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Abstract: Mapping and monitoring of forest carbon stocks across large areas in the tropics will
necessarily rely on remote sensing approaches, which in turn depend on field estimates of biomass
for calibration and validation purposes. Here, we used field plot data collected in a tropical moist
forest in the central Amazon to gain a better understanding of the uncertainty associated with
plot-level biomass estimates obtained specifically for the calibration of remote sensing measurements.
In addition to accounting for sources of error that would be normally expected in conventional
biomass estimates (e.g., measurement and allometric errors), we examined two sources of uncertainty
that are specific to the calibration process and should be taken into account in most remote sensing
studies: the error resulting from spatial disagreement between field and remote sensing measurements
(i.e., co-location error), and the error introduced when accounting for temporal differences in data
acquisition. We found that the overall uncertainty in the field biomass was typically 25% for both
secondary and primary forests, but ranged from 16 to 53%. Co-location and temporal errors accounted
for a large fraction of the total variance (>65%) and were identified as important targets for reducing
uncertainty in studies relating tropical forest biomass to remotely sensed data. Although measurement
and allometric errors were relatively unimportant when considered alone, combined they accounted
for roughly 30% of the total variance on average and should not be ignored. Our results suggest
that a thorough understanding of the sources of error associated with field-measured plot-level
biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates of
carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote
sensing approaches.
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1. Introduction

Our ability to estimate aboveground forest biomass from remote sensing observations has
advanced substantially over the past decade, largely due to the increased availability of direct
three-dimensional (3-D) measurements of vegetation structure provided by light detection and ranging
(Lidar; [1]) and interferometric synthetic aperture radar (InSAR; [2]). Although approaches to forest
biomass estimation based on remotely sensed structure have yet to be fully developed and validated
(cf. [3]), they are already greatly expanding our knowledge of the amount and spatial distribution
of carbon stored in terrestrial ecosystems, particularly in tropical forests (e.g., [4–6]), where large
areas have never been inventoried on the ground [7]. Lidar remote sensing, calibrated with field
measurements and combined with wall-to-wall observations from InSAR and/or passive optical
systems, represents a promising alternative to more traditional approaches to biomass mapping
(e.g., [8,9]) and is expected to play a key role in forest monitoring systems being developed in the
context of climate change mitigation efforts such as REDD (Reducing Emissions from Deforestation
and Forest Degradation), and to improve our understanding of the global carbon balance [10–13].

The typical approach to producing spatially explicit estimates of biomass from 3-D remote
sensing is characterized by two primary steps. First, field estimates of aboveground biomass density
are obtained from sample plot data together with published allometric equations, which allow the
estimation of tree-level biomass from more easily measured quantities such as diameter, height, and
wood density [14–16]. Second, the plot-level estimates of biomass are related to co-located remote
sensing estimates of structure (e.g., mean canopy height) using a statistical model. The model is then
applied together with remote sensing data to predict biomass in locations where ground measurements
are not available [17–21]. When the 3-D measurements are spatially discontinuous, as is usually the
case with Lidar, the resulting biomass predictions can be further integrated with radar and/or passive
optical imagery (typically using machine learning algorithms) to produce wall-to-wall maps of biomass
or carbon [5,6], although often with poorer resolution and unknown accuracy.

One of the main limitations of this scaling approach, as noted by [22], is that biomass is never
measured directly (i.e., quantified by harvesting and weighing the leaves, branches, and stems of trees).
Because direct measurements are laborious, time-consuming, and ultimately destructive (e.g., [23]),
the remotely sensed structure is calibrated against allometrically estimated biomass (a function of
diameter and sometimes height and wood density) and the final product is, in essence, “an estimate of
an estimate” of biomass.

Despite significant advances in the development of allometric equations for tropical forest trees
over the past decade [15,16], the allometrically-derived biomass is subject to a number of sources of
error, including: (i) uncertainty in the estimation of the parameters of the allometric equation as a result
of sampling error (e.g., resulting from a relatively small number of trees being harvested or bias against
the harvest of trees with a “typical” form), natural variability in tree structure (i.e., trees of the same
diameter, height, and wood density can display a range of biomass values), and measurement errors
on the harvested trees; (ii) uncertainty associated with the choice of a particular equation or application
of a given equation beyond the site(s) and/or species for which it was developed (uncertainty driven
primarily by biogeographic variation in allometric relations due to soil fertility and climate); and
(iii) measurement errors in the diameter, height, and wood density of the trees that the allometric
equation is being applied to [22,24,25]. Combined, these sources of uncertainty have been estimated to
represent approximately 50%–80% of the estimated biomass at the tree level, and over 20% at the plot
scale [24,26].

Because remote sensing algorithms for prediction of forest biomass are typically calibrated with
allometrically estimated biomass (see [27] for an exception), they incorporate all of the sources of
uncertainty described above, in addition to those associated with the remote sensing observations.
As a result, while the precision (degree of reproducibility) of remote sensing estimates of biomass can
be easily assessed, their accuracy is rarely known. Although precision may be all that is needed for the
relative tracking of changes in carbon stocks for REDD-like initiatives, accuracy is ultimately critical
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for determining the absolute amount of carbon stored in forests, as required for global carbon budgets
and climate change science [22].

While the accuracy of remote sensing-based estimates of biomass cannot be truly determined
without whole-plot harvests, it can nevertheless be optimized. When calibrating remotely sensed
structure to allometrically estimated biomass, it is reasonable to expect that the uncertainty in the
estimated biomass will vary from plot to plot as a function of differences in, for example, tree size
distribution and species composition. If these plot-level uncertainties can be estimated precisely
relative to one another, the prediction accuracy of the statistical model relating biomass to remotely
sensed structure can be significantly improved by giving sample plots with smaller standard deviations
more weight in the parameter estimation. In practice, this can be accomplished, for example, using
the method of weighted least squares (WLS), where each plot is weighted inversely by its own
variance [28,29]. Although considered a standard statistical technique for dealing with nonconstant
variance when responses are estimates, WLS is almost never used in the current context, in part because
the uncertainty in the field biomass is rarely quantified (see [30] for an exception).

In this study, we use field plot data collected at the Tapajós National Forest, Brazil, to gain a better
understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for
calibration of remote sensing measurements in tropical forests. In addition to accounting for sources
of error that would be normally expected in conventional biomass estimates (e.g., measurement and
allometric errors; [24,31–34]), we examine two sources of uncertainty that are specific to the calibration
process and should be taken into account in most remote sensing studies: (1) the error resulting from
spatial disagreement between field and remote sensing samples (co-location error); and (2) the error
introduced when accounting for temporal differences in data acquisition.

