9(a). That tendency persists over time as it can be seen in Figs. 5.9(b)
and 5.9(c), but the differences between the models get smaller. Towards the end,
the nonlocal model predicts a broader region for contributions coming from current
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Figure 5.7 - Averages contributions from plasma compression/expansion to temperature
evolution, −(γ − 1)∇T · u, as a function of height for SH (black lines) and
NL(blue lines).
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dissipation, which gives a higher temperature rise due to dissipation in the corona
for the height range 5Mm ≤ H ≤ 10Mm. As for the rest of the corona, the SH
formulation predicts 5%− 10% higher dissipation.

As the energy is being transported by heat flux in different quantities and to differ-
ent loci depending on the heat flux formulation, the plasma responds differently to
the energy input/output in each model. We can see that reflecting on the average
temperature gain/loss by compression/expansion of plasma, current dissipation and
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Figure 5.8 - Averages contributions from radiative losses to temperature evolution, −(γ−
1)R/(kbρ), as a function of height for SH (black lines) and NL(orange lines).
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thermal emission. For example, we can see that part of the energy brought by heat
flux to the region around 4.5Mm in Fig. 5.7(a) leads plasma expansion and there-
fore the energy is transported outwards and there is negative contribution to the
temperature. In the NL model, since the energy input by heat flux is smaller, the
plasma expansion is lower and thus less energy is loss due to that expansion as it can
be seen in Fig. 5.8(a). Those compressions and expansions of the plasma together
with the differences found in the heat flux affect the temperature evolution.

For the Chromosphere, we have seen that NL heat flux manage to transport more
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Figure 5.9 - Averages contributions from current dissipation to temperature evolution,
−(γ−1)ηJ2/(kbρ), as a function of height for SH (black lines) and NL(orange
lines).
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energy to the lower part of the simulation box and also less energy is lost by plasma
expansion there, which leads to temperatures 16% higher for the chromosphere in the
nonlocal formulation around 1.5 Mm<H<2.0 Mm. The upper TR, 2.0 Mm <H<3.0
Mm presents considerable higher temperatures for SH due to the higher input of
energy by heat flux when compared to NL model and also higher current dissipation
for the same region.

As a result from the differences found in the contribution coming from the terms in
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energy loss function, the temporal evolution of temperature is affected as presented
in Fig. 5.1. The broader and not so high peaks in the curves of Fig 5.6(a) together
with the shift in peak loci for the NL model (compared to classical formulation),
Figs. 5.6(b) and 5.6(c), mean that the energy is being distributed more evenly which
leads to a smoother TR. In the coronal plasma, the NL scenario gain more energy
by compression of the plasma and loses less energy by heat flux and therefore the
SH provides slightly lower averaged temperatures within that height range.

5.3 Heating dynamics along magnetic field line

The dynamic set by the vortex led to currents that dissipate creating sources of
heating for the plasma. We have investigated the response along a field line to the
heating dynamics set by all the terms on the right side of Eq. (5.1) together. In
order to select the field line, we have first computed the maximum temperature in
the domain as a function of time which is displayed in Figure 5.10. The curve in
light blue describes the behavior for temperature growth as predicted by NL and
the black curve by SH formulation. We can see that the NL model presents almost

Figure 5.10 - Evolution of the maximum temperature found in corona as a function of
time.
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from the beginning the highest temperatures and also presents a considerable faster
growing for the temperature at times greater then 400 seconds.

Among the regions where the temperature presented considerable growth, we have
selected one region that had the greatest difference in temperature for the two models
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to trace a magnetic field line which is shown in Fig. 5.11.

Figure 5.11 - View for x-y plane of simulation box with the selected field line colored by the
log of the temperature and the slice colored by the z-component of magnetic
field.

Source: Produced by the author.

The slice is colored by the z-component of the magnetic field and the field line by
the log of the temperature. We see that the line is located in the region where the
magnetic field is stronger as one would expect to find the highest temperatures. The
evolution of the height of the loop apex, Ha, as a function of time is displayed in Fig.
5.12. Therefore the loop apex started at chromospheric heights and evolved reaching
the corona after t=500s. There is practically no difference between the models for
the evolution of the height of the apex of the field line.

Figure 5.12 - Height of the loop apex, Ha as a function of time.
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Figure 5.13 illustrates the time evolution for the log of the temperature according
to SH, Fig. 5.13(a), and to NL formulation, Fig. 5.13(b). The y-axis depicts the
normalized height where we used the height of the loop apex as a normalization
parameter. The loop starts in the chromosphere and is heated as it moves upward
in the solar atmosphere. We see again the tendency of smoother and broader TR for
NL model. The temperature increases in the corona starts around the same time,
t ≥ 600s, but it grows to considerable higher values in NL case. The classical heat
flux formulation predicts a smoother temperature distribution along the coronal part
of the loop whereas the NL gives a higher temperature in the middle of the coronal
part of the loop.

Figure 5.13 - The log of temperature as a function of time in seconds (horizontal axis) and
the height of the loop normalized by the maximum height at time t (vertical
axis).

