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ABSTRACT

This work explores synchronization regarding networks of active units. More specif-
ically, we focus on the Kuramoto Model (KM), which is one of the most successful
models for collective behavior. Agents here are modeled as phase-oscillators, in the
sense that they are represented by a unidimensional state with a 2π increment for ev-
ery complete cycle. Such model is remarkably important due to its relative simplicity
and wide range of applications, either as one of its variations or as a building block for
other systems. Given a time series obtained from an oscillatory phenomenon, phase
assignment is the name of the process of choosing phase-variables for it. The first
contribution (I) of this thesis is a test bed to evaluate phase assignment method-
ologies: the Double Strip Test Bed (DSTB). This is done by defining a chaotic
oscillator surrogate by embedding phase-variable from a KM into suitable three di-
mensional surface. DSTB allows comparison between methods of phase assignment
for time series since it provides an a priori reference phase-variables. For the sec-
ond contribution (II), we introduce a generalization of the KM: the Deserter Hubs
Model (DHM). It corresponds to a non-linear coupling scheme, where oscillators can
shift from conformist to contrarian under the influence of a sufficiently large num-
ber of neighbors. This scheme holds analogy with neural synchronous oscillations
at Parkinson disease. Therefore, we were able to: (i) give sufficiently conditions for
phase locking; (ii) numerically show several qualitative behaviors; and (iii) corre-
late some of them with metrics from the corresponding coupling graph. The last
contribution (III) deals with the classic version of KM, introducing a new ques-
tion: Does the position of non-identical oscillators into the nodes of a graph affect
synchronization? In particular, we are interested in homophily/heterophily configu-
rations, which corresponds to multi-agents systems whose units tend to bond with
others with similar/dissimilar characteristic in comparison with themselves. Thus,
we present numerical evidences that Similar patterns favor the emergence of synchro-
nization for small coupling parameter, while Dissimilar patterns undergoes abrupt
synchronization for larger coupling values.
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REDES DE OSCILADORES DE FASE: SINCRONIZAÇÃO E
APLICAÇÕES

RESUMO

Este trabalho explora sincronização em redes de unidades ativas. Mas especifica-
mente, foca-se no Modelo de Kuramoto (KM), um dos mais bem sucedidos modelos
de comparamento coletivo. Os agentes aqui são osciladores de fase, no sentido de
que são representados por uma variável unidimensional com incrementos de 2π para
cada ciclo completo. Tal formulação é notavelmente importante devido a sua relativa
simplicidade e vasta gama de aplicações, como uma de suas variações ou como bloco
componente de outros sistemas. Dada uma série temporal obtida empiricamente,
atribuição de fase é o nome do processo de escolha de várias de fase. A primeira con-
tribuição (I) desta tese é um testbed para avaliar metodologias de atribuição de fase:
o Double Strip TestBed (DSTB). Define-se para tanto um sistema caótico sintético
através da imersão de variáveis de fase referenciais em uma superfície tridimensional.
Com isso, o DSTB permite a comparação entre métodos de atribuição de fase. Para
a segunda contribuição (II), é introduzida uma generalização do KM: o Deserter
Hubs Model (DHM). Esse modelo corresponde a um esquema de acoplamento não
linear, onde os osciladores podem mudar de conformistas para contrários, caso a
influência dos osciladores vizinhos seja suficientemente grande. Tal esquema possui
analogia com redes neurais de osciladores síncronos no contexto de mal de Parkinson.
Obtém-se daí: (i) condições suficientes para travamento de fase; (ii) exemplificação
de diversos comportamentos qualitativos; (iii) uma correlação entre a proporção de
travamento de fase e quantificadores de rede para o grafo de acoplamento. Por fim,
a contribuição (III) trata da versão clássica do KM, introduzindo uma nova questão:
como o posicionamento de osciladores não idênticos nos nós de um grafo afetam a
sincronização? Em particular, estudaram-se configurações do tipo homofilia/hetero-
filia, correspondendo a sistemas multiagentes cujas unidades tendem a conectar-se
com outras que possuam características Similares/Dissimilares em comparação a
eles próprios. Evidências numéricas são apresentadas mostrando que padrões Simi-
lares favorecem a emergência da sincronização para valores de acoplamento baixo,
enquanto padrões Dissimilares exibem sincronização abrupta para valores elevados.
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1 INTRODUCTION

1.1 Complex networks as an interdisciplinary science

Several authors choose Euler’s solution of the Königsberg problem (EULER, 1741)
as the starting point to introduce complex networks. At the end of sec. XVIII, that
problem was merely a cultural trivia with unknown answer, asking whether it is
possible to find a path that crosses each of the seven bridges, as depicted in Fig.
1.1(a), once and only once.

More important them Euler’s answer itself, his abstraction level taking into account
the relation between nodes and edges, that is, system units and the interconnections
between them (Fig.1.1(b)), became the core of modern graph theory.

Another major landmark of the field was the Erdös-Rényi model (ERDÖS; RÉNYI,
1959), which aimed to describe larger real-life networks not necessarily based on
its individual shapes, but in terms of their formation rules and statistical proper-
ties, what eventually became known as complex networks. This network topology
corresponds to random graphs and they were extensively and successfully studied
through algebraic and number theory.

As computational power and experimental data availability grew, Ref. (WATTS;

STROGATZ, 1998) provided evidences that hardly any sufficiently large complex net-
work fit into the Erdös-Rényi model. Yet, the authors of that article introduced
the concept of small-world networks, which are characterized by chains of highly

Figure 1.1 - The problem of the Seven Bridges of Königsberg. Adapted from:

https://en.wikipedia.org/wiki/SevenBridgesOfKonigsberg

1



clustered nodes combined with random long-range edges, yielding smaller graph di-
ameter. After that, small-world structure have been reported at metabolic networks
(JEONG et al., 2000), foodwebs (MONTOYA; SOLÉ, 2002), co-authorship of mathemati-
cians (BARAHONA; PECORA, 2002), on the level of cortical in the brain (SPORNS;

ZWI, 2004), among others.

Even so, small-world framework could not explain the node degree heterogene-
ity found for instance at links among sites in the World Wide Web. Thus, Ref.
(BARABÁSI; ALBERT, 2002) introduced the so-called scale-free networks, which are
characterized by the existence of hubs, that is, a few nodes have a very large num-
ber of connections, whereas most of them have only a few. Examples of scale-free
networks were later found in several of social and biological contexts like social
networks (BARABÁSI, 2009), citation networks (BARABÁSI et al., 2002) and the in-
teraction network of proteins (JEONG et al., 2001).

Among other complex networks features we cite community structure (NEWMAN,
2012), symmetry patterns (MACARTHUR et al., 2008), hybrid topologies (CHUNG; LU,
2004) and time varying networks (CASTEIGTS et al., 2012).

1.2 Collective Behavior and Synchronization

Technology has lead humankind to unprecedented interconnectivity. By 2020, there
will be 50 to 100 billion devices connected to the so called Internet of Things (TRAP-

PENIERS et al., 2013). Therefore, strategies to collectively ensure safety, reliability
and rational use of resources will become even more critical from communicating
household appliances (REINISCH et al., 2010), self balancing cloud storage servers
(BONVIN et al., 2010) and electrical power grid networks (BROWN, 2008), to name a
few applications.

As the numbers of members of such systems scale up, the cost to control the entire
group from a single master authority often becomes unfeasible (WURMAN et al.,
2008). Another requirement, which is crucial for ensembles of autonomous vehicles
and also spacecraft formation (NAG; SUMMERER, 2013; BENNET; MCINNES, 2012),
is robustness against communication failures and time delay (ZHANG et al., 2013).
As a result, each of these synthetic ecosystems demand low or even the absence of
a centralized control (TURCI; MACAU, 2012).

A scenario which encompass all these features is provided by the collective behav-
ior (STROGATZ, 2001; SARNE; GROSZ, 2013; GURUPRASAD; GHOSE, 2013; CANEDO-
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RODRIGUEZ et al., 2012). Broadly speaking, dynamics emerges here from the interac-
tion of individual active units. Consider, as example, swarm intelligence (ZHANG et

al., 2014), where members individually follow simple rules whose combined outcome
yields sophisticated group properties. As in the Aristotle’s memorable quote, one
tries to unravel how the whole becomes larger than the sum of its parts, inspired by
biological systems (VICSEK; ZAFEIRIS, 2012). About flocks of birds, Ref. (THIEBAULT

et al., 2014) argues that aggregation and flocking improves foraging (THIEBAULT et

al., 2014), while (CAVAGNA et al., 2015) discusses group turning. School of fishes can
be seen as models to cooperation and social decision making (BSHARY et al., 2014).
Besides, collective motion could be an evolutionary response to detect and respond
to predators (IOANNOU et al., 2012).

Our present work focus on collective behavior that emerges from networks of cou-
pled oscillators (BARABÁSI, 2003; TANNER et al., 2003; OLFATI-SABER; MURRAY,
2004; LIN et al., 2004; PALEY et al., 2005; LEONARD et al., 2007). At scenario, active
agents are identified with the cycles they describe in phase space, in analogy to un-
damped simple pendulums (FIGUEIREDO; NEVES, 2005). Oscillators influence each
other through communication channels defined by coupling network edges, allow-
ing them to evolve from unordered initial conditions towards ordered configurations
fostered by the adjustment of their rhythms. This phenomenon is generically called
synchronization and commonly conveys swarm intelligence in the form informa-
tion/energy flow, which can be expressed in a myriad of qualitative behaviors like
full-synchronization, phase-locking, intermittent synchronization, remote synchro-
nization, chaos, chimeras (REKA; BARABÁSI, 2002; BOCCALETTI et al., 2006; YU et

al., 2010; JI et al., 2013; PIKOVSKY et al., 2003; BALANOV et al., 2010).

There are ubiquitous phenomena in biological systems that can be studied as net-
works of coupled oscillator. It is the case of heart cells, which oscillates according
to the rhythm originated from the sinoatrial node (HUANG et al., 2011; SHOUCRI,
2011); primary visual cortex experiments provide strong evidence that neuron syn-
chronization plays fundamental role at the sensory integration of the different visual
field parts (BEER, 2014; FREEMAN et al., 2013); the proper function of the hippocam-
pus in the brain would be related with complex pattern of chaotic spatial-temporal
activities produced by neuron network (CESSAC; SAMUELIDES, 2007; ZEMANOVÁ et

al., 2006), whose change in synchronization level is associated with epileptic seizure
(CYMERBLIT-SABBA; SCHILLER, 2010).

One could also cite engineering challenges from astronomy and astrophysics, for
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instance, the Very Large Array (VLA) (QUIRRENBACH, 2001), which is a radio-
astronomy interferometer. Nowadays, this array corresponds to 27 antennas of 25m
diameter, geometrically distributed in a “Y” shape in the American city of Socorro,
New Mexico. Such arrangement could be more efficient by embedding their anten-
nas into satellites, so they could occupy larger areas and be free of atmospheric
interferences.

In applications like this, we have autonomous agents whose dynamics must remain
synchronized, in the sense that their relative position and direction must satisfy
certain properties (LEONARD et al., 2007). Moreover, such formation must be ro-
bust under travel control and be capable of reconfiguration for different observation
objectives (SCHARF et al., 2003; SCHARF et al., 2004).

1.3 Contributions

The core of this thesis is a mathematical model of non-identical phase-oscillators,
mutually coupled via common mean field: the Kuramoto Model (KM) (KURAMOTO,
1975), first introduced for chemical oscillators. Roughly speaking, a phase-oscillator
corresponds to a cyclic unit whose dynamics is parametrized by a continuous quan-
tifier with 2π increase for every complete revolution.

Studying this system, Kuramoto identified a synchronization transition to an oscil-
lating global mode when the coupling strength is larger than a critical value, which
is proportional to the range of the distribution of the natural frequencies. Over the
time, subsequent outcomes based on Kuramoto propositions have shown that his
approach can be used as a framework to several natural and technological systems
where an ordered behavior (synchronization) emerges from the interactions of many
dynamical agents (ACEBRÓN et al., 2005; STROGATZ, 2000).

Furthermore, others have shown that the KM can be exploited as a building block
to develop highly efficient strategies to process information (FOLLMANN et al., 2015;
VASSILIEVA et al., 2011) and distributed multi-agent coordination (LEONARD et al.,
2007; CAO et al., 2013).

The first contribution (I) of our present work deals with a practical issue related
to the phase assignment problem (PIKOVSKY et al., 2003). Some synchronization
regimes like phase-locking can be characterized only in terms of phase-variables.
However, assigning such variables to time series from experimental data is not triv-
ial, specially for chaotic oscillator with non-well defined rotation center. There are
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several numeric methods to perform this task, but the comparison between these
methods is not straightforward. Thus, we introduced at Ref. (FERREIRA et al., 2015),
The discrete complex wavelet approach to phase assignment and a new test bed for
related methods Appendix A, a test bed for this class of problems. It applies the KM
by embedding trajectories of its units into a three-dimensional surface, and using
them as the input for phase assignment techniques. This approach was innovative
since it provided a priori reference phase variables, improving the cross analyzes of
phase assignment techniques.

The second contribution (II) is a generalization of the KM introduced at Ref. (FRE-
ITAS et al., 2015a), Partial synchronization in networks of non-linearly coupled os-
cillators: The Deserter Hubs Model (DHM), Appendix B. It introduces a non-linear
coupling schemes, in such a way that oscillators can shift from attraction to repul-
sive behavior if the pressure by a sufficiently large number of neighbors becomes too
intense. Such design is motivated by stimulation of neural synchronous oscillations
at Parkinson disease by a nonlinear feedback (POPOVYCH et al., 2005). As a result,
we were able to provide sufficient conditions for stable phase-locking in the DHM
and also illustrate a myriad of other qualitative dynamics regimes.

Finally, our third contribution (III) from Ref. (FREITAS et al., 2015b), Synchroniza-
tion versus neighborhood similarity in complex networks of non-identical oscillators,
Appendix C, deals with the classic version of KM, introducing a new question: Does
the position of non-identical oscillators into the nodes of a graph affect synchro-
nization? In particular, we are interested in homophily/heterophily configurations
(LOZARES et al., 2014), which corresponds to multi-agents systems whose units tend
to bond with others with similar/dissimilar characteristic in comparison with them-
selves. The individuality of each oscillator here is expressed by its natural frequency.
Thus, we present numerical evidences that Similar patterns favor the emergence of
synchronization for small coupling parameter, while Dissimilar patterns undergoes
abrupt synchronization for larger coupling values.

1.4 Thesis Structure

This text is divided into two parts. In the first one, comprising the first two chapters,
we lay the theoretical foundation for our results, while the main contributions of this
work are presented in the second part.

In Chap. 2, we include the complex networks outline. One will find there the termi-
nology used, graph notations and metrics, common complex network topologies, as
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well as their associated algorithms for construction.

Synchronization is the subject of Chap. 3. We tried to select topics from the theory
to provide a concise path from the subjective idea of rhythm adjustment until the
Kuramoto Model, including some of its classic properties. Several qualitative syn-
chronization regimes and metrics to characterize them are also discussed, like the
mean field and partial synchronization index (GÓMEZ-GARDEÑES et al., 2007).

After that, we have the second part starting at Chap. 4 with contribution (I). Since
the DCWA was already deeply discussed in another PHD thesis from our research
group (FERREIRA, 2014), we focus on the test bed for phase assignment methods
itself. We perform an overview of this class of problems, analyzing via test beds
some common techniques to solve them.

Then, our studies contribution (II) and (III) are given in Chapters 5 and 6, respec.

Ideas for future research and a summary of the conclusions can be found in the
Chap. 7.
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2 COMPLEX NETWORKS

Complex Networks corresponds to an abstraction level of systems regarding solely
static elements and the interconnections among them. The language to describe these
networks comes from graph theory (STEEN, 2010), so we introduce in this chapter
some of its concepts and notations. The terms network and graph are regarded here
as synonyms.

Actually, the adjective “complex” emphasizes that units bound to each other follow-
ing statistical properties, commonly called network topologies (BARABÁSI; ALBERT,
2002). The network metrics and the topologies employed in this work are discussed
in the following sections.

2.1 Elements of graph theory

A graph G = (V,E) consists of a set of vertices (or nodes) V = {v1, . . . , vN} and a
set of directed edges E = {e1, . . . , eM} of pairs, where ek = (vi, vj) and vi, vj ∈ E.
The symbols v1, . . . , vN are merely vertex labels. If (vi, vj) ∈ E we say that vi is
connected (or adjacent) to vj. A subgraph G̃ =

(
Ṽ , Ẽ

)
conveys the idea of a graph

inside the graph, that is, G̃ is a graph satisfying Ṽ ⊂ V and Ẽ ⊂ E.

If (vi, vj) ∈ E implies that (vj, vi) also belongs to E, then we say that the graph
is bidirectional (or undirected), in contrast with the general directed case. Unless
explicitly stated, the term edges refers to bidirectional edges. Connected nodes are
also called neighbors and the set of all neighbors of a node is its neighborhood. A
self-loop is an edged which connects a vertex vi ∈ V to itself, that is, (vi, vi) ∈ E. A
bidirectional graph without self-loops is called simple.

A graph is called connected or convex if for any two vertexes vi, vj ∈ V , there is
a sequence of edges connecting them. Otherwise, we say that the graph is uncon-
nected. All subgraphs of G satisfying the connectivity property are called connected
components of G. Clearly, any connected graph has at least N − 1 edges.

We restrict ourselves to simple connected graphs in this work, see Fig. 2.1. As will be
presented in the next chapter, in terms of networks of coupled oscillators, it means
that all influences are mutual, there is no self direct feedback in the node.

An N -vertexes graph may be represented by its adjacency matrix, which is a N ×N
matrix A. If the i-th vertex is connected with the j-th then Aij = 1, otherwise
Aij = 0. The absence of self-loops and the edge bidirectionality imply that A is a
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(a) (b)

A =


0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

 B =


1 −1 1 −1 0 0 0 0
−1 1 0 0 1 −1 0 0

0 0 −1 1 −1 1 1 −1
0 0 0 0 0 0 −1 1



Figure 2.1 - Example of graphs and graph notations: (a) simple connected graph; (b) di-
rected graph with a self-loop and two connected components. Directed edges
are depicted as blue arrows and undirected ones as black lines. Matrices A
and B are the adjacency and incidence matrix of the graph in Subfig. (a).

symmetric matrix with zeros in its diagonal.

Other graph notations are also available. Let B be the incidence matrix of a graph.
Thus, B is a matrix with N rows andM columns, whereM is the number of directed
edges of the network. The columns of B represent the directed edges of the graph:
if the k-th directed edge of the graph goes from the i-th node to the j-th node, then
all entries in the k-th column of matrix B will null, except for entries Bik = 1 and
Bjk = −1.

2.2 Networks Metrics

Network metrics1 allows us to quantitatively evaluate graphs properties. Of course,
the network size N , the quantity of edges M and the quantity of connected compo-
nents are network metrics.

The Graph Mean Distance (GMD) conceals information about communication effi-
ciency in the graph. This quantifier is defined as the mean path length connecting
the shortest path between every two vertices in the network, that is,

GMD = 1
N(N − 1)

N∑
i,j=1

dist(vi, vj) , (2.1)

where dist(vi, vj) denotes the shortest path in the graph between vi and vj. If there
is no connection between vi and vj, dist(vi, vj) =∞. Similarly, the Graph Diameter

1We employ the term metric in this text as a synonymic to quantifier.
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(GD) is defined as the maximum value of dist(vi, vj) over all vi, vj ∈ V .

The quantity of neighbors of the i-th node di is called its (node) degree. In terms of
the adjacency matrix A, we have that di := ∑N

j=1Aij. From the algebraic point of
view, we can make use of the Laplacian matrix of a graph L := diag(d1, . . . , dN)−A,
where diag(.) is the N × N null matrix except for its diagonal2. The main interest
here is about the eigenvalues of L: 0 ≤ λ2 ≤ . . . ≤ λN . The second eigenvalues λ2 is
known in the literature as the algebraic connectivity. It can be proven that λ2 > 0
if and only if the graph is connected (LI; ZHANG, 1998). Besides, λ2 is positively
correlated with the graph diameter, while there is a negative correlation between
dmax and λN(LI; ZHANG, 1998).

The degree distribution histogram is another tool to statistically characterize network
topologies. Yet about this histogram, if one fits a curve (node degree × density)
with y(x) = cx−γ, this parameter γ is associated with the Scale-Free property to be
explored later.

The (global) clustering coefficient measures the tendency of nodes to gather and its
is based on triplets, which are groups of three nodes sharing only two edges (open
triples) or three edges (closed triples). More specifically, this measure corresponds
to the ratio between the quantity of close triplets over the total number of triples
in the graph (open and closed) (BARABÁSI; ALBERT, 2002).

These metrics will be illustrated in the following sections along with ways to con-
struct some common network topologies. The reader may be aware that although
there is no restriction about N for the algorithms, the statistical properties may be
significant only for sufficient large network sizes.

2.3 Deterministic topologies: All-to-all, k-Regular and Ring networks

The All-to-all (or Full or Complete) network topology corresponds to graphs with
all possible edges. In other words, for every two vertices in the graph, there is an
edge connecting them.

A graph is called k-Regular when all its nodes have precisely degree k. Since multiple
edges between nodes are not allowed, a Regular graph with N nodes has to satisfy
k ≤ N−1. We consider k to be even so, if one fixes vertex labels V ={v0, . . . , vN−1},
then vi connects with vi−k/2, . . . , vi−1, vi+1, . . . , vi+k/2, where sub-index sum is mod-

2We can also express the Laplacian matrix as L = 1/2BB>, where B is its incidence matrix and
> denotes matrix transpose
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All-to-all 4-Regular Ring: 2-Regular Star

Figure 2.2 - Example of deterministic graphs with N = 6 nodes.

ulus N .

The 2-Regular case is commonly known as Ring. The graph with N nodes and N−1
edges, where there is a single central node v0 connecting all other N − 1 nodes is
called Star topology. See Fig. 2.2.

For instance, All-to-all graphs yield λ2 = . . . = λN = N/(N − 1); while star graphs
have λ2 = . . . = λN−1 = 1, λN = 2.

2.4 Random networks: the Erdős Réniy topology

Regular networks can be important for theoretical and some engineering applica-
tions, but they are seldom found in social or biological systems (BARABÁSI; ALBERT,
2002). One of the firsts attempts to model these systems occurred in 1959 by Paul
Erdős e Alfréd Rényi. The Erdős Réniy (ER) topology regards graphs built by ran-
domly picking edges with uniform distribution, without repetition. As we want to
generate connected graphs, the Alg. 2.1 constructs first a connected component U

(a) (b)

Figure 2.3 - Example of ER network with N = 250 nodes, M = 500 edges: (a) graph
visualization; (b) degree distribution histogram and a fitting Gaussian curve
in blue. Network metrics: GD= 11, GMD= 4.157, dmax = 12, CC= 0.019,
λ2 = 0.211, λN = 13.479.
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and then adds the remaining M −(N − 1) random edges. The complementary set
of U relative to V is denoted by UC .

Algorithm 2.1 Generate Connected ER Graph
Input: Network sizes N ; quantity of edges M , with M ≥ N − 1
Output: Graph G =(V,E)

1: V ←{v1, . . . , vN} . Node label definition
2: E ←{}
3: Pick any w ∈ V .
4: U ←{w}

5: For i ← 1 until N − 1 do: . Stage 1: Building connected component
6: Pick any v ∈ UC .
7: Pick any w ∈ U .
8: U ← U ∪{v}
9: E ← E ∪{(v, w)}

10: End For

11: For i ← N until m do: . Stage 2: Adding the remaining edges
12: Pick any v, w ∈ V , such that (v, w) /∈ E
13: E ← E ∪{(v, w)}
14: End For

See Fig. 2.3(a) for an example of this network topology. Since there is no preferential
attachment rule to establish edges in the ER topology, node degree distribution is
close to Gaussian (Fig. 2.3(b)).

2.5 Small-World networks: Watts-Strogatz topology

Clustering is a common property in social networks, with groups sharing high edge
density (BARABÁSI; ALBERT, 2002). This characteristic refers for instance to circle
of friends, but ER topology does not exhibit it. Thus, Duncan J. Watts e Steven
Strogatz develop their model in 1998 to allow clustering while retaining the short
average path lengths of the ER model.

The Watts-Strogatz topology (WS) is a family of graphs based on the rewriting
parameter3 p ∈ [0, 1]. First, a k-Regular graph is constructed, then each edge is

3Newman-Watts is another small-world topology which inserts new edges instead of rewiring
existing ones.
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(a) (b)

Figure 2.4 - Example of WS network with N = 250 nodes, M = 500 edges (k = 4 and
p = 0.25): (a) graph visualization; (b) degree distribution histogram and
a fitting Gaussian curve in blue. Network metrics: GD= 11, GMD= 5.382,
dmax = 8, CC= 0.264, λ2 = 0.119, λN = 9.606.

rewired with probability p. As a result, WS networks interpolates between k-Regular
(p = 0: no rewiring), to ER Graphs (p = 1: all edges rewired). The graph connectivity
check (STEEN, 2010) was included at Alg. 2.2 because this property may be violated
during the rewiring phase. Unless explicitly state, we employ WS topology with
p = 0.25.
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Algorithm 2.2 Generate Connected WS graph
Input: Network size N ; mean degree 0 < k ≤ N − 1; rewiring probability p ∈ [0, 1]
Output: Graph G =(V,E), with M = Nk/2 edges

1: V ←{v0, . . . , vN−1} . Node label definition
2: A←{}

3: For i ← 0 until N − 1 do: . Stage 1: k-Regular graph
4: For j ← 1 until k/2 do:
5: A← A ∪{(vi, vi+j)}
6: End For
7: End For

8: For all (v, w) ∈ E do: . Stage 2: Rewiring edges
9: r ← RandomBetween [0, 1]

10: If r ≤ p Then
11: E ← E/{(v, w)} . Remove {(v, w)} from E
12: Pick u ∈ V such that (u, v) /∈ E
13: E ← E ∪{(u, v)}
14: End If
15: End For

16: If G =(V,E) is not connected Then . Accept only connected graphs
17: Go to 1:
18: End If

Fig. 2.4 illustrate this topology. Note that its CC is more than ten times larger than
the CC obtained in the ER example 2.3.

2.6 Scale free networks: Barabási-Albert topology

ER and WS topologies successfully described some important phenomena, even so,
they could not explain most of the large scale networks like interconnections at the
World Wide Web; the collaboration of movie actors in films or Protein-protein in-
teraction networks. Therefore, Réka Albert and Albert-László Barabási (BARABÁSI;

ALBERT, 2002) proposed their the Barabási-Albert (BA) topology. The main charac-
teristic of it is the presence of hubs, that is, few nodes with remarkably high degree,
while the majority of nodes remain with few connections4.

BA networks are parameterized by m0,m, with m0 ≥ m. First, a clique5 with m0

4Some authors refer to such topology as without scale
5A clique is subgraph where all nodes are neighbors among themselves, that is, it is an all-to-all
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nodes is constructed and we define it as the initial connected set U , like in the ER
algorithm. Each remaining node joins the connected set through m edges, so m

is the minimum node degree by construction. This new edges follow a preferential
attachment rule in such a way that the probability of a node w ∈ U to be selected is

P (w) = σ(w)∑
w∈U

σ(w) , (2.2)

where σ(v) denotes its degree of v.

From Fig. 2.5 we observe a Scale-Free BA network, meaning that its degree distri-
bution fits a power law. It is commonly assumed for this property to hold that the
exponential parameter γ belongs to the interval [2, 3].

Algorithm 2.3 Generate Connected BA graph
Input: Network size N ; initial clique size m0; minimum degree m
Output: Graph G =(V,E), with M = m0(m0 − 1) /2 + (N −m0)m edges

1: V ←{v1, . . . , vN} . Node label definition
2: A←{}

3: Set U ={v1, . . . , vm0}, m0 . Stage 1: Building initial clique
4: For i ← 1 until m0 − 1 do:
5: For j ← i+ 1 until m0 do:
6: A← A ∪{(vi, vj)}
7: End For
8: End For

9: For i ← m0 + 1 until N do: . Stage 2: Connecting the remaining nodes U
10: For j ← 1 until m do:
11: Draw w ∈ U , according to (2.2), such that (vi, w) /∈ A.
12: A← A ∪{(vi, w)}
13: End For
14: U ← U ∪{w}
15: End For

subgraph.
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(a) (b)

Figure 2.5 - Example of BA network with N = 250 nodes and M = 500 edge (m0 = 5
initial clique size and m = 2 minimum degree): (a) graph visualization with
vertex size proportional to degree; (b) degree distribution histogram and a
fitting exponential curve in blue. Network metrics: GD= 6, GMD= 3.47,
dmax = 34, CC= 0.087, λ2 = 0.604, λN = 35.255.
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3 SYNCHRONIZATION

The main synchronization concepts employed in this thesis are presented in this
chapter, laying down the background results and terminology, with emphasis in
phase-oscillators. Most of the content is based on classic literature of the area (YU

et al., 2010; JI et al., 2013; PIKOVSKY et al., 2003; BALANOV et al., 2010).

Observations regarding massive numerical integration of coupled oscillator networks,
Sec. 3.7, and chaotic oscillators, Sec. 3.8 and 3.9, are included as well.

3.1 Preliminary concepts

The study of oscillator synchronization is credited to Christiaan Huygens, a promi-
nent Dutch mathematician and scientist from the XVII century, at what he described
as “sympathy of two clocks”. In his experiment, two suspended clock pendulums, like
in Fig. 3.1, spontaneously adjusted their rhythms due to a small but non-negligible
motion of the beam holding them.

This phenomenon is probably the simplest coupled oscillators prototype, so we will
describe it as foundation. Let α denote the pendulum bob angle related to the
rest position, which is assumed to be periodic with period T . We say that θ is
a phase variable for the pendulum, or any oscillatory process, if it is a quantifier
of its periodic motion, with increments of 2π for each complete period. A more
accurate definition of phase assignment will be given at Sec. 3.2. It suffices for
a while to notice that phase variable encompasses information about oscillator’s
movement from its starting position, as well as its position in a torus, that is, θ
mod 2π. For simplicity, we refer to phase variables using these two interpretations

Figure 3.1 - Original drawing of Christiann Huygens illustrating two suspended pendulum
clocks. Source: https://adcs.home.xs4all.nl/Huygens/17/tekenaar.html
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Figure 3.2 - Scheme of two identical isolated pendulum showing processes α1, α2 (left side)
and phase variables θ1, θ2 evolution with time (right side).

without distinction. Variables of each oscillator will be identified by sub indexes
and we assume that their periods are the same. Figure 3.2 displays two isolated
completely identical pendulums scheme. As they start to oscillate from distinct
initial conditions, we observe non-zero constant phase difference over time since
there is no influence between them.

Let us now allow these two completely identical pendulums to interact as in Fig. 3.3,
via a non-absolute rigid beam like in Huygens observations. They, again, start their
movement from different initial conditions. Therefore, the motion of each pendulum
can be transmitted through the supporting structure and then to the other one, by
means of small bending or vibrations. Even with this weak influence, it may adjust
the rhythm and we may obtain full (phase) synchronization, where phase difference
in the unit circle vanishes with time, that is, |θ1(t)− θ2(t)| → 0.