2. Materials and Methods

2.1. Study Site

The Tapajós National Forest is located along highway BR-163, approximately 50 km south
of the city of Santarém, Pará, in the central Brazilian Amazon (Figure 1). The climate is tropical
monsoon (Köppen Am), with a mean annual temperature of 25.1 ◦C and annual precipitation
of 1909 mm, with a 5-month dry season (<100 mm month−1) between July and November [35].
The vegetation is dense, upland, tropical moist forest. Common genera among 193 tree species
sampled in this study include Psychotria (Rubiaceae), Protium (Burseraceae), Otoba (Myristicaceae),
Eschweilera (Lecythidaceae), Pouteria (Sapotaceae), and Rinorea (Violaceae) in primary forests, and
Cecropia (Urticaceae), Banara (Salicaceae), and Inga (Fabaceae) in secondary forests. The soils are
nutrient-poor oxisols and ultisols, with low pH, organic matter, and cation exchange capacity, and
a high concentration of aluminum oxides [36]. Our sample sites were situated on a relatively flat
plateau, with the elevation ranging from approximately 80 to 180 m.

2.2. Field Data

Field data were collected in September 2010 in 30 0.25-ha plots (50 m × 50 m) intended for
calibration of Lidar data acquired by the Geoscience Laser Altimeter System (GLAS; [19]). Of the
30 plots, 8 were primary forest (PF), 8 were primary forest subject to reduced-impact selective logging
(PFL) between 1999 and 2003 (~3.5 trees harvested per hectare during this period; [37]), and 14 were
secondary forest (SF) with different age and disturbance histories. Plots were centered on GLAS
footprints selected along two sensor acquisition tracks, spanning a wide range in vertical structure and
aboveground biomass (Figure 1). Individual footprint centers were located on the ground using a total
station and the Differential Global Positioning System (DGPS).

Field biometric measurements included diameter at breast height (D) measured with a diameter
tape at 1.3 m and recorded to the nearest 0.1 cm; height to the base of the live crown (HC) and
total height (HT), estimated visually by experienced members of the field crew to the nearest 0.5 m;
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and crown depth (CD), calculated as the difference between HT and HC. Measurements were taken
for each living tree ≥5 cm in diameter in early successional stands and ≥10 cm in all other stands.
For a 12.5 m × 50 m subplot extending along the major axis of the GLAS footprint, we also measured
crown radius (CR) in two orthogonal directions by projecting the edge of the crown to the ground and
recording its horizontal distance to the trunk to the nearest 0.1 m using a tape measure. All trees were
identified as to their species or genus (when species was uncertain) level and assigned a wood density
value (ρ, oven-dry weight over green volume) derived from the literature [38,39].
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Figure 1. Geographical location of the Tapajós National Forest, PA, Brazil, outlined in yellow. The gray
lines are GLAS tracks from 2003 to 2009, and the blue targets are the locations of the plots sampled
in this study. The pictures on the right illustrate three of the stands where plots were located, with
aboveground biomass ranging from near zero (bottom) to over 400 Mg·ha−1 (top).

To estimate measurement errors associated with the inventory, we conducted a blind
remeasurement of 2–4 trees selected at random in each plot, resulting in a total resampling effort of 3%.
For a portion of the trees that were remeasured (and additional trees selected in open areas), heights
were also obtained with a laser rangefinder using the tangent method [40]. We used these observations
to develop a regression model relating precise laser-measured heights to less precise, however more
readily obtained, visually estimated heights (cf. [37]). This model, described in detail in [19], was
applied to calibrate all visually estimated heights.

2.3. Biomass Estimation

The oven-dry aboveground mass of each live tree (M) was estimated from its diameter, total
height, and wood density using an established allometric equation for tropical moist forests ([15];
Table 1). Exceptions were made for Cecropia spp. and palms, which differ significantly from other
species in wood density and allometry [15,41] and had their biomass estimated with specific equations,
as indicated in Table 1. We selected Chave’s equation as the basis of our estimate because it was developed
using a large number of harvested trees (1350) covering a wide range in diameter (5–156 cm), and
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because it included information on tree height and wood density, which greatly improves the accuracy of
biomass estimates [15,16]. In addition, approximately 43% of the trees used in the fit were harvested in
the Brazilian Amazon, and 11% in the state of Pará, in sites having climatic and edaphic conditions
comparable to ours. Nevertheless, we also estimated M in this study using two additional, widely used
equations ([14,42]; Table 1), to obtain a measure of allometric uncertainty as described in Section 2.4.2.

The aboveground biomass density (AGB, Mg·ha−1) at the plot level was calculated by adding the
masses of all inventoried trees in the plot and dividing by the plot area (i.e., 0.25 ha). In plots where the
minimum diameter was 10 cm, we corrected for the AGB in the 5–10 cm class by: (i) fitting a negative
exponential function to the diameter distribution of the plot [33,43]

Ni = k e−adi (1)

where Ni was the number of trees per hectare in the ith diameter class with midpoint di, and k and
a were model parameters estimated by nonlinear least squares; (ii) estimating the number of trees per
hectare in the 5–10 cm class; and (iii) multiplying the resulting number by the biomass of a tree with
diameter of 7.5 cm (midpoint) and wood density equal to the plot mean. To avoid errors due to the
estimation of a mean height for the 5–10 cm class, we used an alternative equation based on diameter
and wood density only ([15]; Table 1).

Because the GLAS Lidar data were acquired in 2007, three years prior to our field measurements,
we applied the site-specific, stand-level growth model [44]

AGBt = 0.397 Bt HTOPt , with
Bt = 21.057

(
1− e−0.109 t)1.894

HTOPt = 23.067
(
1− e−0.074 t)0.946

(2)

to all SF plots to correct for the AGB change between observation epochs, where AGBt is the plot
biomass (Mg·ha−1), estimated with the equation of [45] (Table 1); Bt is the basal area (m2·ha−1); HTOPt

is the top height (m), defined as the mean total height of the tallest 20% of the trees; and t is the stand
age (years since stand initiation). Because this growth model is based on a biomass equation that
is different from the ones used in this study, we calculated the biomass change as a proportion of
the plot biomass. This was done by: (i) inverting the first line of Equation (2) to estimate the plot
age in years in 2010 (t2010) from its measured biomass (AGB2010); (ii) estimating the plot biomass
at the time of the GLAS acquisition (AGB2007), making t = t2010 − 3; and (iii) calculating the ratio
(AGB2010 − AGB2007)/AGB2010. For primary forests, we assumed no biomass change in the 3-year
period. This is supported by [44], who found that biomass tends to increase rapidly in early stand
development at Tapajós, reaching near-asymptote as early as 40–50 years after clear-cutting (Figure 2).

