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Abstract. Changes in land-use systems in tropical regions,
including deforestation, are a key challenge for global sus-
tainability because of their huge impacts on green-house gas
emissions, local climate and biodiversity. However, the dy-
namics of land-use and land-cover change in regions of fron-
tier expansion such as the Brazilian Amazon are not yet
well understood because of the complex interplay of eco-
logical and socioeconomic drivers. In this paper, we com-
bine Markov chain analysis and complex network methods
to identify regimes of land-cover dynamics from land-cover
maps (TerraClass) derived from high-resolution (30 m) satel-
lite imagery. We estimate regional transition probabilities be-
tween different land-cover types and use clustering analysis
and community detection algorithms on similarity networks
to explore patterns of dominant land-cover transitions. We
find that land-cover transition probabilities in the Brazilian
Amazon are heterogeneous in space, and adjacent subregions
tend to be assigned to the same clusters. When focusing on
transitions from single land-cover types, we uncover patterns
that reflect major regional differences in land-cover dynam-
ics. Our method is able to summarize regional patterns and
thus complements studies performed at the local scale.

1 Introduction

Land-use/cover change does not only affect local ecosystems
and climate but has global consequences for the Earth system
(Foley et al., 2005). Land use emits about 25 % of annual

greenhouse gases to the atmosphere worldwide. Particularly
in tropical regions, increasing demand for food, fiber and bio-
fuels drives land conversion from forest biomes to agricul-
turally used areas (Lambin and Meyfroidt, 2011). In order to
analyze the causes of tropical deforestation, it is thus crucial
to understand the dynamics of land-cover changes that occur
after deforestation, compare them between regions and con-
nect them to socioeconomic and political drivers. Further-
more, this could help to better understand the effects of land-
use intensification that can potentially reverse deforestation
trends, as hypothesized in forest transition theory (Meyfroidt
and Lambin, 2011).

The Brazilian Amazon is one of the world’s key regions
with highly dynamic land-use change and is subject to multi-
ple pressures (Laurance and Williamson, 2001; Keller et al.,
2009; Davidson et al., 2012). Economic activities such as
unsustainable logging and agricultural expansion of cattle
ranching and soybean cultivation lead to a fragmentation of
the landscape resulting in biodiversity loss (Laurance et al.,
2002). Global climate change may decrease precipitation
and increase forest fires (Chen et al., 2011). All these pres-
sures are increasing the risk of destabilizing the ecosystem
and crossing a tipping point with irreversible consequences
(Lenton et al., 2008; Nepstad et al., 2008; Staal et al., 2015).

In the 1970s and 1980s, deforestation was mostly driven
by large infrastructure and settlement programs, but more
recent years saw mainly market drivers pushing the defor-
estation frontier further, while government programs tried to
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contain it (Fearnside, 2005). Since 2005, deforestation rates
in the Brazilian Amazon have been reduced enormously. In
recent years, the rates are fluctuating around 6000 km2 per
year, which is a reduction of about 80 % compared to the
peak of deforestation activities in 2004 (INPE, 2017). The
changes are explained by new monitoring programs, public
policies and supply chain interventions (Nepstad et al., 2014;
Dalla-Nora et al., 2014; Gibbs et al., 2015). However, there
are warnings that deforestation may increase again (Fearn-
side, 2015; Aguiar et al., 2016).

In order to understand deforestation rates, it is crucial to
take subsequent land uses and their dynamics into account.
This paper focuses on developing methods to detect patterns
of land-cover dynamics using data from remote sensing and
identifying large-scale differences between subregions of the
Brazilian Amazon as a sample region. To do so, we draw on
the theory of Markov chains that has been used in the context
of land-system science to describe and analyze land-cover
dynamics (Bell and Hinojosa, 1977; Baker, 1989). Markov
chains are stochastic systems that are described by transition
probabilities between discrete states, here referring to a spe-
cific land-use or land-cover type. An ensemble of such chains
describes a collection of land patches that undergo stochas-
tic transitions between land-cover classes. Because simple
Markov models do not take spatial correlations into account,
they often form only one part of hybrid land-cover models
that introduce stochasticity into the model (see, e.g., Brown
et al., 2000; Subedi et al., 2013). For example, Fearnside
(1996) applied a Markov analysis to estimate greenhouse gas
emissions from land-use change in the Brazilian Amazon and
found that carbon storage in the land system decreases as it
approaches an equilibrium.