The next step is to assume oscillators with distinct periods T1, T2, due to tiny pa-
rameter mismatch in their mechanisms for example. At this context, one no longer
expects full synchronization. We might have phase-locking, which is a synchroniza-
tion type where their phase differences converge to a constant value, see Fig. 3.4(a).
Another way to characterize this regime is

∣∣∣θ̇1(t)− θ̇2(t)
∣∣∣→ 0, in other words, oscil-

lators reach the same instantaneous frequency after a transient time1. If mismatch
between oscillator’s periods is too high or if the coupling is not strong enough, then

1At this point of the text we loosely regard transient time as a large enough time for the system
dynamics to become close to its long term behavior.
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Figure 3.3 - Scheme of two identical coupled pendulum showing processes α1, α2 (left side)
and phase variables θ1, θ2 evolution with time (right side).

(a) (b)

Figure 3.4 - Scheme of two non-identical coupled pendulum showing processes α1, α2 and
phase variables θ1, θ2 evolution with time: (a) phase-locking; (b) asynchronic-
ity.

we have asynchronicity, subsystems are affected by each other but they do not come
to a “consensus”, see Fig. 3.4(b).

An advantage of such framework is that a large class of oscillators under weak
influence can be reduced to phase analysis in a vicinity of its limit set. This topic
will be discussed in the next section.
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(a) (b) (c)

Figure 3.5 - Phase assignment example for van der Pol oscillator with µ = 1.5: (a) Two
trajectories (in blue and orange) of (3.2) near its stable periodic solution
(in black); (b) Phase variable assignment according to (3.4) along the limit
cycle. Black dots mark θ = 0, π/8, π/4, . . . , 2π; (c) Isochrone Σ corresponding
to constant phase variable θ = 0.

3.2 Reduction to phase oscillators

We outline here the physical argument from (PIKOVSKY et al., 2003) about conditions
for more general oscillators to be approximated by phase oscillators.

Consider a d-dimensional ordinary differential system

ẋ = f(x) , (3.1)

containing a limit cycle, that is, a stable periodic solution with period T0 (HIRSCH

et al., 2004). So, in a vicinity of this solution, the trajectory can be regarded as self-
sustained oscillator. As an example, we mention the popular van der Pol equation

ẍ− µ
(
1− x2

)
+ x = 0 (3.2)

for small value of µ (PIKOVSKY et al., 2003), see Fig. 3.5(a).

We introduce phase variable θ to such oscillators as a coordinate along the limit
cycle, such that it grows in the direction of the motion and gains 2π after each
rotation. In the absence of external forces, phase must be defined assuring uniform
growth in time

θ̇ = ω0, (3.3)

where ω0 = 2π/T0 is called the natural frequency.
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Eq. (3.3) expresses a key property of oscillators. Perturbations in the direction along
the cycle are neutrally stable, which means they neither grow nor decay with time.
This reflects the property of autonomous dynamical systems to be invariant under
time shifts: if x(t) is a time-dependent solution, then x(t + ∆t) is a solution, too
(PIKOVSKY et al., 2003). Yet, perturbations in transverse directions are attenuated or
amplified (in the case of chaotic oscillators), but these behaviors may not be relevant
to understand the cyclic process. Chaotic oscillator and the Lyapunov exponent,
which is a tool used to study such perturbations, are discussed at Sec. 3.8.

At this point, the reader must be aware that we chose to develop our argumentation
based on uniformly growing phase-variables oscillators. Nevertheless, this hypothesis
can be too restrictive and in several contexts only monotonic growth is required
(PIKOVSKY et al., 2003; BALANOV et al., 2010).

Our aim now is to show a possible phase variable construction. More discussion
about this topic regarding chaotic oscillators can be found at Chapter 4. Let γ(t) be
the stable periodic solution of Eq. (3.1) and Γ := γ([0, T0)). One may assign phase
variable through a straightforward bijection between Γ and [0, 2π) as

γ(t)→ θ(t) := 2π t

T0
, (3.4)

so Eq. (3.3) holds. Fig. 3.5(b) illustrates this phase assignment.

Moreover, phase variables in a vicinity V ⊂ Rm of Γ have to be also defined. To do
so, we need to define the so-called isochrones. Let Φ be the time-T map associated
to the flow of Eq. (3.1), that is, Φ(x(t)) = x(t+ T ). If V is sufficiently close to the
limit cycle, this mapping has all points on the limit cycle as fixed points, and all
points on the vicinity are attracted to it (HIRSCH et al., 2004). Fix a point γ∗ on the
limit cycle Γ and denote by Σ all the points in the vicinity that are attracted to γ∗

under the action of Φ, that is, x0 ∈ Σ if lim
k→∞

xk → γ∗, where xk+1 = Φ(xk), see Fig.
3.5(c). We now extend the definition of phase to the vicinity V , imposing constant
phase value along each isochrone Σ. Therefore, every x ∈ V crosses Γ in a single
point xΓ(θ) following the corresponding isochrone.

Up to this point, isochrones were introduced to allow phase assignment for self-
sustainable limit cycle oscillators. Since we intent to study the interaction between
oscillators using phase variables, we need to include the effects of external forces in
the system dynamics. We reintroduce Eq. (3.1), adding a perturbation to its vector
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field
ẋ = f(x) + εp(x, t) (3.5)

where p(x, t) is the external forcing, which is a periodic function on the variable t
with period T and forcing natural frequency ω = 2π/T satisfying2 ω ≈ ω0. Besides,
we assume ε� ω meaning fast forcing oscillations and weak coupling, proportional
to ε.

In the vicitiny V of Γ, we assign phase variables to solutions of (3.5) and differentiate
it

dθ(x(t))
dt = ∂θ

∂x

dx
dt = ∂θ

∂x
f(x) + ∂θ

∂x
εp(x, t) = ω0 + ε

∂θ

∂x
p(x, t) . (3.6)

The second term on the r.h.s is small (proportional do ε), and the deviations of x
from the corresponding xΓ(θ) at the limit cycle are small too. Thus, we neglect these
deviations and compute it at xΓ(θ) yielding

θ̇ = ω0 + εQ(θ, t) , (3.7)

where
Q(θ, t) := ∂θ

∂x
p(xΓ(θ) , t) (3.8)

Note that Q is 2π-periodic in θ and T -periodic in t.

If one represents Q as a double Fourier series we have

Q(θ, t) =
∑
l,k

al,kei(kθ+lωt). (3.9)

Thus, fast oscillating terms lead to deviations of order ε� ω, while resonant terms,
satisfying kω0 + lω ≈ 0, can lead to large although slow variations of the phase and
are mostly important for the dynamics. So, if we average forcing (3.9) leaving only
the resonant terms with k = −l, we get Q(θ, t) = ∑

k
a−k,keik(θ−ωt) = q(θ − ωt), where

q is a 2π-periodic function. By substitution into (3.7) we have

θ̇ = ω0 + εq(θ − ωt) . (3.10)

If we set now the phase difference ψ := θ − ωt and introduce ν := ω − ω0 as the

2Actually, even this assumption is not strictly necessary and the details of this generalization
can be found at (PIKOVSKY et al., 2003).
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dissonance between oscillators, the previous equations reads

ψ̇ = −ν + εq(ψ) . (3.11)

Eq. (3.11) reveals a profound characteristic of oscillators near its limit cycle under
weak coupling: its dynamics can be described in terms of phase difference ψ, by a
vector field parameterized by the dissonance ν, coupling parameter ε and coupling
function q.

3.3 A model of mutually coupled oscillators

As an introduction to networks of coupled oscillators, we consider the traditional
phase variable model comprising two mutually coupled oscillators

θ̇1 = ω1 + ε sin(θ2 − θ1)
θ̇2 = ω2 + ε sin(θ1 − θ2)

(3.12)

where ε ∈ R is the coupling gain or coupling parameter, which adjusts the intensity
of influence between oscillators; and ωi := 2π/Ti denotes oscillator’s natural (or an-
gular) frequencies. The uncoupled case is characterized by ε = 0, where oscillators
travel the torus with constant velocity defined only by their own natural frequency.
The coupling function consists in the sinus of the phase difference, which reflects
two key properties of the interaction between oscillators: (i) sin is 2π periodic, so
influence depends only on oscillator state in the unit circle position, (ii) full synchro-
nization regarding identical oscillator (ω1 = ω2) is a stable regime for any positive
coupling, as will be demonstrated in this section.

If we reduce the problem dimension by rewriting Eq. (3.12) in terms of phase dif-
ference ψ := θ1 − θ2, we obtain

ψ̇ = ν − 2ε sinψ, (3.13)

where ν := ω1−ω2 is the dissonance (or detuning) of this system. We assume ν ≥ 0,
otherwise one can exchange oscillator indexes. Eq. (3.13) is commonly known in the
literature as Adler equation, which is the simplest case of Eq. (3.11).

Of course, negative natural frequencies ωi may not make sense physically. It would
be meaningless to say that fireflies are blinking in “reverse direction”. However, we
can write ωi = 〈ω〉+ ω̃i, where ω̃i are the deviations of each isolated oscillator from
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Figure 3.6 - Scheme of two identical coupled pendulum with repulsive coupling ε < 0,
showing processes α1, α2 and phase variables θ1, θ2 evolution with time.

the mean natural frequency 〈ω〉 :=(ω1 + ω2) /2. Since only the dissonance between
them, ν = 〈ω〉+ ω̃1−〈ω〉− ω̃2 = ω̃1− ω̃2, is relevant to analyze thse system, we may
choose without loss of generality 〈ω〉 = 0. Another way to interpret this assumption
is to consider phase variable θi(t) in a rotating frame with velocity 〈ω〉. Also, we
associate positive natural frequencies with counterclockwise direction in the unit
circle without loss of generality.

One can check that ψ = 0 is an equilibrium point of Eq. (3.13) if and only if
ν = 0. So, such oscillators can reach full synchronization only if they are identical.
Nevertheless, sinψ = 0 yields ψ = 0 or ψ = π. The stability of these points can be
studied via the differential of the right hand side of this equation, which is given by
−2ε cosψ (HIRSCH et al., 2004). If ε > 0, ψ = 0 is a stable equilibrium point and
ψ = π is unstable. As a result, positive coupling favors phase difference to vanish
and this is why it is called attractive coupling. On the other hand if ε < 0, these two
equilibrium points exchange roles and we have repulsive coupling. Actually, Huygens
reported such type of phase-locking synchronization where |θ1(t)− θ2(t)| → π, which
is called in modern terminology as anti-phase synchronization as depicted in Fig.
3.6.

Consider without loss of generality ν > 0, otherwise exchange indexes between
oscillators. If ε ≥ 0, the first equilibrium point arises at ψ = π/2 when ε equals
to the critical phase-locking value Ł = ν/2. Except at equilibrium point itself, all
trajectories converge to it by traveling counterclockwise. In terms of Eq. (3.12),
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Figure 3.7 - Bifurcation Diagram for the Adler Equation (3.13) with ν ≥ 0. The critical
coupling parameter for phase-locking is εPL = ν/2. Solid and dashed blue lines
correspond respectively to stable and unstable equilibrium points.

it means that oscillators reach phase-locking with the first oscillator a quarter of
circle ahead the second one. Also, there is a saddle-node bifurcation at ε = εPL.
As ε becomes larger than this critical value, two equilibrium points detach from
it: a stable one ψ∗ := arcsin(ν/2ε) and an unstable one ψ̄ := π − arcsin(ν/2ε).
The larger the coupling parameter becomes, the closer ψ∗ and ψ̄ gets to 0 and π,
respectively. In other words, oscillators become phase-locked increasingly closer to
each other, nearer to full synchronization, as one pushes the coupling parameter ε
beyond εPL. Repulsive coupling ε > 0 yields analogous behavior with stable and
unstable equilibrium points exchanging roles, see Fig. 3.7.

The two coupled pendulums is an example of nearly identical oscillators, however
this is not the general case. If ε satisfies 0�|ε| < εPL, the system is still capable to
exhibit weaker synchronization forms apart from phase-locking. To discuss it, Eq.
(3.12) will be recast as a gradient system ψ̇ = −∇F (ψ) with potential field

F (ψ) := −νψ − 2ε cosψ. (3.14)

Therefore, one can visualize the trajectories of this system as particles sliding down
the curve defined by F (ψ), Fig. 3.8(a). We will employ this pictorial explanation to
introduce a synchronization diagram over the space-parameter ν×ε, see Fig. 3.8(b).

At marks (1,2) from Fig. 3.8(b), we are inside the phase-lock region where ε <
εPL = ν/2, which is known in the literature as first order Arnold Tongue. As one
increases the value of ε from (2) to (1), ψ∗ becomes closer to 0, which corresponds to
phase-synchronization with smaller phase difference (see also Fig. 3.7). In terms of
the potential field, there are local minima ψ∗ and the particle rests in one of them.
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(a) (b) (c)

Figure 3.8 - Examples of dynamics with different values of dissonance ν and coupling
parameter ε, numbered marks are depicted with unique colors representing
different values of ν, ε: (a) Potential field, black corresponds to local minima
ψ∗; (b) Arnold Tongue, phase-locking occurs at the gray area defined by |ν| ≤
εPL = ν/2; (c) Phase difference ψ obtained after transient time.

Mark (3) lays right after the boundary of this region. Instead of local minima, we
have a slightly tilted plateau and steep slopes. Thus, we observe long epochs where
phase difference varies slowly intermingled with abrupt spins of one oscillator re-
lated to the other. This intermittent phase-locking synchronization regime is known
as phase-slips. At Mark (4), further away from the Arnold Tongue boundary, the
intervals of time with almost constant phase difference become shorter.

If the coupling parameters is too small related to the dissonance, like at Mark
(5), the potential field becomes close to a tilted plane. We say that there is no
synchronization since phase difference grows almost uniformly.

3.4 Kuramoto model

When one considers ensembles of coupled oscillators, the pioneer model regarding
N mutually coupled non-identical oscillators introduced by Kuramoto is probably
the most celebrated choice. Beyond the fact that it corresponds to an approximation
of a large class of weakly coupled oscillators (see Ref. (PIKOVSKY et al., 2003) and
Sec. 3.2), the Kuramoto Model (KM) belongs to the core of Winfree’s classical study
about biological rhythms (WINFREE, 1967) and applications like pattern recognition
(FOLLMANN et al., 2015), power grid analysis (FILATRELLA et al., 2008; GRZYBOWSKI

et al., 2016) and community detection in networks (XIE et al., 2013; QUILES et al.,
2016). The state of art related to this model can be found for instance at (RODRIGUES

et al., 2016) .
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We focus in a version of this model where the channels of influence are defined by a
coupling graph G according to the following ordinary equation3

θ̇i = ωi + ε

di

N∑
j=1

Aij sin(θj − θi) , (3.15)

for i = 1, . . . , N , where ω =(ω1, . . . , ωn) ∈ RN are the oscillator’s natural frequencies
and ε is the coupling parameter as in the previous section. The graph G is expressed
by its adjacency N × N matrix A. The i-th oscillator is affected by the j-th one if
Aij = 1; and Aij = 0 otherwise. We consider the coupling graph to be simple, that
is, Aij = Aij and Aii = 0 for all i, j = 1, . . . , N . Besides, G is assumed without loss
of generality to be connected.

At this version of the KM, the coupling parameter is divided by corresponding vertex
degree, di := ∑N

j=1Aij. It yields local mean field coupling model, because if we define
the complex number

Ziei θ̄i :=
N∑
j=1

Aijeiθj , (3.16)

then θ̄i ∈ [0, 2π) regards the average of neighbor oscillator’s phases and Zi ∈ [0, di]
increases with this neighborhood cohesion. Therefore, Eq. (3.15) reads

θ̇i = ωi + ε

di
Zi sin

(
θ̄i − θi

)
. (3.17)

Therefore, each oscillator is affected by the mean neighborhood phase and this in-
fluence is intensified with neighborhood cohesion. This interpretation of the KM
emphasizes its relation with diffusion phenomena, like epidemic (HIRSCH et al., 2004)
and percolation models (CALLAWAY et al., 2000).

The quantifier Zi can be regarded as local order parameter or local mean field4.
The reader can notice that: (1) full synchronization R = 1 is equivalent to Z1/d1 =
. . . = ZN/dN = 1; (2) splay synchronization R = 0 is not equivalent to Z1/d1 = . . . =
ZN/dN = 0, unless A is the all-to-all graph.

In order to quantify consensus, classic synchronization measures are included in the
next section.

3There are also versions of the KM model for discrete time and higher order θ̈i equations
(PIKOVSKY et al., 2003).

4An alternative version of the KM with non-linear coupling based on this Zi will be introduced
in Chap. 5.
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Figure 3.9 - Phase variables θi and order parameter R evolution with time for typical
synchronization types: (a) Phase-locking (partial synchronization index S =
1) showing splay to full synchronization; (b) Phase-locking (S = 1) with
〈R〉 = 0.55; (c) Practical phase-locking (S = 0.98) with 〈R〉 = 0.88; (d) Phase
Slips (S = 0.95) with 〈R〉 = 0.62; (e) Periodic Order Parameter (S = 0.78)
with 〈R〉 = 0.52; (f) Asynchronicity (S = 0.09) with 〈R〉 = 0.27. Phase
variable representation in the unit circle are included as insect in subfigures
(a,b) with an arrow indicating the global mean field.

3.5 Synchronization Metrics

The most used synchronization metric in the literature is the global mean field. It
regards Eq. (3.16) taking into account all oscillators in the networks

ReiΘ := 1
N

N∑
j=1

eiθj , (3.18)

where Θ is the argument of this complex number and R ∈ [0, 1] is its magnitude,
called the order parameter. If one has R = 0, it means splay synchronization (PALEY

et al., 2005). The sum of neighbor’s contribution eiθj cancel out, for instance if all
oscillators are uniformly spread around the unit circle. On the other hand, full
synchronization θ1 = . . . = θN , implies R = 1. Fig. 3.9(a) provides an example
evolving from R = 0 to R = 1.

Phase-locking occurs when the instantaneous velocity θ̇i of all oscillators converge to
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a common value, irrespective to the phase shift between them. The whole ensemble
travels the unit circle as a rigid body. So, the order parameter as a function of the
time R(t) := R(θ(t)) converges to a constant value c ∈ [0, 1], not necessarily in splay
or full synchronization, like in Fig. 3.9(b).

Fig. 3.9(c) illustrates a not convergent R(t). However, it presents small fluctuations
around a constant value. This type of synchronization can be called practical phase-
locking5. So, it is useful to define 〈R〉 as the average value of order parameter in a
large interval of time permanent regime.

To quantify phase-lock emergence, we introduce the partial synchronization index
S ∈ [0, 1] (GÓMEZ-GARDEÑES et al., 2007) based on a synchronization quantifier
between oscillator pairs i, j

Sij = Sji :=
∣∣∣∣∣ lim
∆t→∞

1
∆t

∫ tr+∆t

tr
ei(θi(t)−θj(t)) dt

∣∣∣∣∣ , (3.19)

where tr is a large enough transient time. It is straightforward to check that these
oscillators are phase-locked, if and only if Sij = 1. Moreover, if Sij is decreased to-
wards zero, then weaker forms of synchronization and later uncorrelated trajectories
occur (FREITAS et al., 2013). We average contributions of all adjacent oscillators in
the network to define the partial synchronization index

S := 1
M

N∑
i,j=1

AijSij, (3.20)

where M is the quantity of directed edges in the graph. Thus, S = 1 means that
the whole ensemble is phase-locked. If 1 < S � 0, weaker ensemble synchronization
forms can be found. Fig. 3.9(d) shows phase slips. There is regular collective dy-
namics alternating between long periods of slow deviations from phase-locking and
abrupt settlements to the previous behavior Fig. 3.9(e) does not exhibit phase slips,
but its order parameter also became a periodic function.

Finally, S � 1 yields very low coherence as shown in Fig. 3.9(f).

The mean value of R(θ(t)) after the transient is denoted by 〈R〉. For a given choice
of parameters and initial conditions, we indicate by εPL the smallest critical coupling
strength ε > 0 inducing phase-locking, i.e. S = 1 and R(θ(t)) converges to a constant
value, which we denote by RPL.

5This case is commonly associated with phase-locking under the influence of noise
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Figure 3.10 - Order parameter R as a function of coupling parameter ε for the KM (3.15).
All-to-all coupling in the thermodynamic limit N →∞ with natural frequen-
cies chosen from a Lorentzian distribution with parameter γ are considered
(KURAMOTO, 1975).

3.6 Two classic results of phase oscillators networks

Kuramoto introduced in 1975 (KURAMOTO, 1975) his homonymous model regarding
Eq. (3.15) with all-to-all coupling. It means that oscillators are subjected to a feed-
back comprising a common pool of all members in the system. Besides, considered
natural frequencies were chosen from a Lorentzian distribution, which is a symmet-
rical and unimodal distribution, parameterized by a constant value γ defining its
width.

By assuming network size in the thermodynamic limit N →∞, he was able to prove
that if one increases the coupling parameter, the order parameter rises from zero at
ε = 2γ and then asymptotically approaches to 1 according to R =

√
1− 2γ/ε, see

Fig. 3.10.

Therefore, like in the N = 2 case discussed in Sec. 3.3, there is a critical coupling
parameter ε from which R start to increase monotonically with ε.

The authors of Ref. (JADBABAIE et al., 2004) considered arbitrary network sizes and
coupling strength divided by N instead of the node degree di in Eq. (3.15). They
required the coupling graph to be simple and connected and assumed without loss
of generality natural frequencies ω with zero-mean6. Therefore, the Euclidean norm
of ω, which we denote by ‖ω‖, measures the dispersion of natural frequencies like
the dissonance ν for the two-dimensional case or the Lorentzian parameter γ in the
previous N →∞ case.

In this context, their analytic results (JADBABAIE et al., 2004) give bounds to phase-
locking critical coupling and guarantee convergence to a unique (modulus 2π) stable

6To do so, one can rewrite the system in a rotating frame like in Sec. 3.3
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phase-locked regime, irrespective to initial conditions. If all oscillators are identical,
that is, ‖ω‖ = 0, any attractive (repulsive) coupling value ε > 0 (ε < 0) yields full
(splay) synchronization. In general, phase-locking occurs if the coupling strength ε
is large enough in comparison to‖ω‖λN/λ2

2, where λ2, λN are Laplacian eigenvalues
of the coupling graph (see Sec. 2.2). So, phase-locking tends to emerge for smaller
values coupling values of ε > 0 mostly with the reduction of graph diameter D, for
instance in scale-free and small world networks, but with smaller values of ‖ω‖ and
dmax too7.

3.7 Notes about Kuramoto Model Numerical Integration

Numerical integration of large coupled oscillator networks can demand high compu-
tational effort. Some observations are included in this section to mitigate the cost
of this task.

The first straightforward fact is that, although it can be interesting to express the
KM in terms of the adjacency matrix due to its mathematical properties, one could
write it in terms of its adjacency list, that is, replacing ∑N

j=1Aij sin(θi − θj) in Eq.
(3.15) by ∑

j∈Ni
sin(θi − θj), where Ni denotes the set of adjacent vertexes to i

in the coupling graph. In addition, whenever we have an odd coupling functions,
like sinus, we can store the values of cij := sin(θi − θj) for i < j ≤ N and set
sin(θj − θi)← −cij. So, we may loop only over the undirected edges of the graph Ẽ
only to evaluate phase differences.

About the numerical integration method itself, predictor-corrector techniques are
specially interesting, like Adams-Bashforth-Moulton (ABM) (BURDEN; FAIRES,
2005), since they require only one vector field evaluation per time step. For compari-
son, the fourth order Runge-Kutta (4RK) requires 4 evaluations8. Another advantage
of ABM is that it can be easily adapted to integrate delayed differential equations
with constant delay time (WIRKUS, 1999), which is another see Sec. 3.9.

The size of the integration interval [0, tf ] is a practical issue too. To analyze perma-
nent regime, one needs tf to be sufficiently large. Yet, tf has to be small enough to
make massive simulations feasible. One way to balance these conflicting demands is
to define a partial synchronization index in the interval I := [a, b], denoted by SI ,

7In general, λ2 increases when the graph diameter is decreased and λN decreases with its
maximum degree dmax (LI; ZHANG, 1998).

8On the other hand, ABM requires the storage of the vector field in 4 instants of time, while
4RK does not need it; but this is normally not a restriction for simulation purposes.
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like in (3.20), replacing Si,j by an approximation of it over this interval, that is,

Sij(I) :=
∣∣∣∣∣ 1
b− a

∫ b

a
ei(θi(t)−θj(t)) dt

∣∣∣∣∣ . (3.21)

So, we compute this metric over successive time intervals SI0 , SI1 , . . . , SIk
, . . ., with

interrupt criterion
∣∣∣SIk
− SIk−1

∣∣∣ < tol and k > 1. This way, the final SIk
is an

approximation to S and Ik can be considered beyond transient time, in terms of
partial synchronization index convergence.

Unless explicitly stated, we employ the procedures explained in this section for all
numerical simulations in this thesis, with time intervals of 103 u.t. and tol = 0.01.

3.8 Chaotic oscillators and Lyapunov exponents

Not only trajectories near limit cycle can be regarded as oscillators. Chaotic oscil-
lators regards trajectories close to chaotic attractors (HIRSCH et al., 2004) which are
employed in a several fields (STROGATZ, 2014).

One of the first members of this class of oscillators is the Lorenz system (PIKOVSKY

et al., 2003), which was introduced in 1963 as a simplified mathematical model for at-
mospheric convection. It consists in a three-dimensional ordinary differential system
following

ẋ = σ(y − x)
ẏ = x(ρ− z)− y
ż = xy − βz,

(3.22)

where σ = 10, ρ = 28 and β = 8/3 are the common parameters found in the
literature yielding chaos. Fig. 3.11(a) depicts a trajectory of (3.22) showing its well
known butterfly-like attractor.

Such systems have high sensibility to initial conditions, meaning that even very
small positive deviation from initial condition can produce unrelated trajectories
after a relative short time. For instance, Fig. 3.11(b) shows two trajectories of (3.22)
becoming uncorrelated after approximately 10 units of times.

If one defines v =
√
x2 + y2, the projection into coordinates (v, z) of Lorenz system

trajectories shows a clear rotation center as in Fig. 3.11(c). So, this coordinate change
reveals that some chaotic attractors can be seen as smeared limit cycle (recall Fig.
3.5(a)). However, such transformation may not exist for chaotic oscillators in general
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Figure 3.11 - (a) Lorenz system trajectories: (a) (x, y) and (x, z) projections of one trajec-
tory with time color coding from 0 (Black) to 100 units of time (Cyan); (b)
x, y, z components regarding two different trajectories (black and dashed/
orange) with initial conditions 0.001 apart from each other; (c) Another pro-
jection, as in the first case, in coordinates(v, z) where v is the transformation
change v =

√
x2 + y2.

Figure 3.12 - Illustration of l iterations of time shift map Φ employed at Lyapunov expo-
nents definition.

and we require another way to proper characterize them.

Lyapunov exponents (ALLIGOOD et al., 1997) are a mathematical tool to quantify
the rate of separation of infinitesimally close trajectories. Let ẋ = f(x) be a M

dimensional system, while Φ(x0) denotes the δ time shift map, that is, the solution
of the ordinary differential equation after δ units of time, for a fixed positive constant
value δ, with initial condition x0. We denote l successive map compositions by Φl,
that is, Φl = Φ ◦ Φl−1, with Φ1 = Φ.

33



Lyapunov exponents keep track of deformations suffered by a hypersphere S ∈ RM

through Φl, in the limit l→∞. Details about its numerical computation using vari-
ational equations can be found at (WOLF et al., 1985). We focus on the interpretation
of these quantifiers here.

Let S0 = {r0
1, . . . , r

0
M} be an orthonormal basis of RM at x0. Then, we set Sl =

Φ
(
Sl−1

)
=
{
rl1, . . . , r

l
M

}
and sort rl1 ≥ . . . ≥ rlM at each iteration of Φ. Therefore, Sl

measures the contraction or expansion near the orbit x0 during the first l iterations.
The k-th largest Lyapunov exponent of x0 is defined by

λk(x0) = ln lim
l→∞

(
rlk
)1/l

(3.23)

if this limit exists. Moreover, we assume systems to be ergodic, meaning that they
have the same behavior averaged over time as averaged over the space of all the sys-
tem’s states, so λk does not depend on the particular initial condition x0 (HOOVER;

HOOVER, 2012).

From Eq. (3.23), we conclude that if there is a direction which remains neutral rel-
ative to perturbation, where lim

l→∞
rlk → 1, then λk = 0. If there are directions where

perturbations are attenuated (amplified), we have negative (positive) Lyapunov ex-
ponent.

As a result, one way to characterized (PIKOVSKY et al., 2003) chaotic oscillators is
the existence of at one zero, and at least one negative and one positive Lyapunov
exponents λ. Pertubations along the trajectory neither grow nor decay, yielding λ =
0 in that direction; while perturbations transverse to the attractor are attenuated
with time, since all solutions in a vicinity approach to it, yielding λ < 0.

Zero and negative Lyapunov exponents are also present in stable limit cycle dynamics
as in Sec. 3.2. However, only chaotic oscillators have positive Lyapunov exponents,
due to its sensibility to initial conditions. These Lyapunov exponents correspond to
perturbations tangent to the attractor but orthogonal to its trajectories.

There are studies exploring ways to build optimal phase description of chaotic os-
cillations by generalizing the concept of isochrones(SCHWABEDAL et al., 2012). More
discussion about phase variables and chaotic oscillator can be found at Chap. 5.
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3.9 Some generalizations of coupled oscillators networks

Networks of phase oscillators are commonly modeled as the KM in Eq. (3.15), but
phase reduction may not always be the best model choice, for instance, if signal
amplitude, not only its phase, deeply influences dynamics. Thus, we present in this
section a more general version of coupled oscillator networks to support discussions
in the next chapters.

Chaotic or limit cycle oscillators in its original variables, as well as phase variables
oscillators can addressed in a common basis. Moreover, this formulation is also
suitable for some non-self-sustainable oscillators, like integrate-and-fire models for
neuron action potential (PIKOVSKY et al., 2003).

Consider an ensemble of N oscillators, whose dynamics of the i-th oscillator is given
by

dxi(t)
dt = fi(xi(t)) + ε

N∑
j=1
AijH(xj(t− τ)− xi(t)) , (3.24)

for i = 1, . . . , N , where xi(t) ∈ Rd is the oscillator state at instant t, while its
isolated behavior is defined by fi(.), like in Eq. (3.1). This function may express
natural frequency ωi, in the case of phase oscillators, or even more sophisticated
dynamics, like the r.h.s. of van der Pol or Lorenz systems (Eqs. (3.2) and (3.22)). If
oscillators are identical, then f1 = . . . = fN := f .