Table 1. Allometric equations used to calculate individual tree biomass at Tapajós.

Category Equation* Source

Trees
Cecropia spp. MT1 = exp(−2.5118 + 2.4257 ln(D)) [41]

All others MT2 = exp
(
−2.977 + ln

(
ρD2HT

))
[15]

Palms
Attalea spp. MP1 = 63.3875 HC − 112.8875 [46]
All others MP2 = exp(−6.379 + 1.754 ln(D) + 2.151 ln(HT)) [47]

Alternative Equations

MA1 = exp(−2.134 + 2.530 ln(D)) [14]
MA2 = exp (−0.370 + 0.333 ln(D) + 0.933 ln(D)2 − 0.122 ln(D)3) [42]

MA3 = ρ exp (−1.499 + 2.148 ln(D) + 0.207 ln(D)2 − 0.028 ln(D)3) [15]
MA4 = exp(−3.1141 + 0.9719 ln (D2HT)) [45]

*M (kg) is the oven-dry aboveground tree biomass, D (cm) is the diameter at breast height (1.3 m), HT (m) is the
total height, HC (m) is the height to the base of the live crown, and ρ (g·cm−3) is the wood density measured as
oven-dry weight over green volume.
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Figure 2. Variation in basal area (B), top height (HTOP), and aboveground biomass (AGB) with stand
age (t) at Tapajós, as described by the growth model of [44]. The solid lines represent structural values
at age t, and the dashed line shows the expected AGB at the time of the GLAS acquisition (3 years prior)
for a stand of age t. The gray bands for B and HTOP are 95% confidence intervals from a Monte Carlo
simulation [44].

2.4. Error Analysis

2.4.1. Individual Tree Measurements

Measurement errors in D, HC, HT, CD, and CR were described in terms of total error, systematic
error (bias), and random error. The total error for each attribute was quantified with the root mean
square deviation (RMSD)

RMSD =

√
1
n

n

∑
i=1

ei
2 , with ei = m1i −m2i (3)

where n is the number of pairs of repeated measurements for the attribute, and ei is the measurement
difference for the ith pair, with m1i and m2i representing the original measurement and remeasurement,
respectively. The systematic and random errors were quantified, respectively, as the mean and sample
standard deviation (SD) of the measurement differences ei

Mean =
1
n

n

∑
i=1

ei (4)

SD =

√
1

n− 1

n

∑
i=1

(ei −Mean)2 (5)

We also calculated all of the above in relative terms, expressing ei as a fraction of the average
of the two measurements. For the wood density values, the standard deviation was either taken or
estimated from the supplementary material provided by [39].



Remote Sens. 2017, 9, 47 7 of 23

To test the hypothesis of no systematic difference between the first and second measurements of
a given attribute, we used either a paired t-test or the alternative Wilcoxon signed-rank test, depending
on the assessment of distributional assumptions and the presence of outliers [29]. To determine
whether measurement variation increased with the magnitude of the measurement, we: (i) divided the
measurements for a given attribute into four classes with an equal number of samples; (ii) regressed the
SD calculated for each size class on the average value of the measurement for that class; and (iii) tested
whether the slope was significantly different from zero. Finally, we tested if measurement differences
varied with forest type by including forest type as a factor in the regression of the absolute measurement
difference on the magnitude of the measurement—i.e., incorporating different intercepts and slopes
for SF, PFL and PF—and testing for the equality of the coefficients using the extra-sum-of-squares
F-test [29].

2.4.2. Biomass

Measurement errors in diameter (σD), height (σH), and wood density (σρ) were propagated to the
biomass estimate by expanding the allometric equations in Table 1 to a Taylor series and retaining only
first-order terms. For a model like MT2 (Table 1), of the form M = aDkHρ, with ρ uncorrelated with
both D and H, we expressed the uncertainty in the mass of a tree (σM) in terms of measurement errors
as [24]

σM =

[
σ2

D

(
∂M
∂D

)2
+ σ2

H

(
∂M
∂H

)2
+ σ2

ρ

(
∂M
∂ρ

)2
+ 2σ2

DH

(
∂M
∂D

)(
∂M
∂H

)]1/2

= M
(

k2 σ2
D

D2 +
σ2

H
H2 +

σ2
ρ

ρ2 + 2kσ2
DH

DH

)1/2 (6)

where the terms in parentheses in the upper equation are the partial derivatives of M with respect to
each of the dendrometric quantities, D, H, and ρ; and σDH is the covariance between D and H.

We accounted for two sources of allometric uncertainty: (i) the uncertainty related to the model
residuals, σA, estimated as [24,48]

σA = [e(2σ̂
2+2 ln M) − e(σ̂

2+2 ln M)]
1/2

= (eσ̂
2 − 1)

1/2
〈M〉 (7)

where σ̂ is the standard error of the regression on log-transformed data (see Table 1), and
M = M× exp (σ̂2/2) is an unbiased estimate of the back-transformed biomass prediction M; and
(ii) the uncertainty involved in the selection of the allometric equation, σS, estimated by calculating
the mass of each tree with three independent equations (MT2, MA1, and MA2 in Table 1) and obtaining
the standard deviation of the resulting values. The quantification of a third source of allometric
uncertainty, the uncertainty in the determination of the model parameters as a result of sampling
error (e.g., [26]), would require access to the destructive harvest data used in the development of the
allometric equations and was not considered in this study.

Spatial disagreement between the field plots and the GLAS footprints introduced additional
uncertainty in the biomass estimates. This co-location error, σC, was introduced because of positional
errors associated with both data sets [49,50], and because the size, shape, and orientation of the field
and the GLAS samples did not exactly coincide (Figure 3). We took a Monte Carlo approach, based
on binomial statistics [20], to estimate the difference in biomass between what was measured in each
50 m × 50 m field plot and what was actually present in the area covered by the GLAS footprint
(Figure 3). The binomial-statistical approach constructs an ensemble of possible tree masses (M) based
on those measured in the field. The method of ensemble-member construction is to assume that the
set of Ms actually measured for each tree are the only values allowable for all ensemble members.
For a single area, in just the FUI (field) area of Figure 3 for example, say there were 100 trees. There are
100 tree mass “bins”—bins labeled by the mass of the actually-measured tree—and the only way that
another statistical ensemble member can be realized is by changing the population number of trees in
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each bin according to the binomial distribution, which means the probability of populating a single
mass bin of mass B with x trees is

PB
(

x
∣∣np
)
=

(
np

x

)
px(1− p)np−x (8)

where p is the probability of finding a single tree in the mass bin, p = 1/np, and np is the total number
of trees in the plot, 100 in this example. On average, each mass bin B will be populated with 1 tree,
(np × p = 1), a result of binomial statistics, and the total average mass of the plot will be exactly what
was measured in the field (the mass of the sum of the 100 bin labels). The fundamental assumption of
binomial statistics is that each outcome—the number of trees in each bin—is independent of all other
outcomes. That is, for example, if we measured one tree at 500 kg and one at 1000 kg, the probability
of finding one tree in a tree mass bin of 500 kg is the same as finding one in a mass bin of 1000 kg.
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Figure 3. Schematic diagram illustrating an arbitrary intersection of a GLAS footprint (ellipse) and
a field plot (square), portrayed in their correct relative nominal sizes and shapes. Co-location error was
introduced due to differences in the areas sampled by each technique (G ∪ I for GLAS vs. F ∪ I for
field). The gray zone “I” represents the area covered effectively by both techniques and averaged 75%
of the footprint area for the 30 plots used in this study.