In the past, most studies using Markov analysis focused
on small regions due to limited data availability. Modern ge-
ographic information systems (GISs) enable the detection of
land-cover changes at an unprecedented scale using satellite
images (Lu et al., 2004). Automated algorithms allow the
classification of land use and land cover of vast regions. Fur-
thermore, it is possible to compare the land-use dynamics be-
tween different subregions and find differences and similari-
ties based on consistent data sets. For example, Levers et al.
(2015) combined different sources of land-use indicators and
used self-organizing maps to identify archetypical land uses
and regions with similar land-use change in Europe.

In this study, we use Markov transition probability ma-
trices as a descriptor of aggregate land-cover dynamics es-
timated from high-resolution land-cover data for three time
slices of land cover over 6 years in the Brazilian Amazon.
To our knowledge, Markov analysis has so far not been ap-
plied to investigate interregional heterogeneity of land-cover
dynamics. This paper explores this idea by comparing transi-
tion matrices from different subregions in the Brazilian Ama-
zon to identify patterns of similar land-cover dynamics draw-
ing on large data sets derived from satellite imagery. While
previous studies mostly worked with predefined regions to

Figure 1. Map of the Brazilian legal Amazon and its nine federal
states: Acre (AC), Amapá (AP), Amazonas (AM), Maranhão (MA),
Mato Grosso (MT), Pará (PA), Rondônia (RO), Roraima (RR) and
Tocantins (TO).

compare land-cover dynamics, we develop methods to iden-
tify regions with similar land-cover dynamics, which allows
a large-scale analysis of land-cover change patterns. With
this methodology, we approach the hypothesis that different
land-cover dynamics can be identified by the characteristics
of their transition matrix and a partition of subregions, for
example, into remote, frontier and consolidated areas, can be
detected from the data.

The paper is structured as follows. In the subsequent
Sects. 2 and 3, we present the details of the proposed method
and describe the data that we apply it to. Section 4 gives re-
sults from the analysis and discusses them, pointing to pos-
sible interpretations but also restrictions of the method. Sec-
tion 5 concludes with an outlook on how the method could
be applied to further analyses.

2 Data: land-cover maps of the Brazilian Amazon

In this study, we use land-cover maps of the Brazilian le-
gal Amazon (cf. Fig. 1) produced by the TerraClass project
(INPE and EMBRAPA, 2017) for the years 2008, 2010 and
2012. The land-cover maps are derived from high-resolution
Landsat-5 thematic mapper (TM) and MODIS imagery us-
ing a mix of techniques including supervised learning and
classification by spectral properties of different land-cover
types and their annual variations (for details, see Almeida
et al., 2016; Coutinho et al., 2013). The maps consist of poly-
gons that represent patches of land attributed to 1 of 16 spe-
cific land-cover types (see Table S1 in the Supplement). The
maps are based on the PRODES project that distinguishes be-
tween forest, patches not belonging to the rain forest biome
(mainly savanna), hydrography (i.e., lakes and rivers) and de-
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Figure 2. Illustration of the geometric union operation that combines the information of two land-cover maps into a transition map and how
the transition matrices are obtained from this map.

forested patches larger than 6.25 ha (INPE, 2017). TerraClass
further specifies the land cover of formerly deforested areas
according to 12 types, including different kinds of pasture
land, secondary vegetation and annual crops. Coutinho et al.
(2013) evaluated the accuracy of land-cover detection using
the method described in Congalton and Green (2009). Con-
sidering a very small sample of the data set, they found up to
58 % commission and up to 34 % omission errors. Almeida
et al. (2016) found that the dominant land cover on previ-
ously deforested land is pasture (62 % as of 2008) followed
by secondary vegetation (21 %). Annual crops only covered
about 5 % of the total deforested areas.