The coupling parameter is still denoted by ε ∈ R, tuning over all neighbor oscillators
influence. However, the coupling graph is allowed to be weighted, meaning that
oscillators can affected each other unevenly with intensity proportional to ε times
Aij ∈ R. We also mention time varying or directed edges coupling graphs as other
variations, where influence channels depend on the relative spacial position among
agents (PALEY et al., 2005; LEONARD et al., 2007; VICSEK; ZAFEIRIS, 2012).

As the sinus function in the KM (3.15), H(.) corresponds to the coupling function.
This function is diffusive, since it regards the state difference between oscillators. H
is often assumed to be a d×d real matrix in the context of non-phase oscillators. As
a simple example, a network of Lorenz oscillators with H =

(
0 0 0
0 1 0
0 0 0

)
indicates linear

coupling by y coordinate.

The difference between states is considered at the same instant t if τ , which is the
time delay parameter, equals to zero. However, propagation through communica-
tion channels may not be instantaneous, requiring τ units of time for the signal to
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reach neighbors. Thus, oscillators are actually affected by xj(t− τ). Among such
scenarios, we have networks of semiconductors lasers (SORIANO et al., 2013) and
large scale sensors networks (HONG; SCAGLIONE, 2005). When τ > 0, instead of an
ordinary equation, Eq. (3.24) becomes a delayed differential equation. This class of
systems requires not only the initial condition X(t) at t = 0, but also for the entire
range t ∈ [−τ, 0], demanding special methods for numeric integration (BAKER, 2000;
GRZYBOWSKI et al., 2011; EISENCRAFT et al., 2012).

We highlight that even at this context, where system dynamics is not reduced to
phase variables, phase assignment to time series is often a valuable tool to study
synchronization (PIKOVSKY et al., 2003) as discussed in the next chapter.
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4 THE DOUBLE STRIP TEST BED FOR PHASE ASSIGNMENT
METHODS

In the context of coupled oscillators, one may directly compute the norm of the
differences between oscillator’s states over time, without any phase assignment. If
this value becomes sufficiently small after the transient, it indicates a regime close
to full synchronization, when oscillators converge to a common trajectory.

However, several synchronization qualitative regimes commonly found in experi-
ments (ROSENBLUM et al., 2004) can only be characterized by phase assignment.
According to (PIKOVSKY et al., 2003), there seems to be no rigorous way to solve
this problem for arbitrary chaotic systems. Thus, how do we compare phase assign-
ment methods?

For this purpose, we present in this chapter the Double Strip Test Bed (DSTB),
which is a methodology to construct time series similar to the ones originated from
chaotic oscillators. This approach relies on a Kuramoto Model (KM), from Eq.
(3.15), and a transformation of its phase variables by embedding them into a three
dimensional surface, in such a way to obtain curves with phase variables are known
a priori.

The DSTB has already been introduced at our paper (FERREIRA et al., 2015), see
Appendix A. Yet at this reference and also at the thesis (FERREIRA, 2014), phase
assignment methods based on Continuous or Discrete Complex Wavelet and Hilbert
Transformation were explored.

We focus here on the main ideas and some background concepts not included in
those previous works about the DSTB1.

We provide in the first session a short overview about the phase assignment problem
for chaotic oscillator. Then, the DSTB is described at the second session like in
(FERREIRA et al., 2015). In the last section, we included an usage example of the
DSTB with common phase assignments methods from the literature, as well as
conclusions.

1Other two embedding were introduced at (FERREIRA et al., 2015), into a 2d circle and into a
3d Möbius Band. We show only the DSTB because it emulates more chaotic properties.

37



4.1 Phase assignment for chaotic oscillators

One of the properties of chaotic systems is that unstable periodic orbit are dense
on its attractor (HIRSCH et al., 2004). Besides, contrary to limit cycle oscillators, it
may be not straightforward to define monotonic growing phase variables. Uniform
growth, like Eq. (3.3), with a global choice of natural frequency ω0 in a neighborhood
of the attractor (PIKOVSKY et al., 2003), is more restrictive yet or even impossible.

Under mild assumptions (PIKOVSKY et al., 2003), a uniformly rotating phase θ(t)
can be constructed if one already has monotonic growing variable φ(t). This is done
through the following time rescaling

θ = ω0

∫ φ

0

(
dφ
dt

)−1

dφ. (4.1)

However, this approach may not be applicable for oscillator ensembles, since it would
imply different time rescaling for each network. Even so, any choice of phase must
at least have a physical meaning and correctly count oscillator cycles (PIKOVSKY et

al., 2003).

We focus now on classic numeric phase assignment methods, which will be introduced
along with the uncoupled Rössler oscillator

ẋ = −y − z
ẏ = x+ ay

ż = 0.1 + z(x− 8.5) .
(4.2)

This system was chosen because it is a prototypic model for two flavors of attrac-
tors: coherent, where a = 0.16; and non-coherent, a = 0.25 (CHEN et al., 2001). By
coherent attractors, we mean oscillators showing a clear rotation center regarding a
projection over a pair of its coordinates, like in Fig. 4.1(a). This chaotic oscillators
class resembles a smeared version of limit cycle oscillators. Otherwise, we say that
an attractor is non-coherent, as in Fig. 4.1(d). In this case, the main cycle occurs in
the x, y plane with z ≈ 0 (cyan), even though a portion of its trajectory is bended
like a funnel (blue).

A Poincaré surface is a section which is crossed transversely by trajectories of the
system (HIRSCH et al., 2004). The halfplane y = 0, x < 0 will be taken as Poincaré
surface for both versions of the Rössler system, see Fig. 4.1(a,d).
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Figure 4.1 - Rössler oscillator as in Eq. (4.2). Upper figures correspond to the coherent
version and bottom figures to the non-coherent one: (a,d) x, y projection of a
trajectory during 200u.t., color code ranges from cyan to blue as z increases
from zero to 60; (b,e) approximately 3 cycles of the previous trajectory. The
Poincaré section (y = 0, x < 0) is shown in magenta. (c,f) Phase assignment
via four methods.
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If such surface exists, for each piece of a trajectory between two cross-sections, the
Poincaré method (for phase assignment) defines phase as a linear function of time,
so that phase gains 2π at each return to the surface of section:

θ(t) = 2π t− tn
tn+1 − tn

+ 2πn, (4.3)

where tn is the time of the n-th crossing the surface. The reader must be aware
that Poincaré surfaces may not exist or can be difficult to define depending on the
attractor form.

As another option, one can assign coordinates via the Arctan method in the coherent
case. This is done by selecting two coordinates, denoted by simplicity by (x, y), such
that system trajectories restricted to them perform approximately a circle centered
at some (x0, y0) ∈ R. In fact, (x, y) can be built through coordinate transformation
like in Fig. 3.11(c). Then, we set

θ(t) = arctan y(t)− y0

x(t)− x0
, (4.4)

which is normally computed as a 2 parameters function arctan(y − y0, x− x0) re-
garding the argument of the complex number x− x0 + i(y − y0).

Even if the attractor is non-coherent and there is no coordinate transformation
satisfying the previous requirements, one can try a generalization provided by (CHEN

et al., 2001), that we address as DotArctan method. This is done by considering the
derivative of a pair of coordinates (ẋ, ẏ) =

(
dx
dt ,

dy
dt

)
, thus

θ(t) = arctan ẏ(t)
ẋ(t) . (4.5)

Finally, the Hilbert method (PIKOVSKY et al., 2003) for a signal s(t) is defined as

A(t) eiθ(t) := s(t) + isH(t) , (4.6)

where sH(t) is the Hilbert Transform of s. Then, A(t) and θ(t) correspond to the am-
plitude and phase of s(t). This technique is largely applied to analyze experimental
date, because it requires the time series of single coordinate of the phenomena.

We apply now these four phase assignment methods to the coherent and non-
coherent trajectories illustrated in Fig. 4.1(b,e), respectively. We selected in both
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figures intervals of time corresponding to approximately three complete cycles tak-
ing as reference the Poincaré Section.

Fig. 4.1(c) shows that all methods agree with each other for the coherent case.
The constant value differences between methods does not significant role, due the
existence of the to neutral Lyapunov exponent.

However, the non-coherent case presents complications at the third cycle, when the
trajectory goes through the funnel region (blue). The Arctan method yields poor
results, since there is an interval where its outcome is a decreasing function, without
physical meaning. In contradistinction, the DotArctan and Hilbert methods produce
non-decreasing phases, but they count four cycles instead of three. Although the
Poincaré method does not allow fine tracking of local phase changes due to linear
its interpolation, it was the only one to report the 3 cycles.

In summary, this example shows conflicting results depending on the methodology
applied. Merely analyzing a 2d projection of the time series within a time interval
as in Fig. 4.1(e), one could argue that if we had chosen S ′ as Poincaré Section, it
would display four cycles as well. Typically, this type of issue can only be answered
by investigating more dimensions of the phenomena, which may not be available
concerning time series from experimental data.

To tackle this question in our context, Fig 4.2 is presented with additional views of
the three dimensional attractor. We recorded the local minima in x satisfying y < 0
and z > 0.1 than zero, over 500u.t. of the trajectory. Portions of this curve crossing
the Poincaré Surface up to such points are colored in cyan.

Therefore, cycles through this cyan ribbon, including the one depict the third cycle
in Fig 4.1(e), display sub-cycles in the x, y plane with y < 0.

4.1.1 About accuracy techniques for phase assignment methods

The previous section showed that the choice of phase assignments methods is not
always straightforward. Poincaré, Arctan and DotArctan, require the time series of
at least two dimensions of the phenomenon. Hilbert method is more effective to deal
with data containing observational noise, even so low-frequency trends remains a
major challenge (FERREIRA, 2014).

How does one probe the accuracy of a candidate to phase assignment method?
Typically, a prototypical oscillator is chosen, like the coherent and non-coherent
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Figure 4.2 - Additional views from the non-coherent Rössler, as in Fig. 4.1(d). The
Poincaré Section y = 0, x < 0 is plotted in magenta. Portions of the tra-
jectory in cyan contain sub-cycles, that is, with local minimum in x satisfying
y < 0 and z > 0.1. The rest of the trajectory is shown in black.
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versions of the Rössler oscillator from Eq. (4.2). A reference phase is obtained via
one of these four methods. Then, noise can be added to time series and some of its
coordinates are used as input for the candidate method for phase assignment. The
result obtained is finally compared with the reference one.

One drawback to proceed this way is that some features of the proposed method
may be hidden by the characteristics of the reference phase assignment itself. So,
this was the motivation to devise models for chaotic oscillators showing “canonical
phase” in some sense.

Of course, phase assignment itself is not unique. We emphasize that our main ob-
jective is to provide an additional tool to enhance understanding of how phase
assignment methods operate.

4.2 The DSTB construction

We include in this section the Double Strip Test Bed (DSTB) for phase assignment
methods as in (FERREIRA et al., 2015). This test bed consists into embedding phase
variable time series into a three dimensional surface combining an annulus and
a Möbius Strip. This surface was designed following the exaggerated paper-sheet
model for the coherent Rössler system (LETELLIER; ROSSLER, 2006)(Fig. 4). Other
two embedding surfaces, into the circle and into the classic Möbius Strip, can be
found at Ref. (FERREIRA et al., 2015).

The oscillator’s position in the DSTB is parametrized by v ∈ [0, 1], which is con-
stant per oscillator’s cycle and defines its transversal position over each strip, and a
phase φ, which actually characterizes the trajectory spins. Thus, we denote points
in the three dimensional surface by X(v, φ). Phase variable as input time series φ(t)
could be directly constructed or obtained from a system already described in phase
variables, like the KM.

Our mapX(v, φ) will be defined such that, after each complete cycle of the oscillator,
it returns to a Poincaré Section S given by the line segment joining the origin to
(1, 0, 0), more specifically X(v, 2kπ) ∈ S for all k ≥ 0 and all v ∈ [0, 1]. As an
embedded trajectories crosses S, its transversal parameter v is updated to P (v).
Therefore, we may also define a Poincaré map P (vk) = vk+1 of the successive returns
of the orbit to S, since X(vk, 2(k + 1)π) = (vk+1, 0, 0) ∈ S.

If v ∈ [0, 0.5], the trajectory starting at (v, 0, 0) ∈ S will travel in its next cycle
φ ∈ [0, 2π) through the Annulus Strip - Fig 4.3(a). In this strip, v is expanded to
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Figure 4.3 - (a,b,c) Double Strip Construction Scheme. (d) Two spins of the trajectory,
each one over a different strip. (e) The Poincaré Return Map of section S.
The Poincaré Section S is depicted in Magenta.

P (v) = 2v once it crosses S again.

If v ∈ (0.5, 1], it will follow the Möbius Strip - Fig 4.3(b). In this strip an inversion
occurs, so v is updated to P (v) = −2v + 2 for the next cycle. The combination of
these two strips, the DSTB, is shown at Fig 4.3(c).

We can argue that the dynamics in the Double Strip is chaotic, since its Poincaré
Map P is the Tent Map, see Fig 4.3(e), which is a classical chaotic discrete map
(ALLIGOOD et al., 1997).

Geometrically, the image of X was designed such that X([0, 0.5] × [0, 2π]) interpo-
lates between curves v0([0, 2π]) and v0.5([0, 2π]), which forms the Annulus Strip (Fig
4.3(a)); while X([0.5, 1] × [0, 2π]) interpolates between v0.5([0, 2π]) and v1([0, 2π]),
defining the Möbius Strip, (Fig 4.3(b)). The actual expression of the embedded
trajectories in the DSTB are given bellow.
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The position of the oscillator in the Annulus Strip is given by X(v, φ) = f(v, φ)
defined by

f(v, φ) := (1− λf (v))v0(φ) + λf (v)v0.5(φ), for (v, φ) ∈ [0, 0.5]× R,

where v0(φ) := 0.5(cosφ, sinφ, 0)−(0.5, 0, 0); v0.5(φ) := (φ/(4π)+1)(cosφ, sinφ, 0)−
(0.5, 0, 0); and λf (v) := 2v. In the other hand, the position of the oscillator in the
Inversion Strip is given by X(v, φ) = g(v, φ) with

g(v, φ) := (1− λg(v))v0.5(φ) + λg(v)v1.0(φ), for (v, φ) ∈ (0.5, 1]× R,

where v1.0(φ) := ((1 + 0.5γ(φ) cos(φ/2)) cosφ − 0.5, (1 +
0.5 cos(φ/2)) sin(u), 0.5 sin(φ/2)); γ(v) := 0.5(v−π)2/π2 +0.5; and λg(v) := −1+2v.

Fig 4.3(d) illustrates two spins over the DSTB with θ(t) = t and v0 = 0.82. Starting
with t = 0, the first cycle (orange curve) runs through the Möbius Strip, since
v0 ∈ (0.5, 1]. When t = 2π, the trajectory reaches S again and v0 is updated to
v1 = P (v0) = 0.36, which means that the second cycle (cyan curve) runs through
the Möbius Strip for t ∈(2π, 4π].

4.3 Example of DSTB usage

In this section we compare the phases obtained through the four methods discussed
in Section 4.1 with the reference phase intrinsically derived from the DSTB.

Instead of a single oscillator, as previously illustrated in Fig. 4.1, we analyze now
synchronization between two coupled oscillators via phase difference. The seeds of
each oscillator in this numerical experiment are v1 = 0.24 and v2 = 0.206. Three
behavior are imposed, each one at a third of the time interval studied:

• t ∈ [0, 1): Near phase-locking with phase difference θ2− θ1 ≈ π/6 and both
oscillators over the same strip - Fig. 4.4(a).

• t ∈ [1, 2) Phase slip with the second oscillator performing one additional
spin relative the first one - Fig. 4.4(b).

• t ∈ [2, 3) Near phase-locking with phase difference θ2 − θ1 ≈ π/6 and
oscillators in different strips - Fig. 4.4(c).

To achieve this particular synchronization profile, our phases were empiri-
cally chosen as θ1(t) = 2πt and θ2(t) = 2πt + h(t), where h(t) =
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2π(arctan(100(t− 1.5)) /π + 0.5) + π/6.

We applied the four methods for phase assignment in this context and the outcome
is discussed bellow.

The Poincaré method followed closely both phase-locking regimes. However, it could
not precisely show the moment when the phase-slip occurred.

The Arctan and Dotarctan methods also detected phase-locking in the first interval
and phase-slip around t = 1.5. During the second phase-locking interval, where the
trajectories ran over different strips, larger fluctuations around the reference phase
were observed, specially for Dotarctan method.

Finally, the Hilbert method presented even larger fluctuations. Again, the second
phase-locking interval showed less precise results. In contradistinction, this method
sharply detected the phase slip instant, like the Arctan and Dotarctan methods.

4.4 Conclusions and perspectives

The usage of mock chaotic oscillators can provide useful information about how
method for phase assignment operate. This is done by investigating how these meth-
ods respond to fixed synchronization regimes that are known a priori.

As future research, we plan to explore variations of such model including for instance
a funnel-like structure like the non-coherent Rossler. Moreover, it is possible to devise
mocks for other models like the Lorenz system.
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5 DESERTER HUBS MODEL

Phase-synchronization is commonly associated with attractiveness, while repulsive
coupling drags oscillators apart and often leads to desynchronized states. Neverthe-
less, the nature of the coupling can depend non-trivially on the level of synchrony
itself.

Such coupling schemes are called nonlinear in general. They have been explored
in theoretical (FILATRELLA et al., 2007; ROSENBLUM; PIKOVSKY, 2007; PIKOVSKY;

ROSENBLUM, 2009; BAIBOLATOV et al., 2009) and experimental (TEMIRBAYEV et

al., 2012; TEMIRBAYEV et al., 2013) studies dealing with global coupling setup. An
underlying topic in these articles is partial synchrony at moderate coupling strengths,
which is achieved through the balance of attractive and repulsive trends.

This scenario can be relevant for instance regarding deep brain stimulation of neural
synchronous oscillations at Parkinson disease by a nonlinear feedback (POPOVYCH

et al., 2005).

We introduced and studied a version of the Kuramoto Model (KM), with nonlinear
coupling explicitly depending on a local cohesion quantifier, yielding the so-called
Deserter Hubs Model (DHM). This study has already been published at Ref. (FRE-
ITAS et al., 2015a), see Appendix B, thus we restrict ourselves in this chapter to the
main concepts and discussions.

Units in the DHM can switch from “conformist” to a “contrarian” behavior, that
is, from attraction to repulsion, when pressure from neighbors becomes too intense.
Thus, it can be considered as a dynamical generalization of the inhomogeneous
populations from Ref. (HONG; STROGATZ, 2011), where the kind of behavior depends
on the force acting on it. Since this transition occurs first for oscillators connected
to many others, this model can fairly understood as Deserter Hubs Model.

More specifically, we deal with an ensemble of identical phase-oscillator like in Ref.
(PIKOVSKY; ROSENBLUM, 2009), generalizing its results to simple coupling graph
instead of all-to-all coupling.

Among dynamics regimes, we found phase-locking, multi-multistability, chaos and
periodic order parameter.

We include in the first section the description of the DHM, while the second one
includes a theorem with sufficient conditions for phase-locking. The third numerical
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experiment shows a variety of qualitative dynamical behaviors.

5.1 The Deserter Hubs Model (DHM)

Consider a system of N phase-oscillators, whose dynamics is given by the following
set of ordinary differential equations

θ̇i =
(
1− ηZ2

i

) N∑
j=1

Aij sin(θj − θi) , (5.1)

for i = 1, . . . , N . Like in the classic KM from Eq. (3.15) in Sec. 3.4, the coupling
graph is simple, connected and symmetric, with Aij = Aji = 1 if there is and
edge between the i-th and j-th oscillators, and Aij = Aji = 0 otherwise. Diffusive
sinusoidal coupling function is used, so that, each direct edge contributes with the
sinus of phase difference to the dynamic of the i-th oscillator.

Oscillators have identical natural frequency 〈ω〉 = ω1 = . . . = ωN , so, one can
express them in rotating reference frame and suppress 〈ω〉, like in Sec. 3.3.

Instead of the standard coupling parameter ε, from Eq. (3.15), our model employs the
nonlinear coupling parameter1 η. Therefore, if η = 0, the classic KM with constant
unitary coupling parameter is recovered.

The cohesion quantifier used is the local mean field Zi ∈ [0, di], as in Eq. (3.16).
Recall from Sec. 3.4 that Zi = di corresponds to full synchronization regarding
members in the neighborhood of the i-th oscillator; while Zi = 0 implies that they
are in splay synchronization.

Observe that a necessary condition for a node to be able to suffer repulsive coupling,
i.e., 1 − ηZ2

i < 0, is that η > d−2
i . On the other hand, if η < d−2

max, where dmax is
the largest node-degree in the network, there will be no repulsive behavior in the
system and full synchronized state R = 1 is a stable regime as will be shown in the
next section.

Next, suppose that there is a single maximal hub in the network and denote its local
mean field by Z2

max. In addition, let η becomes larger than d−2
max and the maximal hub

start as conformist. In a first moment, all oscillators get closer to full synchronization,
R increases and also Z2

max. This can yield 1− ηZ2
max < 0, which shifts this node to

repulsion (contrarian). This is inspiration for the name of the model, since hubs may

1Ref. (FREITAS et al., 2015a) denotes the nonlinear coupling parameter by ε. To avoid notation
conflict, we changed it in this text.
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go against the crowd, they renegade, in other words, they become deserters. As a
result, Z2

max may decrease and switch again the node to attraction.

In fact, depending on the coupling graph A, on the initial condition
(
θ0

1, . . . , θ
N
1

)
,

and on the intensity of the nonlinear coupling parameter η, numerical simulation
from Sec. 5.3 reveals that model (5.1) can exhibit different qualitative behaviors.

5.2 Stability of full synchronization

Under small nonlinear coupling parameter η, the full synchronization is a robust
phenomenon related to small perturbations over initial conditions regarding the
DHM from Eq. (5.1). More specifically, our aim in this section is to show that if η
is smaller than a critical value ηc := 1/d2

max, then the synchronized stated (R = 1) is
Lyapunov stable.

Our argument in this section employs a generalized norm of the order parameter to
define our Lyapunov function, with the same outline from (JADBABAIE et al., 2004).

To do so, instead of the adjacency matrix A, we will rewrite Eq. (5.1) in terms of its
directed incidence matrix B, which is a matrix with N rows and E columns, where
E is the number of directed edges. See Sec. 2.1 for examples of this graph notation.

The usage of the directed incidence matrix allows us to reformulate model (5.1) in
a vector form:

θ̇ = −1
2 diag

(
1N − εZ2

)
B sin

(
B>θ

)
, (5.2)

where Z2 := (Z2
1 , . . . , Z

2
N), 1N := (1, . . . , 1) ∈ RN and diag(.) stands for the matrix

with the elements of a vector on the leading diagonal, and 0 elsewhere.

Direct substitution ensures that the square of the global order parameter can be
cast as

R2 = 1
N2

N + 2
∑
j<k

cos(θj − θk)
 .

We define a generalized norm of order r to build our Lyapunov function as

r2 := 1−
E − 1>E cos

(
B>θ

)
N2 . (5.3)

Note that R2 requires the sum of all cos(θj − θk) with j < k (for j, k = 1, . . . , N),
but its generalization r2 takes into account the sum (1>E cos

(
B>θ

)
) only through the
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edges of the graph.

For any connected symmetrical coupling graph, one can check that the maximum
of r2 is the unit, and that R2 = 1 if and only if this value is achieved .

We choose the following candidate to Lyapunov function

U(θ) = 1− r2. (5.4)

It is clear that the minimum value of U(θ) = 0 corresponds to the maximum value
of r2 = 1, which is equivalent to the fully synchronized state.

In fact, algebraic manipulations show that

U(θ) = 2
N2

∥∥∥∥∥sin
(
B>θ

2

)∥∥∥∥∥
2

, (5.5)

and that the differential of U is given by

DU = 1
N2

(
B sin

(
B>θ

))>
. (5.6)

Therefore, using the vector form of the model (5.2) and the expression of the differ-
ential DU from (5.6), we have that d

dtU(θ(t)) equals to

− 1
2N2

(
sin
(
B>θ

))>
B> diag

(
1N − εZ2

)
B sin

(
B>θ

)
, (5.7)

If we set x := B sin
(
B>θ

)
, then we have that x> diag(1N − εZ2)x is larger or equal

than (1− εd2
max)‖x‖2. Moreover, we can also define a lower bound for ‖x‖2, since

‖x‖2 = sin
(
B>θ

)>
B>B sin

(
B>θ

)
≥ λ2

(
B>B

)∥∥∥sin(B>θ)∥∥∥2
= 2λ2(L)

∥∥∥sin(B>θ)∥∥∥2
;

where λ2(L) is the algebraic connectivity of the graph. In the last inequality we
used that 1/2BB> = L and that both matrices BB> and B>B have the same non-
trivial eigenvalues 0 ≤ λ2(L) < . . . < λN(L), where λ2(L) is strictly larger than zero
because the coupling graph A is connected (GODSIL; ROYLE, 2001). Thus,

d
dtU(θ(t)) ≤ − 1

N2λ2(L)
(
1− εd2

max

)∥∥∥sin(B>θ)∥∥∥2

As a result, ε < εc := 1/d2
max implies that d

dtU(θ(t)) ≤ 0, then the fully synchronized
state R = 1 is stable.
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5.3 Examples of behaviors

As it was claimed before, in dependence on the network structure, very different
types of the dynamics are possible. In order to give impression on it, we present
simulations of model (5.1) with two different coupling graphs displayed as inserts
in Fig. 5.1. Both networks have N = 10 nodes and they differ only by the rewiring
of a single edge. We performed simulations for 10 random initial conditions cho-
sen with uniform distribution over [0, 2π] for each experiment. For all these initial
conditions l = 1, . . . , 10, the norm of the order parameter Rl(t) is computed from
the time series. As explained in the previous section, in these calculations a tran-
sient time is eliminated and that a statistically stationary regime Ĩ of 103 units of
time and #Ĩ := 105 + 1 points is considered. Then, also for each distinct initial
condition, the maximum, average and minimum values of the associated norm of
the order parameter are computed, respectively denoted by Rl

max := maxt∈Ĩ Rl(t);
〈Rl〉 :=

(
#Ĩ

)−1∑
t∈Ĩ R

l(t); and Rl
min := mint∈Ĩ Rl(t). Of course, Rl(t) converges to a

constant if and only if Rl
max = 〈Rl〉 = Rl

min. Now, having different simulations for a
fixed coupling graph, we evaluated the maximum, average and minimum value of the
average value of the norm of the order parameters over this ensemble, respectively
denoted by max{〈R〉} := maxl=1,...,10〈Rl〉; mean{〈R〉} := (10)−1∑

l=1,...,10〈Rl〉; and
min{〈R〉} := minl=1,...,10〈Rl〉. So, if the norm of the order parameter converges to
the same value for all initial conditions simulated, then max{〈R〉} = mean{〈R〉} =
min{〈R〉}. For the cases where the norm of the order parameter does not converge
over all initial conditions, it will be useful to examine the overall maximum and
overall minimum values of the norm of the order parameter, respectively denoted
by max{Rmax} := maxl=1,...,10R

l
max; and min{Rmin} := minl=1,...,10R

l
min. Thus, if

there is no fixed phase synchronization for all the initial conditions simulated, but
the norm of the order parameter presents only small deviations around a common
value, then the gap between max{Rmax} and min{Rmin} is also small. Also no-
tice that min{Rmin} ≤ min{〈R〉} ≤ mean{〈R〉} ≤ max{〈R〉} ≤ max{Rmax}, since
Rl

min ≤ 〈Rl〉 ≤ Rl
max for all initial conditions. Finally, the maximum Lyapunov ex-

ponent λlmax for each initial condition is also computed, according to the algorithm
in (ALLIGOOD et al., 1997). The maximum Lyapunov exponent over all the chosen
initial conditions λlmax := maxl=1,...,10 λ

l
max is also analyzed.

We now describe different regimes observed in the networks, using also Fig. 5.2,
where we depict time series of R(θ(t)) for some particular choices of ε, indicated
as green letters in the upper panel from Fig. 5.1 (this is the case we choose for
illustrating different regimes). Notice that dmax = 4 in both cases, so Theorem ??
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(a)

(b)

(a)

(b)

Figure 5.1 - Numerical results for Model (5.1) as a function of ε, for the coupling graphs
despited as inset, including 10 random initial conditions. A black line corre-
sponds to mean{〈R〉}, while the interval between min{〈R〉} and max{〈R〉} is
shown as a gray strip. The gap between min{Rmin} and max{Rmax} is shown
as an orange strip. Since the orange strip is by construction larger or equal
than the gray one, the first one is not displayed in the figure when they co-
incide. Left vertical axes show values related to norm of the order parameter,
while the right ones represents the maximum Lyapunov exponent λmax, shown
as a red dashed line. Letters in green vertical lines from the upper experiment
correspond to subfigures in Fig. 5.2.
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Figure 5.2 - Evolution of R(t) for different values of ε indicated in green at the upper
experiment from Fig. 5.1. Every color represents a different initial condition,
while pairs of solid/dashed lines with the same color correspond to solutions
whose initial conditions differ not more than 10−4 at each coordinate. (a)
ε = 0.04: full synchronization; (b) ε = 0.08: fixed phase synchronization;
(c,d,e) ε = 0.15, 0.28, 0.35 respect.: examples of multi stability; (f) ε = 0.70:
example with λmax > 0.
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Figure 5.3 - Example of group formation: details of one of the trajectories from Fig. 5.2
(b) ε = 0.08. On the left side, the coupling graph with s(i, j) in its edges
is shown. On the right side, a histogram of θi − ψ in permanent regime is
presented with color code representing the normalized frequency. Precisely, we
divided the interval [0, 2π) into 10 bins with the same size. So, the normalized
frequency of the i-th oscillator corresponds to the ratio of points (after the
transient time) that the numerical evaluation of θi − ψ placed at each bin.

guarantees that for ε < εc = 1/42 = 0.0625 the full synchronization state, R→ 1, is
locally stable as illustrated in Fig. 5.2 (a) (with ε = 0.04).

Panel (a) in Fig. 5.2 illustrates full synchronization in the network for ε < εc. For
ε slightly bigger than εc, simulations suggest that a stationary regime of partial
phase synchronization, where R → c < 1, is locally stable as shown in Fig. 5.2(b)
(ε = 0.08). Details of this state are clear from Fig. 5.3. There we show the that
the synchronization between the individual oscillators is complete if measured by
quantity sij, and all the oscillators have the same frequency. However, the oscillators
are split into two groups with a constant phase shift between them; this division
originates in the edge which connects the two largest hubs in the network (vertexes
1, 8).

For larger values of ε, the regimes are still static but with multistability. For instance,
at ε = 0.15 (see Fig. 5.2 (c)) two stable configurations emerge with R→ c, with c ≈
0.471 (black) or c ≈ 0.511 (blue), depending on the initial condition. Fig. 5.4, which
is analogous to Fig. 5.3, shows the existence of three subgroups, whose members
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Figure 5.4 - Example multi-stability with group formation. Details of two trajectories from
Fig. 5.2 (c) ε = 0.15 are provided. The left picture corresponds to the solid
black line and the right one to the solid blue. Histograms of θi − ψ are like
the one in Fig. 5.3.

may vary according to the initial condition.

