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“Science is much more than a body of knowledge. It is a way of
thinking. This is central to its success. Science invites us to let the
facts in, even when they don’t conform to our preconceptions. It
counsels us to carry alternative hypotheses in our heads and see

which ones best match the facts. It urges on us a fine balance between
no-holds-barred openness to new ideas, however heretical, and the

most rigorous skeptical scrutiny of everything–new ideas and
established wisdom. We need wide appreciation of this kind of

thinking. It works. It’s an essential tool for a democracy in an age of
change. Our task is not just to train more scientists but also to

deepen public understanding of science.”.

Carl Sagan
in “Why We Need To Understand Science? published in
The Skeptical Inquirer”, 1990
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ABSTRACT

The exponential growth of data from cosmological simulations and observational
catalogs has motivated the development and application of new computational tech-
niques for the study of galaxy properties. In this context, two topics are addressed
in this thesis in applied computing: (i) The study of the galaxy structural properties
using a Bayesian approach; (ii) The investigation of the gaussianity of the veloc-
ity distribution of groups and clusters. We study the use of a Bayesian approach
for modeling images of elliptical galaxies using a tool called GALPHAT (GALaxy
PHotometric ATtributes). This work has improved the accuracy of the numerical
integration involved in this application, as well its capability to handle a large data
sets. Thus, the present research proposes a new pipeline, written in python, for
GALPHAT, called PyPiGALHAT, developed and tested, to analyze of a large set
of galaxies in a high performance computing environment (HPC). PyPiGALPHAT
has been validated considering several sets of synthetic galaxy images, generated
using Sérsic’s law. This application allowed us to improve GALPHAT and mea-
sure its ability to recover the true galaxy parameters. The results indicate that the
Bayesian approach provides more robust and reliable values, compared to frequentist
approaches (GALFIT). Once the improvement was established via PyPiGALPHAT,
it was applied to real images of bright elliptical galaxies observed by the Sloan Dig-
ital Sky Survey (SDSS). The results of SDSS data analysis indicate that the use
of PyPiGALPHAT provides complementary informations and more reliable results
than a frequentist approach (eg. GALFIT). The second part of this project is related
to the study of a new systematics to characterize the galaxy environment. In general
the environment is defined in terms of the local density of galaxies or the mass of
the dark matter halo mas of the cluster / group. In this case, we classify the groups
according to their galaxy velocity distribution. We study two particular techniques
to measure how far the distributions are from a Gaussian, which indicates the state
of equilibrium of the system. The first method, try to identify a mixture of gaussians
(two) for justifying the velocity distribution while the second simply measures the
distance between two distributions (Hellinger’s distance). We have shown that our
measurements of gaussianity are robust and reliable, and that the environment is
correlated with galaxy properties, suggesting that gaussian systems have a higher
infall rate, assembling more galaxies which suffered a preprocessing before entering
the groups. This technique, unprecedented in cosmological applications, has proved
to be an excellent tool for analyzing large-scale structures in the Universe.

Keywords: Computational Cosmology. Elliptical Galaxies. Bayesian Statistics.
Galaxies Structure and Environment. Groups and Clusters.
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COMPUTAÇÃO APLICADA AO ESTUDO DAS PROPRIEDADES
ESTRUTURAIS E AMBIENTAIS DE GALÁXIAS DO SDSS

RESUMO

O crescimento exponencial da quantidade de dados provenientes das simulações cos-
mológicas e de catálogos observacionais tem motivado o desenvolvimento e aplica-
ção de novas técnicas computacionais para o estudo das propriedades das galáxias.
Dentro deste contexto, dois tópicos foram abordados nesta tese em computação
aplicada: (i) O estudo das propriedades estruturais de galáxias utilizando uma abor-
dagem Bayesiana; (ii) Detecção de não-gaussianidade na distribuição de velocida-
des de galáxias em grupos. Inicialmente estudamos a utilização de uma abordagem
Bayesiana para a modelagem de imagens de galáxias elípticas utilizando uma fer-
ramenta chamada GALPHAT (GALaxy PHotometric ATtributes). Nesse contexto,
destaca-se a necessidade de encontrar soluções para melhorar a precisão da integra-
ção numérica envolvida nesta aplicação, além de aumentar o seu desempenho para
lidar com um grande volume de dados. Dessa forma, a presente pesquisa propõe um
novo pipeline, escrito em python, para o GALPHAT, denominado PyPiGALPHAT
(Python Pipelining GALPHAT), desenvolvido e testado, para a análise de um grande
conjunto de galáxias num ambiente computacional de alto desempenho (HPC). O
PyPiGALPHAT foi validado considerando vários conjuntos de imagens sintéticas
de galáxias geradas utilizando a lei de Sérsic. Essa aplicação permitiu aprimorar o
GALPHAT e medir a sua capacidade de recuperar os valores verdadeiros. Os resul-
tados indicam que a abordagem Bayesiana fornece valores mais robustos e confiáveis
quando comparados com abordagens frequentistas (GALFIT). Uma vez consolidado
o melhoramento via PyPiGALPHAT, o mesmo foi aplicado sobre imagens reais de
galáxias elípticas brilhantes, observadas pelo Sloan Digital Sky Survey (SDSS). Os
resultados da análise dos dados do SDSS indicam que o uso do PyPiGALPHAT for-
nece informações complementares e mais confiáveis, sobre os parâmetros estruturais,
em comparação com a abordagem frequentista (GALFIT). A segunda parte desta
tese relaciona-se com o estudo de uma nova sistemática para caracterizar o ambiente
onde as galáxias se encontram. Em geral o ambiente é definido em termos da densi-
dade local de galáxias ou da massa do halo de matéria escura do grupo/aglomerado.
Neste caso, utilizamos a distribuição de velocidades das galáxias pertencentes à es-
trutura. Estudamos duas particulares técnicas de medida do quanto a distribuição
se afasta de uma Gaussiana, que indica o estado de equilíbrio do sistema. A pri-
meira procura ajustar duas gaussianas à distribuição de velocidades enquanto que
a segunda mede simplesmente a distância entre duas distribuições (Distância de
Hellinger). Desta forma, o ambiente assim definido mostrou-se eficaz em estabelecer
relações entre as propriedades das galáxias e o grau de gaussianidade da distribuição
de velocidades, evidenciando o processo de pré-processamento dos sistemas galác-
ticos em pequenos grupos ao longo de filamentos antes que sejam incorporados em
aglomerados massivos. Esta técnica, inédita em aplicações cosmológicas mostrou-se
uma excelente ferramenta de análise das estruturas em grande escala no Universo.

Palavras-chave: Cosmologia Computacional. Galáxias Elípticas. Estatística Bayesi-
ana. Galáxias Estructura e Ambiente. Grupos e Aglomerados de Galáxias.
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CHAPTER 1

Introduction

1.1 General Context

Galaxy formation is probably one of the most intriguing subjects in the scientific
knowledge today. Combining high-resolution simulations (e.g. Illustris Project 1))
and accurate panchromatic data (e.g. SDSS), astronomers are probing the funda-
mental physics that explains the observed properties of galaxies (GUO et al., 2011;
HENRIQUES et al., 2012; VOGELSBERGER et al., 2014). Initial conditions in the Uni-
verse set the way galaxies formed and evolved through the Universe history, and
today semi analytical models, SAM, e.g. White and Frenk (1991), Cole et al. (1994),
Cattaneo et al. (2007) and hydrodynamical simulations, e.g. Ryu et al. (1993),
Springel et al. (2001), help us interpreting the data we have been gathering in
the recent past. Now, we are able to compare simulated images created from a cos-
mological simulation with observed images to test our photometric tools (TORREY

et al., 2014). Therefore galaxy evolution is inferred and described by analyzing the
galaxy structure and properties (DRESSLER et al., 1997; ABRAHAM; BERGH, 2001),
for example, the established knowledge that physical properties of nearby galaxies
correlate with morphology, such that early (late) type galaxies are typically red
and massive (blue and less massive). Similar correlations with other structural and
physical parameters have been reported in the literature (HOLMBERG, 1958; FABER;

JACKSON, 1976; TULLY; FISHER, 1977; DRESSLER et al., 1987; DJORGOVSKI; DAVIS,
1987; ROBERTS; HAYNES, 1994; BLANTON et al., 2005; ALLEN et al., 2006b). A detailed
review can be found in Conselice (2014).

1.2 Galaxy Structural Properties

A critical issue in understanding galaxy formation and evolution is to determine how
galaxy structure evolve with redshift. Two main approaches have been widely ex-
plored to measure the galaxy structure from a galaxy image. Nonparametric methods
directly measure properties of the light distribution, like the Petrosian radius (Rp),
luminosity, concentration and asymmetry (PETROSIAN, 1976; ABRAHAM et al., 1996;
FERRARI et al., 2015). These approaches do not assume any particular theoretical
modelling of the galaxy image, in contrast to parametric ones, which quantify galaxy
structure by fitting a model. A number of models have been used to describe the
galaxy surface brightness profile of galaxies in general, like the de Vaucouleurs law,

1http://www.illustris-project.org/
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the Sérsic law, and a combined Sérsic plus exponential profile (VAUCOULEURS, 1948;
SÉRSIC, 1963; KORMENDY, 1977; BURSTEIN, 1979; BINNEY; VAUCOULEURS, 1981).
Each approach has its advantages and disadvantages. Non parametric methods, for
example, can underestimate flux and/or size in poorly posed cases (BLANTON et al.,
2003). Parametric methods allow estimates of the relative contributions of different
physical components, such as discs and bulges.

Algorithmic approaches for describing two dimensional surface photometry profiles,
e.g. SExtractor Bertin and Arnouts (1996), GIM2D Simard (1998), GALFIT Peng
et al. (2002), Peng et al. (2010a), 2DPHOT Barbera et al. (2008), GALAPAGOS
Barden et al. (2012), PyGFit Mancone et al. (2013), IMFIT Erwin (2015) are usually
based in maximum likelihood estimation (MLE), which has some critical limitations.
The major drawback of these approaches is that the estimated structural parameters
are affected by random and systematic errors which are difficult to quantify prop-
erly. Several sources of systematic errors have been identified when a given model
is considered to fit a galaxy image, e.g. pixel integration, rotation and convolution
techniques used to generate model predictions, as well as the sky background noise,
contamination by nearby objects, initial guesses, likelihood functions, minimization
algorithms and stamp sizes (HÄUSSLER et al., 2007; VIKRAM et al., 2010; GUO et al.,
2009; SIMARD et al., 2011; MENDEL et al., 2014; BERNARDI et al., 2017). Another key
limitation of the MLE approach is that it is based in frequentist statistics, therefore
they can not assess objectively the degree to which a given galaxy image (data) can
be explained by a set of theoretical profiles like spheroids, bulges, discs and/or point
sources. Therefore inferred galaxy properties using best-fitting tools can be affected
significantly (BERNARDI et al., 2003; HYDE; BERNARDI, 2009). Additionally the pre-
existing knowledge obtained previously ( eg. analyzing data coming from different
survey, errors distributions) is not taken in to account by frequentist approaches.
This information a priori about the model parameters can not be neglected anymore.

In recent years, Bayesian tools have become very popular for dealing with the draw-
backs of frequentist approaches, partly due to advances in computer hardware speeds
and the implementation of sophisticated sampling algorithms like Markov Chain
Monte Carlo (MCMC). The astronomical community is on the wave of testing and
developing new software tools to improve the accuracy of the inferred galaxy struc-
tural parameters or other photometric attributes and to choose the models which
best describe their light distribution (BOUCHÉ et al., 2015; ROBOTHAM et al., 2016).
Each implementation has its specific advantages and weaknesses. In this work we
adopt GALPHAT (GALaxy PHotometric ATtributes); GALPHAT was the first par-
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allelized code available and extensively tested considering simulated galaxy images
Yoon et al. (2010), hereafter YMK10. GALPHAT is a front-end application of a
more general and powerful tool called Bayesian Inference Engine (BIE) 2 (WEIN-

BERG, 2013). BIE is an application based on a parallel MCMC algorithm which, for
each parameter, gives the full posterior distribution and likelihood marginalization.

In this context the main contribution of this thesis to the astronomical community
is the development of an automated pipeline, PyPiGALPHAT, to analyze large
amount of galaxy images with GALPHAT in a HPC. This pipeline is used to test
and improve GALPHAT’s accuracy, as well its capability to handle a large data sets.
We also show the Bayesian approach major advantages and drawbacks in contrast to
frequentist approaches. In the future works, this pipeline can significantly contribute
in understanding galaxy formation, in the cosmological context, to determine how
bulges and discs evolve with redshift (ALLEN et al., 2006a; TASCA; WHITE, 2011).

1.3 Galaxy Properties and their Environment

The second main issue addressed in this work is to study relation between the galaxy
properties, and their environment. Early and late type galaxies are located preferen-
tially in opposite environments, a fact described by the morphology-density relation
(OEMLER JR., 1974; DRESSLER, 1980). At first sight, it implies that internal prop-
erties of galaxies are modified by the environment (the “nature” versus “nurture”
debate). Field galaxies would exhibit characteristics set as they were born while in
denser systems (groups and clusters) processes like ram-pressure, starvation and ha-
rassment would transform the system. Over the last two decades, observations have
shown that star formation is enhanced already in the infall regions of clusters wrt the
field, exhibiting the role of the environment e.g. Kauffmann et al. (2004), Wel et al.
(2010), Mahajan et al. (2011), Wetzel et al. (2012). These investigations show that
the fraction of quiescent galaxies varies significantly with the environment, namely
higher in clusters than in low density groups (e.g. (BALOGH et al., 2004)). However,
galaxy properties (e.g. morphology, color) also seem to be more strongly related to
stellar mass (BALOGH et al., 2009; PENG et al., 2010b; WOO et al., 2013; STALDER

et al., 2017b), recovering the idea that nature is the key factor in determining the
way galaxies evolve. But galaxy stellar mass correlates with environment - more
massive galaxies are more likely to be found in high-density regions. Therefore, it
seems impracticable to distinguish the effects of “nature” from those of “nurture”.

2http://www.astro.umass.edu/BIE
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Another important piece of information about galaxy evolution comes from the
fact that the fraction of blue galaxies (measured within a radius containing 30%
of the projected galaxy distribution) in clusters increases with redshift, up to z∼1
(BUTCHER; OEMLER JR., 1978; KODAMA; BOWER, 2001; MARGONINER et al., 2001).
The Butcher-Oemler (BO) effect might be seen as consequence of the increase of the
cosmic star formation rate up to z = 1, e.g. Madau et al. (1996), namely, increasing
fraction of blue galaxies in clusters in the redshift range of 0 < z < 1. However,
Ellingson et al. (2001), examining clusters between 0.18 < z < 0.55, find that the
fraction of blue galaxies within half of the virial radius from the center of the cluster
does not change with redshift, implying that the BO effect is not determined by
galaxies in the cluster core. More likely, we are seeing blue galaxies falling in from
the very low density regions and the higher fraction of blue galaxies implies larger
infall rate onto the cluster. Thus, it is clear that the environment is responsible for
part of the way galaxies look like today.

The task of defining environment is intimately associated to the definition of equi-
librium state of a gravitational system, which in turn is described by a Maxwell-
Boltzmann distribution function, e.g. Ogorodnikov (1957), Lynden-Bell (1967). In
phase-space coordinates this translates into a gaussian function. N-body numerical
experiments (MERRALL; HENRIKSEN, 2003; HANSEN et al., 2005) also support this
conclusion. From the observational viewpoint, it is extremely difficult to determine
when a velocity distribution differs from normality, e.g. Beers et al. (1990), espe-
cially for the low-multiplicity systems. Hou et al. (2009) considered three figures of
merit (Anderson-Darling, Kolmogorov-Smirnov and χ2-test) aiming to find which
statistical tool distinguishes better between gaussian and non-gaussian groups. Us-
ing Monte Carlo simulations and a sample of groups selected from CNOC2, they
found the Anderson-Darling test to be much more reliable at detecting real de-
partures from normality. Also, gaussian and non-gaussian groups exhibit distinct
velocity dispersion profiles, suggesting different dynamical stages. About 68% of the
CNOC2 (Canadian Network for Observational Cosmology) groups are found to be
gaussians. Hence, the choice of the statistical test to be applied on data is crucially
important in the subsequent analysis of galaxy groups. It is important to keep in
mind that sample size is a potential problem for all the hypothesis tests presented
in the literature.

Usually, in most works, environment is mainly characterized by galactic density.
However, more recently several investigations have discussed the importance of
establishing the dynamical state of a group/cluster e.g. (MAHAJAN et al., 2011;
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EINASTO et al., 2012a; EINASTO et al., 2012b) using the velocity distribution which
may qualify better for a robust descriptor of environment. Einasto et al. (2012a)
examining a sample of rich clusters selected from SDSS-DR8, using a FoF(Friends
of Friends) algorithm, find that most clusters are dynamically young based on their
amount of substructure, large peculiar velocities, and non-gaussianity of their veloc-
ity distributions, emphasizing that the halo model (which assumes virialization) does
not explain the cluster properties. This result is reinforced by the work of Macciò et
al. (2009). Considering the importance of establishing the gaussianity of the velocity
distribution of galaxies in clusters, Ribeiro et al. (2013) propose a new definition
of gaussianity of the velocity distribution based on the Hellinger Distance, (HD),
which in this context the distance between empirical and theoretical distributions
(POLLARD, 2002). They find that in gaussian groups, there is a significant difference
between the galaxy properties of the inner and outer galaxy populations, suggesting
that the environment is actively affecting the galaxies. On the other hand, in non-
gaussian groups there is no segregation between the properties of galaxies in the
inner and outer regions, which might indicate that the properties of these galaxies
still reflect primordial physical processes prevailing in the environment.

The relation between the gaussianity of the velocity distribution of a galactic system
and the internal properties of the member galaxies is still far from to be clear. In this
work, we examine this relation in detail considering the new HD parameter presented
by Ribeiro et al. (2013). However, also is needed to quantify how reliable are our
methods to identify non-gaussianities in the velocity distributions. Two prominent
approaches have been considered to detect non-gaussianities: HD, and MCLUST
which is a R package for performing model-based clustering. So, the reliability of
these two approaches can be investigated by creating realizations which are perfect
gaussian mixtures.

1.4 Objectives and Elements

This thesis concerns to the investigation and application of advanced computational
tools to study structural and environmental properties of SDSS’s Galaxies. Within
the scope described in the previous session, the main objectives to be accomplished
are:

a) Study the structural properties of galaxies using a Bayesian approach.

b) The investigation of the gaussianity of the velocity distribution of groups
and clusters.
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The Figure 1.1 shows a synthesis of the scenario for the development of this thesis
considering the different approaches defined for research.

Figure 1.1 - Major elements considered on this thesis: (i) Data from Simulations: Mil-
lennium Simulation (SPRINGEL et al., 2005) ;(ii) Mock catalogs obtained by
SAM (GUO et al., 2011; HENRIQUES et al., 2012); (iii) Real data, catalogs from
SDSS (ABAZAJIAN et al., 2009);(iv) Computational Statistics Tools: PyPi-
GALPHAT, MCLUST and HD(STALDER et al., 2017a; CARVALHO et al., 2017).

This thesis is organized as follow: In Chapter 2, we present GALPHAT’s the basic
concepts, main functionalities and we propose a new pipeline called PyPiGALPHAT
(Python Pipelining GALPHAT) for automated analysis of galaxy structural proper-
ties. This pipeline is designed was designed to deal with large galaxy samples, pre-
pare galaxy images, feed a High Performance Cluster (HPC) and extract information
from the outputs. We created several ensembles of synthetic images to investigate
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the following issues: (i) Image generation accuracy; (ii) Bias on inferred structural
parameters; (iii) Comparison with frequentist approaches (e.g GALFIT); (iv) The
Bayes factor (BF) reliability for detecting AGN. Finally a sample of high stellar
mass early-type galaxies from SDSS have been analyzed considering the join poste-
rior distribution. In Chapter 3, We investigate the dependence of stellar population
properties of galaxies on group dynamical stage for a subsample of Yang catalog.
We classify groups according to their galaxy velocity distribution into Gaussian and
Non-Gaussian. Using two totally independent approaches we test our measurement
of Gaussianity robustness and reliability. Finally, in Chapter 4, we summarize our
findings, contributions and perspectives.
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CHAPTER 2

A Bayesian Surface Photometry Analysis of Early-Types Galaxies

This chapter presents an automated pipeline, called PyPiGALPHAT (Python
Pipelining GALPHAT)1, to analyze galaxy structural parameters, retrieve images
from a given survey, generate configuration files, run SExtractor, GALPHAT and
extract information from the data using a CPU Cluster. To measure the bias and the
reliability of PyPiGALPHAT we created a set of simulated galaxies obeying the Sér-
sic Law and a Sérsic plus nuclear point source. The model parameters were chosen
to reproduce the observed dispersion of parameter values and the typical observ-
ing conditions of recent surveys: signal-to-noise ratio (S/N), Point Spread Function
(PSF) shapes and full width at half maximum (FWHM), effective radius (re) and
Sérsic index (n).