Figure 3 shows 3 areas relevant to considering area mismatch. The field measurements were
taken with the rectangular boundaries shown, and the GLAS measurements were taken within the
ellipse. “F” signifies the part of the field measurement area not in common with GLAS, and, similarly,
“G” refers to the part of the GLAS measurement area not in common with the field. “I” refers to the
area in common between field and GLAS, and for that area, the field-GLAS mismatch is zero. It is
the difference in biomasses of areas F∪I and G∪I in Figure 3 that is of interest in assessing the area
“mismatch”, where F∪I is the zone measured in the field and G∪I is the zone observed by GLAS.
Probabilities as in Equation (8) for the same mass bins as in the field are constructed. That is, it is
assumed that the spectrum of tree masses is the same for all areas of Figure 3. In order to construct
a probability for one of the zones, np in Equation (8) must be replaced by nz, the number of total trees
in the zone. This total number is assumed to be in proportion to area. We therefore took the probability
of x trees in bin B of zone z to be

PB(x|nz, p) =

(
nz

x

)
px(1− p)nz−x (9)

Monte Carlo values of xi were generated for the ith bin of zone z with the probability distribution of
Equation (9). Total zone z biomasses (Bz) were generated by summing over all N bins (the number of
trees measured in the field) for each throw:
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Bz =
N

∑
i=0

xiBi (10)

The difference (BG∪I/AreaG∪I) − (BF∪I/AreaF∪I) was calculated for each Monte Carlo throw.
This procedure was repeated automatically 104 times and the standard deviation of the biomass
differences was taken as the co-location error.

In addition to the error sources discussed above, we included in our error budget the uncertainty
associated with the corrections based on Equations (1) and (2), described in Section 2.3. The error of
estimating biomass for the 5–10 cm diameter class, σ5–10, was assumed to be the same as for the 10–15 cm
class, where all trees were actually measured and the error could be determined. This assumption
was tested and verified on plots where the minimum diameter was 5 cm. The uncertainty associated
with the application of the growth model, σG, was estimated by propagating the uncertainties in the
parameters of Equation (2) to the determination of the biomass change, in a framework similar to
Equation (6).

Errors σM, σA, and σS were calculated at the tree level and added in quadrature to obtain plot-level
estimates on a per-hectare basis. These errors were in turn combined in quadrature with σC, σ5–10,
and σG, calculated directly at the plot level, to obtain an estimate of the overall uncertainty under the
assumption of additivity and statistical independence.

3. Results

3.1. Tree Measurement Errors

Uncertainties resulting from differences in repeated measurements of D, HC, HT, CD, and CR
are summarized in Table 2. D was the most precisely measured quantity, with a RMSD of less than
2%. Repeated measurements of height were typically within 1 m of each other (RMSD = 15%–18%),
with approximately half of the HC, and a quarter of the HT observations showing identical repeated
measurements. CD and CR measurements showed considerably less agreement (RMSD of 31 and 26%,
respectively). However, with the exception of D, there was no evidence of a systematic difference
between first and second measurements (Table 2 and Figure 4). For D, the data suggested that the
second measurement produced values that were lower to a statistically significant degree when
compared to the first measurement, although the estimated median difference of less than 0.1 cm has
no practical significance.

Table 2. Summary statistics of differences between repeated measurements of diameter (D), height to
the base of the live crown (HC), total height (HT), crown depth (CD), and crown radius (CR) for trees
sampled at Tapajós. Statistics include total error (RMSD), systematic error (mean), and random error
(SD), in both absolute and relative terms, as described in Section 2.4.1. The number of observations
was 104, except for CR (n = 144).

Attribute Range

Differences

RMSD Mean SD
% That Is:

0 ≤10% ≤25%

D (cm) 5.5–110.5 0.8 (1.8%) 0.1 (0.5%) 0.8 (1.8%) 23.1 100 100
HC (m) 1.5–31.0 1.8 (17.7%) 0.1 (0.6%) 1.8 (17.8%) 47.1 54.8 83.7
HT (m) 5.0–40.0 2.3 (15.2%) −0.2 (−1.7%) 2.3 (15.2%) 24.0 53.8 93.3
CD (m) 1.0–20.0 1.8 (30.7%) −0.3 (−4.8%) 1.8 (30.5%) 32.7 33.7 71.2
CR (m) 0.7–8.0 0.8 (25.7%) 0.0 (0.0%) 0.8 (25.8%) 11.8 37.5 68.8

Measurement variation increased significantly with the magnitude of the measurement across all
attributes (Figure 4). The estimated rates of increase in the standard deviation of the measurement
differences were 4, 10, 7, 18, and 26% for D, HC, HT, CD, and CR, respectively. When differences
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were expressed as a percentage of the measurement, HC and CR showed no significant trend.
The relative differences in D also increased with D (at a rate of 0.04% cm−1), although the evidence
was only suggestive, and the differences in HT and CD actually decreased with the magnitude of the
measurements, at rates of 0.4% m−1 and 1.9% m−1, respectively. There was no evidence that absolute
differences between repeated measurements (both the mean and the rate of change) varied with forest
type, after accounting for differences in the magnitude of the measurements.

In terms of wood density, about 90% of the inventoried trees showed a coefficient of variation
(CV) of less than 20%. The CV was 15% on average (median of 14%), but ranged from 0 to as high as
64%, depending on the method used to assign the wood density value (e.g., species-vs. genus-level
database estimates).
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Figure 4. Differences between repeated measurements of: (a) diameter; (b) height to the base of the
live crown; (c) total height; (d) crown depth; and (e) crown radius, ordered by the magnitude of the
measurement (estimated as the average of the two measurements). (f) Side-by-side boxes represent the
middle 50% of the distributions, with medians marked by a thick black line. The whiskers extend to
the smallest and largest differences not more than 1.5 box-lengths away from the box, and the dots
represent extreme values.