This paper focuses on relevant transitions between major
land-cover classes occurring in different subregions of the
Brazilian Amazon. Therefore, we first exclude patches that
could not be classified, e.g., due to cloud cover. Second, we
discard land-cover types that do not change by definition, i.e.,
lakes and rivers and patches not belonging to the rain forest
biome. Third, we aggregate similar land-cover types into six
new classes. These classes combine different types of less
intensively used pasture as well as types that only make up
small fractions of the Amazon like mining and urban patches
(see Table S1) and group land-cover types between which
high confusion errors exist, thus decreasing them. In a final
step of the data preparation, we assign patches to N differ-
ent subregions. Depending on the scale of spatial aggrega-
tion of our analysis, the subregions either correspond to the
legal municipalities of the Brazilian Amazon (N = 770, as of
2007) or to the mesoregions (N = 30) as defined by the Insti-
tuto Brasileiro de Geografia e Estatística (Brazilian Institute
of Geography and Statistics, IBGE, 2016).

3 A method to explore patterns of land-cover
transitions

In order to compare land-cover dynamics between different
subregions of the Amazon, we proceed in two steps. First, we
calculate the area in a given region that undergoes a transi-
tion from one land-cover type to another between two refer-
ence years (including the lumping of several land-cover types
into one class) and normalize the obtained matrices. Second,
we compare the transition matrices between subregions by

means of cluster analysis and network methods. In this sec-
tion, we describe the steps of the method in detail.

3.1 Extraction and normalization of transition
matrices

Markov chains are stochastic systems, in which the proba-
bility distribution of the next time step only depends on the
current state of the system; hence, the system has no mem-
ory. A subregion can be thought of as consisting of a num-
ber of land patches that undergo transitions between land-
cover classes. Markov analysis then describes how the set of
patches may change over time. Although the Markov prop-
erty, i.e., that the transition probability only depends on the
present state of the system, can be shown to hold approx-
imately for land-use systems (Robinson, 1978), the transi-
tion rates are generally not constant over time, which means
the system is not stationary. This is not surprising because
of the various climatological and socioeconomic drivers and
political decisions influencing land-cover dynamics (Walker,
2004). Even though Markov chain analysis may oversimplify
land-cover dynamics because it does not take the underlying
processes explicitly into account and may therefore not be
suitable to project future land-cover change, it serves here as
a first approximation in obtaining a general understanding of
the land-cover dynamics observed in the data.

We obtain the transition matrices of subregions by calcu-
lating the areas in a given subregion that undergo a transition
from a land-cover class i to another class j . The transition
matrix of one subregion T(t) is an n×nmatrix with elements
Tij (t), i,j ∈ {1, . . .,n}, where n is the number of land-cover
classes. The transition matrix depends on time, indicating the
nonstationarity of the Markov process. In the following, how-
ever, we omit the time dependence for ease of notation. With
the aggregation described above, the number of land-cover
classes n is 6. We estimate T from the data by first project-
ing the coordinates of the patches (in the data given in the
South American Datum (SAD69) coordinate system) to the
South America Albers Equal Area Conic projection. Second,
we compute the geometric union with GIS software combin-
ing the information contained in the two land-cover maps of
the reference years into one data set. Finally, we sum up the
area of all patches in one subregion that undergo the same
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transition. Figure 2 illustrates the creation of the transition
matrix T from the data.

To estimate transition probabilities, we have to normalize
the transition matrices. Thereby, we also make subregions of
different total area comparable. We normalize the rows of the
transition matrices to 1, which allows us to focus on relative
changes in single land-cover classes

pij =
Tij∑
kTik

for i,j : 1. . .n. (1)

The normalization does not work if one land-cover class i
does not figure in the data of one subregion, as

∑
kTik would

be equal to zero. In such cases, we set the diagonal element
Tii = 1 and all other elements of the ith row to zero, im-
plying that we handle the land-cover class in the particular
subregion as if no change occurs.