This chapter is organized as follows. In §2.1, we describe GALPHAT, its new features
and improvements in performance and accuracy over the previous version (YWK10).
Section §2.2 presents the pipeline and the operational procedure to analyze large sets
of galaxy images and obtain their structural parameters with GALPHAT. In §2.3 we
present the model selection problem. Then we describe the ensemble of simulated
galaxy images §2.4. The results obtained with simulated images are presented in
§2.5. In Section §2.6 we present the results obtained dealing with real images.

2.1 GALPHAT

2.1.1 Theoretical bases: Bayesian Inference

The Bayesian approach have been widely used to lead with two common types of
problems in science: (i) parameter estimation, obtaining the parameters of a model
from the data; (ii) model selection, determining which model (if any) is supported
by the data. These problems are difficult to solve for many reasons: (a) These data
have observational errors imprinted; (b) The large amount of data available come
from different survey and instruments; (c) Several models can be evaluated to asses
which explains better the data. Thinking Bayesian enables us to overcome these
difficulties.

The preexisting knowledge about the physical properties (e.g parameter of a model)
under study are the priors. They consist in probability distributions on the possible

1In submission (STALDER et al., 2017a)
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values of the parameters of a given model. A uniform prior assigns the same prob-
ability to each point in the parameter space, and corresponds to a complete lack
of previous knowledge about them. A non-uniform prior can be used to combine
independent data information about the parameters, e.g. considering data coming
from different surveys. When a new data become available, a given model predic-
tions must be evaluated through a likelihood function to obtain the distribution of
the observed data given the model parameters. Therefore the Bayes Theorem (BT)
establish the theoretical foundations to combine the priors and the likelihood for
obtaining the probability distribution of the parameters given the data, ie. the pos-
terior distribution. Formally, it states that the posterior distribution, is proportional
to the likelihood function of the data for the given model multiplied by the prior
probability of the model:

P (θ|D,M) = P (θ|M)P (D|θ,M)
p(D|M) , (2.1)

where M denotes the particular model, P (D|θ,M) the likelihood function and
P (θ|M) are the prior distributions and p(D|M) is an unknown normalization or
evidence (see more details in §2.3).

A Bayesian approach has many advantages over a frequentist one. Their main ad-
vantages can be summarized as follow:

a) Reliable error estimates: Frequentist approaches for surface photometric
analysis like GALFIT (PENG et al., 2010a) usually obtain the best-fit pa-
rameters using minimization algorithms, which are affected by background
fluctuations and initial guesses. YMK10 have shown that GALFIT error es-
timates are overestimated when the galaxy images have low signal-to-noise
ratio (S/N). GALPHAT, in contrast, uses MCMC algorithms to sample the
full posterior distribution, yielding reliable error estimates.

b) Informative prior distributions (pre-existing knowledge): As the image’s
S/N becomes smaller, the best-fit parameters obtained by running GAL-
FIT are biased, as well the variances are larger than GALPHAT MAP
solutions. YMK10 show that, using informative priors, the posterior dis-
tributions can be improved dramatically. A more informative prior consists
in defining hard limits and/or probability distributions functions (PDF) as-
sociated to each model parameter. Hard limits allow to avoid model degen-
eracies, in other hand, PDFs can introduce crucial information obtained in
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previous inferences (e.g. SExtractor, SDSS’s pipeline) or considering differ-
ent galaxy samples (e.g. structural parameter distributions in (BARBERA

et al., 2010a)).

c) True covariances: GALPHAT’s posteriors from each individual galaxy in a
sample can be combined to obtain a join posterior distribution for the full
sample. This join posterior holds much more information about errors and
covariances than one simple scatter plot containing the best-fit parameters
produced by a frequentist algorithm. This is an invaluable tool for studying,
for example, scaling relations between different observed parameters, like
the effective radius and the mean surface brightness of elliptical galaxies
(the Kormendy Relation; (KORMENDY, 1977)).

d) Best Model selection: The choice of a particular theoretical model, e.g. Sér-
sic, Sérsic plus point source or Sérsic plus exponential is not a simple issue.
A Bayesian approach offers a consistent way to assess the performance of
different models and select those that better describe the data.

2.1.2 Early Type Galaxies Sample

As discussed before the motivation for devolving PyPIGALPHAT is the large scale
analysis of galaxies structures (SIMARD et al., 2011; MENDEL et al., 2014). The inferred
galaxy properties has suffered from using conventional fitting algorithms based in
Frequentist statistics. For this work, we select our target sample of galaxies from
Legacy Survey in SDSS-DR7 (ABAZAJIAN et al., 2009). The Legacy Survey is a
catalog of the sky from a set of optical and infrared imaging data, comprising 14,000
deg2 of extragalactic sky visible from the northern hemisphere in three optical bands
(g, r, z) and four infrared bands. The total number of galaxies in this catalog is 1.12
million approximately. However, as starting point of this research we consider only
a set of 200 bright ETGs (see more details in §2.6).

2.1.3 Obtaining Structural Parameters

To perform a 2D description of a galaxy light distribution is a difficult task. If
we consider only early-type galaxies, we may find reasonable to describe the light
distribution only one component, usually following a Sérsic law. Late-types, on the
other hand, are generally described by a combination of two main components, a
bulge (Sérsic law) and a disk (exponential law). With GALPHAT, we can fit either
only a bulge or a bulge plus disk. This is the standard way that most packages work.
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Later, we will discuss how adding an extra component like a central point source
(Gaussian) may help to better explain the global light distribution, and the pitfalls
of it. The simplest model is a pure Sérsic law, which has eight parameters:

a) Centroid coordinates, X, Y.

b) Sérsic shape parameter, n.

c) Axis ratio, q = b/a, where b and a are the minor and major axis, respec-
tively.

d) Position angle, PA.

e) Effective radius, re.

f) Total magnitude, Mag.

g) Sky background, SKY.

As the shape parameter increases, the profile increases in concentration. Also, we
have particular cases like n = 1, an exponential disc, and n = 4, a de Vaucouleurs
profile, respectively. The analytic form of the Sérsic model is the following:

I(r) = Ie e
−κ
{
( r

re )1/n
−1
}

(2.2)

where κ and n are related through the equation Γ(2n) = 2γ(n, κ). In practice,
analytical expressions are used to estimate κ and reduce the computation time
(CIOTTI, 1991; MACARTHUR et al., 2003).

Once we assume a theoretical model to explain a galaxy image, any approach for
estimating the structural parameters needs to assess the differences between the
observed galaxy image and the model predictions, i.e. a likelihood function. There
are several ways to define meaningful image versus model likelihoods, e.g normal,
Poisson, χ2 distributions, etc. In the present case we are dealing with astronomical
galaxy images which are observed by Charged Coupled Devices (CCD) and count
photons are well described as a Poisson process. Therefore, GALPHAT’s likelihood
function is computed as follows:

L =
Npixels∏
i=1

e−mi mdi
i /di!, (2.3)
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where the Npixels is the total number of pixels, θ are the model parameters,mi and
di are the fluxes corresponding to the observed and predicted values respectively.
YMK10 have shown that GALPHAT’s MCMC algorithms generates distributions
of states which asymptotically converge to the target posterior.

We now briefly describe GALPHAT, presenting the basic concepts and main func-
tionalities. GALPHAT consists of an extension of the Bayesian Inference Engine
(BIE), which is a general parallel optimized software to perform parameter infer-
ence and model selection (WEINBERG, 2013). BIE implements advanced techniques
for applying Markov Chain Monte Carlo (MCMC) simulations to determine the full
posterior distribution and likelihood marginalization. The fast and accurate likeli-
hood algorithms implemented in GALPHAT allow to probe the parameter space
very efficiently (YWK10).

Figure 2.1 shows an overview of all the steps involved in the Bayesian analysis of
a galaxy image carried out in GALPHAT. Below we describe GALPHAT explicitly
presenting the specific operational elements.

2.1.3.1 Setting up GALPHAT, Sampling The Posterior Distribution,
and Outputting

The starting point of processing an image with GALPHAT is to assume a given
model which represents the light distribution of a galaxy. Another important in-
put is the definition of the priors associated to each model parameter, through
functional forms like Gaussian, Weibull, uniform, or any other function that may
represent our expectation on how the parameters are distributed. As for the MCMC
sampling algorithm, several options are available in GALPHAT. We decided to use
the Differential Evolution algorithm because of its higher efficiency for the specific
Sérsic modeling (see YMK10 and Appendix § A.3). For convergence testing, we have
used the Gelman-Rubin (GELMAN; RUBIN, 1992) convergence diagnostic for multi-
ple chain simulations. Our current computing system has 20 processors per node,
and we set one chain per node as this has implied the fastest processing time (see
performance statistics in Appendix § A.8). Once all these settings are in place, the
following procedures are done: 1) the stamp is created from the field image (see
§3.1.2); 2) the corresponding PSF image is read; and 3) the mask image is created
by flagging all non-target object pixels in the stamp.

When the preparatory steps are done, the MCMC simulation starts with an arbitrar-
ily chosen initial parameter vector. The simulation generates samples of parameters

13



Figure 2.1 - A flow chart of GALPHAT’s major elements. The inputs needed to analyze
one single galaxy image are indicated. The major stages and elements of the
MCMC sampling algorithm are shown. The main outputs are also indicated .
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values from the posterior by emulating a random process that has the posterior
distribution as its steady-state distribution. New states are sampled considering an
acceptance probability which depends on the prior and likelihood values. Typically, a
burn-in period of initial iterations must be discarded because these are influenced by
the initial values. The extent of the burn-in period is determined by the convergence
criteria. Once the MCMC has achieved a stationary mode in the parameter space,
at least 100.000 converged samples are taken to map the posterior distribution.

The main GALPHAT’s output is the posterior distribution. Relevant information
about the parameter covariances can be extracted from the posterior. Figure 2.2 is a
typical output of any Bayesian approach; it shows the 2D densities of the posterior
distribution for a typical galaxy image and considering the Sérsic model. This Figure
shows also the 1D density distributions for each parameter of the model. The solution
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that maximizes the posterior probability (MAP) and the 1-σ range are shown. It is
also important to obtain the solution that maximizes only the likelihood (ML); the
MAP and ML results match exactly when we use an uniform prior.

For each particular solution, e.g. MAP and ML, GALPHAT generates a correspond-
ing predicted model image. Differences between the observed galaxy image and the
model image become obvious only when one looks at a relative residual image (see
Figure 2.3). Large residual values can be used to detect poor fittings. Finally, if we
consider several models like Sérsic or Sérsic plus exponential, GALPHAT can eval-
uate the evidence supporting each given model by using the posterior distributions
obtained previously (see more §2.3).

2.1.4 Implemented Improvements

YMK10 tested GALPHAT with 3000 synthetic Sérsic galaxy images representative
of the 2MASS survey. Their ensemble contains galaxies with shape parameter vary-
ing from 0.7 to 7, effective radius ranging from a few arc-seconds to 9.37 arcsec (8
× the typical FWHM of the PSF) and a sky background of 300 [ADU]. In SDSS,
on the other hand, the scatter in the structural parameter distributions are larger,
with n raging from 2 to 10, and 10% of all galaxies have re ≥ 10 arcsec (BARBERA

et al., 2010a). Since in §2.6, we analyze the structural parameter a sample of early-
type galaxies from SDSS. Therefore, its crucial to extend this parameter space range
accordingly (see more in §2.4).

Initial tests with observed images and assuming a pure Sérsic model have shown
that for some cases the MAP residual images present poor fitting areas in the center.
Figure 2.3 shows an example where GALPHAT model generator wasn’t able to fit
the central area, when we consider YMK10 implementation. These poor fitting cases,
usually leads in an overestimated n. A possible explanation for this problem is that
the estimative of the integrated flux of a pixel in the central region could be not
accurate enough, specially for high n values which have steeper profiles (see Figure
2.4). This problem is the main motivation to review of all the algorithms involved
in the model image generation and the likelihood computation. In the following
subsection, we discuss details of the major modifications implemented. Figure 2.3,
shows the residual image after the modifications. One see that the central area fits
its much better now.
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Figure 2.2 - Posterior Covariances between the model parameters. The diagonals illus-
trates the marginal distributions for each parameters. In blue, the MAP solu-
tions are indicated. In red, the 1-sigma range estimated from the interquartile
are shown. Black contours indicate the quantiles (Q10, Q25, Q50, Q75, Q90).
This panel was generated using ASH routines from R and considering 300 side
cells and 30 as smoothing parameter.
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Figure 2.3 - The first figure shows a typical SDSS stamp, the second and third figure
are MAP residual images. In the second, we see small features at the center
that GALPHAT (YMK10) internal model generate was not able to reproduce.
Third figure shows that this issue was corrected with improvements described.

2.1.4.1 Interpolation Scheme

To convert a continuous light distribution following a 2D Sérsic law in a discrete
number of pixels, we assign the flux value at each pixel (X, Y) by computing
the integrated surface brightness over the pixel area. To speed up this integra-
tion, GALPHAT uses an interpolation scheme from pre-computed high-resolution
tables. These pre-computed values are integrated using an adaptive quadrature al-
gorithm to achieve a predefined error tolerance. A very fine resolution grid as a
function of (n, r/re) is defined to create the tables. In the YMK10 implementa-
tion, two interpolation tables were used: (1) Image size of 792×792 arcsec for the
inner region (re < 3.96 arcsec); (2) Image size of 594×594 arcsec for the outer re-
gion (3.96 < re < 39.6 arcsec). The interpolation grids are linearly distributed as
a function of n, ranging from 0.5 to 12.0 with 60 intermediate points. Despite this
sophisticated scheme presented in YMK10, some residuals have pixels in the central
region which were poorly fitted.

This work considers a more refined grid with three interpolation levels to improve
the accuracy of the model images generated. The first grid is used to compute the
pixel flux for the inner region (0.0396 < re < 0.396 arcsec), the second grid, for
the intermediate region (0.396 < re < 3.96 arcsec), and the third is for the outer
region (3.96 < re < 39.6 arcsec), each one having image size of 316.8×316.8 arcsec,
594×594 arcsec and 792×792 arcsec, respectively. The interpolation grids are linearly
distributed as a function of n, ranging from 0.5 to 14.0 with 120 (240) intermediate
points for the outer (inner) grid. The flux in the central pixels (0.0396 arcsec< re)
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Figure 2.4 - Sérsic profiles for different values of the shape parameter index n. One can see
that profiles with high n > 5 have more flux at larger r/re; therefore for fitting
galaxies having high n values, a precise estimate of the background sky level
is needed. The profiles are normalized to have the same surface brightness at
re.

is computed by direct integration.

2.1.4.2 Rotation Algorithm

Once a non-rotated model image has been generated by the interpolation of the in-
tegral of surface brightness profile, the model image must be rotated to the desired
Position Angle (PA). YMK10 argue that a simple coordinate transformation would
be slow and inaccurate for our purpose. Therefore a three shear algorithm in Fourier
Space has been implemented by considering the Fastest Fourier Transform Libraries
(FFTW). The three-shear rotation algorithm provides near perfect results and min-
imal loss of information (see more in Appendix§). However, our tests considering
synthetic images showed that the 3-shear rotation algorithm can introduce artifacts
due to large relative flux differences between adjacent pixels. To mitigate this prob-
lem, the PSF is convolved with the non-rotated image. The rotation, therefore, is
performed on the smoothed model image, to reduce the image dynamic range.
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2.1.4.3 PSF Convolution

An astronomical image of a galaxy is obtained by a CCD as the convolution of the
flux coming from the galaxy with the PSF. The photons coming from the galaxy are
affected by the atmosphere and the telescope optical system. The shape of the PSF
must be taken into account, through convolution or deconvolution techniques, when
deriving the intrinsic light distribution of a galaxy. GALPHAT implements convo-
lution techniques which are readily computed numerically using the Fast-Fourier
Transform algorithm.

A limitation of this approach is that the convolution accuracy depends on the PSF
FWHM and the pixel scale. In SDSS, the image scale is 0.396 arcsec, and the typical
FWHM of the seeing is 1.3 arcsec. The SDSS processing pipeline assumes that the
PSF is well sampled (LUPTON et al., 2001). In order to check this assumption, we
consider the Shanon’s sampling theorem: If a function x(t) contains no frequencies
higher than f cycles per unit time, it can be fully specified by a series of points
spaced 1/(2f) unit times apart.A sufficient sample-rate is therefore 2f samples/unit
time, or larger. Applied to our problem, we want to represent a PSF, which has a
characteristic spatial scale (FWHM) σ ≈ 0.55 arcsec. We then need a pixel scale
≤ σ/2 to represent the PSF. Therefore, this crude criterion is not satisfied formally
by SDSS images. Additionally, a Gaussian PSF, for example, contains an exponential
tail of high frequencies which can not be sampled.

2.2 PyPiGALPHAT

Here we present a detailed description of PyPiGALPHATPy2. The pipeline is im-
plemented in Python, csh shell and R. We developed a set of routines and scripts
to retrieve the galaxy images from surver servers, cutout stamps, identify sources,
generate masks, setup GALPHAT, use a High Performance Computing (HPC) sys-
tem and analyze the outputs. This pipeline is organized in three modules:(i) pre-
processing (ii) processing and (iii) post-processing. Table 2.1 summarizes the main
modules functions.

2.2.1 Pre-processing: Obtaining Stamps, Masks and Settings

The main preparatory steps done by PyPiGALPHAT before estimating the struc-
tural parameters are the following: (1) Select galaxies from a list; (2) Retrieve infor-

2PyPiGALPHAT source code is available on request at git@bitbucket.org:diegostalder/
pypigalphat.git.
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Table 2.1 - Modules main procedures in the PyPiGALPHAT.

Modules Stages
Preprocessing Retrieve Data

CutOut Stamp and Masks
Define GALPHAT settings

Processing Run GALPHAT in HPC
Postprocessing Quick diagnosis Images

Generate output catalog

mations from the survey database; (3) Download images and PSFs from the survey
servers; (4) Cut-out stamps containing the target galaxies; (5) Detect objects in the
stamps and obtain some photometric parameters by using SExtractor; (6) Gener-
ate masks images to avoid non-target objects (galaxies and star spikes nearby); (7)
Setup GALPHAT to obtain structural parameters for a given model (Sérsic, Sérsic
plus point source and Sérsic plus exponential); (8) Classify the images by introduc-
ing a quality flag (QF). Appendix A.7 explains how to use the main modules of
the PyPiGALPHAT. Some setup of the pipeline are survey dependent and, as we
discussed before, our target its the SDSS. Therefore minimal changes will be neces-
sary to consider another survey. Additionally PyPiGALPHAT can deal easily with
simulated images, we only need to avoid steps (2) and (3).

2.2.1.1 Retrieving SDSS Data

The first step for using PyPiGALPHAT with SDSS data is to prepare a list con-
taining all galaxies with their exact locations, together with the desired broadband
of analysis (RA, DEC, band). From this list, the pipeline builds SQL queries to re-
trieve informations from the survey databases. For the SDSS, we build a unique
combinations of ObjIDs, run, rerun, camcol, field. With these informations
we download the required data files: (i) Images having 2048 × 1490 pixels obtained
by photometric data stream from each CCD; (ii) psFields which is used to extract
the PSF; and (iii) tsFields which contains the statistics of the photometric pipeline
of SDSS 3 (see more details in the Appendix A.7).

The SQL queries also retrieve a list of photometric parameters (petroMag,
petroMagErr, rowc, colc, deVRad, deVAB, deVPhi) made available by the
SDSS imaging pipeline (LUPTON et al., 2001; STOUGHTON et al., 2002). This pipeline
has been used to analyse the raw telescope images, produce calibrated FITS files and

3http://www.astro.princeton.edu/PBOOK/datasys/datasys.htm#astropip
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build catalogs. These main photometric catalog (PHOTO) contains a large number
of measured parameters and uncertainties, like the structural parameters assuming
a de Vaucoleurs profile.

On the SDSS photometric pipeline the PSF spatial variations are taken into account
by a model based in the Karhunen-Loève transform, see Appendix A.6. The data
file psFields has all the information needed to reconstruct the PSF at a desired
point in the frame (rowc,colc). A stand-alone code is available to recover the PSF
4. The desired PSF is obtained as an unsigned short FITS file where a background
level is set to a standard soft bias of 1000. PyPiGALPHAT removes this soft bias
and estimates the PSF FWHM using the function curve_fit from scipy. Finally,
the stamp and PSF FITS headers are updated with the astrometry and relevant
frame keywords.