Other types of multistabilities appear for instance at ε = 0.28 and ε = 0.35, as
illustrate in Figs. 5.2 (d,e). For ε = 0.28 (panel d) some initial conditions do no
converge to a fixed phase synchronization, but to a regime where the order parameter
R is periodic in time. For ε = 0.35 (panel c), the norm of the order parameter of
all trajectories simulated becomes periodic. Fig. 5.5 provides an illustration of this
regime.

For ε = 0.70 (Fig. 5.2 (f)), one observes a chaotic state with λmax > 0, the distribu-
tion of phases and frequencies is illustrated in Fig. 5.6.

The emergence of chaos in the DHM can be seen as the result of irregular contrac-
tions and expansions of the oscillator’s state (ALLIGOOD et al., 1997). Contraction
tendencies occur when a node act as conformist (attractiveness), while expansion
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Figure 5.5 - Example of periodic norm of the order parameter: details of one of the
trajectories from Fig. 5.2 (d) ε = 0.28. On the left side, the coupling
graph with s(i, j) in its edges is shown. A histogram of θi − ψ are like
the one in Fig. 5.3 in the middle figure. We denote by ψ(t) the argument
of the order parameter. The picture on the right shows that the curve
(sin(θ1(t)− ψ(t)) , sin(θ9(t)− ψ(t))) is closed.

takes place when it “deserts” due to local mean field cohesion (repulsiveness). When
no balance is achieved between these two tendencies, one can observe sensitiveness
to initial conditions.

If ε ∈ [1, 1.5], we also obtained multistability, with the coexistence of solutions
converging to phase-lock and irregular order parameter after the transient, similar
to Fig. 5.2(d).

Now, we compare the results for two slightly different networks depicted in panels (a)
and (b) in Fig. 5.1. The interval of values of ε with fixed phase synchronization for all
initial conditions simulated is very similar for both networks, namely εc < ε . 0.25;
also multistability of static partial synchronous regimes have been observed in both
cases.

When ε ∈ [1, 1.5], contrary to case (a), we observed that the solution for all initial
conditions converged to the same phase-lock regime, similar to Fig. 5.2 (b).

In the conclusion of this section, Fig. 5.7 shows simulation results for two other
networks. Panel (a) shows a random network with N = 10 nodes and 20 undirected
edges. Here predominantly static regimes are observed, only in small ranges of cou-
pling constant chaos with a positive Lyapunov exponent appears. Static regimes,
however, demonstrate a large degree of multistability. In panel (b) we show a scale-
free network with N = 50 nodes and 100 undirected edges. Here static states are
rare, typically irregular regimes with low values of the order parameter are observed.
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Figure 5.6 - Example of trajectory with λmax > 0: details of one of the trajectories from
Fig. 5.2 (f) ε = 0.70. On the left side, the coupling graph with s(i, j) in its
edges is shown. On the right side, there is a histogram of θi − ψ are like the
one in Fig. 5.3.

5.4 Dependence of partial synchronization regimes on network structure

We have seen that partially synchronous states can be rather different even for
similar networks. It is therefore difficult to make general predictions for a relation
between the network properties and the dynamical behaviors. Here we attempt such
a description, focusing on the property of abundance of static regimes in comparison
to time-dependent ones. For this purpose we define the convergence index Ic as the
ratio of values of ε ∈ [0, 1.5] such that R converges to a constant value, considering
all the 10 random initial conditions. So, both networks in Fig. 5.1 have close values
of this index: Ic ≈ 0.530 in case (a) while Ic ≈ 0.549 in case (b). In contradistinction,
network shown in Fig. 5.7(a) has very large value of the index Ic ≈ 0.946, while that
in Fig. 5.7(b) a rather low value Ic ≈ 0.064.

In order to explore which features of the coupling graph are related with Ic, we
performed numerical experiments with three sets of graphs, with N = 10, 50, 100
nodes. Each set consists in three common types of networks, each one with 10
members, generated as: (i) random (Erdös-Rényi) graphs with 2N edges; (ii) scale-
free graphs, also with 2N ; and (iii) tree graphs (N edges). The Barabási-Albert
algorithm is applied for the last two types of networks (ii),(iii), with an initial clique
of m0 nodes and with other nodes been connected to m existing ones. For the 2N -
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(a)

(b)

(a)

(b)

Figure 5.7 - Numerical results for Model (5.1) as a function of ε, for the coupling graphs
depicted as insect, including 10 random initial conditions. The legend of the
pictures is the same as in Fig. 5.1

.

edges scale-free graphs, we fixed m0 = 5 and m = 2; while for the tree graphs
(N edges scale-free graphs), m0 = m = 1. We point out that all graphs created are
connected and symmetrical. Additionally, three sets of 10 initial conditions θ0 ∈ RN ,
with uniform distribution over [0, 2π] and N = 10, 50, 100, have been explored. So,
for each of the 90 coupling graphs we computed its correspondent Ic values by
numerical integration of model (5.1) for ε = 0, 0.01, . . . , 1.49, 1.50.

In Table 5.1 we report the mean value and the standard deviation of Ic for each
topology and size of coupling graph. From these data we see that the mean value
of Ic increases if we go from tree to scale-free and to random graphs, respectively.
However, this difference becomes less noticeable for larger values of N . Both the
mean value and the standard deviation of Ic decrease with larger networks.

We have explored different networks metrics, searching for one mostly correlated
with the convergence index Ic. Let 0 = γ1 < γ2 ≤ . . . γN denote the Laplacian
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Network N = 10 N = 50 N = 100
Tree 0.421 (0.260) 0.016 (0.006) 0.008 (0.004)

Scale-free 0.857 (0.029) 0.050 (0.015) 0.013 (0.003)
Random 0.872 (0.090) 0.183 (0.063) 0.077 (0.022)

Table 5.1 - Mean value of Ic and its standard deviation (in brackets) for each network type
and size simulated.

Figure 5.8 - Convergence index Ic versus γ∗. Networks with N = 10, 50, 100 nodes are
represented as circles, squares and triangles, respectively. The two experiments
from Fig. 5.1 are shown as disks. We show in red an exponential fit f(x) =
e1.7676−1.0894x for the data.

eigenvalues of the coupling graph. Recall that this graph is assumed to be simple
and connected. We stress that these eigenvalues express fundamental characteristics
of the graph. For instance, γ2 is related with graph diameter and γN with its largest
degree size.

We found that the quantity γ∗, defined as the ratio between the maximum eigenvalue
and the average of the non-trivial eigenvalues of the Laplacian matrix of the graph,
is rather suitable for this purpose. Formally, it is defined as

γ∗ := γN

(
1

N − 1

N−1∑
k=2

γk

)−1

.

In Fig. 5.8 a correlation plot between Ic and measure γ∗ for the correspondent graph
is presented. From there, we observe a clear trend indicating that the greater the
value of γ∗ is, the smaller is the value of Ic. Independently of the network type and
size, static regimes of partial synchronization, full synchronization and phase-lock,
are typical for values of γ∗ . 3, like in the experiments from Fig. 5.1. On the other
hand, graphs with larger values of this measure yields more irregular dynamics, like
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time-dependent periodic and chaotic regimes, as the ones from Fig. 5.7.

5.5 Conclusion

In this work we introduced and studied the DHM, as a Kuramoto-like model of
identical oscillators with non-linear coupling. Our main parameter was ε, which
governs the coupling nonlinearity strength. It is clear that the most influence of
nonlinearity in the coupling is on the hubs which experience strong forcing from
many connected oscillators, while less connected nodes may still operate in a linear-
coupling regime.

We proved that if this parameter is smaller than the inverse of the square of the
maximum vertex degree in the network, then the full synchronized state is stable.
Via numerical experiments, we showed that our model can display a variety of other
qualitative behaviors of partial synchronization, like stationary phase locking, mul-
tistability, periodic order parameter variations, and chaotic regimes. We explored
the relative abundance of stationary phase locking regimes under different network
topologies. Our statistical analysis with 90 graphs, comprising a variety of network
sizes and topologies and vertex sizes, suggests that tree graphs are much less likely
to exhibit stationary phase locking in comparison with scale-free or random net-
works. In addition, this type of behavior becomes rarer if we increase network sizes,
irrespective to the network topology. Finally, we also found a good correlation be-
tween the ration between the maximum eigenvalue and the average of the non-trivial
eigenvalues of the Laplacian matrix of the graph, and the proportion of the repulsion
parameter values which yield stationary phase locking. Our simulations show evi-
dence that the greater this measure is, the smaller tend to be presence of stationary
phase locking states in the system.

As a future research, we plan to investigate analytical conditions and correlations
involving other graph measures related to other forms of synchronization in the
model.
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6 SYNCHRONIZATION VERSUS NEIGHBORHOOD SIMILARITY

Multi-agents systems from several social or biological applications are often modeled
as units having distinct characteristics (SAYAMA; SINATRA, 2015). We are interested
in this chapter in how dynamical properties of a system can be affected by the way
its non-identical elements select each other to interact.

“Do birds of a feather flock together?”, this question belongs to the article title
of Ref. (HAMM, 2000). Its authors explore this matter through a statistical analysis
regarding friendship bounds among adolescents. They concluded that some common
traits like ethnic identity indeed favor such connections, while others, like substance
use, have lower influence. In general, positive or negative assortative matching trends
are commonly found in humans (REUSCH et al., 2001) and animals (JIANG et al., 2013).

Considering social networks, there are indeed evidences of like-minded communities
(MODANI et al., 2014). Moreover, Ref. (FOWLER; CHRISTAKIS, 2008) reveals that
clusters of happy and unhappy people result not just from their tendency to associate
with similar individuals, but also from emotion spread. Such scenario is particularly
interesting due its parallel with percolation phenomena and dynamic processes on
complex networks (PIKOVSKY et al., 2003).

In fact, Nature seems to employ Similar (homophily) or Dissimilar (heterophily)
associations under several circumstances and this can be the result of evolutionary
adaption (LOZARES et al., 2014).

We investigate ideas inspired by this context within the non-identical phase oscillator
Kuramoto model, as in Sec. 3.4. Agents and its connections are represented by
the network of coupled oscillators and synchronization emergence plays the role of
information transfer. Besides, individual inner characteristics are expressed as their
natural frequencies, that is, their travel velocity through the unit cycle when they
suffer no external influence.

The weighted graph measure called total dissonance is employed. It generalizes the
concept of dissonance, in the sense of natural frequency mismatch, from two coupled
oscillators (PIKOVSKY et al., 2003). Thus, our neighborhood patterns are obtained via
an optimization algorithm, exclusively by permutations of the natural frequencies
over the graph nodes. Similar, Neutral and Dissimilar are associated with very small,
medium and very high values of total dissonance.

These results have already been published at Ref. (FREITAS et al., 2015a), see Ap-
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pendix C, so we focus on major results in the present chapter.

Apart from the related material discussed (FREITAS et al., 2015a), Ref. (PINTO; SAA,
2015) is a contemporary reference which strongly relates with our findings. This pa-
per is based on the Ott-Antonsen ansatz (GOTTWALD, 2015), which assumes the os-
cillators’ dynamics in the Kuramoto Model can be written in the form θi(t) = α(t)ωi.
Thus, beginning with this assumption, suitable mainly for large values of coupling
parameter, the authors there describe properties that the natural frequencies vec-
tor must fulfill in order to maximize the norm of the order parameter, which yield
exactly our Dissimilar patterns.

We traced a complementary view. Starting from social and biologically motivated
configurations, we provide evidences from numerical experiments of its synchroniza-
tion properties, for a broader range of coupling parameter values and several network
topologies.

In the first section, we discuss the experiment setup; while, the second section con-
tains construction details of Similar, Neutral and Dissimilar patterns via the Simu-
lated Annealing optimization method.

Numerical integration results are shown and discussed in the third section. Finally,
conclusions are included in the last section.

6.1 Numerical Experiment Setup

Consider networks of N coupled oscillators, more specifically, the Kuramoto Model
(KM)

θ̇i = ωi + ε

di

N∑
j=1

Aij sin(θj − θi) , (6.1)

for i = 1, . . . , N , which is the same formulation as Eq. (3.15) from Sec. 3.4.

Several coupling graphs are studied and all of them are symmetrical and connected,
see also Chap. 2. We identify graphs with their adjacency matrix A in this chapter.
These graphs follow common complex networks topologies, with N nodes and E =
4N (directed) edges: 4-Regular (N RE), Barabási-Albert (N BA), Erdős-Rényi (N
ER) andWatts-Strogatz with rewiring probability 0.25 (N WS). An empirical graph1

comprising N = 105 nodes, E = 882 edges and 2 communities is also included (105
CO).

1The Krebs-Amazon Political Books network: http://moreno.ss.uci.edu/data.html
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A single version of the empirical (105 CO) and regular networks (50 RE) and (500
RE) are considered. In addition, we perform simulations with 100 samples of each
one of the random network topologies, (BA, ER and WS), with N = 50 and also
with N = 500.

Our purpose to perform simulations with multiple coupling graphs is to analyze the
pervasiveness of neighborhood patterns influence on synchronization metrics.

About the vector of natural frequencies, for each network size (N = 50, 105, 500),
we draw a single choice of zero-mean natural frequencies ω ∈ RN from the uniform
distribution over [−π, π]. Also, for each network size, a common initial condition
θ0 ∈ RN uniformly drawn over the unit circle [0, 2π] is used for numerical integration.

Each pair (A, ω) will generate Similar, Neutral and Dissimilar configurations, taking
into account only natural frequencies swapping among graph nodes. After the actual
construction of such neighborhoods, which is discussed in the next section, numerical
integration is performed separately for each of these three patterns.

As described in Sec. 3.7, numerical integration is performed over a sufficiently large
time interval to reach permanent regime. Besides, we select increasingly values of
coupling parameter ε = 0, 0.1, . . . up to the critical coupling for phase-locking εPL.

6.2 Similar, Neutral and Dissimilar neighborhood patterns

Given a fixed coupling graph expressed by its adjacent matrix A of N nodes and a
natural frequencies vector ω ∈ RN , the total dissonance is defined as

νTotal := 1
N

√√√√√ N∑
i,j=1

Aij(ωi − ωj)2. (6.2)

Notice that this metric is proportional to the sum of all natural frequencies mis-
matches ωi − ωj over the directed edges in the graph2. In particular, if oscillator’s
natural frequencies are close (far) to the ones from their neighborhoods in the cou-
pling graph, then total dissonance νTotal will be low (high).

Since we consider symmetrical and connected coupling graphs, it is straightforward
to check that νTotal = 0 if and only if all oscillator are identical. If we write νTotal =

2 We opt to divide it by network size N instead of quantity of directed edges E to reflect that
the more edges a graph contains, the more conflicting pairs of dissonances exist in the network,
which yields higher total dissonance. Even so, this constant has no influence regarding the actual
SA output.
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νTotal(ω), it quantifies how far ω is from a condition where all natural frequencies are
identical. Therefore, νTotal encompasses information about the total spreading of ω
by summing up individual dissonances over the coupling graph edges.

We use (A, ω) as input for to the optimization process. Then, Similar or Dissimilar
patterns are defined as the outcome of minimization or maximization of the objective
function νTotal, respectively. A Simulated Annealing is applied for this purpose and
its details are discussed in the below.

The initial pair (A, ω), without any optimization algorithm, is said to be Neutral.
This is because for sufficiently large network size N , the total number of permuta-
tions N ! is so large that probability of randomly drawing a permutation such that
νTotal is close to the extreme values is very small. Of course, random permutations are
not necessarily far from Similar/Dissimilar extremes. We ensure that our numerical
setup indeed satisfied this property later in the text at Fig. 6.2.

Fig. 6.1 illustrates RE, BA and CO graphs with these three neighborhood patterns.

In all cases, Similar patterns placed natural frequencies more homogeneously, with wi
close to the corresponding mean value of its neighborhood. This is visually recognized
by the node color transition from blue (−π) to white (0) and red (π).

One can also observe that this homogeneity arises differently for each topology. Hubs
of the BA graph were colored with whiter tones, corresponding to natural frequency
distribution closer to zero. In contradiction, the CO graph had positive and negative
natural frequency values placed into distinct poles, with hubs inside them close to
±π/2 and transition nodes between communities close to zero ωi.

Dissimilar patterns displayed the reverse behavior. One can notice abundant connec-
tions between nodes holding extreme opposite natural frequencies values, negative
(red) and positive (blue). In the RE graph, we see nodes with interchanging positive
and negative natural frequency values.

Eventually, Neutral patterns can be seeing as a blending between both cases, with
no clear νTotal bias.

We employ the Simulated Annealing optimization method (SA) (KIRKPATRICK,
1984) to generate random permutations of the vector ω towards optimal total dis-
sonance νTotal values. More specifically, successive SA iterations are applied using
three different strategies for node interchange. Since hubs influence the most νTotal,
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Figure 6.1 - Examples of Similar, Neutral and Dissimilar patterns related to N -nodes
graphs following network topology: 4-Regular (50 RE); Barabási-Albert (50
BA); a community graph (105 CO). Vertex color is presented according to
its natural frequency ωi, ranging from −π (blue) to π(red); vertex size is
proportional to node-degree. The associate total dissonance νTotal is shown.

we first select nodes to be swapped with probability proportional to vertex degree.
Then, we chose vertexes to be interchanged within modularity-based community
(LANCICHINETTI; FORTUNATO, 2009), as a way to focus the optimization process
on relatively detached graph portions. Finally, we elect nodes with equal probability
to allow fine adjustments and also to facilitate the escape from local critical points
of νTotal.

Fig. 6.2 presents a distribution chart of the total dissonances νTotal obtained for
all the network topologies included in this chapter. We see here a clear separation
between patterns, since there is no νTotal range overlapping. This an evidence that
the optimization technique was sufficiently well tuned, yielding indeed meaningful
patterns.
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Figure 6.2 - Total Dissonance νTotal distribution chart of different topologies with Similar
(Blue), Neutral (Gray) and Dissimilar (Orange) patterns. Data correspond
to the single members from categories 50 RE, 500 RE and 105 CO; and 100
different elements for the others. Colored bars indicate the overall range of
νTotal obtained, while mean values of each distribution are joined by a black
line within each category.

6.3 Simulation Results

It is shown in this section our numerical integration results according to the simu-
lation setup described in Sec. 6.1 with the neighborhood patterns from Sec. 6.2.

We focus on two synchronizations measures from Sec. 3.5 as a function of coupling
strength ε: the mean value of partial synchronization index S and the mean value
of the norm of the order parameter 〈R〉 after the transient. The value of these
quantifiers is plotted up phase-locking. Since there are 100 different graphs of BA,
ER and WS topologies, we rescale the ε time series to the associated mean value
critical coupling phase-locking parameter εPL.

Overall results were qualitatively comparable regarding phase-lock regime: εPL de-
creases from Similar, Neutral to Dissimilar patterns; while the corresponding value
of the order parameter RPL = 〈R〉 tend to increase in the same ordering. Thus,
Similar ensembles require higher coupling to achieve phase-locking and even when
they do, oscillators are more spread around the unit circle than their counterparts.
Neutral patterns required smaller εPL than Dissimilar ones, except for RE graphs.

For all topologies, higher values of εPL were measured when N was multiplied by
10. In terms of differences between network topologies, BA, ER, WS graphs exhib-
ited smaller values of εPL in this other, if we consider Similar or Neutral patterns.

68



Figure 6.3 - Mean order parameter after transient 〈R〉 and partial synchronization index
S, solid and dashed lines resp., as a function of coupling strength ε for different
graph topologies. Average values of all graphs simulated within each category
are shown. Similar, Neutral and Dissimilar cases are respectively plotted in
Blue, Gray and Orange. Lines are drawn up to ε equal to the respective
average critical phase-locking εPL.

Nevertheless, there is no clear bias between the coupling network topologies and
RPL.

We analyze at this point the impact of Similar, Neutral and Dissimilar configuration
regarding the emergence of phase-synchronization, that is, for coupling parameters
ε much smaller than εPL.

Except for RE graphs, we see that Similar configurations favor weaker synchroniza-
tion regimes due to the initial growth of S and 〈R〉 for small coupling strength
ε. However, beyond intermediate values of ε, Dissimilar patterns surpass the Sim-
ilar ones through an abrupt transition. The Neutral case is in-between these two
extremes, closer to the behavior of the Dissimilar pattern.

6.4 Conclusion

We investigated synchronization effects related to Similar, Neutral and Dissimilar
neighborhood configuration, which can be also understood respectively as homoge-
neous, random or heterogeneous non-identical organization patterns.

A parallel of our findings could be made with percolation of conflicting ideas, asso-
ciating communication and agreement with the emergence of synchronization and
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phase-locking, respectively. In Similar scenarios, interaction mostly occurs among
people with closely related culture backgrounds. Thus, communication can easily
spread locally, but the overall population, which contains diverse members, will
hardly find a compromise. On the other hand, when networks contain more hetero-
geneous neighbors, as in the Neutral and Dissimilar cases, communication demands
higher effort to be established. But after that, the whole ensemble is capable to
rapidly reach consensus.

In summary, experiments with several network topologies were analyzed and strong
numerical trend was found. The Neutral case behaves in general between both ex-
tremes, closer to the Dissimilar case. Except for RE networks, under small coupling
strength ε, Similar patterns yield larger values of partial synchronization index S,
meaning early synchronization ongoing. In contradistinction, Dissimilar ones present
smaller values of S, but undergo abrupt increment until phase-locking. Moreover,
all networks with Similar patterns required higher values of coupling strength to
achieve phase-locking, while Dissimilar patterns converged to regimes closer to full
synchronization.
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7 CONCLUSION AND OUTLOOK

The focus of this thesis is the emergence of synchronization regimes regarding net-
works of phase-oscillator, with emphasis to the interplay of dynamics and net-
work topology. It is an interdisciplinary research, aligned with the Cap-INPE post-
graduation directives, since it made use of computational modeling, massive numer-
ical simulation and dynamical system theory. We point out the importance of data
visualization and statistics tools to interpreted and analyze results too.

In the first part of the text we visited elements of graph theory, including complex
network topologies and algorithms to build instances of them. We included after that
a discussion about abstract oscillatory systems, its reduction to phase-variables, and
an exposition about the simple case of two coupled oscillators. This lead to the main
object of study here: the Kuramoto Model (KM). We recall that this model can be
considered as a template for a large class of networks of oscillator. Besides, it captures
key features from collective behavior.

In this first part, we laid foundation and common terminology for our major con-
tributions (I,II,III). Since our results may be addressed to reader from a variety of
backgrounds, it was interesting as a brief reference to these topics too.

Our contribution (I) is a test bed for phase assignment methods introduced at Ref.
(FERREIRA et al., 2015): The discrete complex wavelet approach (DCWA) to phase
assignment and a new test bed for related methods. The test bed consists in em-
bedding trajectories of the KM into a suitable 3d surface, yielding time series with
chaotic properties. Such a test bed is devised as a mock for time series of oscillator,
where we know reference phase-variables a priori.

This is an innovative technique, because most ot the articles introducing new meth-
ods for phase assignment employed as reference phases a classic method, which can
hinder analyzes. As a possible way to improve the test bed, we could reshape the
surface to exhibit a funnel-like geometry like the non-coherent Rössler. Analogous
ideas could also be employed to generate time series to mock the ones from neuron
networks, including multiple time scales synchronization with bursts and spikes.

Contribution (II) from Ref. (FREITAS et al., 2015a), Partial synchronization in net-
works of non-linearly coupled oscillators: The Deserter Hubs Model (DHM), was a
generalization of the KM. More specifically, we introduced a non-linear coupling
scheme based on a local order parameter. This is performed in a way that oscillators
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can shift from conformist to contrarian behavior under the influence of sufficiently
large number of cohesive neighbors.

We presented a theorem for the DHM stating that if the non-linear coupling pa-
rameter is sufficiently small in comparison with the largest node degree, then the
full-synchronization in the DHM is stable Chaos, multistability and periodic order
parameter were dynamic regimes observed in the DHM. Another highlight is the ex-
istence of full synchronized subgroups under phase-locking regime, which could be
adapted for the use of collective motion applications using the KM like components
as building blocks. As future research we cite the introduction of more elements in the
model towards a more accurate description for deep brain stimulation (POPOVYCH

et al., 2005).

Finally, we have contribution (III) from Ref. (FREITAS et al., 2015b), Synchronization
versus neighborhood similarity in complex networks of non-identical oscillators. The
driving question of this work is to analyze the effect of homophily/heterophily, which
are phenomena from social/biological areas, into the classic KM framework. To do
so, we introduced the total dissonance weighted graph measure to allow the con-
struction of Similar, Neutral and Dissimilar neighborhood patterns. Our numerical
experiments with several network topologies showed evidences that: Similar con-
figurations favor the emergence of synchronization, with small values of coupling
parameter, while Dissimilar ones undergo an abrupt synchronization for larger val-
ues of the coupling parameter. Neutral configurations were a blending between both
extremes.

As prospective research, we suggest investigating intermediate values of total disso-
nance, in between the previously mentioned patterns, and also to expand the study
to chaotic oscillator. Moreover, we are already preparing new material about the
impact of theses neighborhood patterns and delayed communication over transient
time.

72



REFERENCES

ACEBRÓN, J. A.; BONILLA, L. L.; VICENTE, C. J. P.; RITORT, F.; SPIGLER,
R. The Kuramoto model: A simple paradigm for synchronization phenomena.
Rev. Mod. Phys., APS, v. 77, p. 1, 137–175, 2005. 4

ALLIGOOD, K.; SAUER, T.; YORKE, J. Chaos: an introduction to
dynamical systems. [S.l.]: Springer, 1997. (Chaos: An Introduction to Dynamical
Systems). ISBN 9780387946771. 33, 44, 53, 57

BAIBOLATOV, Y.; ROSENBLUM, M.; ZHANABAEV, Z. Z.; KYZGARINA, M.;
PIKOVSKY, A. Periodically forced ensemble of nonlinearly coupled oscillators:
from partial to full synchrony. Phys. Rev. E, v. 80, n. 4 Pt 2, p. 046211, 2009. 49

BAKER, C. T. Retarded differential equations. Journal of Computational and
Applied Mathematics, Elsevier, v. 125, n. 1, p. 309–335, 2000. 36

BALANOV, A.; JANSON, N.; POSTNOV, D.; SOSNOVTSEVA, O.
Synchronization: from simple to complex. Springer, 2010. (Springer Series in
Synergetics). ISBN 9783642091285. Available from:
<http://books.google.com.br/books?id=jUMpYgEACAAJ>. 3, 17, 21

BARABÁSI, A.-L. Linked: how everything is connected to everything else
and what it means for business, science, and everyday Life. New York:
Plume, 2003. ISBN 0-452-28439-2. 3

BARABÁSI, A.-L. Scale-free networks: a decade and beyond. Science, American
Association for the Advancement of Science, v. 325, n. 5939, p. 412–413, 2009. 2

BARABÁSI, A.-L.; ALBERT, R. Statistical mechanics of complex networks. Rev.
Mod. Phys., v. 74, n. 47, 2002. 2, 7, 9, 10, 11, 13

BARABÁSI, A.-L.; JEONG, H.; NÉDA, Z.; RAVASZ, E.; SCHUBERT, A.;
VICSEK, T. Evolution of the social network of scientific collaborations. Physica
A: Statistical mechanics and its applications, Elsevier, v. 311, n. 3, p.
590–614, 2002. 2

BARAHONA, M.; PECORA, L. M. Synchronization in small-world systems.
Physical review letters, APS, v. 89, n. 5, p. 054101, 2002. 2

BEER, R. D. Dynamical systems and embedded cognition. The Cambridge
handbook of artificial intelligence, ed, n. 812, p. 856–873, 2014. 3

73

http://books.google.com.br/books?id=jUMpYgEACAAJ


BENNET, D. J.; MCINNES, C. R. Pattern transition in spacecraft formation
flying using bifurcating potential fields. Aerospace Science and Technology,
v. 23, n. 1, p. 250 – 262, 2012. ISSN 1270-9638. 35th ERF: Progress in Rotorcraft
Research. Available from: <http:
//www.sciencedirect.com/science/article/pii/S1270963811001210>. 2

BOCCALETTI, S.; LATORA, V.; MORENO, Y.; Chavez, M.; Hwang, D.-U.
Complex networks: structure and dynamics. Physics Reports, v. 424, p.
175–308, feb. 2006. 3

BONVIN, N.; PAPAIOANNOU, T. G.; ABERER, K. A self-organized,
fault-tolerant and scalable replication scheme for cloud storage. In: Proceedings
of the 1st ACM symposium on Cloud computing. New York, NY, USA:
ACM, 2010. p. 205–216. ISBN 978-1-4503-0036-0. 2

BROWN, R. E. Impact of smart grid on distribution system design. In: IEEE.
Power and Energy Society General Meeting-Conversion and Delivery of
Electrical Energy in the 21st Century, 2008 IEEE. [S.l.], 2008. p. 1–4. 2

BSHARY, R.; GINGINS, S.; VAIL, A. L. Social cognition in fishes. Trends in
cognitive sciences, Elsevier, v. 18, n. 9, p. 465–471, 2014. 3

BURDEN, R.; FAIRES, J. Numerical Analysis. Brooks/Cole, 2005. (Available
Titles CengageNOW Series). ISBN 9780534392000. Available from:
<http://books.google.com.br/books?id=wmcL0y2avuUC>. 31

CALLAWAY, D. S.; NEWMAN, M. E.; STROGATZ, S. H.; WATTS, D. J.
Network robustness and fragility: Percolation on random graphs. Physical
review letters, APS, v. 85, n. 25, p. 5468, 2000. 27

CANEDO-RODRIGUEZ, A.; IGLESIAS, R.; REGUEIRO, C. V.;
ALVAREZ-SANTOS, V.; PARDO, X. M. Self-organized multi-camera network for
a fast and easy deployment of ubiquitous robots in unknown environments.
Sensors, v. 13, n. 1, p. 426–454, 2012. ISSN 1424-8220. Available from:
<http://www.mdpi.com/1424-8220/13/1/426>. 2, 3

CAO, Y.; YU, W.; REN, W.; CHEN, G. An overview of recent progress in the
study of distributed multi-agent coordination. IEEE Transactions on
Industrial informatics, IEEE, v. 9, n. 1, p. 427–438, 2013. 4

CASTEIGTS, A.; FLOCCHINI, P.; QUATTROCIOCCHI, W.; SANTORO, N.
Time-varying graphs and dynamic networks. International Journal of Parallel,

74

http://www.sciencedirect.com/science/article/pii/S1270963811001210
http://www.sciencedirect.com/science/article/pii/S1270963811001210
http://books.google.com.br/books?id=wmcL0y2avuUC
http://www.mdpi.com/1424-8220/13/1/426


Emergent and Distributed Systems, v. 27, n. 5, p. 387–408, 2012. Available
from: <http://dx.doi.org/10.1080/17445760.2012.668546>. 2

CAVAGNA, A.; CASTELLO, L. D.; GIARDINA, I.; GRIGERA, T.; JELIC, A.;
MELILLO, S.; MORA, T.; PARISI, L.; SILVESTRI, E.; VIALE, M. et al.
Flocking and turning: a new model for self-organized collective motion. Journal
of Statistical Physics, Springer, v. 158, n. 3, p. 601–627, 2015. 3