In statistical terms, p= (pij ) is a stochastic matrix (com-
pare Norris, 1997) with the properties pij ≥ 0 and

∑
jpij =

1 for i = 1. . .n. It corresponds to the maximum likelihood es-
timation of the transition probability matrix of a first-order
Markov chain where land-cover classes correspond to the
states of the Markov chain and the rows of p specify the tran-
sition probabilities between the states (Anderson and Good-
man, 1957).

Figure 3a presents a visualization of the Markov chain and
the calculated transition probabilities estimated for the whole
Brazilian Amazon. The figure shows that there are transi-
tions between almost all aggregated classes, but they occur
with very different probabilities. After deforestation, about
two-thirds of the areas are used as pasture, whereas the rest
is mostly classified as secondary vegetation. Furthermore,
transitions occur frequently between pasture partly covered
with woody vegetation (dirty pasture) and clean pasture. The
former makes also frequent transitions to secondary vegeta-
tion. Finally, there are considerable transitions from and to
the “other” class, in which we aggregated the following mi-
nor land-cover types from the original TerraClass classifica-
tion: “mosaic of uses”, “urban area”, “mining”, “reforesta-
tion” and “others”.

Alternatively to the Markov analysis, one could normalize
the sum of the transition matrix elements Tij to 1. Such a
normalization would keep the information on the initial dis-
tribution of land-cover classes in one subregion but would
not allow to analyze relative changes in individual land-cover
classes.

The transition probability matrix p, representing the dy-
namics of an underlying Markov chain process, includes
information on the patches that undergo changes and the
patches that remain in their land-cover class. To only con-
sider changes, we set the diagonal elements to zero before
normalizing the rows of T to 1:

qij =

{ Tij∑
k 6=iTik

for i 6= j

0 for i = j.
(2)

Forest

Annual crops Other

Secondary
vegetation

Clean pastureDirty pasture

(b)

Forest

Annual crops Other

Secondary
vegetation

Clean pastureDirty pasture

(a)

Figure 3. Illustration of the normalized transition matrices between
simplified classes derived for the whole Brazilian Amazon from the
TerraClass data set (changes between 2010 and 2012): (a) Markov
transition matrix p (self-loops omitted) and (b) conditional transi-
tion matrix q. The strengths of the arrows are scaled with the transi-
tion probabilities except for those representing small values. Arrows
with very small values (below 0.005) are not shown. The values are
given in Tables S2 and S3.

Hence, q= (qij ) estimates the probability to make a tran-
sition from a single land-cover class i conditional on there
being a transition to a different land-cover class j . Figure 3b
shows a visualization of this conditional transition matrix for
the whole Brazilian Amazon. For land-use classes that have a
high proportion of patches remaining in the same class, this
figure allows inspecting the relative shares of transitioning
patches more easily.

The normalized matrices p and q describe the transitions
between all land-cover classes. In the following, we are par-
ticularly interested in comparing transition probabilities from
a single land-cover class to all others, formally represented
by the rows of the normalized matrices. If we only focus on
the rows, we solve the above-mentioned problem of missing
land-cover classes in a subregion by simply discarding the
respective subregions from the analysis. To increase the ro-
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bustness, we also discard subregions having less than 1 km2

of the considered land-cover class.
As described above, we estimated the normalized transi-

tion matrices p and q for all mesoregions and municipalities
separately. This spatial segmentation was chosen because it
makes the analysis compatible with other data (e.g., socioe-
conomic data sets provided by the IBGE). Additionally, the
areas of the municipalities reflect to some degree the popu-
lation density and therefore potential land-use activities. In
principle, a segmentation into regular grid cells could pro-
vide complementary information and insights. However, to
keep the presentation clear, we focus here on mesoregions
and municipalities.