2.2.1.2 Generating Stamps and Masks

The large frames downloaded from the SDSS servers contain several objects. The
region target galaxies should be cutout from these large data frames. During pre-
processing, the script selects a section of the original frame around the target galaxy,
producing a stamp. Each stamp must contain enough pixels to allow for a good esti-
mate of the sky background fluctuations. On the other hand, large stamps increase
computational resource requirements. (HÄUSSLER et al., 2007) have shown that sky
estimation is of critical importance to correctly derive the light profiles of galaxies.
After several tests and visual inspection of the output images, we decided to use 15
devRad as the side size of each stamp, where devRad is effective radius produced by
the photometric pipeline of the SDSS assuming a pure de Vaucouleurs law.

The steps of the stamp production algorithm are the following: (i) Cutout prelimi-
nary stamp (17 devRad side size). (ii) Identify large objects in the stamp, considering
a high detection threshold; (iii) Measure the S/N as the ratio between isophotal flux
(FLUX_ISO) and its RMS error (FLUXERR_ISO); (iv) Estimate the sky background
(SKY); (v) Cutout final stamp (15 devRad side size); (vi) Identify small objects,
considering a lower detection threshold; (vii) Extract the information necessary
to compute the calibrated flux (zeropoint, airmass, extinction coefficient,
gain, readout noise) from tsFields data files5.; (viii) Generate the mask images
to avoid non-target objects; (ix) Classify the quality of the stamps by generating
stamp quality flags (SQ) to identify unusual cases. Figure 2.5 summarizes these

4http://classic.sdss.org/dr7/products/images/read_psf.html
5http://classic.sdss.org/dr7/algorithms/fluxcal.html
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Figure 2.5 - This flow chart shows the main procedures of PyPiGALPHAT preprocessing
stage. Main input files are indicated. A wheel the major stages of this image
processing step.
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Readoutnoise, gain, etc

Setup GALPHAT Catalog_Pre_B.csv

steps.

Each stamp can have photons coming from different objects plus background fluctu-
ations. Accurate estimate of the background level is needed to detect the faintest of
these objects. PyPiGALPHAT uses SExtractor (BERTIN; ARNOUTS, 1996) to iden-
tify these objects in the stamp. The detection threshold is controlled directly by
DETECT_THRESH, DETECT_MIN_AREA, DETECT_MAXAREA. For this work, we consider
1.3, 3.0 and NONE respectively. This means that fluctuations above the local back-
ground, 1.3σ are considered as independent sources. The local background esti-
mate depends on the mesh size (BACK_SIZE). PyPiGALPHAT controls this detec-
tion threshold indirectly by modifying the mesh size. To detect the larger sources
and estimate accurately the background, we set BACK_SIZE=100. On the other hand,
to identify small sources we consider a finer mesh by setting BACK_SIZE=10.

Once we have a list of all the sources in the stamp, PyPiGALPHAT creates mask
images, where pixels associated to non-target objects are indicated. The masked area
is a combination of several ellipses centered at the position of each secondary object.
The ellipses properties (axis ratio and position angle) are determined by SExtractor.
The major (minor) axis is scaled by an amount Tmask = 3 so that the major (minor)
axis of each ellipse becomes Tmask×PETRO_RADIUS×A_IMAGE (B_IMAGE). Figure 2.6
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Figure 2.6 - Left (Right) figure shows a typical SDSS diagnostic Stamp (mask) obtained
by PyPiGALPHAT preprocessing step. Dotted light green contours indicate
the target source. Dotted red lines shows mask objects.

show a typical stamp and mask produced by the pipeline from an SDSS frame.

Finally, the SQ is evaluated considering the position of the secondary objects rel-
ative to the target galaxy. One common problem is that the photons coming from
secondary sources can strongly affect the inferred structural parameters. Let Ri be
the distance from the considered object to central pixel (the target galaxy is located
at the center of the stamp by construction). Two overlapping levels are considered:
(i) there is (are) a secondary object(s) overlapping the central region (Ri < FWHM),
(ii) There is (are) a secondary object(s) overlapped with the main source mask, but
not covering the central region (FWHM > Ri < target galaxy ellipse). Another SQ
indicates when a target galaxy is too close to the frame border, such that we can not
create a square stamp with 15×deVrad on the side (see some examples in Figure
2.7). The SQ are summarized in Table 2.2.

Table 2.2 - Stamp quality (SQ) used to organize the preprocessing output images

CRITERIA NAME Flag
Clean stamp OK SF0
Galaxy objective close to the FRAME edges BORDER SF1
Secondary objects over the source OVERLAP_SOURCE SF2
Secondary objects over the central region OVERLAP_CENTRAL SF3
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Figure 2.7 - From left to right, this figure shows examples for each SQ. The first image
correspond to a galaxy that is close to the frame border (SQ = BORDER);
the second one, a galaxy that has a secondary object covering the central re-
gion (SQ = OVERLAP_CENTER); the third one, a galaxy where secondary
object is inside the green ellipse, but is not overlapped with the central region
(SQ = OVERLAP_SOURCE). Finally the last figure is one clean image (SQ
= OK). Dotted red lines indicates the secondary sources masked area. Dotted
green lines indicates the galaxy objective.

2.2.1.3 GALPHAT Settings

Given the stamp, mask and PSF images, the pipeline must setup correctly GAL-
PHAT so that its processing runs automatically. In addition to the requirements
described in Section §2.1.3.1, GALPHAT needs several specific informations about
the stamps like the zeropoint magnitude, readout noise, gain, and some reference val-
ues for the target galaxy magnitude, effective radius, PA and SKY. These reference
values can be used to define a set of prior distributions for the full sample of galaxies
under study. The first step is to define which theoretical model will be considered
to describe the galaxy light profile. Therefore a prior distribution must be defined
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for each parameter of the model. The prior distributions can have constraints or
hard limits, like (Min,Max). Additionally an additive or multiplicative offset can be
introduced, according to the parameters control (Additive or Scaled, respectively).
The function of the offset, in practice, is only to shift the priors distribution to the
appropriate range. 6

YWK10 show that a non-uniform prior can bias the inferred parameters for low
S/N galaxies. However, this work adopts non-uniform prior distributions and hard
limits defined by a detailed visual inspection of fitted galaxy images and previous
simulations from (BARBERA et al., 2010b). Table 2.3 shows a typical set of priors
used for this work. The offsets for xc, yc, re, PA and Mag are set considering the
reference values obtained by SExtractor and the SDSS imaging pipeline.

Table 2.3 - Parameters and their corresponding typical priors used in this work.

Parameters Control Offset Min Max Distribution Units
X Additive xc -3.0 +3.0 Normal (µ = 0.0, σ = 1.5) pixelsY yc

Mag Additive PetroMag -1.0 +1.0 Normal (µ = 0.0 , σ = 0.2)
re Scaled re (deV) 0.33 3.0 Weibull (k = 1.21, λ = 2.5) pixels
n None None 0.5 14 Normal (µ = 6.0, σ = 6.0)
q None None 0.09 0.99 Uniform
PA Additive PA (deV) 0.0 0.69 Normal (µ = 0.0, σ = 0.69) radians
SKY Scaled SKY (Sex) 0.97 1.03 Normal (k = 1.0, λ = 0.01) counts

2.2.2 Processing: Running GALPHAT in a CPU Cluster

Despite the optimizations implemented in YWK10, the CPU time needed to analyse
one individual galaxy with GALPHAT is still prohibitively large when we consider
the amount of data available from large astronomical surveys. Therefore, PyPiGAL-
PHAT was developed to make use of a High Performance Computing (HPC) system.
An HPC system usually uses a computer software called Portable Batch System (or
simply PBS). This system allocates the computational tasks among the available
computing resources. Figure 2.8 show a flow chart of the elements of the processing
stage. PyPiGALPHAT reads the input galaxy catalog and submits the jobs to the
PBS. Each job is responsible for the processing of one galaxy. By default, PyPiGAL-
PHAT will process all galaxies in the input file, but the user can optionally choose a

6More details can be found in the documentations http://daisy.astro.umass.edu/BIE/
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single galaxy from the list. To process only one galaxy with PyPiGALPHAT, using
the photometric database from the SDSS, objid must be provided. There are three
running modes: (1) Run a new simulation; (2) Resume one pre-stored simulation, if
the CPU Cluster have crashed before for some external cause; and (3) Run only the
pre-postprocessing, a set of validation procedures to track the most common er-
rors. These procedures identify the stages of the pipeline that have failed and rerun
the simulations if necessary (see more details in Appendix A.7).

Figure 2.8 - A flow chart describing PyPiGALPHAT Processing stage. The main input file
is that catalog obtained by running the preprocessing. The major procedures
and elements are presented. As wheel the main output files.

Submit Jobs Catalog_Pre_B.csv

PBS Jobs ScriptAllocate resources nproc,mem

Run New Resume

Pre-postprocessing

GALPHAT

GRanalyze

Csh Shell

GALPHAT setup

FITS Files

Posteriors Marginal Covariances Residuals

Postprocessing Catalog_Proc_log.csv

A MCMC simulation generates an amount of data (at least 100.000 samples) that
needs to be managed efficiently. Thus, the posteriors samples, which are written
in simple ASCII tables, are converted to Flexible Image Transport System (FITS).
The FITS format is a better option than ASCII files for many reasons, e.g. they are
much less disk-intensive. The pre-postprocessing is also responsible for remov-
ing unnecessary log files, when the simulations end successfully. Another important
validation is to check for stuck chains in regions of anomalously low posterior prob-
ability. Some chains of the MCMC algorithm can get stuck in parameter space areas
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where the probability is higher for a certain value than for its close neighbors, but
lower than for neighbors that are further away.To mitigate this problem there is
one procedure called GRanalyze that identifies and removes stuck chains from the
posterior.

In order to compare GALPHAT with a frequentist approach, PyPiGALPHAT has
another specific functionality to obtain the galaxy structural parameter by using
GALFIT. It’s important to remark that GALFIT is able to fit several objects simul-
taneously in the stamp. For this work, we fit only one galaxy per stamp, so that we
can compare the performance of GALFIT and GALPHAT in a consistent way. The
PyPiGALPHAT produces the setup, processes and validates the results obtained
by GALFIT (see more details in Appendix A.7). This functionality can optionally
analyze several galaxies simultaneously by creating multiple tasks.

2.2.3 Post-processing: Building Output Catalogs and Diagnostic Plots

Once all the galaxies from the catalog have been analysed by the processing stage, the
post-processing extracts the information hidden in the posterior distributions. Figure
2.9 shows an overall view of the post-processing procedures. Similarly to previous
stage, each job is responsible for the postprocessing of one galaxy. Therefore, to
analyze all galaxies output files, several jobs should be submitted jobs to the PBS
in HPC system. Each job calls a R script7) which has been developed to obtain
the diagnostic figures and catalogs with inferred values.

Some galaxies which have low quality flag (SF1 or SF3; see Tab. 2.2) can converge
to incorrect stationary solutions, i.e. some parameters can hit the limit of their
allowed range. In order to determinate whether a particular galaxy has been correctly
analyzed, the post-processing starts reading the posteriors files and rescaling the
output values using the offsets defined in Table 2.3. The 1D marginal distribution
and the quantiles 25% and 75% (Q25 and Q75 respectively) are computed for all
model parameters, as well as the MAP and ML solutions (see Figure 2.10). These
inferred values can be used to estimate the variance from the interquartile range
(σ = 0.74 (Q75 − Q25)). Figure 2.10 can be used to assess if the MAP and ML
solutions are hitting the prior range limits. For some cases we can extend the prior
range and rerun the MCMC algorithm if necessary. However, we expect a small
number of galaxies with SQ = SF1 and SQ = SF3, e.g. in case of our SDSS
sample is below 17% (see §2.6).

7https://www.r-project.org/
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Figure 2.9 - This flow chart describes PyPiGALPHAT Post-Processing stage. As the pre-
vious stage the input file is the catalog obtained during the preprocessing.
Main procedures done to generate quick diagnostic images, estimate struc-
tural parameters and build the join posterior distributions.
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R Script
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Plot Posteriors panels

Build the join posterior

Create Catalog

Save Catalog_Final.csv

Another panel that can shed light about the parameter covariances are the 2D den-
sity plots shown in Figure 2.11. We see that Mag, re and n present a strong negative
correlation, while Mag and the sky background are positively correlated. Multi-
modal posterior distributions or solutions hitting the limits are quickly identified by
looking at this panel. GALPHAT also computes the covariance matrix, which can be
used to estimate the uncertainties in the derived parameters, and their correlations.

Figure 2.12 shows the stamp, the model image and the residual image of a galaxy
considering MAP solutions. These images can help to rapidly identify problematic
situations, e.g. incorrect centering or orientation (position angle), mask files missing
a secondary source, etc. For each residual image we compute their extreme values,
mean and RMS values, which are then saved on the output catalog.

To study galaxy samples and investigate correlations between their structural pa-
rameters like the Kormendy relation, the join posteriors can give much more infor-
mation than a scatter of frequentist approaches. PyPiGALPHAT’s post-processing
combines states from each posterior, taking random sub-samples from each poste-
rior. Each sub-sample is saved in a unique file, and the join posterior is obtained
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Figure 2.10 - Posterior 1D densities where the red vertical lines indicate the quantiles
(Q25, Q50, Q75). Cyan (green) points indicates the MAP(ML) inferred so-
lutions. The figure also shows dispersion computed using the interquartile
range.

(see Section §2.6).

All inferred quantities like quantiles, MAP and ML solutions, covariances, likelihood
marginalization and residual extremes values are saved in a final catalog. When
dealing with simulated images, we can then compute the biases on the inferred
structural parameters. On the other hand, for real images we can use the MAP
solutions and their corresponding uncertainties to study the relation between the
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Figure 2.11 - Posterior Main Covariances between the model parameters. As wheel black
contours indicate the quantiles (Q10, Q25, Q50, Q75, Q90). This panel was
generated using ASH routines from R and considering 300 side cells and 30
as smoothing parameter.

Figure 2.12 - The first figure on left shows an observed Stamp of a given galaxy. Green
(red) dotted lines indicates the Petrosian region and the nearby secondary
objects. The second figure is a model image corresponding to the MAP solu-
tion. The third panel is the MAP residual that corresponds to the difference
between the observed and model images, normalized by observed stamps.

structural parameters and other quantities like redshift, stellar mass, etc.
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2.3 Model Selection and Bayes Factor

We often do not know which theoretical model explains better a given galaxy light
profile. This is crucial when different analytical forms describe physically distinct
components such as bulges (Sérsic law), discs (exponential) or unresolved sources
associated to active galactic nuclei (point source). The Bayes factor (BF) provide a
mechanism that evaluates the evidence in favor of each considered model rather than
only test the goodness of the fit. BFs are the preferred method for model selection
(JEFFREYS., 1961; KASS; RAFTERY, 1995; WAKEFIELD, 2013; WEINBERG, 2013).

The BF can be derived from applying the BT to a set of models. But before we
have to compute the evidences or marginalizations P (D|Mi) by marginalizing the
equation 2.1 :

P (D|Mi) =
∫
dθP (θ|Mi)P (D|θ,Mi). (2.4)

This quantity is also known as marginal likelihood. Once we have a sample of the
posterior distribution obtained by the MCMC algorithm, the computation of the
evidence its a numerical challenge. For this work specifically we apply the Volume
Tessellation Algorithm which is described and tested in Weinberg (2012), see more
details in Appendix A.5).

To select which model explains better the surface brightness distribution of a given
galaxy image, we can consider individual analytic expressions or combinations of
them: a single Sérsic fit (M1), a Sérsic plus Point Source (M2), a Sérsic plus expo-
nential (M3), a Sérsic plus exponential plus point source (M4) and so on. In this
work, we focus on early-type galaxies (ETG), which, apart from eventual nuclear
activity, are generally well described by a single Sérsic law. We therefore consider
only theM1 andM2 models. To determine which of these two models is a better rep-
resentation of an observed brightness distribution, we have to calculate the posterior
odds:

P (M1|D)
P (M2|D) = P (D|M1)

P (D|M2)
P (M1)
P (M2) , (2.5)

where the ratio P (D|M1)/P (D|M2) is called Bayes Factor, given by:

BF12 = P (D|M1)
P (D|M2) =

∫
dθ1P (θ1|M1)P (D|θ1,M1)∫
dθ2P (θ2|M2)P (D|θ2,M2) . (2.6)

This ratio assesses the plausibility of the two different modelsM1 andM2. If BF12 =
1, both models are equally supported by the data. However, if BF12 > 1 (BF12 < 1),
the data is in favor of modelM1 (M2). (JEFFREYS., 1961) suggest to scale B12 in half-
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unit steps in logB12 before interpreting the result (see Table 2.4). However, if the
prior distribution dominates over the likelihood, an incorrect prior leads to a biased
inference. In the next section, we are going to test this interpretation considering two
theoretical models M1 and M2. The motivations to consider an additional central
point source are described below.

Table 2.4 - Harold Jeffreys interpretation for the BF.

logBF12 BF12 Strength of evidence
< 0 < 1 Negative (supportsM2)

0 to 1/2 1 to 3.2 Barely worth mentioning
1/2 to 1 3.2 to 10 Positive
1 to 2 10 to 10 Strong
> 2 100 Very Strong

2.3.1 Sérsic plus Central Point Sources

High resolution images obtained by the Hubble Space Telescope (HST) reveal fine
details of galaxy structure. Previous studies have shown high correlations between
nuclear activity of galaxies with galaxy structural parameters ((FABER et al., 1997; HO

et al., 2003; RAVINDRANATH et al., 2002; HO; PENG, 2001; CAPETTI; BALMAVERDE,
2007; HONG et al., 2015; BRUCE et al., 2016)). However, separate the faint nucleus
from the bright bulge is a difficult task. So, this is an opportunity to use GALPHAT
and the Bayesian approach to identify galaxies presenting nuclear activity.

To test the Bayesian model selection limitations and reliability, we generate simu-
lated images considering a Sérsic profile plus an additional nuclear point source (PS,
M2). This additional component is defined by the magnitude of the central point
source, MagPS. The PS is located at the center of the image. So, for a given synthetic
model we have obtained its posterior distributions and marginal likelihoods assum-
ing both models M1 and M2. The BF should indicate which model is favored by
the evidence. In section §2.5.3 we present results of the considering these simulated
images and the BF to detect the central point sources.
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2.4 Simulated Images

2.4.1 Independent Model Image Generator

Simulated images are an invaluable tool for understanding the performance of quan-
titative pipelines. They are commonly used for estimating errors in the inferred
structural parameters, as well to evaluate its accuracy and limitations. However,
most of the previous studies have used the same model generator routines to create
the tests images and to estimate the structural parameters of observed galaxies.
However, the numerical algorithms implemented to speed up the inference process
like pixel integration, convolution and rotation have limitations especially for high
Sérsic indices (n ≥ 8). When the same procedure is used to generate simulated im-
ages and for testing, the errors introduced by the numerical methods can be canceled
out. This is the main motivation to develop an independent image generator.

In YWK10 an independent model image generator creates the simulated ensembles
for testing GALPHAT and GALFIT. This image generator implements a recur-
sive curvature integration with a strict error tolerance to compute the pixel fluxes.
A real-space rotation algorithm based on 3-shear rotation is considered. Direct
Fourier Transform have been used to guarantee the accuracy during the convo-
lution and rotation. For the present work, a new pseudo-random number generator8

has been implemented to create multiple realizations for a given parameter vector
(X, Y, Mag, re, n, q, PA, SKY). Additionally, a new definition for the S/N has been
adopted (see Appendix §A.2).

2.4.2 Samples Generated to Test PyPiGALPHAT

Here are described the synthetic image ensembles considered in this work to test
GALPHAT. YWK10 have shown that GALPHAT recovers the structural param-
eters and their covariances with some bias that depends on the image S/N, PSF
FWHM, the stamp size and the shape parameter n. However, we need to test the
improvements and PyPiGALPHAT performance under typical and extreme condi-
tions. So we created a new ensemble of simulated images. Table 2.5 summarizes the
ensembles considered in this work.

The main issues that we investigated by considering the new emsemble are:

a) Bias on the inferred parameters: Posterior distributions have rich informa-

8Mersenne Twister from http://www.boost.org
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tion about the parameters covariances, however MAP solutions should be
close enough to true values. Therefore ensembles A, B, C were created to
measure the differences between the inferred and the true values.

b) Frequentist vs Bayesian: Many scientific papers have been published using
GALFIT, therefore is important to quantify and compare the biases on
the inferred parameters considering synthetic images using an independent
image generator and the ensemble D.

c) Reliability of the Bayes Factor: To test the power and limitations of the
Bayes Factor for model selection we created an specific ensemble (E) of
synthetic images considering two model: Sérsic profile and Sérsic plus Point
Source.
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Table 2.5 - Summary of simulated images ensembles.