CESSAC, B.; SAMUELIDES, M. From neuron to neural networks dynamics. The
European Physical Journal Special Topics, Springer, v. 142, n. 1, p. 7–88,
2007. 3

CHEN, J.; WONG, K.; SHUAI, J. Properties of phase locking with weak
phase-coherent attractors. Physics Letters A, Elsevier, v. 285, n. 5, p. 312–318,
2001. 38, 40

CHUNG, F.; LU, L. The small world phenomenonin hybrid power law graphs. In:
Complex networks. [S.l.]: Springer, 2004. p. 89–104. 2

CYMERBLIT-SABBA, A.; SCHILLER, Y. Network dynamics during development
of pharmacologically induced epileptic seizures in rats in vivo. The Journal of
Neuroscience, Soc Neuroscience, v. 30, n. 5, p. 1619–1630, 2010. 3

EISENCRAFT, M.; FANGANIELLO, R.; GRZYBOWSKI, J.; SORIANO, D.;
ATTUX, R.; BATISTA, A.; MACAU, E.; MONTEIRO, L. H. A.; ROMANO, J.;
SUYAMA, R. et al. Chaos-based communication systems in non-ideal channels.
Communications in Nonlinear Science and Numerical Simulation,
Elsevier, v. 17, n. 12, p. 4707–4718, 2012. 36

ERDÖS, P.; RÉNYI, A. On random graphs, i. Publicationes Mathematicae
(Debrecen), v. 6, p. 290–297, 1959. 1

EULER, L. Solutio problematis ad geometriam situs pertinentis. Commentarii
academiae scientiarum Petropolitanae, v. 8, p. 128–140, 1741. 1

FERREIRA, M. T. Detecção da sincronização de fase em sistemas caóticos
por meio da transformada wavelet complexa dual-tree. 202 p. PhD Thesis
(PhD) — Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos,
2014-06-24 2014. Available from:
<http://urlib.net/sid.inpe.br/mtc-m21b/2014/06.10.12.28>. Access in: 04
ago. 2016. 6, 37, 41

75

http://dx.doi.org/10.1080/17445760.2012.668546
http://urlib.net/sid.inpe.br/mtc-m21b/2014/06.10.12.28


FERREIRA, M. T.; FREITAS, C. B. N.; DOMINGUES, M. O.; MACAU, E. E.
The discrete complex wavelet approach to phase assignment and a new test bed for
related methods. Chaos: An Interdisciplinary Journal of Nonlinear
Science, AIP Publishing, v. 25, n. 1, p. 013117, 2015. 5, 37, 43, 71

FIGUEIREDO, D. G.; NEVES, A. F. Equações diferenciais aplicadas; coleção
matemática universitária, impa. Rio de Janeiro, 2005. 3

FILATRELLA, G.; NIELSEN, A. H.; PEDERSEN, N. F. Analysis of a power grid
using a kuramoto-like model. The European Physical Journal B, Springer,
v. 61, n. 4, p. 485–491, 2008. 26

FILATRELLA, G.; PEDERSEN, N. F.; WIESENFELD, K. Generalized coupling
in the Kuramoto model. Phys. Rev. E, v. 75, p. 017201, 2007. 49

FOLLMANN, R.; MACAU, E. E.; ROSA, E.; PIQUEIRA, J. R. Phase oscillatory
network and visual pattern recognition. Neural Networks and Learning
Systems, IEEE Transactions on, IEEE, v. 26, n. 7, p. 1539–1544, 2015. 4, 26

FOWLER, J. H.; CHRISTAKIS, N. A. Dynamic spread of happiness in a large
social network: longitudinal analysis over 20 years in the framingham heart study.
Bmj, British Medical Journal Publishing Group, v. 337, p. a2338, 2008. 63

FREEMAN, J.; ZIEMBA, C. M.; HEEGER, D. J.; SIMONCELLI, E. P.;
MOVSHON, J. A. A functional and perceptual signature of the second visual area
in primates. Nature neuroscience, Nature Publishing Group, 2013. 3

FREITAS, C.; MACAU, E.; PIKOVSKY, A. Partial synchronization in networks
of non-linearly coupled oscillators: The deserter hubs model. Chaos: An
Interdisciplinary Journal of Nonlinear Science, AIP Publishing, v. 25, n. 4,
p. 043119, 2015. 5, 49, 50, 63, 64, 71

FREITAS, C.; MACAU, E.; VIANA, R. L. Synchronization versus neighborhood
similarity in complex networks of nonidentical oscillators. Physical Review E,
APS, v. 92, n. 3, p. 032901, 2015. 5, 72

FREITAS, C. B. N.; MACAU, E. E. M.; VIANA, R. L. Partial synchronization
groups in the kuramoto model: Definitions and numerical experiments. In: 22nd
International Congress of Mechanical Engineering (COBEM 2013).
Ribeirão Preto, SP, Brazil: [s.n.], 2013. p. Submetido. 29

76



GODSIL, C.; ROYLE, G. Algebraic Graph Theory. [S.l.]: volume 207 of
Graduate Texts in Mathematics. Springer, 2001. (Graduate Texts in Mathematics.,
v. 207). 52

GÓMEZ-GARDEÑES, J.; MORENO, Y.; ARENAS, A. Paths to synchronization
on complex networks. Phys. Rev. Lett., American Physical Society, v. 98, p.
034101, Jan 2007. Available from:
<http://link.aps.org/doi/10.1103/PhysRevLett.98.034101>. 6, 29

GOTTWALD, G. A. Model reduction for networks of coupled oscillators. Chaos:
An Interdisciplinary Journal of Nonlinear Science, AIP Publishing, v. 25,
n. 5, p. 053111, 2015. 64

GRZYBOWSKI, J.; MACAU, E.; YONEYAMA, T. On synchronization in
power-grids modelled as networks of second-order kuramoto oscillators. Chaos:
An Interdisciplinary Journal of Nonlinear Science, AIP Publishing, v. 26,
n. 11, p. 113113, 2016. 26

GRZYBOWSKI, J.; MACAU, E. N.; YONEYAMA, T. Isochronal synchronization
of time delay and delay-coupled chaotic systems. Journal of Physics A:
Mathematical and Theoretical, IOP Publishing, v. 44, n. 17, p. 175103, 2011.
36

GURUPRASAD, K.; GHOSE, D. Performance of a class of multi-robot deploy and
search strategies based on centroidal voronoi configurations. International
Journal of Systems Science, v. 44, n. 4, p. 680–699, 2013. Available from:
<http://www.tandfonline.com/doi/abs/10.1080/00207721.2011.618327>. 2,
3

HAMM, J. V. Do birds of a feather flock together? the variable bases for african
american, asian american, and european american adolescents’ selection of similar
friends. Developmental Psychology, American Psychological Association, v.
36(2), n. 36, p. 209–219, 2000. ISSN 1939-0599. 63

HIRSCH, M.; SMALE, S.; DEVANEY, R. Differential Equations, Dynamical
Systems, and an Introduction to Chaos. Academic Press, 2004. (Differential
equations, dynamical systems, and an introduction to chaos, v. 60). ISBN
9780123497031. Available from:
<https://books.google.com.br/books?id=INYJuKGmgd0C>. 20, 21, 24, 27, 32,
38

77

http://link.aps.org/doi/10.1103/PhysRevLett.98.034101
http://www.tandfonline.com/doi/abs/10.1080/00207721.2011.618327
https://books.google.com.br/books?id=INYJuKGmgd0C


HONG, H.; STROGATZ, S. H. Kuramoto model of coupled oscillators with
positive and negative coupling parameters: An example of conformist and
contrarian oscillators. Phys. Rev. Lett., American Physical Society, v. 106, p.
054102, Feb 2011. Available from:
<http://link.aps.org/doi/10.1103/PhysRevLett.106.054102>. 49

HONG, Y.-W.; SCAGLIONE, A. A scalable synchronization protocol for large
scale sensor networks and its applications. Selected Areas in
Communications, IEEE Journal on, IEEE, v. 23, n. 5, p. 1085–1099, 2005. 36

HOOVER, W. G.; HOOVER, C. G. Time reversibility, computer simulation,
algorithms, chaos. Nonlinear Dynamics, World Scientific, v. 1, p. 3, 2012. 34

HUANG, X.; MI, Y.; QIAN, Y.; HU, G. Phase-locking behaviors in an ionic model
of sinoatrial node cell and tissue. Physical Review E, APS, v. 83, n. 6, p.
061917, 2011. 3

IOANNOU, C.; GUTTAL, V.; COUZIN, I. Predatory fish select for coordinated
collective motion in virtual prey. Science, American Association for the
Advancement of Science, v. 337, n. 6099, p. 1212–1215, 2012. 3

JADBABAIE, A.; MOTEE, N.; BARAHONA, M. On the stability of the
kuramoto model of coupled nonlinear oscillators. In: American Control
Conference, 2004. Proceedings of the 2004. [S.l.: s.n.], 2004. v. 5, p.
4296–4301 vol.5. ISSN 0743-1619. 30, 51

JEONG, H.; MASON, S. P.; BARABÁSI, A.-L.; OLTVAI, Z. N. Lethality and
centrality in protein networks. Nature, Nature Publishing Group, v. 411, n. 6833,
p. 41–42, 2001. 2

JEONG, H.; TOMBOR, B.; ALBERT, R.; OLTVAI, Z. N.; BARABÁSI, A.-L. The
large-scale organization of metabolic networks. Nature, Nature Publishing Group,
v. 407, n. 6804, p. 651–654, 2000. 2

JI, P.; PERON, T. K. D.; MENCK, P. J.; RODRIGUES, F. A.; KURTHS, J.
Cluster explosive synchronization in complex networks. Physical review letters,
APS, v. 110, n. 21, p. 218701, 2013. 3, 17

JIANG, Y.; BOLNICK, D. I.; KIRKPATRICK, M. Assortative mating in animals.
The American Naturalist, JSTOR, v. 181, n. 6, p. E125–E138, 2013. 63

KIRKPATRICK, S. Optimization by simulated annealing: Quantitative studies. J.
Stat. Phy., Springer, v. 34, n. 5-6, p. 975–986, 1984. 66

78

http://link.aps.org/doi/10.1103/PhysRevLett.106.054102


KURAMOTO, Y. Self-entrainment of a population of coupled non-linear
oscillators. In: ARAKI, H. (Ed.). International Symposium on Mathematical
Problems in Theoretical Physics. [S.l.]: Springer Berlin Heidelberg, 1975,
(Lecture Notes in Physics, v. 39). p. 420–422. ISBN 978-3-540-07174-7. xii, 4, 30

LANCICHINETTI, A.; FORTUNATO, S. Community detection algorithms: a
comparative analysis. Phys. Rev. E, APS, v. 80, n. 5, p. 056117, 2009. 67

LEONARD, N. E.; PALEY, D. A.; LEKIEN, F.; SEPULCHRE, R.;
FRATANTONI, D. M.; DAVIS, R. E. Collective motion, sensor networks, and
ocean sampling. Proceedings of the IEEE, IEEE, v. 95, n. 1, p. 48–74, 2007. 3,
4, 35

LETELLIER, C.; ROSSLER, O. E. Rossler attractor. v. 1, n. 10, p. 1721, 2006.
revision 91731. 43

LI, J.-S.; ZHANG, X.-D. On the laplacian eigenvalues of a graph. Linear algebra
and its applications, Elsevier, v. 285, n. 1, p. 305–307, 1998. 9, 31

LIN, Z.; BROUCKE, M.; FRANCIS, B. Local control strategies for groups of
mobile autonomous agents. Automatic Control, IEEE Transactions on, v. 49,
n. 4, p. 622–629, 2004. ISSN 0018-9286. 3

LOZARES, C.; VERD, J. M.; CRUZ, I.; BARRANCO, O. Homophily and
heterophily in personal networks. from mutual acquaintance to relationship
intensity. Quality & Quantity, Springer, v. 48, n. 5, p. 2657–2670, 2014.
Available from: <http://dx.doi.org/10.1007/s11135-013-9915-4>. 5, 63

MACARTHUR, B. D.; SáNCHEZ-GARCíA, R. J.; ANDERSON, J. W. Symmetry
in complex networks. Discrete Applied Mathematics, v. 156, n. 18, p. 3525 –
3531, 2008. ISSN 0166-218X. Available from: <http:
//www.sciencedirect.com/science/article/pii/S0166218X08001881>. 2

MODANI, N.; NAGAR, S.; SHANNIGRAHI, S.; GUPTA, R.; DEY, K.; GOYAL,
S.; NANAVATI, A. A. Like-minded communities: bringing the familiarity and
similarity together. World Wide Web, v. 17, n. 5, p. 899–919, 2014. ISSN
1573-1413. Available from:
<http://dx.doi.org/10.1007/s11280-013-0261-1>. 63

MONTOYA, J. M.; SOLÉ, R. V. Small world patterns in food webs. Journal of
theoretical biology, Elsevier, v. 214, n. 3, p. 405–412, 2002. 2

79

http://dx.doi.org/10.1007/s11135-013-9915-4
http://www.sciencedirect.com/science/article/pii/S0166218X08001881
http://www.sciencedirect.com/science/article/pii/S0166218X08001881
http://dx.doi.org/10.1007/s11280-013-0261-1


NAG, S.; SUMMERER, L. Behaviour based, autonomous and distributed scatter
manoeuvres for satellite swarms. Acta Astronautica, v. 82, n. 1, p. 95 – 109,
2013. ISSN 0094-5765. 6th International Workshop on Satellite Constellation and
Formation Flying. Available from: <http:
//www.sciencedirect.com/science/article/pii/S0094576512001452>. 2

NEWMAN, M. E. Communities, modules and large-scale structure in networks.
Nature Physics, Nature Publishing Group, v. 8, n. 1, p. 25–31, 2012. 2

OLFATI-SABER, R.; MURRAY, R. Consensus problems in networks of agents
with switching topology and time-delays. Automatic Control, IEEE
Transactions on, v. 49, n. 9, p. 1520–1533, 2004. ISSN 0018-9286. 3

PALEY, D.; LEONARD, N.; SEPULCHRE, R.; GRUNBAUM, D.; PARRISH, J.
Oscillator models and collective motion. Control Systems, IEEE, v. 27, n. 4, p.
89–105, 2005. ISSN 1066-033X. 3, 28, 35

PIKOVSKY, A.; ROSENBLUM, M. Self-organized partially synchronous
dynamics in populations of nonlinearly coupled oscillators. Physica D:
Nonlinear Phenomena, Elsevier, v. 238, n. 1, p. 27–37, 2009. 49

PIKOVSKY, A.; ROSENBLUM, M.; KURTHS, J. Synchronization: a
universal concept in nonlinear sciences. Cambridge University Press, 2003.
(Cambridge Nonlinear Science Series). ISBN 9780521533522. Available from:
<http://books.google.com.br/books?id=FuIv845q3QUC>. 3, 4, 17, 20, 21, 22,
26, 27, 32, 34, 35, 36, 37, 38, 40, 63

PINTO, R. S.; SAA, A. Optimal synchronization of kuramoto oscillators: A
dimensional reduction approach. Physical Review E, APS, v. 92, n. 6, p. 062801,
2015. 64

POPOVYCH, O. V.; HAUPTMANN, C.; TASS, P. A. Effective desynchronization
by nonlinear delayed feedback. Phys. Rev. Lett., American Physical Society,
v. 94, p. 164102, Apr 2005. Available from:
<http://link.aps.org/doi/10.1103/PhysRevLett.94.164102>. 5, 49, 72

QUILES, M. G.; MACAU, E. E.; RUBIDO, N. Dynamical detection of network
communities. Scientific reports, Nature Publishing Group, v. 6, 2016. 26

QUIRRENBACH, A. Astronomical interferometry, from the visible to sub-mm
waves. Europhysics News, v. 32, p. 237–239, nov. 2001. 4

80

http://www.sciencedirect.com/science/article/pii/S0094576512001452
http://www.sciencedirect.com/science/article/pii/S0094576512001452
http://books.google.com.br/books?id=FuIv845q3QUC
http://link.aps.org/doi/10.1103/PhysRevLett.94.164102


REINISCH, C.; KOFLER, M. J.; KASTNER, W. Thinkhome: A smart home as
digital ecosystem. In: IEEE. Digital Ecosystems and Technologies (DEST),
2010 4th IEEE International Conference on. [S.l.], 2010. p. 256–261. 2

REKA, A.; BARABÁSI. Statistical mechanics of complex networks. Rev. Mod.
Phys., v. 74, p. 47–97, jun. 2002. Available from:
<http://arxiv.org/abs/cond-mat/0106096>. 3

REUSCH, T. B.; HAÈBERLI, M. A.; AESCHLIMANN, P. B.; MILINSKI, M.
Female sticklebacks count alleles in a strategy of sexual selection explaining mhc
polymorphism. Nature, Nature Publishing Group, v. 414, n. 6861, p. 300–302,
2001. 63

RODRIGUES, F. A.; PERON, T. K. D.; JI, P.; KURTHS, J. The kuramoto model
in complex networks. Physics Reports, Elsevier, v. 610, p. 1–98, 2016. 26

ROSENBLUM, M.; PIKOVSKY, A. Self-organized quasiperiodicity in oscillator
ensembles with global nonlinear coupling. Phys. Rev. Lett., v. 98, p. 064101,
2007. 49

ROSENBLUM, M. G.; PIKOVSKY, A. S.; KURTHS, J. Synchronization approach
to analysis of biological systems. Fluctuation and noise letters, World
Scientific, v. 4, n. 01, p. L53–L62, 2004. 37

SARNE, D.; GROSZ, B. Determining the value of information for collaborative
multi-agent planning. Autonomous Agents and Multi-Agent Systems,
Springer US, v. 26, n. 3, p. 456–496, 2013. ISSN 1387-2532. Available from:
<http://dx.doi.org/10.1007/s10458-012-9206-9>. 2, 3

SAYAMA, H.; SINATRA, R. Social diffusion and global drift on networks.
Physical Review E, APS, v. 91, n. 3, p. 032809, 2015. 63

SCHARF, D.; HADAEGH, F.; PLOEN, S. A survey of spacecraft formation flying
guidance and control (part 1): guidance. In: American Control Conference,
2003. Proceedings of the 2003. [S.l.: s.n.], 2003. v. 2, p. 1733–1739. ISSN
0743-1619. 4

. A survey of spacecraft formation flying guidance and control. part ii:
control. In: American Control Conference, 2004. Proceedings of the 2004.
[S.l.: s.n.], 2004. v. 4, p. 2976–2985 vol.4. ISSN 0743-1619. 4

81

http://arxiv.org/abs/cond-mat/0106096
http://dx.doi.org/10.1007/s10458-012-9206-9


SCHWABEDAL, J. T.; PIKOVSKY, A.; KRALEMANN, B.; ROSENBLUM, M.
Optimal phase description of chaotic oscillators. Physical Review E, APS, v. 85,
n. 2, p. 026216, 2012. 34

SHOUCRI, R. Mathematical aspects of the mechanics of left ventricular
contraction. Modelling in Medicine and Biology, WIT Press, p. 87, 2011. 3

SORIANO, M. C.; GARCÍA-OJALVO, J.; MIRASSO, C. R.; FISCHER, I.
Complex photonics: Dynamics and applications of delay-coupled semiconductors
lasers. Reviews of Modern Physics, APS, v. 85, n. 1, p. 421, 2013. 36

SPORNS, O.; ZWI, J. D. The small world of the cerebral cortex.
Neuroinformatics, Springer, v. 2, n. 2, p. 145–162, 2004. 2

STEEN, M. v. Graph theory and complex networks : an introduction.
Lexington: Maarten van Steen, 2010. ISBN 978-90-815406-1-2. Available from:
<http://opac.inria.fr/record=b1130915>. 7, 12

STROGATZ, S. H. From kuramoto to crawford: exploring the onset of
synchronization in populations of coupled oscillators. Physica D: Nonlinear
Phenomena, v. 143, n. 1, p. 1 – 20, 2000. ISSN 0167-2789. Available from: <http:
//www.sciencedirect.com/science/article/pii/S0167278900000944>. 4

. Exploring complex networks. Nature, Department of Theoretical and
Applied Mechanics and Center for Applied Mathematics, Cornell University,
Ithaca, New York 14853-1503, USA. strogatz@cornell.edu, v. 410, n. 6825, p.
268–276, March 2001. ISSN 0028-0836. Available from:
<http://dx.doi.org/10.1038/35065725>. 2, 3

. Nonlinear dynamics and chaos: with applications to physics,
biology, chemistry, and engineering. [S.l.]: Westview press, 2014. 32

TANNER, H.; JADBABAIE, A.; PAPPAS, G. Stable flocking of mobile agents
part i: dynamic topology. In: Decision and Control, 2003. Proceedings. 42nd
IEEE Conference on. [S.l.: s.n.], 2003. v. 2, p. 2016–2021 Vol.2. ISSN 0191-2216.
3

TEMIRBAYEV, A. A.; NALIBAYEV, Y. D.; ZHANABAEV, Z. Z.;
PONOMARENKO, V. I.; ROSENBLUM, M. Autonomous and forced dynamics of
oscillator ensembles with global nonlinear coupling: An experimental study. Phys.
Rev. E, v. 87, p. 062917, 2013. 49

82

http://opac.inria.fr/record=b1130915
http://www.sciencedirect.com/science/article/pii/S0167278900000944
http://www.sciencedirect.com/science/article/pii/S0167278900000944
http://dx.doi.org/10.1038/35065725


TEMIRBAYEV, A. A.; ZHANABAEV, Z. Z.; TARASOV, S. B.;
PONOMARENKO, V. I.; ROSENBLUM, M. Experiments on oscillator ensembles
with global nonlinear coupling. Phys. Rev. E, v. 85, p. 015204, 2012. 49

THIEBAULT, A.; MULLERS, R. H.; PISTORIUS, P. A.; TREMBLAY, Y. Local
enhancement in a seabird: reaction distances and foraging consequence of predator
aggregations. Behavioral Ecology, ISBE, v. 25, n. 6, p. 1302–1310, 2014. 3

TRAPPENIERS, L.; FEKI, M. A.; KAWSAR, F.; BOUSSARD, M. The internet
of things: the next technological revolution. Computer, IEEE Computer Society,
v. 46, n. 2, p. 0024–25, 2013. 2

TURCI, L. F. R.; MACAU, E. E. N. Adaptive node-to-node pinning
synchronization control of complex networks. Chaos: An Interdisciplinary
Journal of Nonlinear Science, AIP, v. 22, n. 3, p. 033151, 2012. 2

VASSILIEVA, E.; PINTO, G.; BARROS, J. Acacio de; SUPPES, P. Learning
pattern recognition through quasi-synchronization of phase oscillators. Neural
Networks, IEEE Transactions on, IEEE, v. 22, n. 1, p. 84–95, 2011. 4

VICSEK, T.; ZAFEIRIS, A. Collective motion. Physics Reports, Elsevier,
v. 517, n. 3, p. 71–140, 2012. 3, 35

WATTS, D. J.; STROGATZ, S. H. Collective dynamics of ?small-world?networks.
nature, Nature Publishing Group, v. 393, n. 6684, p. 440–442, 1998. 1

WINFREE, A. T. Biological rhythms and the behavior of populations of coupled
oscillators. Journal of theoretical biology, Elsevier, v. 16, n. 1, p. 15–42, 1967.
26

WIRKUS, S. The dynamics of two coupled van der Pol oscillators with
delay coupling. Cornell University, August, 1999. Available from:
<http://books.google.com.br/books?id=ntRUAAAAYAAJ>. 31

WOLF, A.; SWIFT, J. B.; SWINNEY, H. L.; VASTANO, J. A. Determining
lyapunov exponents from a time series. Physica D: Nonlinear Phenomena,
v. 16, n. 3, p. 285 – 317, 1985. ISSN 0167-2789. 34

WURMAN, P. R.; D’ANDREA, R.; MOUNTZ, M. Coordinating hundreds of
cooperative, autonomous vehicles in warehouses. AI magazine, v. 29, n. 1, p. 9,
2008. 2

83

http://books.google.com.br/books?id=ntRUAAAAYAAJ


XIE, J.; KELLEY, S.; SZYMANSKI, B. K. Overlapping community detection in
networks: The state-of-the-art and comparative study. Acm computing surveys
(csur), ACM, v. 45, n. 4, p. 43, 2013. 26

YU, W.; CHEN, G.; CAO, M.; KURTHS, J. Second-order consensus for
multiagent systems with directed topologies and nonlinear dynamics. Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,
IEEE, v. 40, n. 3, p. 881–891, 2010. 3, 17

ZEMANOVÁ, L.; ZHOU, C.; KURTHS, J. Structural and functional clusters of
complex brain networks. Physica D: Nonlinear Phenomena, Elsevier, v. 224,
n. 1, p. 202–212, 2006. 3

ZHANG, Q.; LAPIERRE, L.; XIANG, X. Distributed control of coordinated path
tracking for networked nonholonomic mobile vehicles. Industrial Informatics,
IEEE Transactions on, v. 9, n. 1, p. 472–484, 2013. ISSN 1551-3203. 2

ZHANG, Z.; LONG, K.; WANG, J.; DRESSLER, F. On swarm intelligence
inspired self-organized networking: its bionic mechanisms, designing principles and
optimization approaches. Communications Surveys & Tutorials, IEEE,
IEEE, v. 16, n. 1, p. 513–537, 2014. 3

84



Appendix 1: The discrete complex wavelet approach to phase assignment
and a new test bed for related methods

85



The discrete complex wavelet approach to phase assignment and a new test bed for
related methods
Maria Teodora Ferreira, Celso Bernardo Nóbrega Freitas, Margarete O. Domingues, and Elbert E. N. Macau 
 
Citation: Chaos: An Interdisciplinary Journal of Nonlinear Science 25, 013117 (2015); doi: 10.1063/1.4906814 
View online: http://dx.doi.org/10.1063/1.4906814 
View Table of Contents: http://scitation.aip.org/content/aip/journal/chaos/25/1?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
A Robust and NonBlind Watermarking Scheme for Gray Scale Images Based on the Discrete Wavelet Transform
Domain 
AIP Conf. Proc. 1019, 565 (2008); 10.1063/1.2953047 
 
Image Normalization and Discrete Wavelet Transform Based Robust Digital Image Watermarking 
AIP Conf. Proc. 963, 1404 (2007); 10.1063/1.2836017 
 
Optical Planar Discrete Fourier and Wavelet Transforms 
AIP Conf. Proc. 949, 114 (2007); 10.1063/1.2812286 
 
Autocorrelation based denoising of manatee vocalizations using the undecimated discrete wavelet transform 
J. Acoust. Soc. Am. 122, 188 (2007); 10.1121/1.2735111 
 
The shift-invariant discrete wavelet transform and application to speech waveform analysis 
J. Acoust. Soc. Am. 117, 2122 (2005); 10.1121/1.1869732 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.156.157.31 On: Wed, 28 Jan 2015 03:29:13



The discrete complex wavelet approach to phase assignment and a new test
bed for related methods

Maria Teodora Ferreira,a) Celso Bernardo N�obrega Freitas,b) Margarete O. Domingues,c)

and Elbert E. N. Macaud)

Laboratory of Computing and Applied Mathematics - LAC,
Brazilian National Institute for Space Research - INPE, S~ao Jos�e dos Campos, Brazil

(Received 26 August 2014; accepted 15 January 2015; published online 26 January 2015)

A new approach based on the dual-tree complex wavelet transform is introduced for phase assign-

ment to non-linear oscillators, namely, the Discrete Complex Wavelet Approach—DCWA. This

methodology is able to measure phase difference with enough accuracy to track fine variations, even

in the presence of Gaussian observational noise and when only a single scalar measure of the oscilla-

tor is available. So, it can be an especially interesting tool to deal with experimental data. In order to

compare it with other phase detection techniques, a testbed is introduced. This testbed provides time

series from dynamics similar to non-linear oscillators, such that a theoretical phase choice is known

in advance. Moreover, it allows to tune different types of phase synchronization to test phase detec-

tion methods under a variety of scenarios. Through numerical benchmarks, we report that the pro-

posed approach is a reliable alternative and that it is particularly effective compared with other

methodologies in the presence of moderate to large noises. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4906814]

In the context of interacting non-linear oscillators, phase

synchronization is a remarkable phenomenon in which a

certain relation between phases appears, while their

amplitudes can remain with no significant correlation.
1–4

So, investigating phase synchronization requires a clear

choice of phase variables, in order to test, for example, if

the condition5 D/ðtÞ ¼ j/2ðtÞ � /1ðtÞj < constant, where

/1ðtÞ and /2ðtÞ are the phases of two systems. Therefore,

the process of assigning a phase variable to empirical

data, also known as phase detection, is the first step

required to reveal a myriad of phase synchronization

configurations. This process has been fundamental for

instance to study ecological systems,
6

coupled neurons,
7,8

geophysical phenomena,9 chemical oscillators,10 lasers,11

plasma physics,12,13 and biomedical systems.14–19

I. INTRODUCTION

For periodic oscillators, one can easily define its phase

by taking a variable parameterizing the motion along the

limit cycle, with growth proportional to time. Nevertheless,

the concept of phase for oscillatory systems is not unique, in

the sense that any choice which corresponds to an increment

of 2p at each cycle of the phenomenon in the time-scale that

one wishes to analyze is equally valid. See Ref. 20 for fur-

ther discussions about multi-scale synchronization.

In a more general case, involving chaotic systems, for

example, phase assignment can be a nontrivial task. Thus,

tests of the phase synchronization between systems normally

avoid instantaneous phase measurement of the involved

signals. Instead, average estimations are considered along

well-defined temporal or spatial landmarks, or even statisti-

cal measures are applied to certain time windows. These are

the cases of the following approaches: Poincar�e surface of

section,21 recurrence plots,22,23 localized sets,24 and phase

diffusion coefficient comparison.25 These techniques, we

should emphasize, are effective in providing indications of

phase synchronization in the context of the specific situations

for which they were designed. Even so, there are several sce-

narios for which these methods fail to provide an appropriate

response, as will be shown with a variety of numerical

experiment in this work. One of these situations is when it is

necessary to follow over time instantaneous changes in the

phase relationship between the systems, especially in the

presence of noise. For example, there are technological

applications in which information is embedded in the phase

difference between systems evolution,26 or if one is inter-

ested in following the interaction delay between systems.27

If one assigns phases via linear interpolation between ar-

rival times of the trajectory in a Poincar�e section, by construc-

tion, this function will be monotonously increasing with time.

However, the phase may loose its physical meaning with this

imposition. Some epochs of orientation changes are typically

expected,28 mainly if one considers noise and/or interacting

oscillators.5,29 So, we stress that all methods tested in this

work allow increasing or decreasing phase values.