3.2. Field Biomass

Plot-level aboveground biomass ranged from 1.9 to 130.1 Mg·ha−1 in secondary forests, and from
162.6 to 423.6 Mg·ha−1 in primary forests, with no apparent difference between PF and PFL plots.
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The overall mean was 174.8 ± 134 (SD) Mg·ha−1, and the median was 172.8 Mg·ha−1. These results
are summarized by forest type in Table 3, along with a number of other stand characteristics.

Table 3. Characteristics of secondary (SF), selectively-logged (PFL), and primary (PF) forest stands
used in this study. Field plots were 0.25 ha in size (50 m × 50 m). The minimum diameter was 10 cm,
except for seven early successional stands where the minimum was 5 cm. Values are median and range
(in parentheses).

Attribute
Forest Type

SF (14 Plots) PFL (8 Plots) PF (8 Plots)

Number of species (0.25 ha−1) 28 (7–45) 41 (36–49) 42 (31–45)
Stem density (trees ha−1) 488 (132–1052) 380 (340–456) 354 (304–424)
Basal area (m2·ha−1) 8.7 (1.5–16.9) 22.8 (18.9–31.3) 24.8 (15.9–30.4)
Mean height (m) 12.9 (7.1–19.9) 19.7 (17.2–21.8) 18.0 (13.5–22.1)
Mean wood density (g·cm−3) 0.50 (0.37–0.54) 0.65 (0.54–0.70) 0.62 (0.59–0.63)
Biomass (Mg·ha−1) 37.3 (1.9–130.1) 285.8 (183.0–423.6) 293.0 (162.6–417.5)
Mean crown depth (m) 5.2 (2.9–8.3) 7.0 (6.4–8.2) 7.0 (5.5–9.5)
Mean crown radius (m)* 2.3 (0.8–3.0) 3.0 (2.2–3.5) 3.1 (2.2–4.1)

* Estimated from trees located in a central 12.5 m × 50 m subplot.

Figure 5 shows the average stem density (bars) and tree height (circles) per diameter class
for all secondary (dark gray) and primary (light gray) forest plots. The solid lines show the fit of
Equation (1) to the average diameter distributions, and the dashed lines show the fit of a similar
exponential decay model to the tree height data. The diameter distributions followed an inverted
J-shaped curve typical of tropical forests, with the ratio of the number of trees in successive diameter
classes roughly constant (~1.9 for SF and 1.7 for PF/PFL). Secondary forests showed considerably
fewer (and generally shorter) trees than primary forests at any given diameter class, except for the
smallest classes (<20 cm). Primary forests showed fairly balanced diameter distributions (both PF and
PFL stands), while secondary forests contained virtually no trees above 60 cm diameter.
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Figure 5. Average stem density (bars) and tree height (circles) per diameter class (trees ≥ 10 cm) for
secondary (dark gray) and primary (light gray) forests. The solid lines show the fit of Equation (1) to
the average diameter distributions, and the dashed lines show the fit of a similar exponential decay
model to the tree height data.

The estimated frequency of trees 5–10 cm diameter with Equation (1) averaged 475 ha−1 for
mid-successional forests and 234 ha−1 for primary forests, representing 0.8 to 20% of the total plot
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biomass. As shown in Figure 6, these results are consistent with those of stands where trees 5–10 cm
diameter were actually measured in the field. For young secondary forests, Figure 6 suggests that the
contribution of trees in this class is a linear function of the stand biomass, decreasing rapidly from
about 70 to 15% as biomass increases from near 0 to 50 Mg·ha−1. For stands with biomass greater than
50 Mg·ha−1, the contribution of trees 5–10 cm diameter declines exponentially from an initial value of
12%, leveling off at about 1.4% after ~280 Mg·ha−1.

The estimated biomass change for the three-year period between field and GLAS measurements
ranged from 7% in the oldest SF stand (~27 years) to 97% in the youngest stand (~4 years). As suggested
by Figure 2, biomass accumulation rates varied nonlinearly with stand age (from a low of 0.6 to
a maximum of 6.6 Mg·ha−1·yr−1), with the highest rates observed for stands 10 to 14 years old.
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Figure 6. Relationship between stand biomass at Tapajós (trees ≥ 5 cm diameter) and the fraction of
that biomass found in trees 5–10 cm diameter. The symbols in black represent plots measured in 2000,
as described by [51].

3.3. Biomass Error

The contribution of the different error sources to the overall uncertainty in the field biomass is
summarized in Table 4 and detailed below. Figure 7 explores the calculated sensitivity of our binomial
approach in Equation (8), showing the dependence of the co-location error on the spatial overlap
between field and GLAS samples. The gray and black lines represent the average co-location error
for secondary and primary forests, respectively, when the overlap is artificially changed from 0% to
100%. When the overlap is zero, the binomial model yields an average co-location error of 29% of the
estimated biomass for SF plots and an error of 42% for PF plots. These errors decrease slowly (and
almost linearly) as the overlap increases from 0 to about 60% overlap, and then converge rapidly to
zero as the overlap approaches 100%. On average, overlaps ≥ 75% are needed in primary forests to
attain co-location errors not exceeding 20%. In secondary forests, this same level of co-location error
can be achieved with overlaps≥ 50%. The estimated overlap between GLAS and our field plots ranged
between 50 and 91%, except for one secondary stand where the overlap was zero—the plot missed
the GLAS footprint by about 26 m. The resulting co-location errors (σC) were typically 13%–26% and
dominated the overall uncertainty in both mid-successional and primary stands (Table 4).
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Table 4. Uncertainties in field-based estimates of plot biomass at Tapajós. The error is presented in
terms of the median value and the interquartile range (in parentheses) of the relative errors of all
applicable plots. The last three columns give the percentage of variance in the biomass estimate which
is due to each error source. Values are means for early-successional (SFearly), mid-successional (SFmid),
and primary (PF/PFL) forest plots.