Ensemble Galaxies1 Nrealizations Parameter Values
A 1920 2 re (") 0.99, 1.98, 2.97, 3.96, 4.95,

7.92, 15.84, 31.68
PSF FWHM(") 0.75 to 2.14, steps 0.28

S/N 300, 450, 600, 750
n 2, 4, 6, 8, 10

Fixed q= 0.7, PA = 0 (◦)
B 360 2 PA (◦) -60, 0, 30, 60,

90, 120, 150
PSF FWHM(") 0.75 to 2.14, steps 0.28

Fixed S/N = 450, re=3.96 ("),
q = 0.7, PA = 0 (◦)

C 600 2 q 0.5, 0.7, 0.9
PSF FWHM(") 0.75 to 2.14, steps 0.28

S/N 300, 450, 750
n 2, 4, 6, 8, 10

re(") 0.99, 3.96, 31.68
Fixed PA=0 (◦)

D 1200 502 n 2, 6, 8, 10
PSF FWHM(") 0.75 to 2.14, steps 0.28

Fixed S/N = 450, re=3.96 ("),
q = 0.7, PA = 0 (◦)

E3 432 1 δMag 3, 5, 7, 8, 9, ∞4

re (") 0.99, 1.98, 2.97,
3.96, 7.92, 15.84

n 4, 6, 8, 10
q 0.5, 0.7, 0.9.

Fixed PSF FWHM = 1.3 ("),
S/N = 450, PA = 0 (◦)

Additionally, YMK10 have shown that the relation between PSF FWHM and re is
strongly correlated with the bias. Therefore to have good characterization of this
trend we generated ensembles where the PSF FWHM varies from 0.75 to 2.14 arcsec,
in steps of 0.28 arcsec. This range was chosen considering a typical SDSS PSF
FWHM of 1.3 arcsec in the r band.

1The total number of galaxies is Nre
×Nn ×NS/N ×Nq ×NP A ×NF W HM ,×Nrealizations.

250 realizations have been generated for comparison with a frequentist with GALFIT.
3Ensemble to test the BF by considering the model Sésic + Point Source, where δMag =

MagP S −Magsersic.
4δMag =∞ corresponds to a pure Sérsic profile.
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2.5 Analysis of Simulated Images

We have used PyPiGALPHAT to extract parameters from the simulated images.
Therefore in this section we present a analysis of our major findings.

2.5.1 Characterization of the Bias

Due to imperfections of the PSF convolution, numerical approximations performed
to compute the surface brightness profile, model limitations and MCMC algorithm,
the structural parameters recovered differs from the true values ((MACARTHUR et

al., 2003), YMK10). Simulated galaxies, in particular the ensembles A, B and C are
considered to measure GALPHAT’s MAP biases and uncertainties, as well as their
dependence on observational conditions.

Table 2.6 - Median for the bias in the bins 1.0” < PSF FWHM < 1.6” and considering
typical SDSS images sizes (re = 3.96”).

Varying ∆X/Xtrue ∆Y/Ytrue ∆Mag ∆re/retrue ∆n/ntrue ∆q/qtrue ∆PA ∆SKY/SKYtrue
S/N n (×10−4) (×10−4) (×10−2) (×10−2) (×10−2) (×10−3) (×10−1) (×10−4)
300 2 -3.2 ± 3.6 2 ± 1.4 0.58 ± 1.7 0.51 ± 1.7 1.3 ± 2.5 -12 ± 7.8 -6.9 ± 12 -0.52 ± 0.91

4 -1.6 ± 2.7 1.2 ± 1.4 -0.68 ± 1.6 2.4 ± 3 3.5 ± 1.9 -14 ± 10 -14 ± 16 -2.8 ± 2.1"
6 -2.1 ± 2.4 1.9 ± 1.6 -3.9 ± 1.7 11 ± 4.4 8.4 ± 1.9 -12 ± 9.7 -10 ± 16 -6.6 ± 3
8 -3.3 ± 2.1 1.6 ± 2.6 -3.8 ± 3.6 12 ± 11 7.6 ± 5.7 -16 ± 13 -13 ± 17 -5.7 ± 5.4
10 -2.4 ± 3.5 2.6 ± 5.1 -1.7 ± 2.9 6.4 ± 8.5 6.1 ± 2.5 -17 ± 11 -11 ± 15 -4 ± 8.3

450 2 -1.6 ± 1.6 0.82 ± 1.4 0.54 ± 0.9 -0.32 ± 0.92 0.55 ± 1 -3.5 ± 6.8 -0.92 ± 7.3 -0.62 ± 1.5
4 -1.2 ± 1.3 0.71 ± 1.1 -1 ± 0.92 2.3 ± 1.7 3.4 ± 1.4 -4.4 ± 9.9 1 ± 7.3 -4.4 ± 2.2
6 -1.5 ± 2.1 0.87 ± 1.3 -2.4 ± 1.8 5.8 ± 3.5 5.6 ± 2.4 -6.1 ± 13 1.6 ± 9.5 -6.3 ± 4.3
8 -1.7 ± 1.8 1.1 ± 1.4 -4.8 ± 3.9 13 ± 11 8.4 ± 4.5 -8 ± 12 -0.5 ± 8.9 -10 ± 8.7
10 -2.1 ± 1.6 1.4 ± 1.5 -3.9 ± 4 11 ± 11 7 ± 4.2 -5.5 ± 13 -0.98 ± 11 -6.8 ± 12

750 2 -1 ± 0.51 0.53 ± 0.56 0.13 ± 0.61 -0.053 ± 0.57 0.64 ± 0.87 -3.5 ± 2.3 -2.5 ± 3.6 -0.57 ± 1.8
4 -0.88 ± 0.85 0.35 ± 0.33 -0.86 ± 1.1 1.7 ± 1.9 2.7 ± 1.5 -4.7 ± 3.8 -2.9 ± 3.4 -4.2 ± 4.5
6 -0.64 ± 0.7 0.27 ± 0.55 -2.3 ± 1.9 5.5 ± 3.8 5 ± 2 -5.6 ± 2.7 -2.2 ± 5.1 -7.7 ± 4.8
8 -0.72 ± 1 0.84 ± 0.86 -3.6 ± 2.4 9.4 ± 6 6.6 ± 2.8 -6.7 ± 6.5 -3.8 ± 4.6 -13 ± 6.3
10 -0.85 ± 1.5 0.75 ± 1 -4.3 ± 1.5 12 ± 4.8 7.5 ± 2.3 -7.8 ± 5.7 -3.8 ± 6.9 -15 ± 9.1

The simulated galaxies are treated as "real" images by the pipeline so that all effects
which we can see in the results from simulations should be present in real data. In
Table 2.6 one can see a summary of the difference between GALPHAT’s estimated
MAP solutions and the true values as a function of n shape parameter and S/N.
These median values were computed considering galaxies with typical values of all
parameters, e.g. effective radius re = 3.96 arcsec and PSF sizes between 1.0 arcsec
and 1.6 arcsec (subsamples of the ensembles A, B and C). This table shows that bias
for each parameter of the model. The center positions X, Y and SKY background
biases are below 10−3, as well for the axis ratio bellow to 10−2. For most cases, the
Sersic indices, magnitudes and effective radii present relative errors smaller than
10−1. Small relatives errors indicates that GALPHAT’s MAP solutions are close the
true values.
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A quick inspection of Table 2.6 shows strong correlation between the inferred values
of the observational conditions and the structural parameters. One immediately see
that the biases for Mag, re and n are strongly (slightly) correlated with n (S/N). In
case of ∆Mag, as n increases from 2 to 10, the biases can have variations of a factor
from 3 to 9. Similar trends have been found for ∆n/ntrue and ∆re/retrue . On the other
hand, when the S/N is varying from 300 to 750, the bias in ∆Mag present variation
of a factor ≤ 2 for most cases. When we look at the biases for X, Y, PA and q they
seems to be more correlated with S/N than to n, i.e. we measure higher variations
as S/N increases than when the Sérsic is varying. The SKY biases are strongly
correlated with n, as expected. There is also a weak correlation of SKY with the
S/N, in the sense that the SKY value is underestimated as the S/N increases.

To measure the effects of varying re and PSF FWHM we consider the ensemble
A. Figure 2.13 illustrates the bias for n. Here, we consider images having low S/N
= 300. For models with n = 2 (first column), we see that the bias decreases as re
becomes larger; in the shaded area (PSF range typical of the SDSS), the bias reduces
from 5% to 1%. For n = 2 and re = 0.99 arcsec (first pannel), the bias increases as
the FWHM becomes larger than re, from 5% to 15%. This effect is amplified as n
increases: when n = 10 (last column), the bias decreases from 15% to 5% as re is
varying from 0.99 arcsec to 31.68 arcsec. For re = 0.99 arcsec, we see a bias which
seems not to be correlated with n. However, when we consider a typical value of
re = 3.96 arcsec (fourth row), one can clearly see that the bias increases with n,
from 5% to 15%. The last row shows that for large re the bias varies from 5% to
10% as n increases from 2 to 10. All panels show positive bias, except for (n = 10,
re = 0.99 arcsec), i.e. there is tendency of n to be superestimated. Considering that
these panels correspond to images having low S/N, GALPHAT’s MAP are accurate
enough.

Figure 2.14 shows that GALPHAT does much better when we consider images hav-
ing S/N = 450. In this figure, the scale of the y-axis has been reduced by a factor
of 1/3 relative to Figure 2.13. We find similar trends when the consider n = 2 (first
column): when re is smaller than the PSF, FWHM the bias becomes larger. It is
also notorious that n has a strong effect on the bias, which increases by at least a
factor of 10 when we compare the first (n = 2) and last columns (n = 10). If we
consider images with high S/N (750) as shown in Figure 2.15, the bias is lower when
we compare with previous two Figures 2.14 and 2.13; however, the improvement is
of only a factor of about 1/5. Finally, an overall view of Figures 2.13, 2.14 and 2.15
also shows that not only the absolute values of the bias, but also its dispersion, are
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Figure 2.13 - GALPHAT Bias on the Sérsic index n as function of n, re and considering
synthetic images with S/N = 300. The blue and green solid lines are two
realizations with two independent background fluctuations. The shaded area
corresponds to 1-σ (estimated using the interquartile range).

decreasing as the S/N increases: the 1-σ range is considerably smaller when S/N
is higher. Considering the images from the ensemble B, we can measure the bias
for different values of the position angle. This is basically a sanity check for the
images generation improvements, specifically the rotation algorithm. Figure 2.16
shows some results of this test. On each row, one see that the bias in PA is slightly
correlated with n. Inspecting the columns of this figure, we do not see a correlation
with the true position angles. A quick look back in Table 2.6 indicates that the
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Figure 2.14 - GALPHAT Bias on the Sérsic index n as function of n, re and considering
synthetic images with S/N = 450. The solid lines and shaded area meaning
are the same as the previous figures.

bias in PA is dominated by the S/N, where we find variations of a factor of 1/3,
approximately, when the S/N increases from 300 to 750. So, these results indicate
that the implemented improvements are working properly. The bias introduced by
variation of the axis ratio q is measured by considering the ensemble C. Figure 2.17
display the resulting bias on the inferred values, considering typical values for S/N
= 450 and re = 3.96 arcsec. We can see a weak correlation of the bias with q and
n, increasing by a factor of 1.5 as n increases from 2 to 10. At the same time, the
dispersion in the bias increases by a factor of 2. In case of q = 0.5, the bias becomes

39



Figure 2.15 - GALPHAT Bias on the Sérsic index n as function of n, re and considering
synthetic images with S/N = 750. The solid lines and shaded area meaning
are the same as the previous figures.

more negative than case with q = 0.9. It has been found that rounded galaxies
(q = 0.9) have slightly lower bias than stretched ones (q = 0.5). Looking back to
Table 2.6 we also see that the bias of q is strongly correlated with the S/N. The bias
absolute values decreases by a factor 1/3 as the S/N varies from 300 to 750.

We also investigated the effects that the background fluctuations can introduce in
the bias. The Poissonian noise which is added to the model mimicking these fluc-
tuations can have different realizations. In practice each realization has associated
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Figure 2.16 - GALPHAT Bias on the position angle as function of n, PAtrue and consid-
ering synthetic images with S/N = 450 and re = 3.96” (typical image size
on the SDSS sample). The solid lines and shaded area meaning are the same
as the previous figures.

a random seed. Figures 2.13, 2.14, 2.15, 2.16 and 2.17 are illustrating two different
realizations shown in green and blue lines. From these figures we see that these
random fluctuations introduce stronger effects when n ≥ 4 and re ≤ 4.95". Its also
important to remark that blue lines have been generated with considering the same
seed, prior to the new pseudo-random generator. This also explains why green lines
looks more noisy. Ensembles A, B and C major aims is not to measure rigorously
these fluctuations, so in the following section we discuss this issue more in details
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Figure 2.17 - GALPHAT Bias on the axis ratio q as function of n, q and considering
synthetic images with S/N=450 and re = 3.96” (typical image size on the
SDSS sample). The solid lines and shaded area meaning are the same as the
previous figures.

and considering more realizations.
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2.5.2 Bayesian vs Frequentist approach

As discussed in the previous sections, GALFIT is a widely-used galaxy image de-
composition program, based on a maximum likelihood (ML) frequentist approach,
implemented as a χ2 minimization using the Levenberg-Marquardt algorithm (PENG

et al., 2002; PENG et al., 2010a). GALPHAT, in contrast, is based on the Bayesian
statistics and implemented considering MCMC sampling algorithms. Despite the
major differences between these approaches in terms of algorithms, likelihood func-
tions and runtime performance, we can estimate structural parameters to assess
which method gives more accurate results. To test these approaches we consider the
simulated galaxy images, specifically ensemble D which consists of 50 realizations of
24 galaxies with typical values for the S/N, re and q.

Figure 2.18 - GALPHAT bias dispersion considering 50 realizations, we show the MAP
solutions as black points. The green indicate one particular realization.
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Before evaluating the differences between GALPHAT and GALFIT, we measure the
dispersion of the bias by considering the different realizations of background fluctua-
tions. Figure 2.18 illustrates the results for Mag, n and re. Each point correspond to
the MAP solution for a given combination of n and PSF FWHM. The green shaded
area correspond to one particular realization MAP and 1-σ range. Lines and shaded
area in blue correspond to the median and 1-σ range considering the MAP solutions
for 50 realizations. We see that these inferred values for n, re and Mag can deviate
from the true values by 12.8%, 16% and −0.063 mag, respectively.

Figure 2.19 - GALPHAT vs GALFIT bias dispersion considering 50 realizations, we show
the median and the 1-σ (estimated using the interquartile range). In blue,
lines illustrates GALPHAT’s MAP solutions medians. Red lines correspond
to GALFIT ML solutions medians.

When we consider the green lines (only one realization), for n = 2 and in the gray
shaded area, we have biases of 6.6 ± 6.2%, 6.4 ± 9.6% and −0.027 ± 0.036mag,
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while for n = 10 we have 4.0 ± 4.6%, 1.6 ± 9.8% and −0.005 ± 0.035mag, for n,
re and Mag respectively. However, considering 50 realizations we can extract more
information. The shape parameter n is clearly modulating the biases dispersion. For
n = 2 in the gray shaded area we measure biases of 1.6 ± 0.4%, 1.0 ± 0.3% and
−0.008± 0.002mag, respectively, while for n = 10, we measure biases of 4.3± 3.6%,
1.5 ± 9.6% and −0.028 ± 0.032mag, respectively. So, the 1-σ range is much larger
as n increases, as expected because high n values are associated to steeper profiles.

Once we have analyzed the 50 realizations MAP from GALPHAT, we can compare
these results with ML solutions obtained with GALFIT. This comparison is pre-
sented in Figure 2.19. As we can see, for low n (n = 2) the bias in n, re and Mag is
negligible and both methods work similarly well. For a typical value of n, n = 6, we
see a tendency in the bias of being larger for smaller values of FWHM, but we still
see both methods behaving in the same way. The most striking difference appears
for more extreme values of n, n = 10. Measuring the median and 1−σ biases in the
gray area, for all n cases, we find that for GALPHAT n, re and ag deviate from the
true values by 4.8 ± 3.4%, 3.9 ± 6.3% and −0.017 ± 0.031 mag, respectively, while
GALFIT deviates by 7 ± 6.2%, 6.4 ± 11% and −0.033 ± 0.048 mag, respectively.
For n = 2, GALPHAT’s biases for n, re and mag are 1.6 ± 0.4%, 1.0 ± 0.3% and
−0.008 ± 0.002mag, respectively, while GALFIT’s biases are 1.5 ± 0.2%, 1 ± 0.3%
and −0.008± 0.000 mag, respectively. For n = 10, GALPHAT’s biases for n, re and
mag are 4.3 ± 3.6%, 1.5 ± 9.4% and 0.000 ± 0.032 mag, respectively, while GAL-
FIT’s biases are 17 ± 8%, 22 ± 22% and −0.088 ± 0.063 mag, respectively. These
experiments show that GALPHAT’s structural parameters are more accurate than
GALFIT’s results in a regime of high Sérsic index.

Important scaling relations inferred considering structural properties obtained with
frequentist approaches can be affected by these biases (BERNARDI et al., 2003; SHEN

et al., 2003; HYDE; BERNARDI, 2009; BERNARDI et al., 2017). We find that the effective
radius as estimated by GALFIT can deviate from the true value by a factor of 1.44,
in the worst case. These errors can also affects the semi analytical models for galaxy
formation(MCGEE et al., 2008).

Our tests considering simulated images have shown that the posterior MAP so-
lutions are sufficiently close to the true values. However to reduce even more the
bias in GALPHAT’s inferred values one can consider the Bayesian update proce-
dure(WEINBERG, 2013). This procedure update the priors distribution incrementally
by considering an independent data source, e.g. one can define a subsample of the
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data to analyze the structural parameters and then use the posteriors as prior dis-
tributions for the remaining galaxies.

2.5.3 Bayes Factor Reliability: Recovering Central Point Source

Here, we discuss the results of the experiment considering a model selection problem,
where simulated images were generated by two different models: a Sérsic Profile (M1)
and a Sérsic + Point Source (M2). As discussed in section §2.3.1, the aim of this
test is to measure the BF reliability for discriminating the light profiles with and
without a central unresolved source. When we consider images from SDSS, the PSF
FWHM and the pixel scale are fixed. Since, the Point Sources light observed will
scattered by the PSF during the convolution, intuitively faint PS will be difficult to
detect. The ensemble E considers a wide range of structural parameters to assess
the limitations of the Bayes Factor for identifying a nuclear point source. It consists
in 432 simulated galaxies, where 360 of 432 cases have central point source with
varying brightness and 72 of 432 cases follow a single Sérsic profile. We can test the
reliability of the BF by considering several realizations of the same model.

To compute the BF, each galaxy image has to be analyzed twice: the first time
assuming M1 and the second M2. We can then compute the evidence that supports
each model and the BF. According to Jeffrey’s interpretation, when logBF12 >

1 (< −1) the evidence is Strong in favour of M1 (M2). Galaxies in the range −1 <
logBF12 < 1 are considered undefined. When we consider all galaxies without PS
(M1) from the ensemble, the BF corretly attributes model M1 to 67 of 72 cases; 5
cases were classified as unknown and 1 case was incorrectly attributed to model M2.
Therefore, the reliability obtained is 93.0% and the logBF median and dispersion
are 2.27± 1.02. It’s important to note that galaxies without PS from the ensemble
E have a wide range of values for n, re and q. On the other hand, when we consider
galaxies with a nuclear point source, the BF associates to modelM2 only 34 cases of
360. So, if we define the null hypothesis as the galaxy does not present a nuclear point
source, type II errors (false negatives) are below 8.3%. We cannot say the same thing
about type I errors (false positives), that are huge (326/360 = 90.5%). However, it’s
reasonable to suppose that the ability to identify a point source embedded in an
extended source depends on the δMagtrue, the ratio re/FWHM and the Sérsic index
n (see red points in Figure 2.20). Here, we show the errors type I and II can be
reduced, when re ≥ 7.92 arcsec, for n <= 6 and δMag ≤ 5, as well for n > 6 and
δMag ≤ 3. In these cases the BF error type II is approximately (3/24) = 12.5%,
while error type I is approximately (5/36) = 13.8%. For this experiment, we assume
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a fixed PSF FWHM of 1.3 arcsec, typical of the SDSS.

Figure 2.20 - Bias on the estimated MagPS as function of the true magnitude differences,
ie. δMagtrue = MagPStrue−Magsersictrue . The red points indicate cases where
the Bayes Factor is in flavor of the model with a point source. The solid lines
correspond to the MAP solution and shaded area 1-σ range.

Figure 2.20 illustrates the bias on the inferred δMag and the BF as a function of
δMagtrue, n and re. This figure considers typical SDSS values for the S/N=450,
q = 0.7. Inspecting the figure rows, one see that the BF identifies the PS only when
re >= 7.92 arcsec, i.e. an effective radius 6 times larger than the FWHM of the
PSF. Looking along the columns, as n becomes higher the BF sensibility decreases.
Additionally, when re >= 7.92 arcsec and n = 4 we see clearly that, as the PS
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becomes fainter, we can not detect the PS. If now we neglect the BF information,
on the first row, the biases MagPS are decreasing as δMag increases, ie. the estimated
PS magnitude becomes fainter. However, this decreasing trend appears because the
PS contribution is negligible when δMag >= 5 and GALPHAT returns a fixed
value for the MagPS even when there is no PS. Finally, the BF can identify the PS
only when they are bright enough (δMag < 5), and re is greater than 7.92 arcsec.
For n = 8 and re = 15.84 arcsec, we can see that the BF detects the PS only for
δMag = 3 or brighter.