In order to choose a phase variable for a non-linear os-

cillator, one can use, in principle, direct measurements of

phase angles on a attractor projection, as well as more so-

phisticated techniques such as: Hilbert transform,1,8 Poincar�e
surface of section, curvature and recurrence plots,22,23 local-

ized sets,24 phase estimation by means of frequency

method,30,31 short-time Fourier transforms, and Continuous

a)Electronic address: mteodoraf25@gmail.com
b)Electronic address: cbnfreitas@gmail.com
c)Electronic address: margarete.domingues@inpe.br
d)Electronic address: elbert.macau@inpe.br
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Complex Wavelet Transform (CWT) methodologies.32–41 In

particular, CWT approaches rely on the complex Morlet

wavelet to perform phase detection in chaotic time series,

yielding good results for coherent systems.34,38 So, although

it has a high computational cost and may present some inter-

pretation difficulties when applied to large time series, CWT

strategies are considered one of the best among the known

methods.8,42

Aiming to address this shortcoming of the CWT, we

propose a new method to phase assignment, the Discrete
Complex Wavelet Approach—DCWA, based on the Dual-

Tree Complex Wavelet Transform (DT–CWT) to pointwise

phase assignment. The DT–CWT is a transform that employs

two real Discrete Wavelet Transforms (DWTs). The main

qualities of this transform are that it is nearly shift invariant,

limited redundancy, and reduced computational cost.43–49

To allow comparisons among different phase detection

methodologies, an innovative testbed is also introduced here.

We tailored special orbits with non-linear chaotic oscillators

characteristics, such that a theoretical phase choice is known

a priori. This framework was adopted, instead of classical

chaotic oscillators like R€ossler or Lorenz, to avoid the usage

of a canonical method to obtain a reliable phase choice for

comparison purposes. As so, we consider first a Kuramoto

model with three interconnected oscillators. Empirically

choosing their parameters and the interconnect topology, it is

possible to simultaneously produce specific synchronization

regimes over each pair of oscillators, ranging from

unsynchronized to synchronized, with or without phase slips.

Then, the phase signals generated for each oscillator in this

Kuramoto model is projected into a surface. We refer this

type of coordinate transformation as embedding. Our more

directed accuracy indicator will be the correct detection in

the signal, after this transformation, of phase-slips. Three

embedding are considered in this paper to emulate different

types and properties of non-linear oscillators: with periodic,

coherent and non-coherent orbits. Different intensities of

Gaussian observational noise were also added to the data.

Using this testbed, we compare the DCWA with some

of the most solid methods in the literature: arctangent

method, Hilbert transform, and CWT transform. Besides the

advantages of only requiring as input a scalar signal and

being robust under moderate noise levels, we point out that

our technique has an efficient computational performance

when applied to large time series. It is applicable to both

phase coherent and non-coherent oscillators. Moreover, it

can be successfully applied to non-stationary signals and the

choice of parameter values to be used is readily available.

A. Related work

Over time, several methods to phase synchronization

detection from experimental measures were intro-

duced.1,19,22–24,31,34–36,41,50 Also, many other phase detection

methods exist in the literature, for example, the synchros-

queezed wavelet transforms51 (for application, see in Refs.

52–54) which is based on EMD algorithm and the continu-

ous complex wavelet transform. In Ref. 55, it is used proto-

phases for phase extraction from the signal, which utilizes

the concepts of the Hilbert and Fourier transform, see

Ref. 56. In Ref. 57, the phase description of chaotic oscilla-

tors is made by generalizing the concept of standard iso-

phases (isochrones) of periodic oscillators.

There are also measures to test the condition of phase

synchronization between systems.15,19,42,58 For example, in

Ref. 19, two synchronization indices are introduced, while in

Ref. 15, it is described an application using the mean phase

coherence of an angular distribution as a statistical measure.

Phase synchronization measures as defined from the Hilbert

transform and from the wavelet transform are presented in

Ref. 42 and, a method of detecting synchrony in a precise

frequency range is shown in Ref. 58. However, to calculate

the measures described above, it is first necessary to calcu-

late the phase. Most studies use the Hilbert transform to

compute the instantaneous phase (see Refs. 15, 19, 42, and

59) or the continuous complex wavelet transform.14,42,58–60

As a valuable alternative, we claim that our DCWA for

phase assignment can be applied in association with those

techniques to obtain more accurate results.

The remainder of this paper is organized as follows. In

Sec. II, we present our proposed approach for phase detec-

tion. Then, in Sec. III, we construct the testbed to measure

the efficiency of the methods. Finally, in Sec. IV, we present

results and analysis of our numerical experiments.

II. METHODOLOGY

It is presented in this section our proposed Discrete
Complex Wavelet Approach (DCWA) for phase detection,

based on DT–CWT. We begin with a brief description of the

DT–CWT and then we follow to our proposed DCWA for

phase detection. In order to compare our proposed approach,

other three traditional methods in the literature for phase

assignment are discussed: the arctangent, the Hilbert trans-

form, and the CWT. A description of these methods is

include in Appendix A.

A. Dual-tree complex wavelet transform

The DT–CWT is a very carefully constructed transform,

from a mathematical and filter bank theory point of view, by

Nick Kingsbury in the late 1990s.44,45,49 We are interested

here in the following main features of this quasi-orthogonal

complex multi-scale transform: the low computation cost

when compared to continuous wavelet transform with Morlet

analyzing wavelet, perfect reconstruction with short support

filters, good shift invariance, and limited redundancy. More

details about these features are discussed in Refs. 43–49.

This is a transform that employs two real DWTs, for

details see Appendix B. The first DWT is associated with a

filter bank of the upper tree, and it uses low-pass filters �h0

and high-pass filters �h1. It computes the multilevel real

wavelet coefficients �d
j

that will be used as the real part of

the desired complex wavelet coefficients d j. The second

DWT is associated with a filter bank of the lower tree, and it

is composed of low-pass filters h 0 and high-pass filters h 1.

Similarly, it computes the d j, which contributes to the pure

imaginary part of d j. A schematic representation of the

DT–CWT decomposition is illustrated in Appendix C.
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In this work, we used first scale decomposition (13, 19)-

tap-filters, which are bi-orthogonal and near symmetric. For

scales j> 1, the filters were used Q-Shift filters with (14,

14)-tap-filters.49 The values for these filters are presented in

Appendix D.

B. Discrete complex wavelet approach - DCWA

In order to calculate the phase of an oscillator using our

DCWA method, the time series x of oscillator 1, i.e., x1, is

analyzed by the multi-scale DT–CWT. As a result of this

transform, we have the time series of the complex wavelet

coefficients d j at each scale j. With these coefficients, the

energy Ej at each scale j is calculated as the square of

the modulus of complex wavelet coefficients, i.e., E jðnÞ
¼ jd jðnÞj2. When, the global wavelet spectrum is computed

using E j ¼
P

nE jðnÞ. In the next step, the scale J1 is chosen

as the scale of the maximal global energy, i.e.,

EJ1 ¼ maxj E j. Subsequently, the same procedure is applied

to the time series x2 of oscillator 2 and the time series x3 of

oscillator 3. For each oscillator, we have the scale of the

maximal global energy J1, J2, and J3. When J1 was different

from J2 and different from J3 we chose the scale

J ¼ minðJ1; J2; J3Þ. This choice was based on the fact that

the number of points N in this multi-scale phase time series

is proportional to the scale, i.e., N ¼ 2L�J , therefore we

chose the larger phase time series. Next, we calculated the

phase time series of each oscillator, /J
1; /J

2, and /J
3. The

phase /J
1 is calculated from the expression

/J1ðtÞ ¼ atan2ðd J1 ; �d
J1Þ; (1)

wherein atan2 is the arctangent function with two argu-

ments; d J1 is the imaginary part of the complex wavelet

coefficient in the scale J1, and �d
J1 is the real part of the com-

plex wavelet coefficient in the scale J1. The atan2 routine is

already built in into many different programming languages.

Instead of a single variable, like the standard atan, the former

function receives as input two real numbers. Thus, it is possi-

ble to correctly choose the quadrant of the computed angle.

The phases of the other oscillators are calculated in the same

way.

Subsequently, with the objective of verifying the phase

synchronization, the combination of the phase difference

between them was computed as D/J
12 ¼ j/J

2 � /J
1j, D/J

13

¼ j/J
3 � /J

1j, and D/J
23 ¼ j/J

3 � /J
2j. Finally, the phase syn-

chronization test condition D/J
12ðnÞ < const < 2p, D/J

13ðnÞ
< const < 2p, and D/J

23ðnÞ < const < 2p is evaluated for

each combination.

The phase difference using the phase calculated via our

DCWA method considering oscillators 1 and 2 are denoted

by D/w
12; between oscillators 1 and 3 are D/w

13 and between

oscillators 2 and 3 are D/w
23.

III. THE TESTBED

In this section, we begin with the definition of the

Kuramoto Model (KM),61 which is the core of our testbed. It

comprises three not identical Kuramoto oscillators intercon-

nected, so different synchronization regimes between each

pairs of oscillators can be obtained by adjusting its parame-

ters. Then, the output signal of the oscillators is transformed

through three different embedding. The first one (a) is an

embedding from phase variable / into a unit circle in the

plane. So, we can illustrate with a simple periodic orbit the

usage of the methods. The second one (b) is an embedding

from phase variable / to a chaotic curve inside a M€obius

strip. Since the M€obius strip has well defined rotation, this

embedding plays the role of a coherent attractor. The last

one (c) is an embedding from phase variable / to a chaotic

curve inside a surface that we call Double strip. Since this

curve presents larger diffusion coefficient, we may regard it

as a non-coherent case. Finally, we explain how the

Gaussian observational noise is added to all test sets.

A. Kuramoto model

We assume the following equation for each oscillator

i¼ 1,…, N in KM:

_/i ¼ xi � k
XN

j¼1

Aij sinð/i � /jÞ; (2)

wherein /iðtÞ is the phase variable of the ith oscillator,

assuming values in the real line R, which can also be seen as

an angle in the unit circumference, /iðtÞmod 2p. The natural

frequencies, also known as angular frequencies, of the oscil-

lators are given by the parameters x ¼ ðx1;…;xNÞ 2 RN .

The constant k 2 R is the coupling strength, which adjusts

the intensity of the influence between neighbor oscillators.

The coupling graph, which can be direct of undirected, is

expressed by its adjacency matrix AN�N¼: ðA ijÞ, with Aii¼ 0;

Aij¼ 1, if oscillator i is influenced by oscillator j; and Aij¼ 0,

otherwise.

It is chosen to our numerical simulation a KM with

N¼ 3 oscillators, because we want to show that our discrete

complex wavelet approach is able to simultaneously detect

fixed phase synchronization and phase slips.5 We selected a

coupling graph with oscillators 1 and 2 mutually coupled

and oscillator 3 acting as a forcing to those oscillators, see

Figure 1. The natural frequencies and initial conditions are

x ¼ ð1:00; 1:05; 1:50Þ and /0 ¼ 0; 2p
3
; 4p

3

� �
, respectively.

Thus, the coupling strength k¼ 0.475 was empirically fixed

to show those two different types of synchronization

regimes.

It is used an Adams-Bashforth-Moulton Method for the

numerical integration (see Ref. 62), with fixed step size

h¼ 0.01. The final integration interval is tf ¼ 2 � h � 2,18 but

its first half is eliminate as a transient time. For simplicity,

we present time variables beginning at instant t¼ 0.

FIG. 1. Schematic representation of the topology connection between

oscillators.
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B. Kuramoto embeddings

In this subsection, we present the embeddings made in

the Kuramoto model and the procedure to add noise.

1. Plane

An embedding in the plan is the simplest, and, this way,

we can validate our proposed method with a model that is al-

ready described in the variable phase.

To transform the phase variables / 2 R of KM (accord-

ing to Eq. (2)) into the plane ðx; yÞ 2 R2, we simply see / as

point in the unit circle with this angle, i.e., we let

x ¼ cos /;
y ¼ sin /:

(3)

2. M€obius strip

Now, concerning the M€obius strip,63 the usual paramet-

rization is

x u; vð Þ ¼ 1þ 1

2
v cos

u

2

� �� �
cos u;

y u; vð Þ ¼ 1þ 1

2
v cos

u

2

� �� �
sin u;

z u; vð Þ ¼
1

2
v sin

u

2

� �
;

(4)

wherein 0� u� 2p and �1� v� 1, but we will let u 2 R

and set u equal to / from the KM. Figure 2(a) shows sche-

matically two constant lines of this parametrization. Figures

2(b) and 2(c) show one example of this construction increas-

ing the final integration time. Furthermore, we chose v equals

to cos ~/, where ~/ is an auxiliary oscillator, with ~/ðtÞ ¼ ~x t,
where ~x is an irrational natural frequency. So, the orbits

defined like this are dense in the M€obius strip, which can be

seen as an analogous of the topological transitivity property

for chaotic attractors, as discussed in Ref. 64.

We choose irrational natural frequencies for the auxil-

iary oscillators as ~x ¼ ð
ffiffi
3
p

10
; p

20
;
ffiffi
2
p

10
Þ, which is approximately

equal to (0.173, 0.157, 0.141) and ten times slower than the

oscillators in the direction of u.

3. Double strip

We introduce here a new Kuramoto embedding, the

Double strip. Roughly speaking, this surface associates an

annulus with a M€obius strip in R3. It was empirically

designed to present orbits with higher diffusion constant,

which is a feature found, for instance, in the non-coherent

R€ossler Attractor _x ¼ yþ z; _y ¼ xþ 0:2y; _z ¼ 0:2þ xz
�5:7z (for information about non-coherent R€ossler Attractor

look,65 and for diffusion constant see Ref. 6).

The position of the oscillator in this figure is defined by

a seed v 2 ½0; 1� and a phase /, so we denote this point by

Xðv;/Þ. Moreover, this map will be defined such that, at ev-

ery cycle of the oscillator, it returns to a Poincar�e Section S
given by the line segment joining the origin to (1, 0, 0), more

specifically Xðv; 2kpÞ 2 S for all k� 0. Thus, we may also

define a Poincar�e map P(vk)¼ vkþ1 of the successive returns

of the orbit to S, since Xðvk; 2ðk þ 1ÞpÞ ¼ ðvkþ1; 0; 0Þ 2 S.

For a given point in ðv; 0; 0Þ 2 S, the oscillator will

travel in its next cycle / 2 ½0; 2p� through a annulus-like sur-

face, that we call Normal strip, if v 2 ½0; 0:5� (as can be seen

in Figure 3(a)). Or through a surface similar to a M€obius

strip, that we name Inversion strip, if v 2 ð0:5; 1� (as can be

seen in Figure 3(b)). Another property of the map X that will

be established by construction is that P(v)¼ 2v, if v belongs

to the Normal strip; and P(v)¼�2vþ 2, if v belongs to the

Inversion strip (as can be seen in Figure 3(d)). For this rea-

son, we can argue that the dynamics in the Double strip is

chaotic, since its Poincar�e Map P is the Tent Map, which is a

classical chaotic discrete map (for more information see Ref.

66).

The position of the oscillator in the Normal strip is given

by Xðv;/Þ ¼ f ðv;/Þ defined by

f ðv;/Þ :¼ ð1� kf ðvÞÞ v0ð/Þ þ kf ðvÞ v0:5ð/Þ;
for ðv;/Þ 2 ½0; 0:5� �R; (5)

where

v0ð/Þ ¼ 0:5ðcos /; sin /; 0Þ � ð0:5; 0; 0Þ;
v0:5ð/Þ ¼ ð/=ð4pÞ þ 1Þðcos /; sin /; 0Þ � ð0:5; 0; 0Þ;

kf ðvÞ ¼ 2v:

(6)

FIG. 2. M€obius strip (a) indicates two

curves given by constant lines of its

parametrization (according to Eq. (4));

(b) and (c) orbit of an uncoupled oscil-

lator combined with an irrational auxil-

iary oscillator, with final integration

time tf ¼ 4p and tf ¼ 40p, respec-

tively. A projection into (x, y) plane is

also shown.
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In the other hand, the position of the oscillator in the

Inversion strip is given by Xðv;/Þ ¼ gðv;/Þ with

gðv;/Þ :¼ ð1� kgðvÞÞ v0:5ð/Þ þ kgðvÞ v1:0ð/Þ;
for ðv;/Þ 2 ð0:5; 1� �R; (7)

wherein

v1:0ð/Þ ¼ ðð1þ 0:5cð/Þ cosð/=2ÞÞ cos /� 0:5;

� ð1þ 0:5 cosð/=2ÞÞ sinðuÞ; 0:5 sinð/=2ÞÞ;
cðvÞ ¼ 0:5ðv� pÞ2=p2 þ 0:5;

kgðvÞ ¼ �1þ 2v: (8)

Geometrically, the image of X was designed such that

Xð½0; 0:5� � ½0; 2p�Þ interpolates between curves v0ð½0; 2p�Þ
and v0:5ð½0; 2p�Þ, which forms the Normal strip; while

Xð½0:5; 1� � ½0; 2p�Þ interpolates between v0:5ð½0; 2p�Þ and

v1ð½0; 2p�Þ, defining the Inversion strip, see Fig. 3(c). The ini-

tial seeds for each of the three oscillators where chosen ran-

domly with uniform distribution over [0, 1].

Figures 3(e) and 3(f) illustrate the Double strip embed-

ding for the Kuramoto model with parameters described in

Subsection III A.

4. Applying noise

Through numerical integration, a discrete approximation

/ð0Þ;…;/ðtf Þ for the solution of model (2) is computed,

according to Subsection III A. Then, one of the embeddings

F(.) is applied, yielding Fð/ð0ÞÞ;…;Fð/ðtf ÞÞ. Let Xi denote

the time series of the ith coordinates obtained like this, i.e.,

Xi :¼ ðFð/ð0ÞÞi;…;Fð/ðtf ÞÞiÞ.
We separately perturb each coordinate with a non-

correlated additive noise Xi þ na, where a is the intensity of

the white noise. If a¼ 0, no noise is included. Otherwise, we

generate na ¼ a ~rN , where 0 � a � 1; ~r is the standard

deviation of Xi; and N are random numbers chosen from a

standard normal distribution. Noise intensities of a¼ 0,

0.10,…, 0.90, 1.0 are explored in this article.

Figures 4(a)–4(c) show the orbits of those three oscilla-

tors in the M€obius strip, according to Subsection III A, con-

sidering the intensity noise a¼ 0 in (a); (b) a¼ 0.10 and (c)

a¼ 0.20.

C. Unwrapping stage

In a first moment, all methods studied here provide

wrapped phases, meaning that they are limited to the unit

circle ½0; 2pÞ. Thus, to quantity how many cycles one oscilla-

tor overtakes another, we must apply an unwrapping stage.

This procedure accumulates the phase difference between

consecutive discrete times, with a threshold difference of p
to distinguish between phase increments and phase decre-

ments. Thus, it is clearly necessary a sufficiently small dis-

cretization time. Otherwise, successive phase differences

may become larger than p not because a phase decrement,

but due to its fast dynamics in comparison with the sampling

rate. Since our fastest uncouple oscillator evolves 0.015 rad

per time step (see Sec. III A), in general, this assumption is

easily satisfied.

IV. RESULTS

We present now the results of the phase difference

assignment considering the Kuramoto model embedding in

the plane, in the M€obius strip, and in the Double strip. The

theoretical phase difference between oscillators i and j, from

the Kuramoto model itself, is denoted by D/ k
ij. The phase

difference assigned by the arctangent method, Hilbert trans-

form, the CWT and our DCWA method are denoted by

D/ t
ij; D/ hilbert

ij ; D/ cwt
ij , and D/w

ij , respectively.

We stress that no preliminary filter or denoising proce-

dure is applied before using any of the methods studied.

FIG. 3. (a)–(c) Double strip construction scheme. (d) The Poincar�e return map considering section S. (e) and (f) Examples of embedded orbits for the

Kuramoto model described in Subsection III A. (e) The most common behavior, while (f) display the moment during phase slips when oscillator 3 gives an

additional spin and crosses oscillators 1 and 2.
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Besides, an unwrapping process to transform consecutive

phase points from the unit circle [0, 2?) into continuous real

values, adding 2p every complete cycle, is applied in all

methods according to Sec. III C.

A. Kuramoto model in the plane

We discuss now the results for the Kuramoto model em-

bedded in the plane.

In this case, were found very small values of diffusion

coefficient, describing a system with coherent phase, as dis-

cussed in Ref. 6. The values for each oscillator are
~D1 ¼ 0:049659; ~D2 ¼ 0:11847, and ~D3 ¼ 0:01476. The av-

erage diffusion coefficient is ~Daverage ¼ 0:060963.

Figure 5 displays (a) the global wavelet spectrum of the

Kuramoto model in the plane considering a¼ 0. The phase

difference between oscillators of the Kuramoto model in the

plane without noise (a¼ 0) using (b) the theoretical KM, (c)

arctangent method, (d) Hilbert transform, (e) the CWT trans-

form, and (f) our DCWA method.

Note that, for oscillators 1 and 2, the scale of maximum

energy is J¼ 9 and for oscillator 3, the scale of maximum

energy is J¼ 8, as can be seen in Fig. 5(a). Here, we consider

the scale J¼ 9 in the phase difference assignment. The scale

J¼ 8 was also tested and showed similar results when used

to scale J¼ 9 and, for this reason, there is illustrated here.

When we consider the presence of noise, the global wavelet

spectrum shows the same scale of maximum energy found

when a¼ 0 and, therefore is not illustrated here.

Note in Figure 5 that all methods were able to verify

phase synchronization between oscillators 1 and 2, as well as

the phase slips between oscillators 1 and 3 and oscillators 2

and 3. Note that applying CWT, as can be seen in Fig. 5(e),

the detection of phase slips were not as expected given by

theoretical KM, as can be seen in Fig. 5(b).

Considering the presence of noise a¼ 0.10, a¼ 0.20,

and a¼ 0.30, the results are similar for the three tested meth-

ods, arctangent method, Hilbert transform, and our DCWA

method, were able to reconstruct the original phase differ-

ence of the Kuramoto model. Figure 6 shows the phase dif-

ference between oscillators of the Kuramoto model in the

plane, with the intensity of noisy a¼ 0.30 considering in (a)

the theoretical KM, (b) arctangent method, (c) Hilbert trans-

form, and (d) our DCWA method.

Observed from Figure 6 that even with an intensity of

noise a¼ 0.30, the three methods were able to reconstruct

the original phase difference of the Kuramoto model.

Oscillators 1 and 2 are phase synchronized, since their phase

difference is almost zero. Oscillator 3 presents phase slips

relative to oscillators 1 and 2: for approximately every 500

time units, oscillator 3 gives one additional spin around

oscillators 1 and 2, almost like a jump, and then returns to an

almost constant phase difference. An important feature was

that our discrete complex wavelet approach was much less

sensitive to the noise than the arctangent method and Hilbert

transform.

However, for further increments in the noise level

(a¼ 0.40), the arctangent method and the Hilbert transform

fail to correctly identify phase slips and phase synchroniza-

tion, as can be seen in Figures 7(b) and 7(c).

Figure 7 shows the phase difference between oscillators,

of the Kuramoto model in the plane, with the intensity of

noisy a¼ 0.40 considering in (a) the theoretical KM, (b) arc-

tangent method, (c) Hilbert transform, and (d) our DCWA

method.

Analysing the results obtained from arctangent method,

Figure 7(b), three false phase slips are detected between

oscillators 1 and 2, in the interval t� 640, t� 860, and

t� 1950. Considering the oscillators 1 and 3 three false

phase slips are detected in the interval t� 640, t� 790, and

t� 885; and between oscillators 2 and 3 four false phase

slips are detected in the interval t� 790, t� 860, t� 885,

and t� 1950.

Note in Figure 7(c), the Hilbert transform fail to cor-

rectly identify phase slips and phase synchronization. When

we consider the phase difference between oscillators 1 and 2,

the Hilbert transform erroneously detects 12 regions of phase

slips. Considering the phase difference between oscillators 1

and 3, are erroneously detected 15 phase slips and when we

consider oscillators 2 and 3 are erroneously detected 12

phase slips.

The our DCWA method correctly detect phase slips and

phase synchronization, as can be seen in Figure 7(d) and

compared with the theoretical KM in Figure 7(a). Even for

FIG. 4. (a)–(c) Illustrate the orbit of

oscillators in the M€obius strip with os-

cillator 1 in blue, 2 in orange, and 3 in

red as described in Subsection III A,

considering the intensity noise in (a)

a¼ 0, (b) a¼ 0.10, and (c) a¼ 0.20.

Projections into (x, y) plane are also

shown.
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noise levels up to a¼ 2.0, our DCWA method correctly

detect phase slips and phase synchronization, not shown

here.

B. Kuramoto model in the M€obius strip

We discuss now the results of the Kuramoto model em-

bedded in a M€obius strip.

In this case, were found small values of diffusion coeffi-

cient characterizing a system with coherent phase, as dis-

cussed in Ref. 6. The values for each oscillator are ~D1

¼ 0:18605; ~D2 ¼ 0:11314, and ~D3 ¼ 0:013888. The average

diffusion coefficient is ~Daverage ¼ 0:10436.

Figure 8 displays (a) the global wavelet spectrum of the

Kuramoto model in M€obius strip, considering a¼ 0. The

phase difference between oscillators of the Kuramoto model

in M€obius strip without noise (a¼ 0) using in (b) the theoret-

ical KM, (c) arctangent method, (d) Hilbert transform, (e)

the CWT transform, and (f) our DCWA method. Note that,

for oscillators 1 and 2, the scale of maximum energy J¼ 9

and for oscillator 3, the scale of maximum energy is J¼ 8, as

can be seen in Fig. 8(a). Both results of the global wavelet

spectrum are similar with noise, and therefore are not illus-

trated here. The scale J¼ 9 was used to calculate the phase

difference between oscillators. The scale J¼ 8 was also

tested and showed similar results when used to scale J¼ 9,

and for this reason, there is illustrated here.

Observed from Figures 8(c), 8(d), and 8(f) that the arc-

tangent method, Hilbert transform, and our DCWA method

were able to reconstruct the original phase difference of the

Kuramoto model (see Figure 8(b)). The CWT transform

erroneously detected two phase slips between oscillators 1

and 2. With respect to phase slips occurring between oscilla-

tors 1 and 3 and oscillators 2 and 3, the CWT correctly detect

the intervals (in time) occurring this phase slips, but do not

correctly detect the value thereof, as can be seen in Fig. 8(e).

Despite the fact that our DCWA method presented small

perturbations in its results, the method successfully detected

the phase slips and phase synchronization. Below, we discuss

what can be these perturbations.

FIG. 5. In (a), the global wavelet spec-

trum of the Kuramoto model in the

plane considering a¼ 0. The phase dif-

ference between oscillators when a¼ 0

Kuramoto model plane, considering in

(b) the theoretical KM, (c) arctangent

method, (d) Hilbert transform, (e) the

CWT transform, and (f) our DCWA

method.

013117-7 Ferreira et al. Chaos 25, 013117 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.156.157.31 On: Wed, 28 Jan 2015 03:29:13



Figure 9(a) displays the zoom of phase difference

between oscillators of the Kuramoto model in M€obius strip

without noise, a¼ 0, considering our DCWA method. Here,

we want to show why the perturbations where found in the

phase difference when applied our DCWA method. In

Figures 9(b), 9(c), and 9(d), the interval t¼ [1350, 1450] of

the time series of oscillators 1 and 2; 1 and 3; and 2 and 3

are presented, respectively. Note that in Figure 9(a) the phase

FIG. 6. The phase difference between

oscillators, of the Kuramoto model in

the plane, with the intensity of noisy

a¼ 0.30 considering in (a) the theoreti-

cal KM, (b) arctangent method, (c)

Hilbert transform, and (d) our DCWA

method.

FIG. 7. The phase difference between

oscillators, of the Kuramoto model in

the plane, with the intensity of noisy

a¼ 0.40 considering in (a) the theoreti-

cal KM, (b) arctangent method, (c)

Hilbert transform, and (d) our DCWA

method.
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difference of oscillators 1 and 2 oscillate around zero and the

phase difference of the oscillators 1 and 3 and 2 and 3 oscil-

late around 3.5 in t� [1350,1390]. In the interval

t¼ [1390,1410], there is a phase slips between oscillators 1

and 3 and 2 and 3, and the phase difference starts to oscillate

around 5.5. Observing this interval of the time series of oscil-

lators (see Figures 9(b)–9(d)), we note that the method was

able to associate the oscillations found in the phase differ-

ence with their delays and/or advances present in time series

of oscillators. Note that the other methods were not able to

verify this phenomenon, being this one of characteristic of

the proposed method.

Considering the presence of noise a¼ 0.10 and a¼ 0.20,

the results are similar for the three methods, arctangent

method, Hilbert transform, and our DCWA method, were

able to reconstruct the original phase difference of the

Kuramoto model.

Figure 10 shows the phase difference between oscilla-

tors, of the Kuramoto model in M€obius strip, with the

intensity of noisy a¼ 0.20 considering in (a) the theoretical

KM, (b) arctangent method, (c) Hilbert transform, and (d)

our DCWA method.

Fig. 10 shows that the three methods were able to detect

phase synchronization, like in the previous experiment with-

out noise (Figure 8). However, the Hilbert transform errone-

ously detects a region of the phase slip between oscillators 1

and 3 and oscillators 2 and 3 in the interval t� 490 (see

Figure 10(c)). Nevertheless, our DCWA method was again

much less sensitive to the noise than the arctangent method

and Hilbert transform.

Increasing the amount of noise for a¼ 0.30, the arctan-

gent method and the Hilbert transform fail to correctly iden-

tify phase slips and phase synchronization, as can be seen in

Figures 11(b) and 11(c). In this case, these methods detect

various phase slips which verifying in the evolution of the

time series, the same does not occur. However, the our

DCWA method correctly detects phase slips and phase syn-

chronization, as can be seen in Figure 11(d).

FIG. 8. Results of the Kuramoto model

embedded in a M€obius strip. In (a), the

global wavelet spectrum and the phase

difference between oscillators, consid-

ering in (b) the Kuramoto model in the

M€obius strip with a¼ 0; (c) arctangent

method; (d) Hilbert transform; (e) the

CWT transform; and (f) our DCWA

method.
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Figure 11 shows the phase difference between oscillators

of the Kuramoto model in a M€obius strip, with intensity of noise

a¼ 0.30, considering in (a) the theoretical KM, (b) arctangent

method, (c) Hilbert transform, and (d) our DCWA method.

Beyond this level of noise a¼ 0.30, our DCWA method

does not detect correctly phase slips and phase synchroniza-

tion only for a¼ 1.6, not shown here.

C. Kuramoto model in the Double strip

We discuss now the results of the Kuramoto model em-

bedded in a Double strip.

In this case, higher values of diffusion coefficient were

found, characterizing a system with more non-coherent

phase, as discussed in Ref. 6, The values for each oscillator

FIG. 9. In (a), the zoom of phase dif-

ference between oscillators when a¼ 0

considering our DCWA method and

the interval t¼ [1350, 1450] of the

time series of the oscillators in (b) 1

and 2; (c) 1 and 3, (d) 2 and 3.