(a) SH model (b) NL model
Source: Produced by the author.

As the field line is heated and rises up, pressure gradients followed and they lead to
upwards and downwards flows whose values are displayed in Fig. 5.14 as a function of
loop height and time. The classical model is displayed in Fig. 5.14(a) and the results
for nonlocal heat flux in Fig. 5.14(b). The vertical velocity along the loop presents
a general similar behavior along the field line with few differences. As the SH model
predicts higher heating at the base of coronal loops, the plasma there receives more
energy and thus have greater upflow velocities. The nonlocal case predicts an earlier
chromospheric evaporation and also upflows from the base of chromosphere around
t=600s. As for the classical heat flux, the evaporation velocity is considerable higher
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Figure 5.14 - The upwards and downwards flows along the field line in meters per second
as a function of time in seconds (vertical axis) and the height of the loop
normalized by the maximum height at time t (horizontal axis).

(a) SH model (b) NL model
Source: Produced by the author.

and coming from a thinner region compared to the nonlocal transport.

The panels shown in Fig. 5.15 are colored by the contribution coming from the cur-
rent dissipation, CD = −(γ− 1)∇ηj2/(kbn), to heat the plasma along the field line.
The currents created by the footpoint motions start to have significant contribution
for t>400s. As the line goes up, the current dissipation begin to be more significant
in the lower parts of the loop. After t=600s, the temperature rise due to current
dissipation is stronger in the part the loop within the TR and corona having higher
values in the middle of the loop, which is at coronal heights, 0.4 < H/Ha < 0.6. We
see that while the values predicted by classical heat flux are slightly higher in the
upper TR and base of the corona, the NL model, Fig. 5.15(b), gives values twice
higher for contributions from current dissipation in the middle of the loop.

Figure 5.16 displays two panels colored by the contribution from heat flux to tem-
perature, HF = −(γ − 1)∇ · q/(kbn), along the line. The first panel, Fig. 5.16(a),
is colored by SH model results and the second, Fig. 5.16(b), by values predicted by
nonlocal formulation. We see basically no differences between the models for instants
of time in t<400s when the line has no significant energy input coming from currents
dissipation. In the following times, as the temperature is rising due to the current
dissipation, the heat flux starts to present quite different values in the TR and coro-
nal part of the loop. As in the averaged results in Fig. 5.16??, the NL model predicts
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Figure 5.15 - Contribution from current dissipation to temperature evolution as a function
of time in seconds (vertical axis) and the height of the loop normalized by
the maximum height at time t (horizontal axis).

(a) SH model (b) NL model
Source: Produced by the author.

lower values and wider regions for input/output of energy despite the energy input
coming from the dissipation of the currents was greater for the nonlocal case. That
is an effect coming from the delocalization kernel that bottle up the energy despite
the existing temperature gradients. We see from Fig. 5.16(a) that the classical heat
flux manage to distribute the exceeding energy from 0.4 < H/Ha < 0.6 to lower
regions.

The contribution from current dissipation in the middle of the loop, 0.3 < H/Ha <

0.6, leads to a plasma expansion as it can be seen in the panels in Fig. 5.17. The
panels are colored by the contribution of compression/expansion of plasma to the
temperature, CE = −(γ−1)∇T ·u. As that region expands, it compresses the coronal
plasma close to the top of the loop, 0.6 < H/Ha < 0.9, and it heats up that region.
Again we see the tendency observed during the average results of higher compres-
sional heating and cooling by expansion in the corona for the nonlocal formulation.

A comparison between the panels in Fig 5.15 and in Fig. 5.17 shows a quite different
results for classical and nonlocal heat flux when it comes to the main heating mech-
anism in corona. While the SH model predicts that the contributions coming from
current dissipation are the main source of plasma heating, the nonlocal heat flux
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Figure 5.16 - Contribution from heat flux to temperature evolution as a function of time in
seconds (vertical axis) and the height of the loop normalized by the maximum
height at time t (horizontal axis).

(a) SH model (b) NL model
Source: Produced by the author.

Figure 5.17 - Contribution from plasma compression/expansion to temperature evolution
as a function of time in seconds (vertical axis) and the height of the loop
normalized by the maximum height at time t (horizontal axis).

(a) SH model (b) NL model
Source: Produced by the author.

predicts a different scenario where compressional heating is actually more efficient
than the current dissipation for the coronal part of the loop.
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We have computed the total contribution from transport and sources terms, TE,
along the loop to the temperature evolution and the results are displayed in the
panels in Fig. 5.18. The first panel in Fig. 5.18(a) shows the predictions for SH and
the second panel, Fig. 5.18(b) , the results obtained using the nonlocal formulation.

Figure 5.18 - The total contribution from transport and sources terms to temperature
evolution as a function of time in seconds (vertical axis) and the height of
the loop normalized by the maximum height at time t (horizontal axis).

(a) SH model (b) NL model
Source: Produced by the author.