Figure 2.21 - Bias on the estimated n as function of the true magnitude differences. The
red points indicate cases where the Bayes Factor is in flavor of the model
with a point source. The solid lines and shaded area meaning are the same
as the previous figures.
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Figure 2.21 illustrates another limitation of the PS detection. The estimated n values
are biased by about 60% when the point source is too bright, i.e. δMag = 3. This
limitation gets worse when n is higher and persists even when the galaxy is larger.
However, all panels of this figure show that, as δMag increases, GALPHAT is able
to recover the true n values even assuming M2.

Figure 2.22 - Bias on the estimated MagPS as function of the effective radius re. The red
points indicate cases where the Bayes Factor is in flavor of the model with a
point source. The shaded area corresponds to 1-σ range.

We also measure the effects of varying the axis ratio q. Figure 2.22 shows the bias in
MagPS and the BF(log(BF12)) as function of re considering a bright PS (MagPS =
3). For n = 4 and re = 7.92 arcsec, if we compare the logBF values, in case of
q = 0.7 and q = 0.5 the values are only -78,-79, respectively, while for q = 0.9,
the logBF is -190. So, we have a variation of a factor 2, one see similar trends for
n = 6 and re ≥ 7.92 arcsec. This means that a PS inside a stretched galaxy will be
more difficult to detect, which seems intuitively consistent. However, this statement
holds only for re ≥ 15.84 arcsec when n = 8 and n = 10. Similarly, for n = 4 and
n = 6, we clearly see that when re is greater than 7.93 arcsec the BF supports model
M2. However, for n = 8 and n = 10 the evidence that support PS becomes weaker
and for q = 0.7 and re = 7.93 arcsec the PS are not flavored by the BF. As we
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discussed in previous section, the background fluctuations affects significantly the
inferred parameters, so we also expects fluctuations in the BF values.

Figure 2.23 - Bias on the estimated shape parameter n as function of the effective radius
re. The red points indicate cases where the Bayes Factor is in flavor of the
model with a point source.

Figure 2.23 illustrates the bias in n as function of the re and q. We see that if
re ≤ 3.96 arcsec we can marginally detect a PS in case of n = 10 and n = 4 and
q = 0.9. For re ≥ 3.96 arcsec and n = 4 and n = 6, the bias decreases as re increases.
One can also see that for n = 8 and n = 10, the bias in the shape parameter n does
not converge to correct value, this is because the model tends to increase n instead
of increasing the point source magnitude. In case of n = 8 and n = 10 we do not
see higher biases because the prior for n has hard upper limits. From these results
we define a safe range where the BF can detects a point source, e.g.: (i) n = 4,
re ≥ 7.92 arcsec and δMag ≤ 5; (ii) n = 6, re = 7.92 arcsec and δMag ≤ 3, as
well re ≥ 7.92 arcsec and δMag ≤ 5; (iii) n = 8 and n = 10, re = 15.84 arcsec and
δMag ≤ 3.

For all previous tests considering ensemble E, we always assume the same pixel scale
as the SDSS images. However, for photometric surveys using instruments of higher
spatial resolution we expect that the observed images have more associate more
reliable BF. If consider the LSST, for example, the pixel scale will be 0.2 arcsec/pixel
(instead of 0.396 arcsec/pixels) and the FWHM of the PSF is expected to be ∼
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Figure 2.24 - Bias on the estimated δMag as function of the shape parameter n. The red
points indicate cases where the Bayes Factor is in flavor of the model with a
point source.

0.6 arcsec (instead of 1.3 arcsec). Therefore, a galaxy having re > 3.96 arcsec will be
sampled by at least 10 times more resolution elements in any spatial direction, and
the FWHM is also 10 times smaller. We create an additional ensemble considering
these restrictions varying δMag and n, assuming a typical values for S/N=450,
q = 0.7. Figure 2.24 shows the resulting bias and the BF. We see that bias increases
as the point source brightness decreases. For n = 6, the logBF absolute value
decreases significantly from −103 to −101, as the point source vary from δMag = 3
to δMag = 4. Finally, when δMag = 5 and n = 6, the BF indicates incorrectly
that there it’s not PS. Therefore the safe range to detect th PS considering HST
instrument, ie.: (i) δMag ≤ 5 , when n = 4, (ii) δMag ≤ 4 when n = 6. Additionally
to measure the BF fluctuations due to background as we discussed in previous
section, we created 10 realizations assuming n = 4 and δMag = 3 and typical values
for the S/N = 450, q = 0.7, re > 3.96 arcsec (100 pixels). This experiment results in
a logBF of −3539.91 with 1-σ = 58.18.
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2.6 Dealing with Real Images

To test GALPHAT acting on observed galaxies, we selected a set of early-type
galaxies from SDSS DR7 with Mstellar > 11.50, eClass < -0.2, and in the redshift
range of 0.05 to 0.1. To avoid contamination by galaxies exhibiting faint structures
resembling spiral arms or other non-symmetric morphologies, we also impose that the
galaxy should be classified as Elliptical by the project Galaxy Zoo 1 (LINTOTT et al.,
2011). In summary, our sample includes 200 bright ETGs with available photometry

Figure 2.25 - Parameters distribution in our SDSS sample:(i) Effective radius re; (ii) Pet-
rosian Magnitude; (iii) Measured S/N as discussed in previous sections. On
each panel the median values are indicated by the blue vertical lines.

and morphological type from SDSS DR7. The imaging data have all been processed
through the SDSS imaging pipeline which fits two models to the two-dimensional
image of each object in each band: (i) a pure de Vaucouleurs profile and (ii) a pure
exponential profile. Figure 2.25 shows the effective radius re for model (i) and the
Petrosian magnitudes in the studied sample. We use those catalog values to cutout
the stamps and define the priors as discussed in Table 2.3 .

During the preprocessing as discussed in previous sections, the quality of the stamps
is quantified by a quality flag. This classification results in the following distribution:

(i) SF = SF0: 33 galaxies.

(ii) SF = SF2: 132 galaxies, with some secondary sources nearby.

(iii) SF = SF3: 4 galaxies, with secondary sources covering the central region.
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(v) SF = SF1: 31 galaxies close to the frame border. Note that we consider 15
deV Rad de Vaucouleurs effective radius to cutout the stamp.

Figure 2.26 - Join Posterior Covariances considering 166 converged MCMC chains. These
panels were generated using ASH routines from R and considering 300 side
cells and 30 as smoothing parameter.

Figures 2.26, 2.27 and 2.28 shows the join posterior covariances when analyze the
sample considering a pure Sérsic model. Here, we combine 10000 random converged
states from each galaxy posterior. GALPHAT converged for 166 galaxies out 200.
A detailed inspection of the log files, residuals and posteriors in those 34 missing
galaxies indicates most of them are close to the frame edges (SF = SF3) and have
secondary object covering the central region (SF = SF1).

Figure 2.27 - Join Posterior Covariances as in Figure 2.26.
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Figure 2.26 illustrates the covariances between the magnitude and the Sérsic indexes
for the 166 converged galaxies. One clearly see a bimodal distribution, the first
mode,MlowN have galaxies with n < 6, on the other hand the second mode,MhighN ,
have galaxies with n > 6. We see also that MhighN has galaxies with slightly more
luminosity that MlowN . In the right panel, we display the Sérsic index as function of
re, this panel shows that the mode MhighN have larger effective radius re ≥ 5 arcsec,
while for MlowN we have re ≥ 10 arcsec.

Figure 2.28 - Join Posterior Covariances as in Figure 2.27.

Figure 2.27 left panel illustrates the mean surface brightness is shown as function
of n, here the marginal distribution in < µe > is now bimodal, however we see that
most of the galaxies in MhighN have lower surface brightness. In the right panel we
see that the sky background slightly higher for galaxies in MhighN than in MlowN .

Figure 2.28 shows theMag as function of re, here the two modes identified are mixed.
In lower right panel we see the Kormendy scaling relation, KR (KORMENDY, 1977).
KR is an observed scaling relation between the effective radius and the mean surface
brightness of elliptical galaxies. Note that considering these join posteriors instead
of only best-fit solutions keep all the covariances, and allows a proper estimation of
confidence intervals and uncertainties.
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CHAPTER 3

Investigating the Relation between Galaxy Properties and the
Gaussianity of the Velocity Distribution of Groups and Clusters

This chapter is organized as follows: In section 3.1 we define the galaxy sample
and group catalogs considered in this work; Section 3.2 describes and characterize
the reliability and robustness of the approaches for establishing when a velocity
distribution is gaussian or non-gaussian. In section 3.3 we analyze Yang’s Groups
Catalog. Finally in section 3.4 we discuss the principal findings of this investigation.
Throughout this study, we adopt the ΛCDM cosmology with Ho = 72 Km s−1 Mpc−1,
ΩM = 0.27, ΩΛ = 0.73.

3.1 Sample and Data

The velocity distribution of a galactic system carries important information about
its dynamical state. However, the complexity of the large scale structure and the
difficulty in defining unbiased samples limit our understanding of the interplay be-
tween the process of virialization of a system and the properties of galaxies bounded
to it. In this work, we focus our attention on the question of how the gaussianity
(in a state of dynamical equilibrium) of the velocity distribution in a group/cluster
is connected to the properties of the member galaxies. To study the updated group
catalog of (Yang et al. (2007a), hereafter Y07), we selected galaxies from SDSS-DR7
with 0.03 < z < 0.1 and r magnitudes brighter than 17.78, which is the spectroscopic
completeness limit of the survey, guaranteeing that we probe the luminosity function
up to M∗+1 for all systems. The lower limit in redshift is imposed to avoid aperture
effects in the stellar population parameters measured within a fixed aperture of 3
arc sec (diameter) used in the SDSS. The parameters characterizing the stellar pop-
ulations were obtained by running the spectral fitting code starlight (FERNANDES et

al., 2005) on 570,685 galaxies for which zWarning=0 in the SDSS DR7 database. We
derived ages, metallicities, internal extinction and stellar masses, after the observed
spectra are corrected for foreground extinction and de-redshifted, and the single
stellar population (SSP) models are degraded to match the wavelength-dependent
resolution of the SDSS spectra, following prescription in Barbera et al. (2010a). We
adopted Cardelli et al. (1989) extinction law, assuming RV = 3.1. We used SSP
models based on the Medium resolution INT Library of Empirical Spectra (MILES,
Sánchez-Blázquez et al. (2006)), using the code presented in Vazdekis et al. (2010),
using version 9.1 (FALCÓN-BARROSO et al., 2011). They have a spectral resolution
of ∼2.5 Å, nearly constant with wavelength. Models were computed with Kroupa
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(2001) Universal IMF with slope = 1.30, and isochrones by Girardi et al. (2000).
The basis grids cover ages of 0.07 to 14.2 Gyr, with constant log(Age) steps of 0.2.
We selected SSPs with metallicities [Z/H] =-1.71,-0.71,-0.38,0.00,+0.20. The stellar
masses are computed within the fiber aperture and extrapolated to the full extent
of the galaxy by computing the difference between fiber and model magnitudes in
the z band. The stellar mass is then log(M∗) = log(M∗)′ + 0.4 (mfiber,z - mmodel,z).

The dynamical analysis of each group in Yang sample was done using the shift-
gapper technique following prescription described in Lopes et al. (2009) where only
positional and redshift information for every group from the Yang catalog is used.
We re-determine membership and group properties like velocity dispersion, radius
(R200) and virial mass (M200). Our shift gapper code has been compared to a set
of 24 galaxy-based cluster mass estimation techniques and proved to be among the
best three (OLD et al., 2015). Also, we tested membership against which cluster
center to use. The difference in number of members per group when using either
Yang’s original center or the one re-estimated by the shift gapper technique is in
average 3 galaxies. This is important to quantify what is the impact of the center
determination on the gaussianity of the velocity distribution. In the analysis that
follow we use the shift gapper center. Only systems richer than 20 galaxies (within
R200) are used in this work (see Section 3.1 for more details on why we chose this
lower limit). Considering these constrains in redshift (0.03 < z < 0.1) and richness,
we end up with 319 groups.

3.2 Characterizing the velocity distribution of galaxies in
Groups/Clusters

The large scale structure of the Universe exhibits clustering covering the whole
mass domain. Also, the morphology-density relation and the BO effect indicate
that structural parameters and stellar populations of galaxies may vary according
to the environment where these systems are located. Throughout the literature,
environment is mostly intuitively associated to local density, although this may not
be effective in characterizing the role of it on the evolution of a galaxy. It is important
to bear in mind that groups/clusters are not isolated entities; massive clusters,
for instance, are seeing in cosmological simulations as intersections of filaments.
Therefore, it is expected that these systems are always accreting small galaxies (or
groups), which may modify the underlying velocity distribution. It is quite likely that
these accretions: 1) alter the dynamics of the system; 2) change the properties of
the galaxies which were already in the group/cluster; and 3) bring new galaxies that
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may have structure and stellar content significantly different from the ones formed
in situ. This complexity is modulated with the physical mechanisms operating in
clusters of different masses and different stages of dynamical evolution, like ram-
pressure, starvation and harassment. The fundamental question here is: Is there a
relation between galaxy properties and deviations from gaussianity of the velocity
distribution of the galaxies in galactic systems ?

In a previous work Ribeiro et al. (2013), we introduced a new estimator of the dis-
tance between the empirical velocity distribution of galaxies in a group and the theo-
retically expected Gaussian distribution function, the so called Hellinger distance - a
stable approximation to the Fisher information metric (e.g. Amari (1985)). We find
that in gaussian groups, there is a significant difference between the galaxy prop-
erties of the inner and outer galaxy populations, suggesting that the environment
is actively affecting the galaxy properties. Also, in non-gaussian groups there is no
segregation between the properties of galaxies in the inner and outer regions. Recent
works show that multimodal velocity distributions may be very common in galaxy
systems (e.g. Ribeiro et al. (2011), Hou et al. (2012), Einasto et al. (2012a)). How-
ever, multimodality depends on the separation and widths of the modes (see Ashman
et al. (1994)); thus, it is of paramount importance to assess the statistical reliability
in detecting modes in a velocity distribution to conduct a comparative study of how
galaxy properties depend on the characteristics of the velocity distribution.

3.2.1 How to Reliably Detect a Non-Gaussianity in Velocity Distribu-
tions ?

In this investigation, we assume that bimodal expression patterns may result from:
two big groups interacting; a big group accreting a small one; or may be a per-
turbation of a single gaussian distribution. Unimodal distributions would indicate
closeness to virialization. The problem of finding multiple modes (gaussians, for
simplicity) in a distribution is a longstanding one. Helguero Roma (1904), consid-
ers the mixture of two normal distributions, with means µ1 and µ2, and common
variance σ, and proves that the mixture will be seen as unimodal if and only if
| µ1−µ2 |< 2σ. This result is not generalized for the case where the two modes have
different variances (e.g. Schilling et al. (2002)).

An important point to consider when examining a velocity distribution is that we
can either try to identify multiple modes (gaussians), which mixture justifies the
distribution (MCLUST) or we can directly measure how far from a gaussian the
distribution is (HD). In the following, we investigate these two approaches using
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two specific techniques by creating realizations which are perfect gaussian mixtures.
Although this simplifying assumption may not represent what we observe in real
clusters, it serves as a guidance for how these methodologies respond to typical
values of the parameters involved in the multimodality modelling.

3.2.1.1 MCLUST

A given velocity distribution v = (v1, ....,vn) can be seen as a random sample of a
univariate random variable V whose density function is expressed as a mixture of
gaussians.

p(xi | θ) =
NM∑
k=1

πkG(xi | µk, σk) (3.1)

where πk is the proportion of samples in the groups, (µk, σk) are the mean and stan-
dard deviation of the gaussian k and θ denotes the set of all parameters. The number
of modes can be inferred by the EM (Expectation Maximization) algorithm to learn
the parameters for a certain range of different NM (number of normal modes). Al-
though most algorithms for fitting mixtures (where we do not know the number of
components) use EM, certain issues are present: 1) EM strongly depends on ini-
tialization - this is usually fixed by using multiple random starts and choosing the
highest likelihood solution (e.g. McLachlan and Peel (2000)); and 2) EM sometimes
converges to the boundary of the parameter space - this problem is usually solved by
the use of soft constraints on the covariance matrices (e.g. Kloppenburg and Tavan
(1997)). In our case, since we do not expect to have too many groups with a large
number of modes, this is not a critical issue. The optimal NM (model selection) is es-
timated using the Bayesian Information Criterion (BIC) score (YEUNG et al., 2001).
MCLUST is an R package for performing model-based clustering, which outputs µk,
σk and πk, for k running from 1 to NM . We also define the distance between the
first two most dominant modes as δ =| µ1/σ1 − µ2/σ2 |.

MCLUST has made its entrance in astronomy with the papers by Einasto et al.
(2012a), Einasto et al. (2012b), but in other fields is already very popular, especially
biology. For instance, Wang et al. (2009) uses MCLUST to identify genes with
bimodal expression patterns and in order to do this they run a series of simulations
to understand the limits of applicability of the method. First, they generate unimodal
distributions with n points (from 50 to 300) and conclude that MCLUST, as well
MCMC (Markov Chain Monte Carlo), yield very low false positive rate, <3% (type
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I errors, those that occur when the null hypothesis is true but rejected). This means
that running MCLUST on samples with more than 50 points results in detecting
unimodal distributions with high statistical significance. Second, they determine how
reliable their approach is when dealing with truly bimodal simulated measurements.
In this case, δ and π are key factors establishing the performance of the method as
well as n. For 30% ≤ π ≤ 70%, when δ ≥ 4 MCLUST correctly identifies bimodal
distribution 98% of the times, namely a low false negative rate (type II errors, those
that occur when the null hypothesis is false and erroneously taken as true). For
10% ≤ π ≤ 90% and δ ≥ 4 MCLUST drops to 83%. These results are very intuitive
- even if two modes are very separate (large δ), a very small π would indicate that the
smaller mode becomes statistically non-significant diminishing our ability to detect
a true bimodal distribution. Wang et al. (2009) conclude that for π ≤ 0.1 or π ≥ 0.9
and a small sample size (≤100 points), the false negative rate will be large even for
large δ.

Figure 3.1 - Performance of MCLUST in simulated bimodal data set and its dependence
on different sample size in one subgroup (proportion in one group, π = 0.5 to
0.9, in 0.1 steps), the FWHM (or σ) of the gaussian and the number of points
sampling the distribution . We display the percentage of identified bimodal
distributions as a function of δ.

Here, we repeated Wang’s experiment by testing how reliable MCLUST is in recover-
ing bimodal distributions. For a given total number of points (Npoints) defining both
gaussians, a given ratio of σ′s and a given separation between the gaussians (ex-
pressed by δ, as defined above) we created 1000 realizations with 50% ≤ π ≤ 90%,
with 200 realizations for each value of π. This domain in π was used due to its
symmetry nature. The result of this experiment is show in Fig 3.1a, where we can
see that is far easier to detect bimodal distributions with similar σ′s, regardless the
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number points defining the whole distribution. We also confirm the fact that for
δ ≤ 2 the ability of MCLUST in recovering bimodal distributions drops significantly
in all cases. In conclusion, MCLUST depends on Npoints, δ and the ratio σ1/σ2. To
measure how sensitive MCLUST is to π, we run another two experiments, where
we fix the ratio σ1/σ2 and create again 1000 realizations, but this time with a fixed
value of π, 0.5 and 0.9, extreme cases of the proportion in one group. As it is clearly
seen from Figures 3.1b and 3.1c, MCLUST performs better when σ′s are similar.
These results indicate that the final reliability of MCLUST in finding bimodal dis-
tributions depend on all different parameters, some of them more important than
others. We will return to this point in Section 3.2.1.3.

3.2.1.2 Hellinger Distance

The Hellinger Distance (HD) was first introduced in astronomy by Ribeiro et al.
(2013), studying the degree of gaussianity of the velocity distribution of galaxies in
groups. The idea behind the HD parameter is as follows. Consider (Ω,B,ν) to be a
measure space Halmos (1950), where P is the set of all probability measures on B,
assumed continuous with respect to ν. For two probability measures P1, P2 ∈ P,
the Bhattacharyya 1 coefficient between P1 and P2, measuring the closeness of two
probability distributions, is defined as:

p(P1, P2) =
∫

Ω

√
dP1

dν
· dP2

dν
dν (3.2)

The HD is then derived using the Bhattacharyya coefficient. For two discrete prob-
ability measures P and Q, with densities p and q we can write HD as

HD2(p, q) = 2
∑
x

[√
p(x)−

√
q(x)

]2
(3.3)

where x is a random variable. The HD satisfies the inequality 0 6 HD 6
√

2 but
some authors prefer to normalize the range (e.g. Cam (1986)). We estimate HD
using codes available in R environment under the distrEx (RUCKDESCHEL, 2006).