In general, the lower the spatial aggregation, i.e., the
smaller the size of the subregions, the higher the variability
in space and in time. We can observe this when comparing
the mesoregion and municipality maps and transitions be-
tween different times. Figure 4 shows two exemplary com-
ponents of the matrices q calculated for each municipality.
The two maps highlight these subregions in darker colors in
which the transition probability from clean pasture to sec-
ondary vegetation and vice versa is high compared to tran-
sitions to other land covers. In Fig. 4a, we can observe that
transitions from clean pasture to secondary vegetation are in-
frequent compared to other transitions except in the central
north and the southwest. Figure 4b suggests that along a hor-
izontal band from the west to the east and in the north (state
of Roraima) the transition probability from secondary vege-
tation to clean pasture is higher than in the other parts of the
Brazilian Amazon. The maps in Fig. 4 and similar maps for
all other possible transitions contain the information that we
aim to aggregate using clustering analysis. The next section
therefore describes this second step of our method.

3.2 Construction of similarity networks and clustering
analysis of land-cover transitions

Clustering methods are a basic technique described in the
machine learning and data mining literature (Jain and Dubes,
1988; Gan et al., 2007). In recent years, the basic problem
of clustering nodes in complex networks has also gained a
lot of interest in complex systems science (Fortunato, 2010).
In this paper, we choose a combination of established and
more recent clustering methods to compare and test the ro-
bustness of our results. The chosen established methods are
hierarchical clustering and the k means algorithm. The other
methods are based on complex networks that we construct
from a difference measure. To partition the network, we ap-
ply two different community detection algorithms, the fast
greedy and Louvain algorithms (Clauset et al., 2004; Blon-
del et al., 2008).

The first method applies hierarchical clustering that
merges data points or clusters based on their distance in the
abstract data space. In the context of this analysis, a data
point x is either a full normalized transition matrix (flat-

Figure 4. Map of two selected components of the conditional tran-
sition matrices q for each municipality of the Brazilian legal Ama-
zon. Colors indicate the shares of areas that make a transition from
(a) clean pasture to secondary vegetation and (b) secondary vegeta-
tion to clean pasture.

tened, such that x ∈ Rn2
) or a single row of such a matrix

(x ∈ Rn). Each data point corresponds to an individual sub-
region. We choose to calculate the distance between two data
points x and y by the `1 norm, also called Manhattan dis-
tance, d(x,y)=

∑
iabs(xi − yi). This distance is easy to in-

terpret in the context of probabilities and compared to the eu-
clidean metric does not punish outliers of a cluster as much.
The distances between two clusters or one cluster and one
data point are calculated using the complete linkage algo-
rithm that takes the maximal distance between the points of
two clusters. This algorithm identifies compact clusters with
small diameters (Jain and Dubes, 1988). Hierarchical cluster-
ing produces a dendrogram of cluster partitions. The clusters
are obtained by cutting the dendrogram at a certain level de-
termining the number of clusters.
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The second method uses the k means algorithm. The algo-
rithm works in an iterative manner: it associates data points
to centroids and adjusts the position of the centroids by min-
imizing the within-cluster sum of squared distances. The
k means algorithm inherently requires the choice of the eu-
clidean metric to calculate distances.

The network methods both require the construction of a
similarity network first. In the network, each node vα repre-
sents a subregion and nodes with similar dynamics are linked
by an edge eαβ , where the Greek character indices refer to
subregions. The connectivity of the network can also be rep-
resented by an adjacency matrix A= (Aαβ). To determine
the similarity, we use a normalized version of the Manhattan
distance as the difference measure d(x,y)= 1

2k
∑
iabs(xi −

yi), where k is the number of land-cover classes n if we com-
pare whole transition matrices and k = 1 if we only consider
transitions from single land-cover classes. The metric is 0 if
and only if transition probabilities are equal and 1 if they are
completely different. We set a threshold dth to transform the
data into a network with the adjacency matrix A:

Aαβ =

{
1 if d(xα,xβ) < dth

0 else.
(3)

This adjacency matrix contains all information on the simi-
larity network. The threshold dth, which determines the sub-
regions that are connected, is chosen such that only links that
are significantly different from a distribution of difference
measures of random vectors or matrices are realized. In order
to obtain dth, we use a Monte Carlo simulation: we generate a
large number (106) of random samples of vectors or matrices,
the values of which are drawn from a uniform distribution
and rows are normalized. From the computed distribution of
pairwise difference measures, we use the fifth percentile to
determine the threshold dth.