Error Source Error (%)
% of Total Variance

SFearly SFmid PF/PFL

Measurement (σM) 6.4 (4.3–9.0) 6.4 4.8 7.6
Allometry (model residuals, σA) 7.5 (5.0–10.2) 3.7 8.2 12.9
Allometry (model selection, σS) 7.1 (4.8–10.6) 9.4 10.6 14.1

Co-location (σC) 19.1 (13.0–25.6) 28.3 45.8 65.2
Trees 5–10 cm diameter (σ5–10) 1.1 (0.7–3.5) NA 11.6 0.2

Growth model (σG) 12.0 (7.0–18.6) 52.2 19.0 NA
Total 25.4 (20.2–33.9) 100 100 100
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Uncertainties in diameter (~2%), height (~15%), and wood density (~14%) resulted in a median
error of 25% in the mass of individual trees. Nonetheless, this error dropped to only about 6% when
scaled to the plot level (σM, Table 4). In secondary forests, the alternative allometric equations of
Brown [14] and Chambers [42] (MA1 and MA2, Table 1) overestimated the Chave-based plot biomass by
an average of 29 and 54%, respectively. In primary forests, the Brown equation showed no systematic
bias, whereas the Chambers equation resulted in slight underestimates in high-biomass stands (~11%).
The errors associated with the choice of the allometry (σS) were typically 5%–11%, similar to the errors
related to the model residuals (σA). The individual contributions of measurement and allometric errors
to the final uncertainty were generally below 15%, and slightly lower in secondary forests than in
primary forests (Table 4).
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To gain a better understanding of the uncertainty associated with allometric methods, we also
compared our reference biomass estimates obtained with the Chave equation MT2 (Table 1) using
field-measured D and HT, and taxon-specific ρ derived from the literature, with four alternative
estimates produced with the Chave equations, but making small changes in the input data to illustrate
the variability that can be expected when common, suboptimal field data sets are used: Use of
the Chave equation MT2 with a regional average wood density of 0.667 g·cm−3 [39], as opposed to
taxon-specific densities, resulted in overestimation of biomass values by about 23% in secondary
forests and no bias in primary forests. When MT2 was applied using taxon-specific wood densities,
but heights derived from a regional height-diameter relationship [52], the plot-level biomass was 11%
lower on average due to a negative bias in height of 2.6 m. Use of the Chave equation without the
height term (MA3, Table 1) resulted in plot-level biomass ~20% higher, regardless of the successional
status. When this equation was applied using the regional average wood density of 0.667 g·cm−3,
the discrepancies in secondary forests were higher still (48%). We should note that the biomass of
cecropias and palms, estimated by the specific equations MT1, MP1, and MP2 (Table 1), was held
constant across all comparisons. Although this introduced some dependence across biomass estimates,
these species typically accounted for only about 3% of the total plot biomass.

In primary forests, where the minimum measured diameter was 10 cm, the error of estimating
biomass for the 5–10 cm diameter class (σ5–10) contributed less than 1% to the total variance and could
safely be neglected. However, this error was about seven times larger in mid-successional forests,
being comparable to other sources in magnitude (Table 4). In secondary forests, the projection of
biomass values backward in time three years induced errors (σG) of the order of 7%–19%. This term
dominated the uncertainties in early successional stands, accounting for about half of the total variance
on average, and represented the second largest component in mid-successional stands (Table 4).
The dependence of σG on the temporal difference between field and remote sensing acquisitions is
illustrated in Figure 8 for SF plots of different ages. As expected, σG increases significantly with the
time gap in data acquisition. The increase is faster for younger forests, which display higher values of
σG than older forests at any given temporal interval (the greater the relative change in biomass, the
greater the uncertainty in the model estimate).
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The overall uncertainty in the field biomass was typically 25% (for both secondary and primary
forests), but ranged from 16% to 53%. Measurement (σM), allometric (both σA and σS), and co-location
(σC) errors increased significantly with plot biomass, at rates of 8, 10, 11, and 22%, respectively
(Figure 9). The error of estimating biomass for the 5–10 cm diameter class (not shown in the figure)
increased significantly with biomass in secondary forests (at a rate of 10%), but showed no trend
in old-growth forests. The growth model error showed no linear trend with biomass, but was
a straight-line function of the biomass accumulation rate, increasing by about 0.7 Mg·ha−1 for each
unit increase in the growth rate. As a result of the above trends, the overall uncertainty also increased
with biomass, at a combined rate of 28%. However, there was no evidence that the mean errors or rates
of error increase differed among forest types, after accounting for differences in biomass.
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Figure 9. Stand biomass versus measurement (σM), allometric (σA and σS), and co-location (σC) errors,
with the estimated regression lines. Sources of error that are not common to all plots (i.e., σ5–10 and σG)
were omitted from the figure for clarity. By looking at points intersected by an imaginary vertical line
at any level of biomass in the x-axis, one can see the relative contribution of the different error sources
for the plot represented by that biomass.

4. Discussion

4.1. Precision of Individual Tree Measurements

Tree diameter measurements are not difficult to obtain, involve limited subjectivity, and can
usually be made with a high degree of precision (e.g., [53–56]). The small variation in diameter
measurements observed in this study (RMSD = 0.8 cm or 1.8%) is consistent with previous findings
and likely resulted from divergences in tape placement, with repeated measurements taken at slightly
different tree heights or angles. Other potential sources of variation include mistakes reading the tape,
recording error, and data entry error, all of which are difficult to detect if the resulting values are not
particularly unusual.

Despite the obvious subjectivity associated with ocular height estimates (both HC and HT), they
were surprisingly precise, with a combined RMSD of only 2 m [19]. For comparison, Kitahara et al. [56]
reported nearly the same level of precision (1.8 m) for repeated height measurements made with
a modern ultrasonic hypsometer (Haglöf Vertex) in less dense temperate forests with relatively lower
structural complexity. In a recent study also conducted at Tapajós, Hunter et al. [57] obtained a precision
of 4.7 m for heights obtained with a clinometer and a measuring tape, keeping angles below 50◦
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and correcting for slope to minimize measurement error. Factors contributing to variation in our
height measurements include difficulty in determining the location of the treetop due to occlusion by
surrounding vegetation, and disparity in the perception of where the base of the crown is located.

Variation was considerably higher for crown measurements. Crown depth, calculated as the
difference between HT and HC, was very similar in absolute precision to the ocular height estimates.
However, while a RMSD of 2 m typically represents a relatively small percentage of a tree height,
it corresponds to a large fraction of a typical crown depth measurement (6 m on average for the
trees sampled in this study). The precision of crown radius measurements was better than 1 m, but
represented ~26% in relative terms. These measurements required some level of personal judgment
and were affected by visibility restrictions in ways similar to the height estimates. In addition, crown
spread was typically 25%–45% of the tree height and the resulting high levels of crown overlap among
trees made it often challenging to identify the correct branches for the measurement. We note that
the horizontal position of the crown edge is somewhat difficult to determine from directly below
and suggest that the precision of crown radius measurements would likely be improved by sighting
the edges along a clinometer held at a 90-degree angle. In terms of height measurements (and the
derived crown depth), uncertainties may be reduced with the aid of a telescoping height measuring
pole. Although not necessarily practical, the pole could be used to obtain direct height measurements
for small trees (up to 10–15 m), and serve as a height reference for the ocular estimation of taller trees.