For two continuous analytic functions, estimating HD is straightforward from equa-
tion 3.2. However, to compute HD between (empirical) data and a continuous distri-
bution, an appropriate calibration of the metric is required. The R code to estimate

1An Indian statistician who worked in the 1930s at the Indian Statistical Institute
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Figure 3.2 - Calibration of the relation between HD and the number of points sampling
the distribution.

HD smooths the input observed distribution using a kernel of size equal to σr/2,
where σr is a robust estimate of the standard deviation of the distribution (the fac-
tor 2 was determined empirically). Calibration in this context means establishing
the locus separating G from NG and measuring how HD depends on the number of
points representing the distribution. Here, we proceed in the following way: 1) for
a given number of points, N, we create 1000 realizations of a gaussian distribution
with µ = 0 e σ = 1. Figure 3.2 shows how HD varies with the number of points
defining the gaussian distribution. As we can see, the median HD, computed from
the 1000 realizations, decreases with N (green line). As N goes to infinity HD goes to
0 since at this limit we would be measuring the distance between two perfect gaus-
sians, which by construction is 0; 2) also, for a given N we determine the threshold
between G and NG as the median+3σHD, where σHD is computed from the quartiles
of the distribution of HD for a given N (red line). This is our final rule to establish
when a given observed or simulated dataset is G or NG. An important caveat is that
the input distribution has to be normalized (µ = 0 e σ = 1) for internal consistency
in the R code measuring HD.

We took the same set of realizations used to study the performance of MCLUST
and measured how HD is able to distinguish G from NG simulated distributions and
how sensitive this method is to π, δ, σ1/σ2, and Npoints. Figures 3.3a, b and c show
the results in the same way as presented for MCLUST. We can see that HD has the
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same dependence on all different parameters as MCLUST.

Figure 3.3 - The same as in Figure 3.1 but for the HD measurement of Gaussianity.

3.2.1.3 Comparing MCLUST to Hellinger Distance

We chose MCLUST and HD first of all because they represent robust statistical
approaches already used in other branches of science and there are sufficiently stable
algorithms written for them. Also, they are two totally distinct approaches to identify
bimodality (non-gaussianity). Table 3.1 summarizes what is shown in Figures 3.1
and 3.3. The performance here is measured by the value of δ when the percentage
of identified bimodal distributions is 95%, namely the ability of a given method to
detect two gaussians as they approach each other. The general behavior in both
cases is that as Npoints gets larger both methods can distinguish two gaussians at
smaller δ regardless of π and σ′s. For π ranging from 0.5 to 0.9, HD performs slightly
better than MCLUST, independent of the σ′s. The same behavior holds true when
we fix π = 0.5, which is the best possible proportion of number of points in both
gaussians. For π = 0.9, which is a limiting case when one gaussian dominates the
other (worst proportion), HD and MCLUST are very similar in detecting bimodality.
In summary, although based on idealized realizations, these results show that in the
extreme cases (π = 0.5 and π = 0.9) HD and MCLUST perform similarly and
for 0.5 ≤ π ≤ 0.9 HD performs better specially when Npoints is large and σ′s are
different.

3.2.1.4 How reliable is the measurement of gaussianity ?

The results presented in the previous section are based on idealized distributions
where bimodality is defined by the sum of pure gaussian distributions. However,
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Table 3.1 - Performance of MCLUST and HD based on simulated data.

0.5 ≤ π ≤ 0.9 0.5 ≤ π ≤ 0.9 π = 0.5 π = 0.5 π = 0.9 π = 0.9
σ1 = σ2 σ1 = 2σ2 σ1 = σ2 σ1 = 2σ2 σ1 = σ2 σ1 = 2σ2

Npoints HD MCLUST HD MC HD MC HD MC HD MC HD MC
20 4.9 5.2 8.6 9.5 5.2 4.8 6.6 6.6 5.4 6.3 9.6 11.5
30 4.3 4.7 7.5 8.1 4.4 4.4 5.3 5.9 4.6 5.1 8.5 9.5
40 3.8 4.3 6.9 7.6 3.7 4.1 3.9 5.4 4.1 4.6 7.8 8.7
50 3.6 4.0 6.6 7.3 3.6 3.9 3.6 4.8 3.8 4.4 7.2 8.1
100 2.9 3.3 5.4 6.3 2.8 3.3 2.0 3.4 3.1 3.6 6.1 6.9
200 2.5 2.9 4.6 5.6 2.4 2.9 1.4 2.0 2.7 3.0 5.4 6.1
400 2.1 2.5 2.7 5.0 1.9 2.5 0.8 1.2 2.4 2.6 4.5 5.4

when examining real distributions of line of sight (hereafter LOS) peculiar velocities
of galaxies in clusters we do not have any a priori information on the underlying
distribution. Thus, it is of paramount importance to establish the variance of the
measured gaussianity based on the observed data.

To estimate how our measurement of Gaussianity may vary, we adopt a bootstrap-
ping approach, where we randomly draw from the LOS peculiar velocity distribution
the same number of data points but with replacement, and run MCLUST and HD
in the same way as described previously. For each group, this process is repeated
1,000 times and each time we ask whether the distribution is G or NG. In the case
of HD, the answer is straightforward and the system is G or NG depending on the
percentage of which is larger than 50%. As for MCLUST, G is when the number
of gaussian modes found is one, otherwise is NG. The important aspect of this ap-
proach is that in the end we set the distribution as G or NG with an associated
probability, which later will be used as a weight when we examine the properties of
galaxies in G and NG systems.

3.3 Studying the Yang’s Group Catalog

We use the techniques described earlier to study the dynamical state of the
groups/clusters presented in the updated catalog of galaxy groups of Y07 by mea-
suring the gaussianity of their LOS velocity distribution. More specifically, the
group catalog is based on a sample of 593736 galaxies with available redshifts from
SDSS-DR7, supplemented with additional 3115 galaxies with redshifts from differ-
ent sources. Although this catalog provides mass estimates for all groups, the only
information we used was position on the sky and mean redshift. As described in
Section 3.1, we use shift-gapper technique to reevaluate the dynamical mass of the
groups, their virial radius and membership. We study the velocity distribution of
only groups with at least twenty members within R200, which means 319 systems.

63



As we can see from Figures 3.1 and 3.3 even for systems with twenty galaxies we
expect to detect gaussianity with high statistical significance as long as they are
bimodal with δ ≥4, and σ1 similar to σ2, regardless if we use MCLUST or HD. It is
important to note that the estimations presented in previous section should be seen
as expectations since real distributions can be very different from idealized gaus-
sian distributions, ultimately affecting our ability to detect non-gaussianity which
is critically dependent on the σ1/σ2 ratio and on π.

Figure 3.4 - Velocity distributions of Yang groups studied here. The numbers are those in
the original list of Yang catalog. The left column displays Gaussian systems
and the right one exhibits Non-Gaussians.

We investigate how MCLUST and HD perform when applied to Yang’s catalog of

64



Figure 3.5 - Comparison of the mass distributions according to the different dynamical
stages of the groups. The median M200 for NG groups is larger than for G
ones by 0.22 dex.

groups as a function of δ. Considering all 319 systems, δ, as measured by MCLUST,
varies from 0 to 4.9. But as we learned from Section 3.2.1.1, when δ gets smaller
than 2 the reliability of distinguishing bimodal distributions drops very fast (See
Figures 3.1 and 3.3 ), except when we have a large number of galaxies in the system
(See Table 3.1). Thus, considering all 319 groups, the agreement between MCLUST
and HD is 66%, due to the inaccuracy of both methods to detect small deviations of
gaussianity, although HD performs better than MCLUST specially for larger Npoints.
For δ ≥ 1.3 (27 groups) the agreement is 75% and if we require an agreement of 90%
only 10 systems is left with δ ≥ 1.7. As we discussed in Section 3.2.1.3, MCLUST is
more stringent as it tries to identify multiple gaussians in the distribution, while HD
measures deviations from gaussianity. From Table 3.1, we notice that using HD we
reach a certain reliability at a smaller δ regardless of the pair (π,σ1/σ2). Therefore,
we decided to use HD from now on as the measure of gaussianity of the LOS velocity
distribution of the Yang groups. As mentioned before in Section 3.1, changing the
center of the cluster results in a small difference in the number of members per
group. We tested how that impacts on the gaussianity measurement and found that
not a single group changed its HD or MCLUST assignment.

We find that 241 groups have gaussian velocity distributions (G) (241/319 ∼76%),
which is in agreement with the 70% obtained by Ribeiro et al. (2013), examining
groups of the Berlind’s sample. This is very reassuring since the method presented
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in Ribeiro et al. (2013) is similar but not quite the one employed in this work and
Yang and Berlind samples are totally independent, even determined with distinct
methods. Figure 3.4 displays a few examples of velocity distributions of G and NG
systems in the Yang sample, showing how well our gaussianity classification works.
In order to keep our analysis of the stellar populations of the galaxies in G and
NG systems as meaningful (and consistent) as possible, we restricted our sample
to groups for which the probability of the gaussianity, measured using bootstrap
in the same way described in Section 3.2.1.4, is higher than 70%. Applying this
criterion we end up with 171 G and 43 NG groups. We measured how this limiting
probability of gaussianity impacts on the total sample by comparing the mass (M200)
distribution of these two subgroups with the distribution for the whole sample of 319
systems (Figure 3.5). The permutation test 2 Fay and Shaw (2010) is used to test the
null hypothesis that two samples have identical probability distributions. We find
that G systems have M200 distributions similar to the total one (p-value = 0.19)
while NG systems have M200 distributions significantly different from to the total
sample (p-value = 0.012). The observed discrepancy of the M200 distributions of NG
groups is more likely related to the asymmetry of the velocity distribution along
the LOS, which may lead to an overestimation of the group’s velocity dispersion
and consequently its mass. This tendency of NG systems being more massive was
already observed by Ribeiro et al. (2013). We note that this effect does not hinder
our analysis, actually it points to a more fundamental problem of measuring virial
mass using velocity dispersion, namely this scheme is only valid when the systems
have a gaussian velocity distribution, which must be measured a priori.

Another concern is related to the cutoff in richness when defining the groups from
Yang sample. We impose a minimum number of twenty galaxies in a system (mem-
bership defined by Yang), to be included in the shift-gapper analysis and this trans-
lates into a cutoff in mass. From the M200 and NR200 relation, where NR200 is the
number of galaxies within R200 with Mr ≤ −20.55, we find that a mass cutoff of
1014.0 M� corresponds to NR200 = 20. This limiting mass reduces the sample size
significantly, 143 G and 34 NG systems are left in the sample.

Still, due to the close correlation of X-ray emission and mass for clusters of galaxies
(e.g. Reiprich and Böhringer (2002)), it is instructive to check, from X-ray clus-
ter surveys, how much of this last sample has X-ray properties, in this case X-ray
luminosity, LX, that might be useful as mass proxy. The two most recent X-ray
cluster surveys with significant coverage are NORAS (BÖHRINGER et al., 2000) and

2Using the function permTS in R package under the distrEx (RUCKDESCHEL, 2006)
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REFLEX (BÖHRINGER et al., 2004), totalling a sample of 825 cluster with X-ray
and spectroscopic informations. Examining NORAS and REFLEX we look for the
nearest (in projection) Yang groups in a search radius of up to 100 arc min and
we convert the angular separation found between matched clusters at physical dis-
tances using the redshifts. Following Lopes et al. (2006) and Gal et al. (2009), we
use as maximum physical distance the value of 1.5Mpc and we obtain only 22%
of our total sample are matched. However, when we look for Yang groups to the
more heterogeneous BAX database (which is an online research database containing
information on all galaxy clusters with X-ray observations to date), assuming the
same criteria adopted previously, our match rate increases significantly to 58% for
the NG sample and 43% for the G sample. Although our match rate has increased
considerably, there is the possibility that these values have been affected due to
selection of X-ray cluster samples being significantly biased low, ∼ 29%, in favor
of the peaked, Cool-Core objects (ECKERT et al., 2011). In the analysis that follows
we consider two specific luminosity domains: Bright means Mr ≤ −20.55, which is
the limiting absolute magnitude corresponding to the spectroscopic completeness of
SDSS-DR7 at z = 0.1, namely the bright regime probes the systems up to M? + 1
(BLANTON et al., 2006); Faint means −20.55 < Mr ≤ −18.40, where the limiting
absolute magnitude corresponds to the spectroscopic completeness of SDSS-DR7 at
z = 0.04. Thus, the faint regime is analyzed only for systems in the 0.03 ≤ z ≤ 0.04
domain and it probes the luminosity function down to ∼ M? + 3.

3.3.1 Measuring Skewness and Kurtosis - Searching for infall popula-
tions

Visual inspection of the velocity distribution along the LOS of NG systems (Figure
3.5) shows clearly significant amount of skewness. In this Section, we quantify the
deviation of the system’s global velocity distribution along the LOS from a Gaussian
using skewness and kurtosis. Skewness is related to the third, m3, and the second m2

(the variance) moments of the distribution 3 and measures the asymmetric nature
of the distribution – negative or positive skewness indicates long left or right tail in
the distribution, respectively. Since we are always dealing with a sample instead of
the whole population, the skewness can then be expressed following:

Skewness =

√
n(n− 1)
n− 2

m3

m
3/2
2

(3.4)

3m2 = 1
n

∑n
i=1(x− x̄)2,m3 = 1

n

∑n
i=1(x− x̄)3
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where n is the number of data points (see Cramer (1997)). A more statistically
meaningful measurement is the number of standard errors separating the sample
skewness from zero and this is done dividing the Skewness by the standard error of
skewness (SES) following the equation (see Cramer (1997)):

ZSkewness = Skewness

SES
(3.5)

where

SES =

√√√√ 6n(n− 1)
(n− 2)(n+ 1)(n+ 3) (3.6)

In the case where a distribution is symmetric, we can still measure the height and
sharpness of the peak relative to the entire distribution, a quantity named kurtosis,
defined by the fourth and second moments of the distribution 4. We express the
sample kurtosis following also Cramer (1997) as

Kurtosis = n− 1
(n− 2)(n− 3)

(n+ 1)
(
m4

m2
2
− 3

)
+ 6

 (3.7)

where the term (m4/m2-3) is called excess kurtosis. Following the same reasoning
as for Skewness, we write how many standard errors the sample excess kurtosis is
from zero:

ZKurtosis = Kurtosis

SEK
(3.8)

where

SEK = 2(SES)

√√√√ n2 − 1
(n− 3)(n+ 5) . (3.9)

Figure 3.6 shows the measured skewness and kurtosis of the LOS velocity distri-
bution of G and NG groups in the two magnitude regimes, bright (panel a) and

4m4 = 1
n

∑n
i=1(x− x̄)4
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Figure 3.6 - (a) Excess of Skewness versus excess of Kurtosis for G and NG groups, using
only bright galaxies. The box indicates the 95% probability area. (b) the same
as in (a) but using only faint galaxies.

faint (panel b). The dashed box indicates the region of a two-tailed test of Skewness
and excess Kurtosis 6= 0 at the 0.05 significance level (± 1.96 for the Zscore values).
The test statistic indicates whether the whole population is probably skewed or
platykurtic (or leptokurtic) 5 but not by how much - the bigger Zscore, the higher
the probability. The box indicated in both panels of Figure 3.6 is for 95% prob-
ability. In Figure 3.6a we note that most of the data falls within the box where
we cannot reach a firm conclusion on the skewness or kurtosis of the LOS velocity
distribution. However, there is a systematic difference in ZKurtosis with NG groups
being more platykurtic than the G groups and negligible difference in ZSkewness. The
mean difference in ZKurtosis between G and NG groups is ∼0.5. Also, there are 8
out of 34 (24%) NG groups outside the box in contrast with 2 out of 143 (0.01%) G
groups, indicating that the velocity distribution of NG groups is more distorted wrt
a gaussian than that of G systems. In Figure 3.6b, we compare again G versus NG
groups looking at the faint galaxy population. It is very clear that NG systems have
more negative Zkurtosis (mean ∼-1.67) than the G ones (mean ∼-0.43) with ∼50%
of the groups outside the box (5 out of 9). The mean ZSkewness for NG groups is
around 0.77 while for G’s is -0.15. These results confirm that NG groups have LOS
velocity distributions significantly different from a gaussian one.

5platykurtic - excess kurtosis <0, means that in comparison with a gaussian, the studied dis-
tribution has its central peak lower and broader, and leptokurtic - excess kurtosis >0, means that
it is higher and sharper
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3.3.2 What do we learn from the Projected Phase Space (PPS) ?

It is a well known fact that properties of galaxies are affected by the environment
trough which they pass during their life. In a simplified view, when a galaxy en-
ters a filament experiences some pre-processing due to the increase in local density
(PORTER et al., 2008) and eventually when it reaches a massive cluster will have its
star formation history significantly changed. Therefore, in this section we investi-
gate the signatures of virial, backsplash and infall populations in the LOS phase
space and the possible relation to the stellar population properties of galaxies in-
habiting them. Figure 3.7 displays the stacked projected phase-space diagram for

Figure 3.7 - Stacked observed phase-space diagram for G and NG groups/clusters in our
sample, separated by two different luminosity regimes.
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G and NG systems separately considering the bright (panels a and c) and faint
(panels b and d) regime of their luminosity functions. The peculiar velocity is nor-
malized by the cluster velocity dispersion and the radial distance from the center
of the system is normalized by the virial radius (R200). We note that the number
of galaxies in the faint regime, 3268, differs significantly from that in the bright
regime, 6506. From panel (b), we can clearly see that the difference is due to the
faint component in G groups. First, we have used an online Halo Mass Function
calculator (http://hmf.icrar.org/, Murray et al. (2013)) to estimate the number of
clusters in the 0.03 ≤ z ≤ 0.04 and masses > 1014.0 M�, regardless if the systems are
G or NG. Different prescriptions for the Mass Function result in number of clusters
between 22 (PRESS; SCHECHTER, 1974) and 41 (BHATTACHARYA et al., 2011), which
is consistent with the number of clusters we have in our sample, 31. This reinforces
the fact that the difference we see between G and NG groups in the faint regime
seems to be real. We count 761 galaxies in the faint regime of G groups compared
to 2507 galaxies in NG groups.

Considering that there is no obvious way of distinguishing galaxies in the PPS,
we have used three different approaches to define regions that may affect galaxy
properties in distinct ways:

3.3.2.1 Using a Kernel density based global two-sample comparison Test

Comparing PPSs defined for different environments in different luminosity regimes
through the Anderson-Darling test in 2D (see B.1). Table 3.2 summarizes the results.
In each comparison we run a bootstrap simulation creating 1000 random samples
with replacement and each time we ask if the p-value is less than 0.05 (significance
level). Depending on the number of times the answer is yes or no we decide wether
the samples are similar or not. For instance, in the comparison between the bright
and faint samples of G systems, we find that in 0 out of 1000 cases the p-value is
under 0.05, indicating that these two samples are statistically similar. Notice from
Table 3.2 that, GF X NGF are NGB X NGB are all statistically different, while
GB is statistically similar to NGB. These results reinforce, once again, that the
discrimination between G and NG does not result from any methodological detail
and seems to genuinely represent a physical difference, specially when we focus on
the faint component.
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Table 3.2 - Comparison of the PPS of G and NG systems in the bright and faint regimes,
using the Anderson-Darling test in 2D.

Sample Ncases Are they Similar ?
(Statistically)

GB X GF 0 Y
GB X NGB 1 Y
GF X NGF 723 N

NGB X NGF 951 N

3.3.2.2 Ad Hoc Definition of Regions of the PPS

The second test invokes arbitrary definitions of three specific regions of the PPS:
Low velocity (LV) (|∆V/σ| < 0.5), High velocity (HV) (|∆V/σ| > 0.5); Inner re-
gion (R/R200 < 0.5), Intermediate region (0.5 < R/R200 < 1.0), and Outer region
(R/R200 > 1.0).

Table 3.3 summarizes the statistics for the regions. Median values are presented for
Log Mstellar, Age, and Z, as well as the fraction of galaxies in each region and the
p-values when comparing LV and HV subspaces. We can summarize our findings
with this type of analysis of the PPS in the following way:

• The first point to highlight when examining the G-BRIGHT results is that
LV and HV galaxies in the central regions are statistically different as far
as Log Mstellar, Age, and Z are concerned. LV galaxies are more massive,
older and have higher metallicity than HV galaxies. In the intermediate
region, the differences in Age and Z remain, but not in Log Mstellar, while
in the outer regions we did not observe significant differences between LV
and HV galaxies. The fraction of LV galaxies does not change from inner
to outer regions and the fraction of HV galaxies shows a slight increase
toward the center.