A visualization of such a similarity network is shown in
Fig. 5 for transitions from clean pasture to other land-cover
types. The nodes of the network represent data points for the
municipality drawn around it. Links are present between re-
gions that have a difference measure below the significant
threshold dth = 0.11, which we obtain as described above
from a Monte Carlo simulation of normalized random vec-
tors of dimension 4 (because transitions to four other classes
are possible). A visual inspection of the network suggests
that similar transition probabilities are detected in regions of
the eastern and the southern Amazon, whereas there are less
similar transitions in the northern part. The inset in Fig. 5
furthermore shows a histogram of all pairwise differences.
The threshold is indicated as a red vertical line. From tests
with different thresholds and different underlying data, we
can conclude that the patterns observed in the similarity net-
works hardly depend on the exact choice of the threshold (or
link density). Thus, the construction of the network is robust
with respect to variations of the threshold.

Figure 5. Illustration of a similarity network with a spatial division
in municipalities for transitions from clean pasture to other land-
cover classes between 2010 and 2012. Inset: histogram of difference
metric values with threshold in red.

The visual inspection of similarity networks is difficult and
may not be reliable. Therefore, we applied community de-
tection algorithms to the networks to infer information about
the network structure. These algorithms identify clusters of
nodes on the network (in the literature the clusters are of-
ten called communities, hence the name) that have a high
internal connectivity. Most of these algorithms are based on
the idea of optimizing modularityQ, a network measure that
compares the frequency of links inside of communities to the
frequency of links between communities (Fortunato, 2010).
For a network with adjacency matrix A and clusters C, the
modularity is given by

Q=
1

2m

∑
α,β

Aαβ −
kαkβ

2m
δ(Cα,Cβ), (4)

where kα =
∑
βAαβ is the degree of node α and m is the

number of edges in the network. The term δ(Cα,Cβ) only
gives a contribution if nodes α and β belong to the same clus-
ter. In the following, we constrain our comparison to the fast
greedy and the Louvain algorithms, which are computation-
ally efficient and yield comparatively high modularity values.
The general idea of the fast greedy algorithm as described in
Clauset et al. (2004) is to subsequently join clusters such that
the increase in modularity is highest after the join. This pro-
duces a dendrogram, similar to the output of the hierarchical
clustering method, which can be cut at the level of highest
modularity Q. In contrast, the Louvain algorithm developed
in Blondel et al. (2008) proceeds in two iterative steps. It
first checks subsequently if the reassignment of single nodes
to other clusters leads to an improvement in modularity. In
a second step, it builds a new network combining all nodes
of a community found in the previous step into one node and
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Figure 6. Relative areas that undergo changes in land-use classes
between the years 2010 and 2012 (excluding primary forest).

sums up all edges between communities to form weighted
new edges.

In the following, we apply these algorithms to the same
heterogeneous data. A comparison between the different
methods will show whether the clustering can be considered
robust.

4 Spatial heterogeneity of land-cover transitions and
discussion of clustering patterns

This section describes patterns of land-cover change found
in the Brazilian Amazon when applying the clustering algo-
rithms of differently normalized transition matrices or sin-
gle rows of them. We show the spatial comparison of tran-
sitions between 2010 and 2012 with the threshold for the
construction of the similarity networks set to dth = 0.11 (see
Sect. 3.2). Comparisons of transitions between other years
are shown in the Supplement.