FIG. 10. The phase difference between

oscillators, of the Kuramoto model in

M€obius strip, with intensity of noise

a¼ 0.20, considering in (a) the theoret-

ical KM, (b) arctangent method, (c)

Hilbert transform, and (d) our DCWA

method.
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are ~D1 ¼ 0:0894731; ~D2 ¼ 0:159167, and ~D3 ¼ 0:11774.

The average diffusion coefficient is ~Daverage ¼ 0:12213.

Figure 12 shows (a) the global wavelet spectrum and the

phase difference between oscillators, considering (b) the

Kuramoto model in the Double strip without noise (a¼ 0),

(c) arctangent method, (d) Hilbert transform, (e) CWT trans-

form, and (f) our DCWA method.

Considering without noise and with the presence of

noise, from a¼ 0.10 to a¼ 2.0, the method based on arctan-

gent detects erroneously the phase slips between oscillators

1 and 3 and oscillators 2 and 3 in intervals t� 1550,

t� 1780, and t� 2210. The phase slip in intervals t� 1550

and t� 1780 are detected erroneously between oscillators 1

and 2.

Considering without noise and with the presence of

noise a¼ 0.10 up to a¼ 2.0, the method based Hilbert trans-

form detects erroneously the phase slips between oscillators

1 and 3 and oscillators 2 and 3 in intervals t� 650, t� 1100,

t� 1550, t� 1750, t� 2210, and t� 2420. The phase slip in

intervals t� 650, t� 1100, t� 1550, t� 1750, and t� 2420

are detected erroneously between oscillators 1 and 2.

Applying the CWT, considering without noise, the

phase slip in intervals t� 1400 and t� 2400, are detected

erroneously between oscillators 1 and 2. Again, the method

detects the intervals at which phase slips occur, but does not

correctly detect the value of it.

Considering the case without noise and with the pres-

ence of noise a¼ 0.10 up to a¼ 2.0, our DCWA method cor-

rectly detect the phase slips between oscillators 1 and 3 and

oscillators 2 and 3 and the phase synchronization between

oscillators 1 and 2.

V. CONCLUSIONS

In this work, we introduced a new approach, based on the

DT–CWT, for phase detection. This approach is not just able

to measure the phase difference between oscillators, but also

presents sensitivity enough to track instantaneous variation in

the phase difference between them, even in the presence

of noise. The main advantage of our approach is that it can

be applied directly to scalar experimental time series.

Furthermore, our methodology allows us to work with time

series with a large number of points and it presents a low com-

putational cost (order of 2N, where N is the number of points).

In order to compare different techniques, we also intro-

duced an innovative testbed. Three test sets based on

FIG. 11. The phase difference between oscillators, of the Kuramoto model in M€obius strip, with the intensity of noise a¼ 0.30 considering in (a) the theoretical

KM, (b) arctangent method, (c) Hilbert transform, and (d) our DCWA method.
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embedding of the Kuramoto model in R3 were discussed,

which are a by-product contribution of this work.

The evaluations reported allow us to claim that our pro-

posed approach, the Discrete Complex Wavelet Approach—
DCWA, is very effective in accomplish the task for which it

was conceived.

The next step in the research will be to extend the

method to enable the analysis of energy over time, as well

as other filters in the analysis. The applicability of our pro-

posed method will also be tested in chaotic dynamic sys-

tems, such as R€ossler and Lorenz systems, and sets of

experimental data, possibly under different time-scale syn-

chrony regimes.
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APPENDIX A: OTHER METHODS

1. Arctagent method

It is the most common method for measuring phase if it

is possible to project the underlying attractor on a plane so

that the projection looks like a smeared limit cycle67 with

well-defined rotation center.

In this and other similar cases, the phase /ðtÞ presents

coherent phase and can be measured as the angle in the polar

coordinate system on the plane (x, y), as proposed by Ref. 1,

as follows:

/ tð Þ ¼ arctan
y

x

� �
: (A1)

FIG. 12. Results of the Kuramoto

model embedded in a Double strip. In

(a), the global wavelet spectrum and

the phase difference between oscilla-

tors, considering in (b) the Kuramoto

model in Double strip, without noisy

a¼ 0 (c) arctangent method; (d)

Hilbert transform; (e) CWT transform;

and (f) our DCWA method.
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In the case where the system displays non-coherent

phase, the phase can be defined using the projection of the

attractor on the plane of the derivative, as proposed in Ref.

68 using the equation

/ tð Þ ¼ arctan
_y

_x

� �
: (A2)

Note that, to calculate the phase using these methods it

is necessary to know the two state variables, namely, x and y.

But, this is not always available.

In this approach, the arctangent function is defined as a

four-quadrant operation.

In this work, the phase difference using the phase calcu-

lated via the method based on arctangent function considering

oscillators 1 and 2 are denoted by D/ t
12; between oscillators

1 and 3 are D/ t
13 and oscillators 2 and 3 are D/ t

23.

2. Hilbert transform

A consistent way to define the phase for an arbitrary sig-

nal is known in signal processing as the analytic signal con-

cept.5 This general approach, based on the Hilbert transform

(HT), unambiguously gives the instantaneous phase /ðtÞ and

amplitude A(t) for a signal s(t) via construction of the ana-

lytic signal fðtÞ, which is a complex function of time defined

as (for details see Ref. 5)

fðtÞ ¼ sðtÞ þ i sHðtÞ ¼ AðtÞ ei /ðtÞ: (A3)

Here, the function sH(t) is the HT of s(t)

sH tð Þ ¼ p�1 P:V:

ð1
�1

s sð Þ
t� s

ds (A4)

where P.V. means that the integral is taken in the sense of

the Cauchy principal value.

In this work, the phase difference using the phase calcu-

lated via the method based on Hilbert transform considering

oscillators 1 and 2 are denoted by D/ hilbert
12 ; between oscilla-

tors 1 and 3 are D/ hilbert
13 and oscillators 2 and 3 are D/ hilbert

23 .

3. Continuous wavelet transform

The CWT is a tool that allows to decompose the time se-

ries into different components of frequencies. This transform

considers that the translation and scale parameters are con-

tinuous, and transforms a one-dimensional time series (time)

in a two-dimensional representation (time, scale) that can be

highly redundant.

The CWT in L2ðRÞ of a time series f(t) can be defined

as

W s
n tð Þ ¼ 1ffiffi

s
p
ð1
�1

f tð Þw	 t� n

s

� �
dt; (A5)

wherein s; n 2 R; s 6¼ 0; 	 denotes the complex conjugate

and the term 1ffiffi
s
p is a normalization factor of the signal

energy.

The wavelet spectra, also called scalograms, represent

the squared amplitudes of the module of wavelet coefficients,

which can be interpreted as the distribution of signal energy

in time t by its scale.69

The global wavelet spectrum is the time integration of

scalogram, or

SwðsÞ ¼
ð
W s

nðs; nÞ dt: (A6)

The Morlet wavelet consists of a plane wave modulated

by a Gaussian function that is expressed by

wMorletðtÞ ¼ e�i x0 t e�t2=2; (A7)

wherein x0 is a non dimensionless frequency. This wavelet

function is a complex function, which allows to analyze the

phase and the modulus of the decomposed signal.

In this work, the phase difference using the phase calcu-

lated via the method based on CWT considering oscillators 1

and 2 are denoted by D/ cwt
12 ; between oscillators 1 and 3 are

D/ cwt
13 and oscillators 2 and 3 are D/ cwt

23 .

APPENDIX B: DISCRETE WAVELET TRANSFORM

The DWT presents four important attractive characteris-

tics, namely, good compression of signal energy, perfect

reconstruction with short support filters, no redundancy, and

very low computation cost (order N operations).49 As this

transform is a real transform, we cannot use it to compute

the phase. However, it will be used here as a tool to compute

the DT–CWT.

The DWT is implemented in discrete values of scale j
and localization n, and provides a time-scale analysis of any

finite energy signal x, where j; n 2 Z. Mathematically, the

signal x can be decomposed in terms of basis functions, as

for instance, the scale function u. However, we can represent

this signal also in a multi-scale way using a multi-resolution

analysis (MR) tool.

A MR is constructed by using embedded spaces Vj 

Vjþ1 that have as basis functions u j, which are a Riez basis;

the union of these spaces are L2ðRÞ; the intersection of these

spaces is zero; their functions have scalability proprieties.

The difference between two spaces Vj and Vjþ1 is the detail

space, where the wavelet functions are Riesz basis, as

described in detail in Refs. 69 and 70. Thus, we can represent

x in a multi-scale way considering just one scale function u
and its associated wavelet functions w as

xðtÞ ¼
X
n2Z

c j
nu

j
nðtÞ þ

X
j;n2Z

d j
nw

j
nðtÞ; (B1)

wherein c j
n are scale coefficients, c j

n ¼
Ð

xðtÞu j
nðtÞ dt; and

d j
n are wavelet coefficients d j

n ¼
Ð

xðtÞw j
nðtÞ dt: These coeffi-

cients are calculated by using a very efficient, linear com-

plexity algorithm based on convolutions of the analyzed

signal x with a discrete-time low-pass filter h0 and a high-

pass filter h1 with downsampling operations # 2. This is

called the Mallat algorithm or Mallat-tree decomposition69,70

and it is the DWT. The c j
n and d j

n are associated to h0 and h1.

Moreover, they have a scale relation
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c j
n ¼

X
k2Z

h0ðkÞc j�1
n�k; d j

n ¼
X

k

h1ðkÞc j�1
n�k;

where one possibility is to choose h1ðkÞ ¼ ð�1Þkh0ð1� kÞ.
Therefore, the following relations can be obtained:

u j
nðtÞ ¼

X
n

h0ðnÞu j�1
n ðtÞ; w j

nðtÞ ¼
X

n

h1ðnÞu j�1
n ðtÞ:

Figure 13 shows a scheme of the DWT decomposition

in three scales of the real signal x. The signal is analyzed in-

dependently and simultaneously by using the filters h0 and h1

and then decimated by a factor of 2 (denoted as # 2), generat-

ing two 1-scale coefficients given, respectively, by the fol-

lowing convolutions:

c 1 ¼ ½x 	 h0� # 2; d 1 ¼ ½x 	 h1� # 2:

Note that for j¼ 2 and j¼ 3 we have

c 2 ¼ ½h0 	 c 1� # 2; d 2 ¼ ½h1 	 c 1� # 2;
c 3 ¼ ½h0 	 c 2� # 2; d 3 ¼ ½h1 	 c 2� # 2:

APPENDIX C: DT–CWT DECOMPOSITION

A schematic representation of the DT-CWT decomposi-

tion is illustrated in Fig. 14. The real time series x is decom-

posed in Jmax¼ 3 scales, i.e., j¼ 1, j¼ 2, j¼ 3, and the

notation ? is included in the first scale filters, i.e., h ?0 and h ?1.

In Ref. 49, it is shown that the implementation of the

DT–CWT requires that the first scale of the dual-tree filter

bank be different from the succeeding scales. A schematic

representation of the DT–CWT decomposition is illustrated

in Fig. 14. The real time series x is decomposed in Jmax¼ 3

scales, i.e., j¼ 1, 2 and 3, and the notation ? is included in

the first scale filters, i.e., h ?0 and h ?1.

FIG. 13. Scheme of the DWT decomposition of the signal x in three scales,

j¼ 1, 2 and j¼ 3).

FIG. 14. Schematic multi-scale representation of three scales DT–CWT

decomposition of the real time series x in three levels, where the filters h ?0
and h ?1 are considered in the level j¼ 1. In levels j¼ 2 and j¼ 3, the filters

of the upper and lower tree are �h 0; �h 1 and h 0; h 1, respectively.

TABLE I. Non-zero near-symmetric (13, 19) and Q-Shift (14, 14)-tap filter coefficients. Credits N. G. Kingsbury, Appl. Comput. Harmonic Anal. 10, 234–253

(2001). The coefficients are multiplied by 10�2.

Q-shift

Near-symmetric Upper tree Lower tree

n h?0 h?1
�h0

�h1 h 0 h 1

1 �0.17578 �7.0626 � 10�5 0.32531 �0.45569 �0.45569 �0.32531

2 0 0 �0.38832 0.54395 �0.54395 �0.38832

3 2.22660 0.13419 3.46600 1.70250 1.70250 �3.46600

4 �4.68750 �0.18834 �3.88730 �2.38250 2.38250 �3.88730

5 �4.82420 �0.71568 �11.72000 �10.67100 �10.67100 11.72000

6 29.68800 2.38560 27.53000 �1.18660 1.18660 27.53000

7 55.54700 5.56430 75.61500 56.88100 56.88100 �75.61500

8 29.68800 �5.16880 56.88100 �75.61500 75.61500 56.88100

9 �4.82420 �29.9760 1.18660 27.53000 27.53000 �1.18660

10 �4.68750 55.9430 �10.67100 11.72000 �11.72000 �10.67100

11 2.22660 �29.9760 2.38250 �3.88730 �3.88730 �2.38250

12 0 �5.16880 1.70250 �3.46600 3.46600 1.70250

13 �0.17578 5.56430 �0.54395 �0.38832 �0.38832 0.54395

14 2.38560 �0.45569 �0.32531 0.32531 �0.45569

15 �0.71568

16 �0.18834

17 0.13419

18 0

19 �7.0626 � 10�5
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APPENDIX D: DUAL-TREE FILTERS

In this work, we have chosen the Q-shift (14, 14) tap-

filters where scales j> 1, which has provided a group delay

of either 1=4 or 3=4 of a sample period, while also satisfying

the usual 2-band filterbank constraints of no aliasing and per-

fect reconstruction.71 For the first scale (13, 19) tap-filters

were used, which are bi-orthogonal and near symmetric.

Table I presents the analysis filters coefficients used in

this work.
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We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators

on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinear-

ity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if

an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors,

then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic

results yield that if the repulsion parameter is small enough in comparison with the degree of the

maximum hub, then the full synchronization state is locally stable. Numerical experiments are per-

formed to explore the model beyond this threshold, where the overall cohesion is lost. We report in

detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, peri-

odic and chaotic states. Via statistical analysis of different network organizations like tree, scale-

free, and random ones, we found a measure allowing one to predict relative abundance of partially

synchronous stationary states in comparison to time-dependent ones. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4919246]

Regarding large populations of coupled oscillators,

phase-synchronization may emerge due to attractive cou-

pling, while repulsive coupling favors desynchronized

states. However, the nature of coupling may depend on

the strength of the local forcing: if the force on the oscil-

lator from a sufficiently large number of neighbors

becomes too strong, it can desert switch from a

“conformist” to a “contrarian” behavior. We study such

a population on a network. Here, the oscillators con-

nected to many others become contrarians first, so that

synchrony breaks. This is why our approach can be fairly

understood as Deserter Hubs Model. We show that the

partial synchrony regimes can be rather complex, with a

large degree of multistability. Besides, we suggest a net-

work measure which allows predicting relative abun-

dance of static and dynamic regimes.

I. INTRODUCTION

In a seminal work,14 aiming to understand synchroniza-

tion phenomena, Kuramoto proposed a mathematical model

of non-identical, nonlinear phase-oscillators, mutually

coupled via common mean field. Studying this system, he

identified a synchronization transition to an oscillating global

mode when the coupling strength is larger than a critical

value, which is proportional to the range of the distribution

of the natural frequencies. Over the time, subsequent out-

comes based on Kuramoto propositions have shown that his

approach can be used as a framework to several natural and

technological systems where an ordered behavior (synchro-

nization) emerges from the interactions of many dynamical

agents.1,25 Furthermore, works have shown that the

Kuramoto model can be exploited as a building block to de-

velop highly efficient strategies to process information.7,30

Recently, generalizations of the Kuramoto model toward

interconnections between the elements more complex than

the mean field one, have received considerable attention.

Indeed, in many real-world problems, each dynamical agent

interacts with a subset of the whole ensemble,5,15,24 which

can be better described using networks. A myriad of studies

have analyzed the onset of the synchronization regime in this

context. For a general class of linearly coupled identical

oscillators, the Master Stability Function, originally pro-

posed by Pecora and Carroll,19 allows one to determine an

interval of coupling strength values that yields complete syn-

chronization, as a function of the eigenvalues of Laplacian

matrix of the coupling graph. For networks of oscillators

with non-identical natural frequencies, Jadbabaie et al.13

were able to give similar bounds for the coupling strength of

the Kuramoto model without the assumption of infinitely

many phase-oscillators. Among related works, Ref. 8 deals

with a model whose natural frequency oscillators change

with time, even when they are isolated. Reference 18

explores the effects of delay in the communication between

oscillators. Besides, Ref. 20 builds a bridge between graph

symmetry and cluster synchronization.

Taking into consideration all of these previous results,

one can roughly state that the Kuramoto transition to syn-

chronization happens if the coupling between oscillators is

attractive; while this synchronization state is absent when it

a)cbnfreitas@gmail.com.
b)elbert.macau@inpe.br.
c)pikovsky@uni-potsdam.de.
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changes to repulsiveness.28,29 However, the structure of the

coupling can non-trivially depend on the level of synchrony

itself. Such a dependence, called nonlinear coupling scheme,

has been explored in recent theoretical3,6,21,23 and experi-

mental26,27 studies dealing with setup of global coupling.

The main effect here is the partial synchrony, which estab-

lishes at moderate coupling strengths, where the coupling is

balanced between the attractive and repulsive one.

Here, we consider the effects of the non-linear coupling

on a network: a set of identical oscillators, which communi-

cate via a connected simple coupling graph. Each element is

forced by a (local) mean field, which encompasses the oscil-

lators that are connected to it. The coupling function is tai-

lored so that its influence is attractive, if the local acting field

is small, or repulsive, otherwise. This coupling strategy

implies that only nodes with a large enough number of con-

nections may become repulsive. Thus, the hubs play a key

role for the ensemble dynamics. A non-linear coupling pa-

rameter in the system tunes the critical quantity of connec-

tions and how cohesive this mean field must be in order to

allow this transition. So, our Deserter Hubs Model (DHM)
can be considered as a dynamical generalization of the inho-

mogeneous populations of oscillators consisting of conform-
ists and contrarians.12 Nevertheless, the kind of behavior

depends on the force acting on it.

One of real-world situations where such a nonlinear cou-

pling on a network may be relevant is the deep brain stimula-

tion of neural synchronous oscillations at Parkinson decease

by a nonlinear feedback.22 While in Ref. 22 nonlinear cou-

pling has been treated in the framework of global field

approximation, a setup where different parts of the neural

network are subject to different nonlinear actions, leading to

deserter hubs, appears to be more realistic.

Overall dynamics in the model can be qualitatively

understood as follows: Let us assume initially that all the

mean fields are small. Then, there are only attractive interac-

tions (conformists) in the system. So, in a first moment, they

start to mutually adjust their phases. Above a threshold, the

most connected oscillators start to feel a repulsive effect that

drives them away from the synchronous state. In other

words, if an oscillator has a sufficiently large number of

neighbors and if it suffers enough cohesive pressure from

them, instead of attractiveness, it becomes a contrarian,

wishing to be in anti-phase with the force. Then, due to the

repulsiveness of some nodes, other mean fields may also

become smaller. Finally, this tendency can shift nodes to

attractiveness again. As a consequence, an intermediate con-

figuration may emerge due to the balance these conflicting

tendencies in the system.

Depending on the non-linear coupling parameter, we

report a variety of qualitative dynamic behaviors. In general,

for small values of the non-linear coupling parameter, we

observed full synchronization and phase-locked states. When

this parameter is increased, multistability, periodic and cha-

otic dynamics take place.

The paper is organized as follows. Initially, we discuss

the basic details of the model in Sec. II. In Sec. III, the ana-

lytical result about the stability of full synchronization is pre-

sented. Numerical experiments in Sec. IV illustrate different

possible regimes that the present model can display. In Sec.

IV C, we perform a numerical exploration to address the cor-

relation of stationary phase locking states with partial syn-

chronization with the network parameters, by exploring

different network topologies and sizes.

II. MODEL OF OSCILLATOR NETWORK WITH
NONLINEAR COUPLING: THE DESERTER HUBS
MODEL (DCM)

Mainly inspired by ideas from Ref. 21, the DHM is a

Kuramoto-like model whose dynamic explicitly depends on a

local cohesion quantifier. Let us consider a system of N identi-

cal phase-oscillators represented by ðh1;…; hNÞ 2 ½0; 2pÞN
coupled through a simple and connected undirected graph A.

The dynamics for the i-th oscillator in the DHM, with i¼ 1,…,

N, is given by the following ordinary differential equation

_hi ¼ ð1� eZ2
i Þ
X
j2N i

sin ðhj � hiÞ; (1)

where N i denotes the set of neighbors of i in the coupling

graph A. Equations (1) are formulated in the reference frame

rotating with the common frequency of the oscillators, so

that the latter one does not appear in the equations. The time

is normalized by the linear coupling strength.

The main feature of the DHM (1) is the non-negative16

nonlinear coupling parameter e, which modifies the coupling

at each node. If e¼ 0, the standard setup of the Kuramoto

model with constant unitary coupling strength on a network

is recovered.13

We denote by di the degree of the i-th vertex, that is, the

number of incoming or outgoing connection, since the graph

is undirected. Also, we make use of the local mean field (or

local order parameter)

Zie
i�h i :¼

X
j2N i

eihj ; (2)

where Zi is the norm of the local i-th order parameter which

measures the magnitude of the force acting on oscillator with

index i. In addition, �hi can also be expressed as

ðdiÞ�1P
j2N i

hj, which corresponds to the direction pointed
by the i-th local mean field. Note that for the standard

Kuramoto model, we have that

_hi ¼ diZi sin ð�hi � hiÞ: (3)

Thus, unless �hi � hi ¼ p mod 2p, the state of the of the

i-th oscillator will get closer to �hi, which is precisely what

we mean by “attractive coupling”. If the opposite happens,

for instance, if we change the sign of the r.h.s. of Eq. (3), we

say that the coupling is repulsive.

On the other hand, we represent the (global) order pa-
rameter by

Reiw ¼ 1

N

XN

i¼1

eihi ; (4)

where R � [0, 1] is its norm and w � (0, 2p] is its phase.
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We stress that Zi is not normalized (in the sense that

there is no division by the number of the terms in the sum-

mation, like in R), as it measures the total action of the

neighbors on the i-th oscillator, which is called local mean
field. Simple calculations show that Z2

i 2 ½0; d2
i �. Thus, a nec-

essary condition for a node to suffer repulsive coupling, i.e.,

1� eZ2
i < 0, is that e > d�2

i .

Notice also that instead of attenuating local coherent,

we wanted to enhance its effect over the dynamics, this is

why we opt not to normalize the r.h.s of Eq. (1) by the asso-

ciated in-degree di.

The introduced order parameters R and Zi,…,Zn are

maximal in the case of full synchronization h1¼…¼ hN,

while they decrease when oscillators begin to move apart

from each other.

If eZ2
max < 1, where Z2

max :¼ maxfZ2
1;…; Z2

Ng, then all

oscillator will attract each other so that the full synchroniza-

tion is established. Next, if Z2
max becomes larger than e�1, the

corresponding oscillator begins to be repulsive related to its

local mean field, and the full synchronization breaks. As a

result, Z2
max may decrease and switch again the node to be

attractive. Depending on the coupling graph A, on the initial

condition ðh0
1;…; hN

1 Þ, and on the intensity of the nonlinear

coupling parameter e, numerical simulation reveals that

model (1) can exhibit different qualitative behaviors.

If the largest degree in the coupling graph satisfies

e < d�2
max, with dmax :¼ maxfd1;…; dNg, then no node can be

repulsive. We demonstrate in Sec. III via the Lyapunov anal-

yses, that in fact this condition guarantees that the full

synchronized state is stable.

III. STABILITY OF FULL SYNCHRONIZATION

The basic procedure to obtain the results in this section

follows.13 We begin presenting some preliminary concepts,

including elements of the graph theory needed, and a gener-

alized norm of the order parameter to define our Lyapunov

function.

Let B be the directed incidence matrix of a graph A.

Thus, B is a matrix with N rows and E columns, where E is

the number of directed edges of the matrix. The number of

undirected edges, i.e., ignoring the direction, equals is E/2.

The columns of B represent the edges of the graph: if the k-

th arrow (directed edge) of the graph goes from i to j, then

the k-th column of B is zero, except at positions i and j,
where Bik¼ 1 and Bjk¼�1. Regarding the dynamics of the

system, an arrow from node i to node j in the graph means

that node i influences node j. Although the directed incidence

matrix is generally defined for directed graphs, it must be

emphasized that only undirected graphs are considered here.

We abuse terminology and identify a graph A with its adja-
cency matrix, which is an N�N matrix where Aii¼ 0;

Aij¼Aji¼ 1, if there is an edge between nodes i, j; and

Aij¼Aji¼ 0, otherwise. So, E ¼
PN

i;j¼1 Aij. Another common

characterization of a graph is its Laplacian matrix,

L:¼ diag(d1,…,dN)�A. One can check that L¼ 1/2BB>. A

simple illustration of these concepts is given at Fig. 1.

The usage of the directed incidence matrix allows us to

rewrite model (1) in a vector form:

_h ¼ � 1

2
diag 1N � eZ2

� �
B sin B>hð Þ; (5)

where Z2 :¼ ðZ2
1;…; Z2

NÞ; 1N :¼ ð1;…; 1Þ 2 RN and diag(.)

stands for the matrix with the elements of a vector on the

leading diagonal, and 0 elsewhere.

The square of the global order parameter can be

expressed as

R2 ¼ 1

N2
N þ 2

X
j<k

cos hj � hk

� �� �
:

However, to build our Lyapunov function, we define a gen-
eralized norm of order r as

r2 :¼ 1� E� 1>E cos B>hð Þ
N2

: (6)

Note that R2 requires the sum of all cos ðhj � hkÞ with

j< k (for j, k¼ 1,…,N), but its generalization r2 takes into

account the sum (1>E cos ðB>hÞ) only through the edges of

the graph. In the case of full coupling graph, direct substitu-

tion yields that both global and generalized norm of the order

parameter have the same expression.

For any connected symmetrical coupling graph, one can

check that the maximum of r2 is the unit, and that R2¼ 1 if

and only if this value is achieved.17

Let

UðhÞ ¼ 1� r2 (7)

be a candidate Lyapunov function. It is clear that the mini-

mum value of U(h)¼ 0 corresponds to the maximum value

of r2¼ 1, which is equivalent to the fully synchronized state.

In fact, algebraic manipulations reveal that

U hð Þ ¼ 2

N2
sin

B>h
2

� �����
����

2

; (8)

and that the differential of U is given by

DU ¼ 1

N2
B sin B>hð Þð Þ>: (9)

As a result, we synthesize in the next theorem the previ-

ously suggested argument that if e is small enough, then full

synchronization is a robust phenomenon related to small per-

turbations over initial conditions.

Theorem 1. In Model (1), if e is smaller than a critical
value ec :¼ 1=d2

max, then the synchronized stated (R¼ 1) is
Lyapunov stable.

FIG. 1. Example of graph with N¼ 3 and E¼ 4, its directed incidence ma-

trix B1 and its Laplacian matrix L1.
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Proof. Consider the potential field U(h) defined in Eq.

(7). So, using the vector form of the model (5) and the

expression of the differential DU from Eq. (9), we have that
d
dt U h tð Þð Þ equals to

� 1

2N2
sin B>hð Þð Þ>B>diag 1N � eZ2

� �
B sin B>hð Þ: (10)

If we set x :¼ B sin ðB>hÞ, then we have that x>diagð1N �
eZ2Þx is larger or equal than ð1� ed2

maxÞkxk
2
. Moreover, we can

also define a lower bound for kxk2
, since kxk2¼ sin ðB>hÞ>

B>BsinðB>hÞ�k2ðB>BÞksinðB>hÞk2 ¼2k2ðLÞksinðB>hÞk2
;

where k2(L) is the algebraic connectivity of the graph. In the last

inequality, we used that 1
2BB>¼L and that both matrices BB> and

B>B have the same non-trivial eigenvalues 0�k2ðLÞ<…

<kNðLÞ, where k2(L) is strictly larger than zero because the cou-

pling graph A is connected.9 Therefore,

d

dt
U h tð Þð Þ � � 1

N2
k2 Lð Þ 1� ed2

max

� �
k sin B>hð Þk2:

As a result, e < ec :¼ 1=d2
max implies that d

dt U hðtÞð Þ � 0,

then the fully synchronized state R¼ 1 is stable. �

IV. DYNAMICS OF PARTIALLY SYNCHRONOUS
STATES

In this section, numerical simulations are performed to

illustrate the rich repertoire of behaviors that model (1) may

exhibit, specially beyond the threshold e> ec, where

Theorem 1 cannot be applied.

A. Quantification of dynamical regimes

The numerical integration scheme applied is a fourth

order Adams-Bashforth-Moulton Method (see Ref. 4) with

discretization time step h¼ 0.01. We calculate the partial
synchronization metrics from Ref. 11, which, for every two

oscillators i, j in the network, takes values sij(I) � [0, 1],

indicating how much the mean phase difference between hi

and hj varies in the time interval I:¼ [t1, t2], with t1< t2.

This metric is defined as

sij Ið Þ¼: 1

t2 � t1

ðt2

t1

ei hi tð Þ�hj tð Þð Þ dt

����
����:

One can check that if hi(t)� hj (t)þ g for some constant g,

then the exponent in the previous integral is constant and

sij(I)¼ 1. Nevertheless, if hiðtÞ � hjðtÞmod 2p assumes every

possible value over the unit circumference with not clear

trend, then sij(I) is close to zero. Now, we average contribu-

tions of all neighbor oscillators i, j under a graph A with N
nodes to write

s Ið Þ¼: 1

E

XN

i;j¼1

Aijsij Ið Þ;

where E is the quantity of undirected edges in the graph.

To exclude transients and to detect the statistically sta-

tionary state, we adopted the following procedure. For all

experiments the time interval [0, 2.103] is always considered

as transient time. Then, the numerical integration is performed

in the subsequent intervals Ik :¼ ½ðk � 1Þ; k�103, with k� 3,

until the first ~k ¼ k such that jsðI~k�1Þ � sðI~kÞj < 0:01, or ~k
¼ 10 is achieved. Only such a time interval I~k is regarded as

non-transient. For the subsequent analysis, we use values of

the phases h(t) in the stationary time interval regime I~k (whose

beginning is shifted to t¼ 0 without loss of generality) at

points t 2 ~I :¼ fih; i 2 f0; 1;…; 105 � 1; 105gg.