Not surprisingly, measurements of the attributes in Table 2 were more precise for small trees than
for large trees (most sources of measurement variation become more pronounced as tree size increases).
Although measurement variation generally increased with the dimension of the measurement, the
magnitude of this effect differed substantially among attributes, with stem diameter showing the
lowest rate of increase, followed by height, and crown dimensions. For tree height, Hunter et al. [57]
observed an eightfold increase in measurement variation (from 1.1 to 8.2 m) after dividing the data
into four diameter classes with an equal number of trees. This contrasts sharply with the less than
twofold increase observed in this study (from 1.8 to 2.9 m), indicating that the precision of the ocular
height estimates was not only high, but also displayed a relatively low, yet statistically significant,
dependence on tree height.

Because precision is not constant across the range of diameters and heights, it is important to
account for this variation when propagating measurement errors to determine the uncertainty in
biomass. The standard deviation of the differences between repeated measurements, calculated by
quartiles of the ranked set of measurements, is provided in Table A1 for reference.

While measurement uncertainty was generally not negligible, with precision clearly declining
with increasing tree size, we found no systematic errors. In addition, we found no differences in
precision (or rates of decline in precision with increasing tree size) between primary and secondary
forests, after accounting for tree size. This suggests that measurement precision was fairly robust to
changes in measurement conditions (induced by changes in stem density, species composition, leaf
area index, etc.), with divergences in overall precision being largely attributable to differences in tree
size distribution (see Figure 5). We stress that the results presented here refer strictly to reproducibility
of measurements, and that no reference is made to the agreement of those measurements with the true,
unknown values (i.e., accuracy).

4.2. Biomass Estimation and Its Error

Our results show that co-location error, defined in this study as the uncertainty in the biomass
estimate resulting from the spatial disagreement between field and Lidar samples (i.e., field plots
including trees not captured by GLAS and/or excluding trees that were actually captured), accounts
for a substantial portion of the total error. In agreement with our findings for stands at La Selva
Biological Station, Costa Rica [20], co-location error dominated the overall uncertainty in the field
biomass, except in early-successional forests where the application of the growth model resulted in
larger errors on average (Table 4). The results illustrated in Figure 7 are consistent with the expectation
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of lower co-location error with increasing Lidar/field overlap, as well as lower errors for secondary
forests compared to primary forests, given their lower species diversity and more homogeneous
canopy structure (cf. Figure 5). We should note that the binomial approach in (8) assumes that the tree
size-frequency distribution of each individual zone depicted in Figure 3 (i.e., F, I, and G) is similar to
that observed for the full 50 m × 50 m field plot (F ∪ I). This explains the relatively low maximum
values of co-location error in Figure 7 when the overlap is zero. We should also note that although the
binomial approach is presented here using GLAS as an example, it depends exclusively on the field
data and on the amount of overlap between the field and the remote sensing samples, and thus could
be applied regardless of the remote sensing data type.

In a previous study in a tropical rainforest in Hawaii, Asner et al. [49] found that misalignment
of Lidar and field data introduced errors in biomass estimates of only 0–10 Mg·ha−1 (0%–3.5% of the
median biomass). While differences in floristic composition, vegetation structure, and plot size make
direct comparisons between studies difficult, differences in methodology most likely account for much
of the observed discrepancy. In their study, Asner et al. estimated the co-location error by varying the
location and size of the Lidar “plots” by small amounts (10%); regressing the Lidar metrics obtained
for each new location/size against the (fixed) field-measured biomass; and determining the variation
in the biomass predictions resulting from variation in the Lidar metrics. This is conceptually different
from the approach used in this study, where the field-based estimate of biomass was varied instead.
This distinction is important because inclusion/exclusion of trees in the calibration plots (particularly
big trees) can cause large changes in the field estimate of biomass that may not be proportionally
reflected in the vertical structure captured by the Lidar (and in turn, in the Lidar estimate of biomass).
As shown by [58], even relatively small changes in field-based estimates of biomass in tropical forests
(as a result of accounting for portions of trees that fall outside the plot boundary) can have a significant
impact on the relationship with Lidar metrics, accounting for as much as 55% of the error associated
with Lidar-biomass models.

In comparison to the co-location error, measurement and allometric errors were relatively small.
Uncertainties in height and wood density values were large relative to the uncertainty in diameter and
contributed the bulk of the uncertainty in biomass due to measurement variation. This measurement
error was fairly large at the tree level, but decreased significantly at the plot scale because measurement
variation was unbiased (Table 2) and tree-level errors were added in quadrature to produce realistic
plot-level estimates.

The overestimation of the reference, Chave-based biomass in secondary forests by the equations
of Brown [14] and Chambers [42] (MA1 and MA2, Table 1) was largely explained by the omission of
wood density information in the models. These alternative mixed-species equations were derived
from primary forest trees, which tend to have much denser wood than the secondary forest trees
to which they were applied (cf. Table 3 and [41]). When we corrected MA1 and MA2 by including
a dependence on wood density as in [24], the overestimation of the reference biomass in secondary
forests decreased by a factor of 3 and 2, respectively. From our tests with the Chave equations with
and without height, we would expect these differences to decrease by an additional ~20% if MA1 and
MA2 also included a dependence on tree height, and if tree allometry is somewhat conserved across
moist tropical sites as indicated by [16]. Thus, most of the variation captured by σS was apparently
due to the use of allometric equations, which differed with respect to the inclusion of height and wood
density information.

As with the measurement error, allometric errors were assumed to be uncorrelated and decreased
significantly (by a factor of 3–4) when scaled to the plot level. While this assumption seems reasonable
for σA (cf. [24–26,32]) given the random nature of the regression errors (assumed to be normally
distributed with mean zero), one could argue that the error due to the choice of the allometric equation
(σS) is systematic and unlikely to be independent (trees with similar diameter, for example, can have
nearly the same σS). One way of testing if the sum in quadrature is appropriate is to calculate σS
directly at the plot level by taking the standard deviation of the plot-level biomass estimates obtained
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with the alternative equations. This resulted in a median error of 13% for our 30 plots, which is only
slightly higher than that obtained by adding tree-level errors in quadrature (Table 4). The error for
primary forests alone was virtually the same (9%), confirming the tendency of individual tree errors
to offset each other when combined to generate plot-level estimates. We note that [33] observed the
same level of error (10%) when estimating the biomass density (trees ≥ 15 cm diameter) of an area of
392 ha at Tapajós using four alternative equations (one of which is MA1). A similar error (13%) was
also reported by [24] for estimates obtained with eight different equations in a 50 ha plot in Panama,
after correcting for variation in wood density.