As explained in the methods section, we considered dif-
ferent normalizations of the transition matrices: the Markov
matrices p that also contain information about patches re-
maining in the same land-cover class and conditional transi-
tion matrices q that disregard this information. First, we note
that the majority of land patches do not change their class
from one time step to the next. This is illustrated in Fig. 6,
where the relative area of patches that make a transition to a
different land-cover class is plotted (excluding primary for-
est), i.e., the sum of the diagonal elements of the transition
matrix divided by the sum of all elements. Only in the central
Amazon and in some of the smaller municipalities there are
considerable fractions of up to 50 % of the area undergoing a
change in land-cover class. Because we are interested in the
changes, we will focus our discussion first on the conditional
transitions matrices q and compare only single rows between
the municipalities.

As an example, Fig. 7 displays the result of the cluster-
ing analysis for transitions from clean pasture to other land-
cover classes. To make the clustering comparable, we fixed
the number of clusters for the hierarchical and k means clus-
tering to the one obtained from the fast greedy network clus-
tering algorithm. As we can see from the figure, there are
clearly distinguishable clusters in the south and the northwest
of the Amazon colored in orange and cyan for all four dif-
ferent clustering algorithms. These clusters are identified in-
dependently of the chosen clustering algorithm. In the other
parts of the Amazon region, the clusters vary dependent on
the applied clustering algorithm. Both network community
detection algorithms identify similar clusters, even though
the Louvain algorithm finds seven and the fast greedy algo-
rithm reveals five communities in the data. Also, some clus-
tering algorithms seem to find two clusters for a group of
municipalities, where other algorithms only find one (com-
pare, e.g., the fast greedy with the k means algorithm). In
addition to the two relatively stable clusters, we can observe
in Fig. 7 that most clusters consist of adjacent municipal-
ities. This suggests that neighboring municipalities have a
high likelihood to exhibit similar relative land-cover changes.

In order to interpret the clusters, we analyzed the clus-
ter centroids, i.e., the mean of all data points in a cluster
weighted by the area of the considered land patches in the
subregion. Figure 8 shows the cluster centroids from the hi-
erarchical clustering. The bars indicate the shares of patches
making a transition from clean pasture to another land-cover
class and thus show which transitions are dominating or are
absent in the cluster. They allow a straightforward interpreta-
tion of different clusters. For instance, in municipalities be-
longing to the orange cluster, most of the areas are converted
to annual crops while only a small fraction makes the tran-
sition to dirty pasture. This is in line with a previous study
by Macedo et al. (2012) who found that cropland expanded
mostly into pasture in the region between 2006 and 2010.
The orange cluster is located inside the Mato Grosso state,
one of the biggest producers of soybeans in Brazil, which
are detected as annual crops in the data. As we can see, the
clusters generally differ by their relative shares of land-cover
types such as dirty pasture and secondary vegetation. When
comparing the cluster centroids between algorithms, these
shares differ for the unstable clusters while the cluster cen-
troids of the stable clusters are almost the same.

So far, we discussed transitions from clean pasture to other
land-cover classes as one example. But our analysis has
shown that the stable clusters identified in Fig. 8 can also
be found when considering transitions from other land-cover
classes, e.g., from secondary vegetation (see Figs. S1 and
S2). However, the same patterns are not found for all transi-
tions from single land-cover types. This is not surprising con-
sidering typical land-cover sequences (often called land-use
trajectories) that follow total deforestation and are discussed
in the literature (Ramankutty et al., 2007; Alves et al., 2009;
de Espindola et al., 2012). According to these studies, a com-
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Figure 7. Comparison of network (a, b) and classical (c, d) clustering algorithms for conditional transitions from clean pasture to other
land-cover classes between 2010 and 2012. Each cluster is visualized by one color. White regions lack data to estimate the transition matrix,
grey regions are not connected to the similarity network. The number of clusters for the hierarchical and k means clusters was chosen to
match the outcome of the fast greedy algorithm (five). The Louvain algorithm detects seven clusters.