B. Examples of complex behaviors

As it was claimed before, in dependence on the network

structure, very different types of the dynamics are possible. In

order to give impression on it, we present simulations of

model (1) with two different coupling graphs displayed as

inserts in Fig. 2. Both networks have N¼ 10 nodes and they

differ only by the rewiring of a single edge. We performed

simulations for 10 random initial conditions chosen with uni-

form distribution over [0, 2p] for each experiment. For all

these initial conditions l¼ 1,…,10, the norm of the order

parameter Rl(t), according to Eq. (4), is computed from the

time series. As explained the last paragraph of subsection, in

these calculations a transient time is eliminated and that a stat-

istically stationary regime ~I of 103 units of time and #~I :¼
105 þ 1 points is considered. Then, also for each distinct ini-

tial condition, the maximum, average and minimum values of

the associated norm of the order parameter are computed,

respectively, denoted by Rl
max :¼ maxt2~I RlðtÞ; hRli :¼ ð#~IÞ�1P

t2~I RlðtÞ; and Rl
min :¼ mint2~I R

lðtÞ. Of course, Rl(t) con-

verges to a constant if and only if Rl
max ¼ hRli ¼ Rl

min. Now,

having different simulations for a fixed coupling graph, we

evaluated the maximum, average and minimum value of the

average value of the norm of the order parameters over

this ensemble, respectively, denoted by maxfhRig :¼

FIG. 2. Numerical results for Model (1) as a function of e, for the coupling

graphs despited as insect, including 10 random initial conditions. A black

line corresponds to meanfhRig, while the interval between minfhRig and

maxfhRig is shown as a gray strip. The gap between minfRming and

maxfRmaxg is shown as an orange strip. Since the orange strip is by con-

struction larger or equal than the gray one, the first one is not displayed in

the figure when they coincide. Left vertical axes show values related to

norm of the order parameter, while the right ones represents the maximum

Lyapunov exponent kmax, shown as a red dashed line. Letters in green verti-

cal lines from the upper experiment correspond to the inset in Fig. 3.
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maxl¼1;…;10hRli; meanfhRig :¼ ð10Þ�1P
l¼1;…;10hRli; and

minfhRig :¼ minl¼1;…;10hRli. So, if the norm of the order pa-

rameter converges to the same value for all initial conditions

simulated, then maxfhRig ¼ meanfhRig ¼ minfhRig. For

the cases where the norm of the order parameter does

not converge over all initial conditions, it will be useful to

examine the overall maximum and overall minimum values of

the norm of the order parameter, respectively denoted by

maxfRmaxg :¼maxl¼1;…;10Rl
max; and minfRming :¼minl¼1;…;10

Rl
min. Thus, if there is no fixed phase synchronization for all

the initial conditions simulated, but the norm of the order pa-

rameter presents only small deviations around a common

value, then the gap between maxfRmaxg and minfRming is

also small. Also notice that minfRming�minfhRig�mean

fhRig�maxfhRig�maxfRmaxg, since Rl
min�hRli�Rl

max for

all initial conditions. Finally, the maximum Lyapunov expo-

nent kl
max for each initial condition is also computed, accord-

ing to the algorithm in Ref. 2. The maximum Lyapunov

exponent over all the chosen initial conditions kl
max

:¼maxl¼1;…;10k
l
max is also analyzed.

We now describe different regimes observed in the net-

works, using also Fig. 3, where we depict time series of

R(h(t)) for some particular choices of e, indicated as green

letters in the upper panel from Fig. 2 (this is the case we

choose for illustrating different regimes). Notice that dmax

¼ 4 in both cases, so Theorem 1 guarantees that for

e< ec¼ 1/42¼ 0.0625 the full synchronization state, R ! 1,

is locally stable as illustrated in Fig. 3(a) (with e¼ 0.04).

Panel (a) in Fig. 3 illustrates full synchronization in the

network for e< ec. For e slightly bigger than ec, simulations

suggest that a stationary regime of partial phase synchroniza-

tion, where R! c< 1, is locally stable as shown in Fig. 3(b)

(e¼ 0.08). Details of this state are clear from Fig. 4. There

we show that the synchronization between the individual

oscillators is complete if measured by quantity sij, and all the

oscillators have the same frequency. However, the oscillators

are split into two groups with a constant phase shift between

them; this division originates in the edge which connects the

two largest hubs in the network (vertexes 1, 8).

For larger values of e, the regimes are still static but

with multistability. For instance, at e¼ 0.15 (see Fig. 3(c)),

two stable configurations emerge with R! c, with c� 0.471

(black) or c� 0.511 (blue), depending on the initial condi-

tion. Fig. 5, which is analogous to Fig. 4, shows the existence

of three subgroups, whose members may vary according to

the initial condition.

Other types of multistabilities appear, for instance, at

e¼ 0.28 and e¼ 0.35, as illustrate in Figs. 3(d) and 3(e). For

e¼ 0.28 (panel d) some initial conditions do no converge to

a fixed phase synchronization, but to a regime where the

order parameter R is periodic in time. For e¼ 0.35 (panel c),

the norm of the order parameter of all trajectories simulated

becomes periodic. Fig. 6 provides an illustration of this

regime.

FIG. 3. Evolution of R(t) for different values of e indicated in green at the

upper experiment from Fig. 2. Every color represents a different initial con-

dition, while pairs of solid/dashed lines with the same color correspond to

solutions whose initial conditions differ not more than 10–4 at each coordi-

nate. (a) e¼ 0.04: full synchronization; (b) e¼ 0.08: fixed phase synchroni-

zation; (c), (d), (e) e¼ 0.15, 0.28, 0.35 respect.: examples of multi stability;

(f) e¼ 0.70: example with kmax > 0.

FIG. 4. Example of group formation: details of one of the trajectories from

Fig. 3(b) e¼ 0.08. On the left side, the coupling graph with s(i, j) in its edges

is shown. On the right side, a histogram of hi – w in permanent regime is pre-

sented with color code representing the normalized frequency. Precisely, we

divided the interval [0, 2p) into 10 bins with the same size. So, the normal-

ized frequency of the i-th oscillator corresponds to the ratio of points (after

the transient time) that the numerical evaluation of hi – w placed at each bin.

FIG. 5. Example multi-stability with group formation. Details of two trajec-

tories from Fig. 3(c) e¼ 0.15 are provided. The left picture corresponds to

the solid black line and the right one to the solid blue. Histograms of hi – w
are like the one in Fig. 4.
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For e¼ 0.70 (Fig. 3(f)), one observes a chaotic state

with kmax > 0, the distribution of phases and frequencies is

illustrated in Fig. 7. The emergence of chaos in the DHM

can be seen as the result of irregular contractions and expan-

sions of the oscillator’s state.2 Contraction tendencies occur

when a node act as conformist (attractiveness), while expan-

sion takes place when it “deserts” due to local mean field

cohesion (repulsiveness). When no balance is achieved

between these two tendencies, one can observe sensitiveness

to initial conditions.

If e � [1, 1.5], we also obtained multistability, with the

coexistence of solutions converging to phase-lock and irreg-

ular order parameter after the transient, similar to Fig. 3(d).

Now, we compare the results for two slightly different

networks depicted in panels (a) and (b) in Fig. 2. The interval

of values of e with fixed phase synchronization for all initial

conditions simulated is very similar for both networks,

namely, ec< e � 0.25; also multistability of static partial

synchronous regimes have been observed in both cases.

When e � [1, 1.5], contrary to case (a), we observed

that the solution for all initial conditions converged to the

same phase-lock regime, similar to Fig. 3(b).

In the conclusion of this section, Fig. 8 shows simulation

results for two other networks. Panel (a) shows a random net-

work with N¼ 10 nodes and 20 undirected edges. Here pre-

dominantly static regimes are observed, only in small ranges

of coupling constant chaos with a positive Lyapunov expo-

nent appears. Static regimes, however, demonstrate a large

degree of multistability. In panel (b), we show a scale-free

network with N¼ 50 nodes and 100 undirected edges. Here

static states are rare, typically irregular regimes with low val-

ues of the order parameter are observed.

C. Dependence of partial synchronization regimes on
network structure

We have seen that partially synchronous states can be

rather different even for similar networks. It is therefore diffi-

cult to make general predictions for a relation between the net-

work properties and the dynamical behaviors. Here, we attempt

such a description, focusing on the property of abundance of

static regimes in comparison to time-dependent ones. For this

purpose, we define the convergence index Ic as the ratio of val-

ues of e � [0, 1.5] such that R converges to a constant value,

considering all the 10 random initial conditions. So, both

FIG. 6. Example of periodic norm of

the order parameter: details of one of

the trajectories from Fig. 3(d) e¼ 0.28.

On the left side, the coupling graph

with s(i,j) in its edges is shown. A histo-

gram of hi – w are like the one in Fig. 4

in the middle figure. We denote by w(t)
the argument of the order parameter.

The picture on the right shows that

the curve ðsin ðh1ðtÞ � wðtÞÞ; sin ðh9ðtÞ
�wðtÞÞÞ is closed.

FIG. 7. Example of trajectory with

kmax > 0: details of one of the trajecto-

ries from Fig. 3(f) e¼ 0.70. On the left

side, the coupling graph with s(i, j) in

its edges is shown. On the right side,

there is a histogram of hi – w are like

the one in Fig. 4.

FIG. 8. Numerical results for Model (1) as a function of e, for the coupling

graphs depicted as insect, including 10 random initial conditions. The legend

of the pictures is the same as in Fig. 2.
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networks in Fig. 2 have close values of this index: Ic� 0.530 in

case (a) while Ic� 0.549 in case (b). In contradistinction, net-

work shown in Fig. 8(a) has very large value of the index

Ic� 0.946, while that in Fig. 8(b) a rather low value Ic� 0.064.

In order to explore which features of the coupling graph

are related with Ic, we performed numerical experiments

with three sets of graphs, with N¼ 10, 50, 100 nodes. Each

set consists in three common types of networks, each one

with 10 members, generated as: (i) random (Erd€os-R�enyi)

graphs with 2N edges; (ii) scale-free graphs, also with 2N;

and (iii) tree graphs (N edges). The Barab�asi-Albert algo-

rithm is applied for the last two types of networks (ii), (iii),

with an initial clique of m0 nodes and with other nodes been

connected to m existing ones. For the 2N-edges scale-free

graphs, we fixed m0¼ 5 and m¼ 2; while for the tree graphs

(N edges scale-free graphs), m0¼m¼ 1. We point out that

all graphs created are connected and symmetrical.

Additionally, three sets of 10 initial conditions h0 2 RN ,

with uniform distribution over [0, 2p] and N¼ 10, 50, 100,

have been explored. So, for each of the 90 coupling graphs

we computed its correspondent Ic values by numerical inte-

gration of model (1) for e¼ 0, 0.01,…,1.49, 1.50.

In Table I, we report the mean value and the standard

deviation of Ic for each topology and size of coupling graph.

From these data, we see that the mean value of Ic increases if

we go from tree to scale-free and to random graphs, respec-

tively. However, this difference becomes less noticeable for

larger values of N. Both the mean value and the standard

deviation of Ic decrease with larger networks.

We have explored different networks metrics, searching

for one mostly correlated with the convergence index Ic. Let

0¼ c1< c2�…cN denote the Laplacian eigenvalues of the

coupling graph.10 Recall that this graph is assumed to be

simple and connected. We stress that these eigenvalues

express fundamental characteristics of the graph. For

instance, c2 is related with graph diameter and cN with its

largest degree size.

We found that the quantity c*, defined as the ratio

between the maximum eigenvalue and the average of the

non-trivial eigenvalues of the Laplacian matrix of the graph,

is rather suitable for this purpose. Formally, it is defined as

c	 :¼ cN

1

N � 1

XN�1

k¼2

ck

 !�1

:

In Fig. 9, a correlation plot between Ic and measure c*

for the correspondent graph is presented. From there, we

observe a clear trend indicating that the greater the value of

c* is, the smaller is the value of Ic. Independently of the net-

work type and size, static regimes of partial synchronization,

full synchronization and phase-lock, are typical for values of

c*� 3, like in the experiments from Fig. 2. On the other

hand, graphs with larger values of this measure yields more

irregular dynamics, like time-dependent periodic and chaotic

regimes, as the ones from Fig. 8.

V. CONCLUSION

In this work, we introduced and studied the DHM, as a

Kuramoto-like model of identical oscillators with non-linear

coupling. Our main parameter was e, which governs the cou-

pling nonlinearity strength. It is clear that the most influence

of nonlinearity in the coupling is on the hubs which experi-

ence strong forcing from many connected oscillators, while

less connected nodes may still operate in a linear-coupling

regime.

We proved that if this parameter is smaller than the

inverse of the square of the maximum vertex degree in the

network, then the full synchronized state is stable. Via nu-

merical experiments, we showed that our model can display

a variety of other qualitative behaviors of partial synchroni-

zation, like stationary phase locking, multistability, periodic

order parameter variations, and chaotic regimes. We

explored the relative abundance of stationary phase locking

regimes under different network topologies. Our statistical

analysis with 90 graphs, comprising a variety of network

sizes and topologies and vertex sizes, suggests that tree

graphs are much less likely to exhibit stationary phase lock-

ing in comparison with scale-free or random networks. In

addition, this type of behavior becomes rarer if we increase

network sizes, irrespective to the network topology. Finally,

we also found a good correlation between the ration between

the maximum eigenvalue and the average of the non-trivial

eigenvalues of the Laplacian matrix of the graph, and the

proportion of the repulsion parameter values which yield sta-

tionary phase locking. Our simulations show evidence that

the greater this measure is, the smaller tend to be presence of

stationary phase locking states in the system.

As a future research, we plan to investigate analytical

conditions and correlations involving other graph measures

related to other forms of synchronization in the model.
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Does the assignment order of a fixed collection of slightly distinct subsystems into given communication
channels influence the overall ensemble behavior? We discuss this question in the context of complex networks of
nonidentical interacting oscillators. Three types of connection configurations are considered: Similar, Dissimilar,
and Neutral patterns. These different groups correspond, respectively, to oscillators alike, distinct, and indifferent
relative to their neighbors. To construct such scenarios we define a vertex-weighted graph measure, the total
dissonance, which comprises the sum of the dissonances between all neighbor oscillators in the network. Our
numerical simulations show that the more homogeneous a network, the higher tend to be both the coupling
strength required for phase locking and the associated final phase configuration spread over the circle. On the
other hand, the initial spread of partial synchronization occurs faster for Similar patterns in comparison to
Dissimilar ones, while neutral patterns are an intermediate situation between both extremes.

DOI: 10.1103/PhysRevE.92.032901 PACS number(s): 05.45.Xt, 89.75.Fb

I. INTRODUCTION

Some social and biological studies about multiagents
reveal that units tend to select similar peers with which to
interact [1,2]. However, there are systems which behave in
an opposite manner, where their components preferentially
choose to connect themselves to others with some distinct inner
characteristics [3]. In fact, nature seems to favor the former
or the latter construction, which we respectively call Similar
or Dissimilar (neighborhood) patterns, to achieve different
agendas [4]. This article explores ideas inspired by these
scenarios within the nonidentical-phase-oscillator Kuramoto
model, which is one of the main paradigms to describe
collective behavior and synchronization [5]. This model is
also interesting because, under weak mutual interaction, it
approximates dynamics of a large class of nonlinear oscillators
near limit cycle [6]. Besides, this is an active research field
with a number of applications from different areas [7–10],
highlighting the fundamental role that synchronization plays.

Our numerical approach is based on a novel vertex-
weighted graph measure: the total dissonance. This quantity
can be regarded as a generalization of the classical concept
of dissonance, that is, the natural frequency difference of two
coupled oscillators [6]. So we define Similar and Dissimilar
patterns as the assignments of nonidentical oscillators into
the coupling graph which yield, respectively, significantly
lower and higher total dissonance values. Otherwise, if a
pattern has no strong bias related to this quantifier, then we
call it Neutral. Given a fixed choice of inner properties for
each oscillator and a fixed coupling graph, we search for
Similar and Dissimilar patterns via an optimization algorithm
interchanging oscillator’s positions into the graph nodes.

*cbnfreitas@gmail.com
†elbert.macau@inpe.br
‡viana@fisica.ufpr.br

Clearly, oscillator swapping over nodes of fully coupled
networks have no influence over synchronization, since they
can be solely seeing as an index reordering. We focus in
this work on networks whose quantity of edges is much
smaller than the all-to-all case. Regular, scale-free, random,
small-world, and community networks are considered [11] to
provide evidence about the ubiquity of our argument. Finally,
massive numerical simulations are performed to grasp the
influence of these three different neighborhood patterns over
phase-synchronization quantifiers.

About related material, Refs. [12] and [13], respectively,
explore first- and second-order Kuramoto model versions,
both including local correlations between oscillator’s natural
frequency and node degree. They report an explosive syn-
chronization in the first case and cascade synchronization,
according to the node degree, in the second. Our methodology
introduces a diverse relationship between natural frequencies
and coupling graph, as will be discussed and illustrated in the
text.

Optimization studies also have laid the foundation for
our research. In Ref. [14], an algorithm is proposed to
construct optimized networks related to a combination of
local and global synchronization measures. Their objective
function is computed and refined after successive numerical
integrations. Although we follow a different approach, we
point out that our results also support that “the early onset
of synchronization and rapid transition to the phase-lock
are conflicting demands on the network topology” [14].
Reference [15] associates a percolation process to the spread of
synchronization. In addition, they consider node interchange in
the graph based on a vertex-weighted graph measure. However,
their characterization takes into account only the phase sign of
neighbor oscillator. Even so, we also found a similar explosive
synchronization.

It is common sense that a way to achieve more homo-
geneous neighborhood patterns is to gather members with
closer intrinsic dynamics into communities. Thus, articles

1539-3755/2015/92(3)/032901(5) 032901-1 ©2015 American Physical Society
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that investigate this framework can also benefit from our
findings. Reference [16] addresses a Kuramoto model of
identical oscillators showing that, as the transient time dies
out, synchronization occurs in stages matching the granular
communities of the coupling graph. Reference [17] deals
with communities of oscillators having essentially different
natural frequencies. The authors of this paper discuss ways to
promote or suppress synchrony on individual subgroups. Ref-
erence [18] introduces a dynamic feedback control to produce
intracommunities synchronization regarding communities of
identical nonlinear oscillators. Accordingly, Similar, Neutral,
and Dissimilar patterns can be used as an additional tool to
tune synchronization properties.

II. MODEL AND METRICS

We consider a system of N phase oscillators, whose
dynamics for the ith oscillator is

θ̇i = Wi + ε

di

N∑
j=1

Aij sin θj − θi, (1)

where W = W1, . . . ,WN ∈ RN are the oscillator’s natural
frequencies. We consider W with zero mean [19], randomly
drawn from the uniform distribution over [−π,π ]. A single
choice of W is drawn for each network size N studied.

The coupling strength ε � 0 is the system parameter
that adjusts the intensity of attractiveness between neighbor
oscillators. The symmetrical coupling graph is expressed
by its adjacency N × N matrix A, so Aii = 0; Aij = 1 if
oscillators i,j are neighbors (adjacent), and Aij = 0 otherwise.
We assume connected graphs, meaning that there is a sequence
of edges joining any two vertexes in the graph. Also, di :=∑N

j Aij stands for the ith vertex degree. The Laplacian matrix
is defined as L := diag d1, . . . ,dN − A and its eigenvalues are
0 = λ1 � λ2 � . . . � λN . The first nontrivial eigenvalue λ2,
the algebraic connectivity, is greater than zero if and only if
the graph is connected [20].

On one hand, analytical results [21] guarantee convergence
to a unique (modulus 2π ) stable phase-locked regime, where
phase differences between every two oscillators becomes
constant. Precisely, this convergence occurs if the coupling
strength ε is large enough in comparison with ‖W‖λN/λ2

2,
where ‖.‖ denotes the Euclidean norm in RN . Because λ2

increases when the graph diameter D is decreased and λN

decreases with its maximum degree dmax [22], phase locking
can be achieved for smaller values of ε mostly with the
reduction of D but also with smaller values of ‖W‖ and dmax.
On the other hand, if we consider a system with only two
phase oscillators, then it is well known [6] that the relation
between its dissonance ν := W1 − W2 versus the coupling
strength ε determines the synchronization regime [23]. So we
introduce the total dissonance measure for vertex-weighted
graphs as

νTotal := 1

N

√√√√ N∑
i,j=1

AijWi − Wj
2. (2)

Since we consider symmetrical and connected coupling
graphs, it is straightforward to check that νTotal = 0 if and

only if all oscillator are identical. If we write νTotal = νTotalW ,
then this measure quantifies how far W is from a condition
where all natural frequencies are identical. Therefore, νTotal

encompasses information about the total spreading of W by
summing up individual dissonances over the coupling graph
edges.

The norm of the global mean field, the order parameter, will
be denoted by Rθ = |1/N

∑N
i=1 eiθi |. This quantity R ranges

from 0 to 1, respectively, indicating that the ensemble gradually
changes from null global mean field, where all phasors eiθi

cancel out, to full synchronization, where θ1 = . . . = θN . One
also makes use of the edge partial synchronization index
between two oscillators i,j ,

Sij = Sji :=
∣∣∣∣ lim
�t→∞

1

�t

∫
tr tr + �tei[θi t−θj ]t t

∣∣∣∣,
where tr is a large enough transient time [24]. Oscillators
i,j are phase locked, that is, θi t − θj t converges to a constant
value if and only if Sij = 1. Moreover, if this index is decreased
towards zero, then weaker forms of synchronization and later
uncorrelated trajectories occur [25]. We average contributions
of all neighbor oscillators in the network to define the partial
synchronization index

S := 1

Ẽ

N∑
i,j=1

AijSij , (3)

where Ẽ := ∑N
i,j=1 Aij is the quantity of directed edges in the

graph. Of course, the number of undirected edges is E := Ẽ/2.
Thus, S = 1 means that the whole ensemble is phase locked,
while S ≈ 0 yields very low coherent ensemble behavior. Note
that R[θt] converges to a constant value [26] if and only if
S = 1.

An Adams-Bashforth-Moulton method for numerical inte-
gration is applied. A transient time of at least 2 × 103 units
of time was suppressed from the data, while the convergence
of approximations of S over successive time windows of 103

units of time was the criterion to interrupt the integration. The
mean value of R[θ (t)] after the transient is denoted by 〈R〉.
For a given choice of parameters and initial conditions, we
indicate by εPL the smallest critical coupling strength ε > 0
inducing phase locking, i.e., S = 1 and R[θt] converges to a
constant value, which we denote by RPL.

Several complex networks topologies [11] with N nodes
and E (undirected) edges are considered: 4-Regular (N
RE), Barabási-Albert (N BA), Erdős-Rényi (N ER), and
Watts-Strogatz [27] (N WS). Experiments with relatively
small networks with N = 50 are performed for the sake
of easy visualization. Larger ones, with N = 500, are also
addressed to illustrate graphs closer to the theoretical degree
distribution [11], yet feasible to massive numerical integration.
To diminish computational cost and to allow comparison
among network topologies, we consider graphs with Ẽ =
4N directed edges, which yields mean node degree 〈d〉 =
Ẽ/N = 4.

An empirical example of complex network with community
structure, denoted by 105 CO, is included in the simulations:
the Krebs-Amazon Political Books network [28]. This graph
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FIG. 1. Examples of Similar, Neutral, and Dissimilar patterns
related to N -node graphs following network topology: 4-Regular (N
RE); Barabási-Albert (N BA), with E = 100 edges and a community
graph (N CO) with E = 441. Vertex color is presented according to its
natural frequency Wi , ranging from −π (black) to π (white); vertex
size is proportional to node degree. The associate total dissonance
νTotal is displayed.

comprises N = 105 nodes, Ẽ = 882 edges, and two commu-
nities.

Our aim now is to make precise the subjective idea of
Similar, Neutral, and Dissimilar patterns based on member’s
local choice of neighbors. Only oscillator swapping among the
graph nodes are taken into account. Similar patterns should
place oscillators alike into adjacent graph nodes. Thus, a way
to achieve it for RE networks is to assign extreme natural
frequency values, close to ±π , as far as possible in the graph,
filling intermediate nodes with gradual values ofWi ; see Fig. 1
(50 RE Similar).

To consolidate this concept for more general network
topologies, a numerical procedure is chosen as a definition. We
will call the Similar configuration the permutation obtained by
minimizing the objective function νTotalW , which corresponds
to minimize the dissonance Wi − Wj over all edges i,j of the
graph. In contradistinction, Dissimilar configurations will be
associated with maximization of the total dissonance. For this
purpose, a simulated annealing optimization method (SA) [29]
is employed to track permutations of W towards optimal
solutions [30].

The reader must be aware that although the SA returns
permutations enhancing the objective function value, this is
a stochastic scheme, which means that only with infinite
iterations one could expect to achieve the global optima
regarding all N ! permutations. Nevertheless, whether these

numerical approximations of the total dissonance νTotalW
values are the global extremes values is not strictly relevant to
our analysis.

Medium to large networks with a quantity of edges much
smaller than the fully coupled case are the focus of the
present study. Therefore, an initial random assignment of
W into the graph nodes, without any optimization process,
will be called a neutral configuration. We take this approach
by simplicity, because the total number of permutations N !
becomes so massive that the probability of randomly drawing
a permutation such that νTotal is close to the extreme values is
very small, as is numerically confirmed bellow.

In conclusion, we derive from each pair A,W the Neutral
configuration, without optimization, and the Similar and
Dissimilar ones by means of numerical minimization and
maximization of νTotalW [31], respectively. We defer to future
research the study of other values of this metric, between
Similar-Neutral and Neutral-Dissimilar, versus synchroniza-
tion features.

Figure 1 illustrates RE, BA, and CO graphs with the
three neighborhood patterns. As expected, from the RE graph
with Similar configuration of this figure, one realizes a
homogeneous transition of Wi values. Each node presents
indeed natural frequency close to the respective average of its
neighbors. However, this ordering arises differently depending
on the network topology. Hubs of the BA graph were colored
with medium gray tones, corresponding to the overall mean of
natural frequency distribution. But in the CO graph, positive
and negative natural frequency values were placed into distinct
communities, with hubs close to ±π/2 and central nodes (in
between communities) close to null Wi .

Regarding the Dissimilar configurations from Fig. 1, the
opposite organization is found: each node receives natural
frequency far from its neighbors. For the RE network, we
notice sequences of connected nodes with alternating positive
and negatives values of Wi . Moreover, BA and CO graphs
presented connected hubs with larger natural frequencies
and opposite signs. Eventually, the Neutral configuration
can be regarded as a blending between both previous
configurations.

We randomly generate and include in our experiments 100
graphs of BA, ER, and WS network topologies in the next
experiments. Since RE topology is deterministic and the CO
graph was extracted from a data set, these classes contain a
single member to be analyzed.

Figure 2 displays a distribution chart of the total dissonances
νTotal obtained for the categories included in this article.
From this figure, a sharp distinction among patterns is
noticed, since there is no νTotal range overlapping within each
category. Although this three-cluster structure arose from our
data dealing with a variety of networks, it depends on the
network size, topology, and suitable optimization algorithm.
For instance, if the optimization output were not sufficiently
far from the mean of the total dissonance distribution, then
these patterns would have no meaning.

The set of graphs with N = 500 presented values of νTotal

3 times smaller than the set with N = 50. Furthermore, both
sets were qualitatively alike, which is an evidence that we were
capable to produce Similar and Dissimilar neighborhoods in
the large networks, at least as well as the small ones.
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FIG. 2. Total Dissonance νTotal distribution chart of different
topologies with Similar (light gray), Neutral (gray), and Dissimilar
(black) patterns. Data correspond to the single members from
categories 50 RE, 500 RE, and 105 CO and 100 different elements for
the others. Colored bars indicate the overall range of νTotal obtained,
while mean values of each distribution are joined by a black line
within each category.

Because there is only a normalization by the number of
vertexes in the graph, but not by the quantity of edges, in
Eq. (2), the total dissonance decreases with smaller mean
degrees in all categories as expected [32]. BA, ER, and WS
topologies were almost indistinguishable in the Neutral pattern
but were slightly higher in this order for the Dissimilar case.
All patterns of 50 RE and 105 CO graphs yielded smaller but
comparable with each other total dissonance values.

We use notation and also denote by S, 〈R〉, εPL, and RPL the
associated mean values of these synchronization quantifiers
considering all graphs of each category. A fixed random
choice of initial condition θ0 ∈ RN is drawn from a uniform
distribution over the unit circle for each network size N . So
Fig. 3 displays the values of S and 〈R〉, as solid and dashed
lines, respectively, obtained through numerical integration for
the three neighborhood configurations colored like in Fig. 2.
The time variable of both S and 〈R〉 times series are rescaled
to end at the associated mean critical coupling value εPL. The
S lines finish at value 1, within the numerical tolerance, while

the final value of 〈R〉 lines equal to the mean critical order
parameter RPL.

First, one focus on the phase-locking measures εPL and
RPL. Irrespective to network size, overall results were alike.
In general, εPL decreases from Similar, Neutral, to Dissimilar
patterns; while RPL tend to increase in the same ordering.
In all topologies, Similar cases demanded higher coupling
strength to achieve phase locking. In particular, since this
holds true even for RE networks, it shows that total dissonance
patterns induce a different phenomenon than the ones from
Refs. [12,13].

Moreover, even when these networks were phase locked,
R converged to smaller values of RPL. In other words, Similar
ensembles tend to be harder to synchronize and to converge
to regimes where oscillators were more spread around the unit
circle than their counterparts. Neutral patterns required smaller
εPL than Dissimilar ones. RE graphs were the only exception
for these behavior of RPL.

For all topologies, higher values of εPL were measured when
N was multiplied by 10. On the other hand, larger networks
yielded higher RPL for Similar and Neutral neighborhoods but
slightly smaller RPL for Dissimilar ones.

At this point, the influence of Similar, Neutral, and Dissim-
ilar patterns over the emergence of phase synchronization is
investigated, especially related to coupling strengths ε much
smaller than εPL.

Again, except for RE graphs, we verify that Similar patterns
favor weaker synchronization regimes, since the initial growth
of S and 〈R〉 for small coupling strength ε is more prominent.
However, beyond intermediate values of ε, Dissimilar patterns
surpass the Similar ones through an abrupt transition. The
Neutral case is between these two extremes, closer to the
behavior of the Dissimilar group. If we compare network
topologies, BA and ER graphs displayed close values of S,
which were smaller than WS ones for small and intermediate
values of ε.

A parallel of our findings could be made by considering
conflicting ideas, associating communication and agreement
with the emergence of synchronization and phaselocking,

FIG. 3. Mean order parameter after transient 〈R〉 and partial synchronization index S, solid and dashed lines respectively, as a function of
coupling strength ε for different graph topologies. Average values of all graphs simulated within each category are shown. Similar, Neutral,
and Dissimilar cases are respectively plotted in light gray, gray, and black. Lines are drawn to ε equal to the respective average critical phase
locking εPL.
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respectively. In Similar scenarios, interaction mostly occurs
among people with closely related culture backgrounds. Thus,
communication can easily spread locally, but the overall
population, which contains diverse members, will hardly find a
compromise. On the other hand, when networks contain more
heterogeneous neighbors, as in the Neutral and Dissimilar
cases, communication demands higher effort to be established.
But after that, the whole ensemble is capable to rapidly reach
consensus.

In summary, experiments with several network topologies
were analyzed and a strong numerical trend was found. The
Neutral case behaves in general between both extremes, closer
to the Dissimilar case. Except for RE networks, under small
coupling strength ε, Similar patterns yield larger values of

partial synchronization index S, meaning early synchroniza-
tion ongoing. In contradistinction, Dissimilar ones present
smaller values of S but undergo abrupt increment until phase
locking. Moreover, all networks with Similar patterns required
higher values of coupling strength to achieve phase locking,
while Dissimilar patterns converged to regimes closer to full
synchronization.
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