We see that both models predicts quite different behaviors for temperature increase
coming from transports and source/sinks of energy in plasma. The classical SH
formulation expects stronger heating at coronal footpoints whereas the nonlocal
model predicts heating spread across a far more widening range in the coronal part of
the loop. Also, the temperature increase in NL case is greater then the one predicted
by classical formulation. In the top of the loop, H/Ha>0.85, the SH model gives
higher temperature increments. Another interesting feature in nonlocal heat flux is
that its corona is cooling considerable less than the classical formulation.
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6 CONCLUSIONS AND FUTURE WORK

The results for average temperature and up/down velocities profiles were able to
replicate the main features of the previous results obtained by Karpen and DeVore
(1987) despite the fact that we have considered a broader initial transition region and
that our simulations were performed assuming similar conditions of an active region
and not a flare as in (KARPEN; DEVORE, 1987) . In our simulations, both models
presented same general evolution with the main differences found around the TR and
upper chromosphere. The nonlocal predicts an earlier heating of lower atmosphere
compared to classical heat flux, which leads to smoothing of transition region. There
was also an earlier upflow in chromosphere as a response to the preceding heating
by nonlocal. The average vertical velocities also agree with the results presented in
Karpen and DeVore (1987) for the post flare phase described there. The nonlocal has
higher upflows velocities in the coronal region and with upflows prevailing in both
models for corona. Finally, our simulation results also indicate that the nonlocal
formulation predicts the highest temperature in corona. Our results differs from
Karpen and DeVore (1987) regarding the location of the maximum temperature.
While in their case the top of coronal loop had the highest temperatures, in our
case the maximum temperature was found a little bit lower height along the loop.
That is due to our different approach to describe the heating sources in plasma;
they have considered a volumetric heating and we have modeled our heating source
as coming from current dissipation with an anomalous plasma resistivity. Therefore,
the agreements between our results and Karpen and DeVore (1987) show that our 3D
model approximations are valid and could capture well the evolution of our model
for a solar atmosphere.

The results hereby presented suggest that the nonlocal heat flux is more efficient to
transport energy to the lower parts of the atmosphere. That is expected since the
curves for the divergence of heat flux show broader peaks in NL model, indicating a
better distribution of energy. The narrow peaks in the classical model favor higher
temperature gradients and consequently more heat for the base of TR over time.
Thus, there is a shift in TR height when comparing the heat flux formulations. The
delocalization kernel also leads to less energy loss in corona as it could be seen in the
results along the magnetic field line. The results along the field line suggest that a
different heat flux not only changes the way heat is transported, but also influences
the main heating mechanism in the coronal part of the loop. The classical heat
flux predicts that the leading mechanism comes from current dissipation whereas
the nonlocal presents the compressional heating as the main heating process in the
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upper part of the loop.

Our numerical experiment indicates that there are differences for classical and non-
local formulation for simulated plasma having parameters similar to the ones found
in active regions. We cannot extrapolate our results to actual active regions due to
some facts. First, our simulation box is actually small when compared to typical size
area of active regions in the Sun, that limits the length of our loop. The transition
region in our model was broader then predicted by standard solar atmosphere mod-
els. We also have not taken into account that the plasma is no longer fully ionized
in lower atmosphere, therefore the results might be affected because part of the en-
ergy transported there might be lost to excitation and ionization process as it was
emphasized by Karpen and DeVore (1987). For last, the nonlocal formulation used
here was constructed for a plasma with features found in fusion plasmas presenting
a high gradient temperature and long mean free paths (BRANTOV; BYCHENKOV,
2013). But still, our results suggest that an atmosphere consisting of a plasma with
similar parameters found in corona and with high temperature gradients presents
a temperature profile quite sensitive to the choice of heat flux. Furthermore, the
heating of plasma presents a dependency on the heat flux formulation used. As the
sources and transport terms are influenced by the choice of the heat flux, the im-
portance of current dissipation as the main heating mechanism in corona is put into
question as the NL model predicts the compressional heating having a major role
as a heating process. Therefore, the heat flux role might not be limited to transport
of energy, but it may also influence results regarding other process in the thermal
evolution of the system.

It would be interesting to study if those different heat flux formulations would con-
siderable impact the magnetic field evolution. The induction equation suggests that
it might be the case since we have observed differences in the velocity divergence
which rules the evolution of magnetic field strength. Such investigation demands
longer simulation times because the field time scale is around one hour whereas
our simulations would only describe the evolution of the system for thirteen min-
utes. Another necessary improvement to study the magnetic field evolution would
be to have a proper description of the active region size. That can be achieved by
implementing a stretched grid in x-y direction that is refined in the center of the
simulation box where one find stronger magnetic field. Such modifications would
also allow to investigate the importance of the heat flux formulation depending on
the strength of magnetic flux of different active regions. In summary, there are still
a lot of investigation to be pursued within the topic of the heat flux formulation
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for weakly collisional plasma. And actually, the results of this thesis suggest that
finding a correct description for heat flux might be crucial to understanding other
aspects of the thermal evolution of the solar atmosphere.
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