The estimation of biomass for the modeled diameter class of 5–10 cm made a negligible
contribution to the final uncertainty in primary forests, but represented a significant source of error
in mid-successional forests. This is not surprising when one considers the rapid decrease in the
contribution of trees 5–10 cm diameter to biomass with increasing biomass, as observed in Figure 6.
Because in young secondary forests (<50 Mg·ha−1) trees 5–10 cm diameter can account for as much as
70% of the aboveground biomass, modeling the stem frequency of this class with Equation (1) and
estimating biomass for the modeled class has the potential to introduce large errors. For these young
forests, we recommend that trees 5–10 cm diameter be directly measured (or tallied) in the field.

The biomass accumulation rates of secondary forests estimated with the site-specific growth
model of Neeff & Santos [44] agreed well with rates from a long-term study of SF regrowth in the
central Amazon [59], as well as with a more general estimate for tropical moist forests based on data
from a number of sites [60]. However, the error associated with this model dominated the overall
uncertainty in the biomass of the youngest stands and represented the second largest contribution in
older secondary forests. In (2), stand biomass is defined as the product of basal area and top height
(the two state variables that are explicitly modeled), and most of its uncertainty results from the
relatively poor fit of the basal area model (Figure 2). Although site-specific, the model is based on
growth rates inferred from a chronosequence, which may differ substantially from actual growth rates
due to stand differences in land-use history (e.g., old agricultural fields vs. abandoned pastures) [59].
This probably explains most of the variability observed by Neeff & Santos [44] in basal area for a given
age, and the relatively large uncertainty associated with the model parameters.

The estimated biomass change of over 30% per year for the youngest secondary forests emphasizes
the importance of accounting for temporal differences between field and remote sensing data. Here, we
assumed no biomass change for primary forests, but these changes have been determined to be small
at Tapajós (~1% per year) relative to the average biomass [35,61,62]. We would expect the resulting
errors to be negligible, unless some disturbance occurred between observation epochs (e.g., logging,
fire, windstorms, etc.). This is generally detectable in the field and/or in remote sensing data [63], and
neither data source revealed the occurrence of a significant disturbance event during the period of
this study.

The overall uncertainty in the plot-level biomass observed in this study (typically 20%–34%) was
similar in relative size to that observed by Treuhaft et al. [20] for a tropical wet forest in Costa Rica
(26%–31%) where measurement, allometric, and co-location errors were also considered. It is also
in line with the total plot-level error observed by Chave et al. [24] (~23%–27%, as calculated from
their Table 3) and Chen et al. [26] (20%), although different methods were used for the assessment of
uncertainty. Recent estimates of biomass from Lidar [19] and InSAR [21] observations for the plots used
in this study showed RMS errors about the field-estimated biomass of 20%–35%. The uncertainty in
the field biomass can therefore represent a dominant term in the overall error budget for biomass maps
derived from remote sensing, and should be taken into account in calibration and validation efforts.

Because co-location and temporal errors have the potential to account for a large fraction of the
total variance (~70% on average for the plots in this study, but as much as 94% in individual plots),
they emerge as obvious targets for reducing uncertainty in studies relating tropical forest biomass to
remotely sensed data. Temporal errors can be minimized by conducting field campaigns as close as
possible in time to the remote sensing data acquisition. In cases where this is not possible (e.g., when
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using historical data), our results underscore the importance of selecting an appropriate growth model
to account for biomass change in secondary forests, and of quantifying the uncertainty associated
with this model. Reducing co-location errors requires not only the acquisition of high-precision
differential GPS measurements for plot location (often complemented with topographic surveying in
closed-canopy forests), but also that field and remote sensing samples agree as much as possible in
size, shape, and orientation. A simple statistical approach such as the one presented in Section 2.4.2
can be used to account for errors due to partial overlap.

Finally, we note that although measurement and allometric errors were relatively unimportant
when considered alone, combined they accounted for roughly 30% of the total variance on average
(as much as 64% in individual plots) and should not be ignored. Steps can be taken to reduce
uncertainties in height and wood density measurements, as well as in allometric equations. However,
reducing co-location and temporal errors may be a more cost-effective solution for reducing the overall
uncertainty when resources are limited. For instance, the total error in Table 4 would drop by nearly
half if co-location and temporal errors were zero, but only by about 20% if we disregard measurement
and allometric errors instead.

5. Conclusions

The objective of this study was to use field plot data collected in the central Amazon to gain a better
understanding of the uncertainty associated with plot-level biomass estimates obtained specifically for
calibration of remote sensing measurements in tropical forests (see [19] for details on the calibration
performed using the plots of this study). We found that the overall uncertainty in the field biomass
was typically 25% for both secondary and primary forests, but ranged from 16% to 53%. Co-location
and temporal errors accounted for a large fraction of the total variance (>65%) when compared to
sources of error that are commonly assessed in conventional biomass estimates, emerging as important
targets for reducing uncertainty in studies relating tropical forest biomass to remotely sensed data.
Although measurement and allometric errors were relatively unimportant when considered alone,
combined they accounted for roughly 30% of the total variance on average and should not be ignored.
Our results suggest that a thorough understanding of the sources of error associated with plot-level
biomass estimates in tropical forests is critical to determine confidence in remote sensing estimates
of carbon stocks and fluxes, and to develop strategies for reducing the overall uncertainty of remote
sensing approaches.
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Appendix A

Table A1. Standard deviations (SD) of differences in repeated measurements of diameter (D), height to
the base of the live crown (HC), total height (HT), crown depth (CD), and crown radius (CR) for trees
sampled at Tapajós. Values are shown by quartile of the ranked set of measurements, in both absolute
and relative terms (see Section 2.4.1 for details). The total number of observations was 104, except for
CR (n = 144).

Attribute
Probabilities

0%–25% 25%–50% 50%–75% 75%–100%

D (cm)
Quantiles 5.5–12.3 12.3–16.1 16.1–26.1 26.1–110

SD 0.1 (1.4%) 0.1 (0.9%) 0.3 (1.3%) 1.6 (2.8%)
HC (m)

Quantiles 1.5–6 6–9.3 9.3–12.3 12.3–31
SD 1 (22.9%) 1.2 (15.1%) 2.1 (19.6%) 2.4 (13.1%)

HT (m)
Quantiles 5–11.4 11.4–14.5 14.5–19.5 19.5–40

SD 1.5 (17.9%) 2.2 (17.4%) 2.3 (14.3%) 2.9 (10.2%)
CD (m)

Quantiles 1–4 4–6 6–8.5 8.5–20
SD 0.9 (36.8%) 1.6 (34.3%) 2 (29.6%) 2.4 (21.9%)

CR (m)
Quantiles 0.7–1.6 1.6–2.3 2.3–3.5 3.5–8

SD 0.3 (26.5%) 0.4 (21.8%) 0.8 (30.1%) 1.2 (25.2%)
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