• Extending the analysis to G-FAINT, we find no significant differences be-
tween LV and HV galaxies (see p-values) in any clustercentric distance,
although a small gradient in Age and Z occurs for LV and HV galaxies.

• Again, for NG-BRIGHT we do not find significant differences between LV
and HV galaxies, with only is a small trend of older Age towards the center
(mainly for LV galaxies).

• The NG-FAINT subsample is where we find more significant differences.
In the central and intermediate regions LV galaxies are older than the HV
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Table 3.3 - Comparative analysis of the different regions defined in the PPS.

Environment/Sample Type Fraction Log Mstellar Age Z
GAUSSIAN/BRIGHT

Inner Region LV 65% 11.04 8.25 0.044
HV 23% 10.96 7.56 0.024

p-value - 0.0008 0.0144 0.0013
Intermediate Region LV 64% 10.99 7.03 0.032

HV 21% 10.96 5.88 -0.006
p-value - 0.1464 < 10−4 < 10−4

Outer Region LV 68% 10.96 6.20 0.009
HV 16% 10.97 5.60 -0.023

p-value - 0.9998 0.0827 0.1267
GAUSSIAN/FAINT

Inner Region LV 65% 10.19 5.91 -0.059
HV 24% 10.10 5.67 -0.076

p-value - 0.2423 0.4642 0.66
Intermediate Region LV 55% 10.12 3.82 -0.214

HV 25% 10.05 4.65 -0.144
p-value - 0.2336 0.3874 0.0878

Outer Region LV 67% 10.05 2.73 -0.285
HV 16% 9.92 2.70 -0.257

p-value - 0.2805 0.9871 0.9991
NON-GAUSSIAN/BRIGHT

Inner Region LV 65% 11.00 7.35 -0.042
HV 19% 11.03 7.04 -0.022

p-value - 0.3520 0.6042 0.0613
Intermediate Region LV 59% 10.98 6.53 0.033

HV 28% 11.02 6.22 0.022
p-value - 0.2945 0.2939 0.4841

Outer Region LV 69% 10.97 6.29 0.017
HV 18% 11.04 6.82 0.024

p-value - 0.0985 0.1185 0.4632
NON-GAUSSIAN/FAINT

Inner Region LV 64% 10.11 5.56 -0.077
HV 21% 10.02 4.70 -0.111

p-value - 0.2123 0.0058 0.3000
Intermediate Region LV 57% 9.98 4.00 -0.146

HV 29% 9.99 3.10 -0.225
p-value - 0.9325 0.0429 0.0085

Outer Region LV 60% 10.05 3.88 -0.171
HV 24% 10.03 3.56 -0.193

p-value - 0.8904 0.6795 0.8593

ones. In the intermediate region we find that LV galaxies are significantly
more metal rich than the HV ones. In the outer regions, Log Mstellar, Age,
and Z are indistinguishable;

3.3.2.3 Defining Regions of the PPS Based on Cosmological Simulations

As an independent check on how the properties of galaxies vary over the PPS, we
defined, instead of specific regions as in the preceding subsection, different regions
indicated by results obtained through the analysis of cosmological simulations (MA-

HAJAN et al., 2011). In Figure 3.7 we show three main regions of interest in the PPS
that may be reflecting the accretion epoch: a) the virial region (in red, hereafter
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denoted by VIR) is likely to be dominated by galaxies which participated of the
cluster core formation at early times; b) the backsplash region (in green, hereafter
denoted by BS) Gill et al. (2005) where galaxies have passed through the cluster
core once and are heading out of the cluster; and c) the infall region (in blue, here-
after denoted by INF) populated by galaxies that have been accreted to the cluster
from the surroundings. Oman et al. (2013) have shown that although we see a lot
of structure in the radial phase-space (radial velocity versus radial position) that is
lost when we exam the PPS (projected LOS velocity versus projected radial posi-
tion), the latter allows better separation between VIR, BS and INF galaxies. These
three locations are well separated in radial phase-space diagram (e.g. Mahajan et al.
(2011)). We examine the stellar population properties in these three regions aiming
to find a relation between the star formation history and the environment, where
here we interpret environment not only as G versus NG but also which region of the
phase-space the galaxy is.

Figure 3.8 - Cumulative distribution of age in different regions of the phase-space diagram,
as described in Figure 3.7.
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Table 3.4 - p-values for the permutation test (in parenthesis, below, p-values for Anderson-
Darling test) when comparing VIR, BS and INF regions for a given environ-
ment, G or NG systems.

Region of Phase Space Gaussianity Mag Regime Age Z Mstellar

VIR X INF G Bright 0.002 0.002 0.002
(< 0.0001) (< 0.0001) (0.0003)

VIR X BS G Bright 0.002 0.002 0.002
(< 0.0001) (< 0.0001) (< 0.0001)

INF X BS G Bright 0.104 0.012 0.838
(0.062) (0.033) (0.944)

VIR X INF G Faint 0.002 0.002 0.002
(< 0.0001) (< 0.0001) (0.0008)

VIR X BS G Faint 0.002 0.004 0.068
(< 0.0001) (0.0002) (0.074)

INF X BS G Faint 0.192 0.336 0.116
(0.372) (0.499) (0.101)

VIR X INF NG Bright 0.044 0.076 0.982
(0.134) (0.017) (0.594)

VIR X BS NG Bright 0.044 0.004 0.120
(0.014) (0.001) (0.072)

INF X BS NG Bright 0.988 0.694 0.224
(0.681) (0.728) (0.064)

VIR X INF NG Faint 0.044 0.016 0.110
(0.044) (0.010) (0.067)

VIR X BS NG Faint 0.010 0.002 0.316
(0.010) (0.006) (0.202)

INF X BS NG Faint 0.760 0.564 0.456
(0.938) (0.388) (0.335)

Figure 3.8 displays the cumulative distribution of age in three distinct regions of
the phase-space. We compare the distributions by using the permutation test. Table
3.4 presents the comparisons between VIR, INF and BS for a given environment,
G or NG. As we did previously, we test the null hypothesis that two samples have
identical probability distributions. In what follows we impose a significance level
of 5%, namely if the p-value is less than or equal to the chosen significance level
(0.05), the observed data is inconsistent with the null hypothesis, meaning that the
two distributions are statistically different. In panel (a), we see that the cumulative
distribution of the age of the galaxies in the VIR region differs significantly from
those in the BS and INF regions while we do not see any significant difference
between the age distributions of galaxies in BS and INF. If we ask which fraction
of the galaxies in each region have ages less than 7 Gyrs (the median age of all
bright galaxies in G systems) we find that in the VIR is ∼ 38%, in the INF ∼ 60%
and in the BS ∼ 70%. These numbers show unequivocally that in G systems, bright
galaxies in the BS and INF regions are significantly younger than those in the VIR
region. In panel (b), we extend the comparison taking into account only the faint
galaxies and the result is somewhat different - age of galaxies in the VIR region is
significantly different from those in the INF region but similar to those in the BS
region, while the age distribution of galaxies in BS and INF are statistically similar.
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It is important to note that although we considered the age distributions of galaxies
in VIRand BS similar the significance (0.068) is quite close to the limiting value we
used (0.05). In this case we find that ∼ 25% of the galaxies in the VIR region have
ages less that 4 Gyrs (the median age of all faint galaxies in G systems), while in
the BS region this number is ∼ 65% and in the INF region is ∼ 76%. There are
no galaxies in the INF (BS) region older than 7 (10) Gyrs. We can clearly see that
faint galaxies, with BS and INF orbits, in G systems are very different from the VIR
ones, manifesting a significant environmental effect. Panels (c) and (d) are similar
to the panels (a) and (b) but for the NG systems. The same qualitative results were
found, namely when examining the bright galaxies we find that those in BS and
INF regions have similar age distributions and both are statistically different from
those in the VIR region. However, it is noticeable that the distributions are closer
to each other than in the case of G systems. The fraction of bright galaxies with
ages less than 7 Gyrs is ∼ 43% in VIR, ∼ 56% in BS and ∼ 63% in INF. These
fractions are much closer to each other compared to the ones for bright galaxies in
G systems. For the NG systems the difference wrt to G systems is even larger, the
fraction of faint galaxies with ages less than 4 Gyrs is ∼ 40% in VIR, ∼ 50% in BS
and ∼ 55% in INF. Comparison of panels (b) and (d) shows, even visually, how the
star formation history of faint galaxies in NG systems seems to be very different
from the faint ones in G systems.

Figure 3.9 exhibits the cumulative distribution of metallicity in the same three dis-
tinct regions of the phase-space as presented in Figure 3.8 for the age distribution.
Comparison of the distributions in the VIR, INF and BS regions, based on the per-
mutation test, is also presented in Table 3.3. Keeping the same significance level
of 5%, we find that for bright galaxies in G systems all three regions exhibit sig-
nificantly different Z distributions. As for the faint galaxies in G systems, the Z
distribution in the VIR region is significantly different from INF and BS, while
these two regions present similar Z distributions. Regarding the bright galaxies in
NG systems the situation is different. In this case, the Z distributions of galaxies in
VIR and INF are similar, as well as those in the INF and BS. However, in this par-
ticular galaxies in the VIR and BS have Z distributions significantly different. The
faint galaxies in NG systems have the same behavior as bright galaxies as far as Z
distributions are concerned, which can be seen from Table 3.3. Another comparison
worth doing is between bright and faint galaxies in each environment, G and NG,
and in each region, VIR, BS and INF. All comparisons have displayed a p-value of
0.002, indicating that bright and faint galaxies have age and Z significantly different
regardless they are in G or NG and regardless the type of orbit they are in. This in
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Figure 3.9 - Cumulative distribution of metallicity in different regions of the phase-space
diagram, as described in Figure 3.7.

an important results that will be further explored in Section 3.4.

In Figure 3.10 we present the cumulative distribution of stellar mass in the three
distinct regions of the phase-space as in Figures 3.8 and 3.9 (See Table 3.3 for the
permutation test results). Looking at the bright galaxies in G systems (panel a),
we find a significant difference between the distribution of stellar masses of galaxies
in the INF and BS regions in comparison with that of galaxies in the VIR region,
in the same way as we found for Age. The high-end stellar mass of bright galaxies
in the VIR region of G systems is roughly 0.5 dex higher than those in the INF
and BS regions. In panel (b) faint galaxies in G systems are compared as far as
the stellar mass distribution is concerned and here only VIR and INF are different,
the others, VIR versus BS and INF versus BS are statistically similar. However, we
should note that comparison between VIR and BS is only slightly above the limit
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Figure 3.10 - Cumulative distribution of stellar mass in different regions of the phase-space
diagram, as described in Figure 3.7.

of 0.05 used here. Panels (c) and (d) do similar comparisons as presented in panels
(a) and (b) except that in this case we consider NG systems. As attested by the
results presented in Table 3.4, all distributions are statistically similar, using the
same significance level of 5%.

3.3.3 How do the Stellar Population of galaxies respond to the Environ-
ment ?

In this Section we explore a different way of probing the environmental effect, namely
by measuring galaxy properties as a function of the distance from the center of the
cluster. As we can clearly see from Figure 3.11, for the range 1.5 ≤ R/R200 ≤ 2.0 we
have a mixture of galaxies with infall and backsplash orbits and they seem to have
significantly different metallicity distributions, for instance. Therefore, to further
study how the stellar population of galaxies in groups depend on the environment,
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we investigate four quantities of interest as a function of the distance from the
center of the cluster, normalized by R200: Age of the stellar population weighted by
luminosity expressed in Gyr. This parameter reflects more specifically the last star
formation episode in the galaxy rather than a global age; metallicity, [Z/Z�], in solar
units; stellar mass, Mstellar in M�; and internal extinction, AV. Figure 3.11 displays

Figure 3.11 - Stellar population parameters as a function of the cluster-centric distance.

all these quantities. The profiles were established in bins of R/R200 = 0.2 and in
each bin we measure the median and Q-sigma, a robust estimator of the standard
deviation (Q-sigma = 0.7415*(Q75-Q25), where Q25 and Q75 are the quartiles of
the distribution). In panel (a) we see that a certain trend is present for bright as
well as for faint galaxies regardless of the G or NG characterization of the velocity
distribution and that is for R/R200 ≤ 0.75 bright galaxies in G systems are older than
bright galaxies in NG ones by 0.71 Gyr. For R/R200 > 0.75 we see the opposite trend
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by 0.56 Gyr. Examining the faint galaxies the behavior is the same with differences
in age of 0.70 and 0.90 Gyr, respectively. In panel (b), we see that metallicity behaves
somewhat similarly. Within R/R200 ≤ 0.75, bright galaxies in G systems are slightly
more metal rich than their counterparts in NG systems, ZG − ZNG = 0.01 and for
R/R200 > 0.75, ZG − ZNG = -0.02. As for the faint galaxies we notice that for
R/R200 ≤ 0.75 the difference ZG − ZNG = 0.04, namely in the central region faint
galaxies in NG systems are significantly more metal poor than faint galaxies in G
systems, while in the R/R200 > 0.75 region ZG−ZNG = -0.06. In other words, in the
outskirts there is a large difference in metallicity when we compare faint galaxies in G
and NG systems, evidencing a significant difference in stellar population properties
between G and NG, as far as faint galaxies are concerned. The same effect is present
in Age but not as significant as for faint galaxies. Panel (c) compares the stellar mass
of bright and faint galaxies in G and NG and we see that for bright galaxies there
are no differences between G and NG groups - for R/R200 ≤ 0.75 we have ∆Mstellar

= 0.05 dex and for R/R200 > 0.75, ∆Mstellar = -0.07 dex. When we look at the faint
population, once again the situation is significantly different. For R/R200 ≤ 0.75 we
have ∆Mstellar = 0.28 dex and for R/R200 > 0.75, ∆Mstellar = -0.05 dex. Here we see
faint galaxies having significantly differentMstellar only in the central regions, in NG
systems they are less massive than in the G ones. In panel (d) we exhibit internal
extinction, as a function of the clustercentric distance. As we can clearly see the
variation (measured by the standard deviation in each bin) is very large, preventing
any reliable comparison between bright and faint galaxies in G and NG systems.
The only global trend we can see is that AV increases as we probe the outskirts on
a cluster, which is expected as a consequence of the morphology density relation.
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3.4 Discussion

Environment plays a major role in determining how galaxies evolve. Since Dressler
(1980), we learned that galaxies in high galactic density are different wrt those in
the low density regime. In this work, we investigate the galaxy properties in clus-
ters, from the center to the outskirts spanning roughly seven orders of magnitude
in luminosity surface density. In the last fifteen years several contributions lead to
the indication that clusters can be modeled simply as a virialized component dom-
inated by old galaxies plus a quasi-equilibrium one mainly constituted by younger
galaxies (e.g. Carlberg et al. (1997), Ellingson et al. (2001)). The later, results more
likely from recent accretions from filaments which may alter the galaxy properties
significantly before they mix with the older and virialized population.

In this study, we investigate the relationship between stellar population properties
and cluster environment. To define environment, we considered two independent
ways of measuring the gaussianity of the velocity distribution and attributed a
probability to it. We have used simulated data to assess the limits of applicabil-
ity of the methods employed. This is quite an improvement wrt the methodologies
based on more traditional normality tests (see Ribeiro et al. (2013)). We then study
the groups in the Yang’s catalog and essentially HD and MCLUST agree reasonably
well, 75% when δ ≥1.7, reinforcing their strength in distinguishing G from NG very
accurately as long as the probability of being G or NG is high (larger than 70%, for
instance). In Figure 3.4 we can clearly see how the G groups are more symmetric
than the NG ones, which present significant tails in the distributions.

Although the deviations in the velocity distribution are clearly seen, a more quanti-
tative measure is needed. Here, we have measured the excess of skewness (ZSkewness)
and kurtosis (ZKurtosis). Figure 3.6a shows a significant difference between G and
NG when taking into account only bright galaxies, indicating that the separation
between G and G is not fortuitous. NG groups have a very negative ZKurtosis in com-
parison with G groups. But the most striking result is when we examine the faint
galaxies in both environments. Here we estimate an average Skewness and Kurtosis
and compare directly to the results obtained by Vijayaraghavan et al. (2015). They
run simulations to study how are dwarf galaxies affected when a group infall to a
cluster. Their findings are very elucidating when compared to ours. First, in their
case, the velocity distribution of dwarf galaxies have a high positive Skewness (∼ 1.0)
in the first pericentric passage and a low negative Skewness in the second passage
(∼-0.3). The variation of Skewness as a function of time does not seem to depend
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on the mass of the group and cluster and also on the light of sight we measure the
velocity distribution. For comparison, we measure a median Skewness of 0.17±0.16
for the faint galaxies in NG groups (here we measure Skewness and not ZSkewness to
be compatible with their results), which is consistent with the picture where these
dwarf galaxies are seen right before or after the first pericentric passage. As far as
Kurtosis is concerned, Vijayaraghavan et al. (2015) show that the variation with
time is strongly dependent on the mass of the group and the cluster and overall
there is a peak with positive Kurtosis (∼ 1.2) during the first pericentric passage
and then a monotonic increase with time. It is interesting to note that before the
first pericentric passage, Kurtosis has its minimum value (∼ −0.5). In comparison,
we measure a Kurtosis of 0.66 ± 0.57. Based on both measures, Skewness and Kur-
tosis, we conclude that faint galaxies in NG groups are mainly infalling for the first
time in the cluster. Obviously, this result should be seen in average for the family
of NGs but it is noticeable that 6 out 9 NG systems have Kurtosis <-0.5, strongly
supporting the view that faint galaxies in these systems are in the very early stage
of infalling, before the first pericentric passage (see Figure 7a of Vijayaraghavan et
al. (2015)).

Comparison of the PPS using the whole 2D distribution indicates that faint galaxies
of G and NG systems are distributed very differently (see Table 3.3). There are far
more faint galaxies in NG than in G systems. This is further supported by the fact
that in NG groups bright and faint galaxies are also distributed in differently, which
is not the case for G groups. These trends may be associated to a higher infall rate
in NG groups and if this is the case we should find signs of pre-processing, as we will
discuss later. We examined the cumulative distribution of Age, [Z/Z�], and Mstellar

and found that for G systems there are no faint galaxies in the INF (BS) region older
than 7 (10) Gyrs, possibly manifesting the morphology density relation. As for the
NG systems, on the contrary, we find that the age distribution for all three distinct
orbit classes are statistically similar, which may be interpreted as a higher infall rate
of galaxies into the NG groups. In this sense, NG systems are the ones with more
disturbed velocity distribution and the stellar population properties are well mixed.
This reinforces how the dynamical state is intimately related to the average stellar
population. When we examine the metallicity distribution we find essentially the
same qualitative result but one striking feature is noted - there is an obvious excess of
more metal rich galaxies in the faint systems of NG groups than their G counterparts.
Also, there is an excess of higher stellar mass galaxies in the NG-Faint than in the
G-Faint groups. Both results may be related to preprocessing mechanism and agrees
well with results from Roberts and Parker (2017). An important feature that shows
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the possible action the pre-processing mechanism is the way Age and [Z/Z�] vary
with clustercentric distance. For R≤0.75R200 bright galaxies in G groups are older
than the ones in NG groups, while for R≥0.75R200 is the opposite, bright galaxies
in NG groups are older than the ones in G groups. The same trend is observed for
the faint galaxies. Regarding metallicity we see almost the same behavior, although
in the central regions (R≥0.75R200) bright galaxies in G groups are only slightly
older the ones in NG groups. In summary, these profiles show that in the outskirts
of NG groups, galaxies are older and more metal rich than galaxies in the outskirts
of G groups. Notice also, that stellar masses have very similar distributions in G and
NG systems, indicating that the way gas is converted into stars has an efficiency
independent of the environment, which reproduces quite well the result obtained by
Carollo et al. (2013).

We also compare LV and HV galaxies between the G and NG environments. An im-
portant outcome of this analysis is to verify that HV galaxies are comparable in both
environments, while LV galaxies are older in the G-bright sample (up to R200) than
in the NG-Bright sample; and LV objects are younger and exhibit lower metallicities
in the G-faint sample (at R> R200) than in the NG-faint sample. Taken together,
these results suggest environmental mechanisms acting on galaxies, especially if we
understand that LV objects are those which have been in the cluster environment
for the longest time. This is in agreement with the fact that significant differences
always occur indicating more evolution in LV objects, strengthening the idea of en-
vironmental effects acting on these galaxies. On the other hand, the presence of
older LV objects with higher metallicities in the NG-faint sample (for R>R200) than
in the G-Faint sample possibly reflects some pre-processing effect which would be
occurring only in the surroundings of NG systems, again in agreement with Roberts
and Parker (2017).
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CHAPTER 4

Conclusions and Perspectives

4.1 Summary

In Chapter 2, as a result of our scientific computing research, we introduce new
computational resources (actually, a new pipeline) for obtaining the structural pa-
rameters of galaxies, in an automated way and considering, for the first time, a
enhanced Bayesian approach into the context of GALPHAT applications. Our ma-
jor contributions and findings are summarized as follows:

• PyPiGALPHAT was developed to deal with modelling of galaxy images.
We implemented several improvements in GALPHAT’s algorithms for the
model image generation (e.g. interpolation, rotation and convolution) and
the likelihood computation. Tests considering the new implementation
indicate that the model predictions computed are more accurate than
YMK10 implementation, especially in the central region.