Figure 8. (a) Hierarchical clustering with conditionally normalized transition probabilities from clean pasture to other land-cover classes
between 2010 and 2012, as in Fig. 7c. (b) Cluster centroids showing the conditional transition probabilities of the average over the respective
cluster indicated by cluster color.

mon trajectory is that cleared forest patches are converted to
pasture land or used for small-scale subsistence agriculture.
After a while, as the soil degrades, the areas are often aban-
doned, leaving them for regrowth of secondary vegetation.
Later, they may be cleared again and reused as pasture or
they are converted to more intensive agricultural cropland,
e.g., for soybean cultivation. These accounts are generally
consistent with our results.

In addition to the clustering based on transitions from
single land-cover classes, we tried to identify regions that
are similar regarding the transitions between all land-cover
classes. The clustering based on the full Markov matrices p
proved to be very unreliable due to the high heterogeneity
and dimensionality of the data (see Fig. S3). Furthermore, the
analysis of the difference measure showed that only a small
fraction of municipalities are significantly similar to each
other compared to random matrices. The clustering based on
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the full conditional transition matrix q turned out to be highly
dependent on the assumptions we made to fill in missing
data. Thus, we can conclude that a general classification of
land-cover dynamics only based on the full transition proba-
bility matrices between different land-cover types is not reli-
able.

This may have several reasons. First, the underlying pro-
cesses of land-cover change in the Amazon are very hetero-
geneous in space and time and are therefore difficult to com-
pare. Second, the areas of the municipalities may be too small
for a reliable estimation of transition probabilities. For this
reason, we also analyzed the transition matrices at the level
of mesoregions (see Fig. S5). However, there was no reli-
able clustering at this spatial aggregation either. Third, the
classification of land-cover types in the TerraClass data set
comes with considerable errors. We tried to reduce the errors
by aggregating some of the original classes. However, there
is not yet an evaluation of the performance of change detec-
tion available for this data set, which makes an estimation of
the errors in our analysis difficult.

The Brazilian Amazon has been broadly divided into
mostly undisturbed, frontier and consolidated areas. For ex-
ample, Becker (2005) distinguishes between the arch, i.e.,
densely populated areas in the south and the east of the legal
Amazon, new frontier regions in the central Amazon and the
mostly undisturbed west. Aguiar et al. (2007) used this parti-
tion to analyze interregional differences in factors potentially
determining deforestation and found that the importance and
combination of factors such as protected areas, distance to
roads and access to markets differs between the three subre-
gions. Although these studies focus on the 1990s and large-
scale socioeconomic patterns may have changed since then,
our analysis suggests that there are no clear patterns in the es-
timated transition probabilities which correspond to a spatial
partition such as the one proposed by Becker (2005).

5 Conclusions

This paper has explored variations of a method that is able to
provide important information on the dynamics of land cov-
ers, including the ability to quantify and compare land-cover
transition frequencies and identify regions of similar pat-
terns of land-cover change. We have applied different clus-
tering techniques to find patterns in the subregional transi-
tion probabilities between land-use classes and detected pat-
terns of subregions presenting similar transition dynamics
that are consistent with other studies. In some regions, such
as northern Mato Grosso where transitions from pasture to
annual crops dominate, spatial patterns of relative land-use
changes are consistent between different clustering methods.
However, our analysis also indicates that relative land-use
changes do not follow clearly distinguishable patterns that
are linked to earlier socioeconomic partitions of the Brazil-
ian Amazon.

The integration of socioeconomic data into the framework
described in this paper could potentially yield insights about
the underlying drivers and processes of land-cover transitions
and how regionally different transition probabilities are de-
termined. Furthermore, the analysis presented in this paper
could potentially be used to parameterize models of land-
cover change that track aggregate areas with different land-
cover types. By controlling specific transition rates as func-
tions of socioeconomic drivers, such models, to be developed
in future research, could give rough ideas about possible fu-
ture developments of land cover and thus support the plan-
ning of future land-use policies in the Amazon region.
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