• Bias on inferred values: Once we assume a given theoretical model (e.g.
Sérsic law) to estimate the structural parameters, the bias represents the
differences between the estimated parameters and the true values. We can
measure the bias considering simulated images ensembles varying the main
structural parameters and the FWHM.We find that the bias is higher when
the profiles are stepper (high n ≥ 8). Our tests extended the parameter
space range of the initial benchmark done by YMK10. Here, we emphasize
the major consequences of the bias:

– The ratio between effective radius and FWHM affects critically the
bias. We find that when re is comparable to the FWHM, the bias
absolute values and dispersion are larger. This effects its strongly am-
plified for high n values.

– The Sérsic indexes tend to be over estimated, as n increases from 2 to
10, the biases for n can have variations of a factor 3 to 9. For n = 2
the biases are negligible, while as n becomes larger (e.g. n ≥ 8), the
bias and dispersion also increases.

– To understand the effect of the varying S/N in the bias, we consider
typical (450) and extreme (300 and 750) cases for the SDSS sample.
We find that when the S/N vary from 300 to 450, the bias decreases
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by a factor at least a factor of 1/3 for most the cases, as well varying
from 450 to 750 the reduction is a factor of 1/5 approximately.

– As far as the effect of the axis ratio, we find that a weak correlation
of the bias in q and n, increasing by a factor of 1.5 as n increases from
2 to 10. At the same time, the dispersion in the bias increases by a
factor of 2. In case of q = 0.5, the bias becomes more negative than
case with q = 0.9. It has been found that rounded galaxies (q = 0.9)
have slightly smaller bias than stretched ones (q = 0.5).

• Frequentist vs Bayesian: We have shown that the inference done by GAL-
PHAT is more robust than GALFIT. A comparison between GALPHAT
and GALFIT indicates that for low n (n = 2) the bias is negligible and
both methods work similarly well. For higher n values, n = 8, the GALFIT
bias is significantly larger than GALPHAT’s. The most striking difference
appears for more extreme values of n, n = 10, GALPHAT’s bias is at least
three times lower than GALFIT’s. One see that the bias for n is positive,
therefore there is a strong evidence that GALFIT can lead in overesti-
mated Sérsic indexes. So, important scaling relations inferred considering
structural properties obtained with frequentist approaches can be affected
by these biases.

• BF reliability for model selection: We tested the BF ability to discriminate
the light profiles (e.g. pure Sérsic law) with and without a central point
sources(e.g. Sérsic law + PS). GALPHAT’s marginalization algorithms
allow us to compute the evidences that supports each model considered
and the BF. We find that for SDSS FHWM and pixel scale, the BF can
detect central point sources of galaxy with effective radius larger than
7.92 arcsec. Additionally, for low Sérsic indexes n <= 6 (n > 6), we can
identify point sources with magnitudes 5 (3) mag fainter than the galaxy.
We find that the BF classification errors type I and II are below 14%. We
tested also simulated images considering the HST (FWHM and pixel scale),
our results indicate that galaxies with a typical effective radius 3.96 arcsec
having central point sources can be identified.

• Real Images inferences: The join posterior densities presented here allows
us to measure the covariances and scaling relations between galaxy prop-
erties, e.g. the Kormendy relation. We tested the pipeline with an ETG
sample, our results show a bimodal population, especially when we con-
sider the Sérsic indexes distribution. The first mode, MlowN have galaxies
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with lower n, n ≥ 6, and the second mode, MhighN , have galaxies with
higher n, n > 6. The join posterior distributions indicate that these two
populations have slightly differences in the effective radius re, mean surface
brightness < µe >;, SKY and MAG, e.g MhighN tend to have larger effec-
tive radius (re ≥ 7 arcsec) and slightly larger magnitude. Therefore lower
mean surface brightness. These join posteriors have much more informa-
tions than best-fit scatter plots, they illustrate the covariances between the
model parameters and populations (if any) in the studied sample.

In Chapter 3, we investigate the relationship between stellar population properties
and cluster environment. Our major contributions and findings are summarized as
follows:

• To define environment, we considered two independent ways of measuring
the gaussianity of the velocity distribution and attributed a probability to
it. We have used simulated data to assess the limits of applicability of the
methods employed. This is quite an improvement wrt the methodologies
based on more traditional normality tests (see Ribeiro et al. (2013)).

• Our measurements considering groups in the Yang’s catalog and essentially
HD and MCLUST agree reasonably well, 75% when δ ≥1.7, reinforcing
their strength in distinguishing G from NG very accurately as long as
the probability of being G or NG is high (larger than 70%, for instance).
Comparison of the PPS using the whole 2D distribution indicates that
faint galaxies of G and NG systems are distributed very differently. There
are far more faint galaxies in NG than in G systems.

• We examined the cumulative distribution of Age, [Z/Z�], and Mstellar and
found that for G systems there are no faint galaxies in the INF (BS)
region older than 7 (10) Gyrs, possibly manifesting the morphology density
relation. As for the NG systems, on the contrary, we find that the age
distribution for all three distinct orbit classes are statistically similar, which
may be interpreted as a higher infall rate of galaxies into the NG groups.

• An important feature that shows the possible action the pre-processing
mechanism is the way Age and [Z/Z�] vary with clustercentric distance.
For R≤0.75R200 bright galaxies in G groups are older than the ones in NG
groups, while for R≥0.75R200 is the opposite, bright galaxies in NG groups
are older than the ones in G groups. In summary, these profiles show that
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in the outskirts of NG groups, galaxies are older and more metal rich than
galaxies in the outskirts of G groups.

4.2 Perspectives

4.2.1 A Bayesian Way for Disc/Bulge Decomposition

A critical issue in understanding galaxy formation and evolution is to determine how
bulges and discs evolve with redshift. It is of paramount importance to have robust
observational tools that can be used to calibrate semi-analytical galaxy properties,
and as a consequence to understand the various physical processes that form bulges
and make discs grow (ALLEN et al., 2006a; TASCA; WHITE, 2011). This kind of analysis
will allow us to consider different scenarios where the discs can be formed from the
bulges by secular evolution, mergers or accretion.

Even considering PyPiGALPHAT, the performance obtained is still not enough to
process a very large number of images already available considering cluster general
purpose processing units (CPUs). To clarify this bottleneck, consider the processing
of the complete set of galaxies down to mag of 17.78 (r-band), in the SDSS-DR7
with spectra (approximately 600,000 galaxies). The calculation using 20 processors
(1 node) takes about 40 minutes to process a single galaxy with 150 × 150 pixels,
if we consider having only 20 nodes 40,000 galaxies would take approximately two
months to process, not to mention that this is for just one photometric band, and
is thus completely unfeasible with only CPU clusters. The solution may come from
considering a hybrid computing approach which collaboratively combines Graphics
Processing Units (GPUs) and CPUs speeding up the performance. Since 2006, the
technology known as GPU / CUDA (Graphic Processing Unit / Compute Unified
Device Architecture) has given scientists a new conception of scientific computing
including specific libraries and applications to perform Bayesian inference based on
MCMC (Markov Chain Monte Carlo) algorithms. A quick review on the literature
shows that applications using this approach, obtains speed ups from 60 (1-GPU) to
500 (32-GPUs) (LEE et al., 2010; BAO et al., 2013; WHITE; PORTER, 2014; LING et al.,
2015).

4.2.2 Defining the environment with MAGGIE

We have considerably improved the algorithm called MAGGIE (Models and Algo-
rithm for Galaxy Groups, interlopers and Environment) that identifies groups and
clusters in mock and observed catalogs using a probabilistic approach (DUARTE,
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2014).

Figure 4.1 - Overview of how MAGGIE works in defining the environment (STALDER et
al., 2017b).

MAGGIE was developed to be applied on redshift-space data (observational cat-
alogs), where the classic algorithms as FoF suffer with projections effects and un-
certainties on the measurements (DUARTE; MAMON, 2014; DUARTE; MAMON, 2015).
This algorithm is an iterative method to select galaxy groups based on a density
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contrast criterion in projected phase space (PPS) as Yang et al. (2005), Yang et al.
(2007b), assuming a Navarro, Frenk and White (1996) (NAVARRO et al., 1996) surface
density profile and a Maxwellian 3D velocity distribution to compute a probability
for galaxies to belong to group (see more details on Figure 4.1).

MAGGIE has been used to analyze data from SDSS and measure the segregation as
function of the local and global environment: the galaxy position within the cluster
(R/Rgroup) and the group mass (Mgroup) (STALDER et al., 2017b; TREVISAN et al.,
2017). In the context of this project we want to run MAGGIE on Galaxy And Mass
Assembly (GAMA), select galaxies in different redshifts, retrieve the images in r-
band, run GALPHAT and investigate how the structural parameters (re, n, µe) vary
as a function of the environment (Mstellar, Mgroup and R/Rgroup).

4.2.3 Novelties for Validating N-body Simulations

The results found in the two main approaches of this thesis, specially the one with
emphasis on the approach of non-Gaussian signatures, bring novelties that should be
considered in the simulations of N-bodies for cosmology. For the GFEC1 in activity
in the LAC, it will be a direct contribution to the improvement of the N-body simula-
tor, using Heterogeneous High Performance Computing (HHPC), called COLATUS
(STALDER et al., 2012; STALDER, 2013).

1Grupo de Fisica Espacial Computacional credenciado pelo INPE no DGP do CNPq.
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APPENDIX A -PyPiGALPHAT

A.1 PyPiGALPHAT: SDDS Queries

For each galaxy PyPiGALPHAT retrieves informations from the SDSS databases
as described in Figure A.1. We update a python script (sqlcl.py) developed by
Tamas Budavari in 2003 for DR2. 1. The SDSS queries returns a unique combination
of run,rerun,camcol,field for each galaxy. This values are use to built the frame
url and download the required files which are: Frame, tsFields and psFields. Some
galaxies may be contained in the same Frame, therefore if the data was downloaded,
the scripts moves to the next galaxy (see Figure A.1).

Figure A.1 - This flow chart describes the script that builds the queries to obtain informa-
tions from SDSS databases.This flow chart is the procedure used to download
SDSS data. The files to be downloaded during this stage are listed.
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A.2 New Definition Adopted for Signal to noise

The galaxies are extended objects, so there are several ways to measure the S/N.
In YWK10, the signal-to-noise ratio was defined as the ratio between the flux from
the galaxy within the half-light radius and the noise from the sky background plus
the galaxy flux within the same area, i.e.:

S/N = 〈ρ〉√
〈ρ〉+ 〈ρSKY 〉

(A.1)

1http://skyserver.sdss.org/dr1/en/help/download/sqlcl/
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where 〈ρ〉 is the total electron count of the galaxy profile within the area πr2
eq and

〈ρsky〉 is the background within the same area.

This definition makes sense when we want to measure how much contamination
does the source have from the background, or in other words, how much galaxy is
above the sky. However when one look at the real images, we have more relative
fluctuations in the sky at the same signal/background ratio than at a higher sky
level. That is, the fluctuation in the sky background is proportional to

√
Sky, where

Sky is the mean sky level in arbitrary counts. It is not strictly signal-to-noise ratio
but signal-to-sky ratio SSR. Then the new standard definition of S/N is given by:

S/N = FLUX

(FLUX +BLK)1/2 (A.2)

where FLUX is the flux in the aperture, B is the background, ignoring the read
noise. For large background values, this is approximately FLUX = S/N

√
BLK as

expected. For S/N2 >> BLK, FLUX = S/N , independent of the background as
expected. The updated version of the "MakeImage", now considers this new definition
for S/N . In practice the magnitude is calculated as follow:

Mag = −2.5 log 10 (FLUX) (A.3)

Mag = −2.5 log 10
S/N2 + S/N

√
S/N2 + 4. SKY π r2

e

2

 (A.4)

We can also measure the S/Nm(≈ S/N
2 ) using Sextrator as the ratio between the

FLUXISO and FLUXISOERR.

A.3 MCMC Sampling Algorithm: Differential Evolution

Weinberg (2013) suggest that there is no single best MCMC algorithm for all ap-
plications and each choice represents a set of trade offs: more elaborate algorithms
with multiple chains, tempered, etc. are more expensive. However, may be the only
solution for a complex posterior distribution.

For problems with high number of free parameters, differential evolution relieves
the scientist of the task of hand selecting a transition probability by trial and error.
However, if the posterior is strongly multimodal, the differential evolution may back-
fire because some chains may remain forever in a single mode. YMK10 have shown
that differential evolution algorithm can be used effectively to explore posteriors
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distribution for modelling galaxy structure considering Sérsic profile. Alternatively
tempered chains can be used to explore more efficiently the parameter space.

A.4 Three Shear Rotation Algorithm

YMK10 rotates the model image in Fourier space, a method for rotation of discrete
sampled images use a combination of (fast) Fourier interpolation followed by cubic
interpolation onto a rotated grid. Larkin et al. (1997) shows that any rotation matrix
may be decomposed into three shear operations:

R =
cos θ − sin θ

sin θ cos θ

 = MxMyMx =
1 − tan θ

2

0 1

  1 0
sin θ 1

1 − tan θ
2

0 1

 (A.5)

where the matrices Mx and My are shear operators in the x and y directions, re-
spectively. Each shear operator is performed using a 2D extension of the 1D Fourier
shift theorem and considering the FFT. This algorithm gives results with minimal
loss of information in multiple rotation tests.

A.5 Volume Tessellation Algorithm

Weinberg (2012) describe a constructive algorithm for computing the marginal likeli-
hood of evidence, from a Markov chain simulation of the posterior distribution. This
method explores the simulated distribution to define a small region of high posterior
probability, followed by a numerical integration of the sample in the selected region
using the volume tessellation algorithm and compute the evidence associated to each
model:

P (D|Mi) =
∫

Ωs

dθP (θ|Mi)P (D|θ,Mi), (A.6)

where Ωs ⊂ Ω the MCMC subsample and desired sample of the posterior probability
respectively.

A.6 Karhunen-Loève transform to represent the PSF FWHM variation

Lupton et al. (2001) developed a pipeline to analyze SDSS data. The first step is
to identify a set of bright and isolated stars to estimate PSF FWHM. Typically
15-25 stars per frame. Karhunen-Loeve (KL) transform to represent 2-D variations
in FWHM as function of KL basis functions Br:

Pi(u, v) = Σr=n
r=1a

r
(i) Br(u, v) (A.7)
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where Pi is the ithPSF star and u,v are pixel coordinates to the origin of the basis
functions. Lupton et al. (2001) usually take n = 3 KL basis functions and N = 2
distortion order (quadratic variation).

A.7 Using PyPiGALPHAT

The first script that we should run to start the preprocessing its the following:

python PreprocessingQuery.py BAND_RAC_Dec_list.csv
python PreprocessingCatalog.py Catalog.csv

Later we can run processing script the use the preprocessed catalog and stamps to
submit the jobs as follow:

#python Process.py list model option1 option2 option3
python Process.py listGalaxies.csv Sersic
python Process.py listGalaxies.csv SersicPointSource
python Process.py listGalaxies.csv Sersic -objid 90239023902 -resume
python Process.py listGalaxies.csv Sersic -objid 90239023902 -prepostprocessing

We may also run on a standalone machine as follow:

#python Process.py list model option1 option2 option3
python Process.py listGalaxies.csv Sersic -objid 90239023902 -standalone

Once we have all galaxies processed we can start the postprocessing routines as
follow:

#python PosprocessingRscripts list model option1 option2 option3
python Postprocessing.py listGalaxies.csv Sersic
python Postprocessing.py listGalaxies.csv SersicPointSource
python Postprocessing.py listGalaxies.csv -standalone
python Postprocessing.py listGalaxies.csv Sersic -objid 90239023902
python Postprocessing.py listGalaxies.csv SersicPointSource -objid 90239023902

When we want to generate Synthetic Images the scripts that we should run are:

python GenerateSyntheticImages.py TrueParameters.csv NumRealizations
python GenerateCatalogSyntheticImages.py TrueParameters.csv Numrealizations
python PreprocessingSyntheticImages.py CatalogTrueParametersPlusSExtractor.csv
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To run GALFIT we have another set of scripts, that can be used as follow:

#python GalfitConfigFiles.py list model realizations
python GalfitConfigFiles.py listGalaxies.csv Sersic N_realizations
python RunGalfit.py listGalaxies.csv Sersic N_realizations
python CollecGalfitResult.py listGalaxies.csv Sersic N_realizations

A.8 Performance: Data Management and Runtime

Large datasets, fits images, several configuration files and posteriors distributions
demand a good scheme to handle the data. On each step of the pipeline we have
a file list that we should be saved or remove. Here we list the most important files
and their sizes:

a) Pre-processing: FITS (Frame, stamps and masks) ( 5MB), config files.

b) Processing: posteriors (ascii) ( 50MB), residuals ( 50MB), persistence
( 1GB) and log files.

2.2 Pre-postprocessing: posteriors (FITS.gz) ( 5MB), residuals ( 7MB)
and log files.

c) Postprocessing: Marginal (140KB) and posterior plots (155KB), cumula-
tive covariances (1.4MB), residual png images (420KB) and output cata-
log.

Table A.1 shows a summary of disk space that we need to save the information
considering two processed galaxy samples.

Figure A.2 shows the total runtime of one MCMC simulation and the likelihood
marginalization (which is used to compute the Bayes Factor). This figure shows

Table A.1 - This table shows the data generated on each stage of the pipeline.

Step Disk Space Disk Space
(32 Galaxies) (1024 Galaxies)

Preprocessing 175 MB 2.97 GB
Processing 32 GB 1 TB
Pre-Post-Processing 3.20 GB 13 GB

Post-Processing 70 MB 1.9 GB
Total 3.5 GB 18 GB
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the results as function of the S/N and stamp size (in pixels). The total runtime
was 32 hours using 10 nodes of our CPU cluster. A least square fitted curve is:
−1.8× 10−6x3 + 2.326× 10−3x2 − 0.1591x+ 43.79

Figure A.2 - This figure shows GALPHAT’s total runtime for each galaxy of our SDSS
sample. The point colors scale indicate the S/N measured for each galaxy.
The green solid lines show a linear least squares fit.
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APPENDIX B - Gaussianities

B.1 Non-parametric test to compare two-dimensional distributions

The most used non-parametric two-sample tests for one-dimensional data are the
Kolmogorov-Smirnov and Anderson-Darling tests. These tests, however, cannot be
applied in two or higher dimensions, because there is no unique way to order the
points so that distances between two distribution functions can be computed (see
Feigelson & Babu 2012). Alternatively, kernel smoothing is a widely used computa-
tional technique for density estimation due to its intuitive construction and interpre-
tation (Simonoff 1996). Thus, it is an ideal basis for non-parametric density-based
testing. Kernel-based tests have been developed with other discrepancy measures
(Martinez-Camblor et al. 2008), but all rely on computationally intensive resam-
pling methods to compute the critical quantiles of the null distribution. A more effi-
cient method with respect to computational complexity is the so-called “black-box”
comparisons of multivariate data (Duong, Gould & Schauer 2012). The algorithm
transforms data points into kernels and develop a multivariate two-sample test that
is nonparametric and asymptotically normal to directly and quantitatively compare
different distributions. The asymptotic normality bypasses the computationally in-
tensive calculations used by the usual resampling techniques to compute the p-value.
Because all parameters required for the statistical test are estimated directly from
the data, it does not require any subjective decisions. We give now a brief description
of the method.

Let X1,X2,...,Xn1 and Y1,Y2,...,Yn2 be the spatial coordinates of two datasets, and
f1 and f2 the corresponding spatial probability density functions. The kernel density
estimates of f1 and f2 are

f̂1(x,H1) = 1
n1

n1∑
i=1

KH1(x−Xi) (B.1)

f̂2(x,H2) = 1
n2

n2∑
i=1

KH2(x−Xi) (B.2)

where K is the kernel function with KHl
= |Hl|−1/2K(H−1/2

l x), and Hl is a band-
width matrix, for l = 1, 2. To test the null hypothesis H0 : f1 = f2, a discrepancy
measure is introduced: T =

∫
[f1(x)− f2(x)]2 dx. Assuming that the null hypothesis

holds, it can be shown that
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µT =
[
n−1

1 |H1|−1/2 + n−1
2 |H2|−1/2

]
K(0), (B.3)

σ2
T = 3

 ∫ f(x)3 dx−
( ∫

f(x)2 dx
)2
 (B.4)

and the Z-score is

Z = T − µT
σT
√

1
n1

+ 1
n2

(B.5)

The p-value is then computed from this z-score using standard software or tables.
The complete automatic testing procedure is programmed in the ks library in the
open-source R programming language (DUONG, 2007).
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